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Short-range interactions and a Bose metal phase in two dimensions
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We show here based on a one-loop scaling analysis that short-range interactions are strongly irrelevant
perturbations near the insulator-superconductor~IST! quantum critical point. The lack of any proof that short-
range interactions mediate physics which is present only in strong coupling leads us to conclude that short-
range interactions are strictly irrelevant near the IST quantum critical point. Hence, we argue that no physics,
such as the formation of a uniform Bose metal phase can arise from an interplay between on-site and nearest-
neighbor interactions.
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The standard model used to study1–13 the insulator-
superconductor transition in thin films is the commensur
Bose-Hubbard model or equivalently the charging model
an array of Josephson junctions. The Hamiltonian for t
model

Ĥ5
1

2 (
i j

n̂iVi j n̂ j2J(̂
i j &

cos~f i2f j ! ~1!

consists of a charging termVi j and nearest-neighbor Josep
son coupling between grains possessing a supercondu
phasef i . The operator,n̂i is the boson number operator fo
site i. In the on-site version of this model,Vi j 5d i j V0, where
V0 is the capacitance charging energy for each junction.
corresponding free-energy functional for the on-site charg
model lies in theO(3) universality class which possesses
single quantum critical point1 signalling the loss of phas
coherence onceV0 /J exceeds a critical value.

The recent experiments of Kapitulnik and co-workers14 in
which a metallic phase has been observed to intervene
tween the superconductor and the eventual insulating p
suggests that perhaps two phase transitions accompan
loss of phase coherence in a 2D superconductor:~1! super-
conductor to Bose metal and~2! Bose metal to insulator
These experimental results as well as ear
observations15–17of a similar metallic phase have stimulate
a re-examination18–21 of the physics of phase-only model
In this context, Das and Donaich21 have appended to th
standard on-site charging model a nearest-neighbor char
term with amplitudeV1. Concluding thatV1 is a relevant
perturbation, they find that short-range interactions media
critical point in which a Bose metal phase obtains once
size of each grain is increased beyond a critical value s
that V1.V0. The Bose metal phase of Das and Doniach21 is
a uniform phase lacking both phase and charge order. He
this phase is translationally and rotationally invariant. T
result is surprising because the critical point in a Joseph
junction array~JJA! is controlled by the standardf4 Wilson-
Fisher critical point. It is well-known that short-range inte
actions are irrelevant near the Wilson-Fisher critical poin22

Moreover, no critical point is generated regardless of
magnitude ofV1. Hence, the work of Das and Doniach21

stands in stark contrast to the standard view. In addit
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Fazio and Scho¨n23 have analyzed the nearest-neighbor cha
ing model as well and have shown that atT50, no phase
exists lacking both charge and phase order.

Motivated by the disagreement between the stand
picture22,23 and the Das-Doniach result,21 we take a closer
look at the nearest-neighbor charging model. We show
as long as on-site Coulomb interactions are present,
there is no signature that screened interactions of any
are relevant through one-loop order. Two conclusions
possible. Either the physics controlled by short-range in
actions is strictly a strong coupling problem with no wea
coupling signature, or short-range interactions are irrelev
at each order in perturbation theory in agreement with
standard view. The lack of any proof that short-range int
actions flow to strong coupling leads us to conclude that i
unlikely that short-range interactions can mediate homo
neous phases near the quantum critical point associated
loss of phase coherence.

To establish this result, we write the partition function f
the phase-only model in the standard way as a path inte

Z5E Dfe2S, ~2!

where the statistical weight for each path,

S5
1

2E dt(
k

ḟ~k!ḟ~2k!

V~k!
2E dt(̂

i j &
Ji j cos~f i2f j !,

~3!

defines the effective action for our problem. Here,V(k) is
the Fourier transform ofVi j . At the outset, we place no
restriction on the range ofVi j . To simplify this action, we
first decouple the charging term by introducing4 an auxilliary
real gauge field,A0(k), through the identity

expF2
1

2E dt(
k

ḟ~k!
1

V~k!
ḟ~2k!G

5E DA0expH 2
1

2Ek,v

A0~k,v!A0~2k,2v!

e22V~k!21

2
1

2e2E dt(
i

~ḟ i2eA0~ i !!2J . ~4!
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The coupling constante is a free parameter which will be
determined later. The second step is to decouple the expfi)
terms in the standard way1 by introducing the complex field
c i(t), which will play the role of the order parameter in a
effective Landau-Ginzburg theory. The final expression
the partition function

Z5E DcDA0e2S ~5!

is obtained by integrating over the auxilliary fields. The e
fective action now takes the form,

S5
1

2E ddxdtF u~]t2 ieA0!cu21u¹cu21r ucu21
u

2
ucu4G

1
1

2Ek,v

A0~k,v!A0~2k,2v!

e22V~k!21
5S01S1. ~6!

Consider first the case of long-range Coulomb inter
tions. In this case, the constant,e, plays the role of the elec
tric charge,e* 52e, and V(k)5(e* )2/ks where s52 for
D53 ands51 for 2D. Consequently, the pure Coulomb pa
of the action reduces to

S15
1

2Ek,v
ksA0~k,v!A0~2k,2v!, ~7!

which is the Fisher and Grinstein4 result.
What about short-range interactions? We simplify to

case considered by Das and Doniach21 and truncateV(k) at
the nearest-neighbor level:

V~k!5V012V1~coskx1cosky!. ~8!

