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We show here based on a one-loop scaling analysis that short-range interactions are strongly irrelevant
perturbations near the insulator-supercondu@®t) quantum critical point. The lack of any proof that short-
range interactions mediate physics which is present only in strong coupling leads us to conclude that short-
range interactions are strictly irrelevant near the IST quantum critical point. Hence, we argue that no physics,
such as the formation of a uniform Bose metal phase can arise from an interplay between on-site and nearest-
neighbor interactions.
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The standard model used to stidy the insulator- Fazio and Schu™ have analyzed the nearest-neighbor charg-
superconductor transition in thin films is the commensuraténg model as well and have shown thatTat 0, no phase
Bose-Hubbard model or equivalently the charging model forexists lacking both charge and phase order.
an array of Josephson junctions. The Hamiltonian for this Motivated by the disagreement between the standard
model picturé??® and the Das-Doniach resdlt,we take a closer

look at the nearest-neighbor charging model. We show that

~ 1 ~ A as long as on-site Coulomb interactions are present, that

H=3 > nVin—J> cos i~ ;) (1) there is no signature that screened interactions of any type

! ) are relevant through one-loop order. Two conclusions are

consists of a charging ter; and nearest-neighbor Joseph- Possible. Either the physics controlled by short-range inter-
son coupling between grains possessing a superconducti@gtions is strictly a strong coupling problem with no weak-

hases; . The operator is the boson number operator for coupling signature, or short-range interactions are irrelevant
Eitei. Inlfhe on-sﬁte versilo” of this modal = 5”\/5 where at each order in perturbation theory in agreement with the

V, is the capacitance charging energy for each junction, Thgtandard view. The lack of any proof that short-range inter-

X : . . actions flow to strong coupling leads us to conclude that it is
corresponding free-energy functional for the on-site Chargln%nlikely that short—rgnge ipntegr]actions can mediate homoge-

”_‘Ode' lies in theO(_3_) “”“’.ers"’?”ty c!ass which possesses qneous phases near the quantum critical point associated with
single quantum critical poihtsignalling the loss of phase loss of phase coherence
coherence onc¥,/J exceeds a critical value. To establish this result, we write the partition function for

The recent experiments of Kapitulnik and co-workéis . :
which a metallic phase has been observed to intervene bg-]e phase-only model in the standard way as a path integral

tween the superconductor and the eventual insulating phase

suggests that perhaps two phase transitions accompany the Z:f Dge™ 5, 2
loss of phase coherence in a 2D superconduciorsuper- . .

conductor to Bose metal an@) Bose metal to insulator. Where the statistical weight for each path,

These experimental results as well as earlier 1 B(K) B(—K)

observationS~*' of a similar metallic phase have stimulated g— _f dry =2 f d7>, J;;co8 ¢ — )

a re-examinatiotf~?! of the physics of phase-only models. 2 ko V(K @ L

In this context, Das and Donaithhave appended to the €)
standard on-site charging model a nearest-neighbor chargingefines the effective action for our problem. Hev&k) is
term with amplitudeV,. Concluding thatV, is a relevant the Fourier transform of/;. At the outset, we place no
perturbation, they find that short-range interactions mediate gestriction on the range of;; . To simplify this action, we

critical point in which a Bose metal phase obtains once thQirst decoup]e the Charging term by introduc‘ham auxi"iary
size of each grain is increased beyond a critical value suchea| gauge fieldA,(k), through the identity

thatV;>V,. The Bose metal phase of Das and Donfad

a uniform phase lacking both phase and charge order. Hence, 1 . 1 .
this phase is translationally and rotationally invariant. This ex;{ - EJ dT; ¢(k)m¢(—k)
result is surprising because the critical point in a Josephson

junction array(JJA) is controlled by the standard* Wilson- 1 Ag(K,)Ag(—K,— w)
= f DAjexp) — 5 f
K, @

Fisher critical point. It is well-known that short-range inter- -

actions are irrelevant near the Wilson-Fisher critical p&int. 2 e “V(k)—-1
Moreover, no critical point is generated regardless of the

magnitude ofV,. Hence, the work of Das and Donig&th _ij er (éﬁ-—er(i))Z (4)
stands in stark contrast to the standard view. In addition, 2e? i ' '
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The coupling constang is a free parameter which will be : ! ! !
determined later. The second step is to decouple thegaxp( |