It is crucial in our derivation thatV0Þ0. As has been con
sidered previously, whenV050 butV1Þ0, the nature of the
T50 transition changes fundamentally when compared w
the V0Þ0 case. In the former case, that is,V050 but V1
Þ0, the T50 transition is of the Berezinskii-Kosterlitz
Thouless kind.23 In the long wavelength limit,V(k)5V0
14V12V1k2, which is convenient to write in the form,e2

2V1k2 where we have fixed the free parameter,e25V0
14V1. Consequently, the pure gauge part of the action s
plifies to

S152
e2

2V1
E

k,v

A0~k,v!A0~2k,2v!

k2
. ~9!

Upon rescaling the gauge field, A0(k,v)
→ iAV1/e2A0(k,v), we arrive at the working form for the
action,

S5
1

2E ddxdtF u~]t1gA0!cu21u¹cu21r ucu21
u

2
ucu4G

1
1

2Ek,v
A0~k,v!

1

k2
A0~k,v!, ~10!
08110
r
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where the constantg5A(V1(V014V1))5eAV1. Clearly,
whenV150, g50 and the rescaled fields,A0(k,v), vanish
leading to the standard on-site charging model. Hence,
relevance of short-range interactions can be deduced ent
from the scaling properties of the coupling constantg.

Performing the standard tree-level rescaling with the r
caling parameterb.1, we find that the momentum and fre
quency scale asq85qb andv85vbz, with z the dynamical
exponent. At the tree level,z51 and the anomalous dimen
sion exponent vanishes,h50. Hence, thec and A0 fields
scale as

A05bmA08, m5
d1z22

2
,

c5blc8, l5
d121z

2
. ~11!

Combining these scaling relations with the rescaling of
momentum and the frequency arising from the integratio
in the action, we arrive at our key result

g85g
bm1l

b(3d13z)/2
5gb2(d1z)/2, ~12!

namely thatg has a negative eigenvalue. Hence, upon s
cessive renormalization transformations, the physics c
trolled by g can have no effect on the underlying quantu
phase transition.

Does the irrelevance ofg still persist beyond the tree
level? To answer this question, we derive the scaling eq
tions for g through one-loop order. The relevant diagram
that contribute are shown in Fig. 1.24 We evaluate these dia
grams using the standard frequency-momentum shell RG
proach in which we integrate out the fieldsA0(v,k) and
c(v,k) for momenta and frequencies satisfying the co
straintL/b,v,L, andL/b,k,L with the upper momen-
tum and frequency cutoffsLv5Lk5L51. Settingb5el ,
we obtain

dgl

dl
52S d11

2 Dgl22Alglul2Blgl
3 ~13!

as the differential form for the scaling equation forg. The
coefficients,Al andBl are given by

FIG. 1. Diagrams that contribute to the renormalization ofg
through one-loop order. The dashed line represents the propa
for the A0(k,v) field. The solid lines are given by the Gaussia
propagator (v21q21r )21.
1-2
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Al5
2Kd

~2p!d11 F E0

1

dq
qd21

~q2111r l !
2

1E
0

1 dv

~11v21r l !
2G
~14!

and

Bl5
2Kd

~2p!d11 F E0

1

dqqd11
112q212r l

~11q21r l !
2

1E
0

1

dv
21v212r l

~11v21r l !
2G , ~15!

whereKd is the area of ad-dimensional unit sphere. Thes
coefficients are positive and depend on the scaling lengl
through the parameterr l . Hence, from the structure of th
scaling equation, forgl , Eq.~13!, we find that theg50 fixed
point is stable through one-loop order. That is, there is
signature in weak coupling that finiteg can drive a different
critical point. This conclusion is consistent with the standa
view that as long as the broken symmetry state is rotation
and translationally invariant, the critical point is of th
Wilson-Fisher type where it is well known that short-ran
interactions cannot lead to a different critical point.

Becauseg}AV1, the one-loop scaling equation forg nec-
essarily implies that nearest-neighbor interactions are ir
in,

.

.

er

08110
o

d
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evant and as a consequence cannot change the phase di
of the on-site charging model, contrary to the claims of D
and Doniach.21 Simply put, nearest neighbor interaction
constitute an irrelevant perturbation in the phase-disorde
transition in complete agreement with the standard sca
arguments.22 Because the critical point in the JJA model is
the Wilson-Fisher type,V1, regardless of its magnitude, can
not mediate a critical point separating phases that are tr
lationally and rotationally invariant. This automatically rule
out aV1-mediated uniform Bose metal phase.

However, short-range interactions can mediate an in
mogenous charge-ordered phase such as a supersolid.12,13 In
such instances, the effective field theory reduces12 to two
coupled O(3) vector models. Nonetheless, if the brok
symmetry state is rotationally and translationally invaria
the critical point is of the Wilson-Fisher type where sho
range interactions are strictly irrelevant. In light of this co
clusion, the only candidate for a Bose metal phase that
mains is our recent proposal18 that in the standard quantum
disordered regime, a cancellation arises between the e
nentially long quasiparticle scattering time and the expon
tially small quasiparticle population, leading ultimately to
finite dc conductivity.
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