1 1 1

| | |
terms in the standard wapy introducing the complex field
i (1), which will play the role of the order parameter in an . \
effective Landau-Ginzburg theory. The final expression for ’ \
the partition function -=- ’ b

— -s
Z‘f DyDAqe ©) FIG. 1. Diagrams that contribute to the renormalizationgof
through one-loop order. The dashed line represents the propagator
is obtained by integrating over the auxilliary fields. The ef-for the Ay(k,w) field. The solid lines are given by the Gaussian

fective action now takes the form, propagator 2+ qg%+r) L.
1 _ u where the constang=/(V;(Vo+4V,))=e\V,. Clearly
_ - d _ 2 2 20 1,04 1\Vo 1 1 )
S= Zf dxd| [(9,—ieAg) Y|+ [V y|*+r|y]*+ 2|¢| whenV,;=0, g=0 and the rescaled fieldéy(k,), vanish
leading to the standard on-site charging model. Hence, the
1 Ao(K,w)Ag(—Kk,— w) relevance of short-range interactions can be deduced entirely
Efk " e 2V(k) -1 =St Sy ©  from the scaling properties of the coupling constgnt

Performing the standard tree-level rescaling with the res-
caling parameteb>1, we find that the momentum and fre-
guency scale ag’ =gb andw’ = wb?, with z the dynamical
exponent. At the tree levet=1 and the anomalous dimen-
sion exponent vanisheg;=0. Hence, they and A, fields

Consider first the case of long-range Coulomb interac
tions. In this case, the constast,plays the role of the elec-
tric charge,e* =2e, and V(k)=(e*)?/k” where =2 for
D=3 ando=1 for 2D. Consequently, the pure Coulomb part

of the action reduces to scale as
1 o B d+z-2
Si= Ef K7Ao(K, @) Ag( — K, — w), (7) Ag=b*Ao,  pu=—5—
K, w
which is the Fisher and Grinstéimesullt. o d+2+z
What about short-range interactions? We simplify to the Y=br, A= 11
case considered by Das and Donfciind truncate/(k) at
the nearest-neighbor level: Combining these scaling relations with the rescaling of the
momentum and the frequency arising from the integrations
V(K)=Vo+ 2V (cosk,+cosky). (8) in the action, we arrive at our key result
It is crucial in our derivation tha¥/,# 0. As has been con- b
sidered previously, wheX,=0 butV;+# 0, the nature of the —gh-(@+272 (12)

T=0 transition changes fundamentally when compared with 9-9 p(3d+32)/2
the Vo#0 case. In the former case, that ¥$=0 butV,

+#0, the T=0 transition is of the Berezinskii-Kosterlitz- namely thatg has a negative eigenvalue. Hence, upon suc-
Thouless kind® In the long wavelength limitV(k)=V, cessive renormalization transformations, the physics con-
+4V,—V,k?, which is convenient to write in the forne?  trolled by g can have no effect on the underlying quantum
—V;k? where we have fixed the free parametef=V, Phase transition.

+4V,. Consequently, the pure gauge part of the action sim- Does the irrelevance o still persist beyond the tree
plifies to level? To answer this question, we derive the scaling equa-

tions for g through one-loop order. The relevant diagrams
2 Ag(K, @) Ag( — K, — @) that contr_ibute are shown in Fig.ZiWe evaluate these dia-

) (9 grams using the standard frequency-momentum shell RG ap-
proach in which we integrate out the fieldg(w,k) and
J(w,k) for momenta and frequencies satisfying the con-
straintA/b<w<A, andA/b<k<A with the upper momen-
tum and frequency cutoffd ,=A,=A=1. Settingb=¢',

e

SOV 2

Upon rescaling the gauge field, Aq(k,w)
—iVi/e?Aq(k, ), we arrive at the working form for the

action, we obtain
1 u
S==| d%d7{|(9,+ 2H V24| g2+ S|y dg d+1
5 | aoxa 1o+ gm0 ulZ [T uiluf+ 51l (S ngu-Bg
+ Ef Ao(k,w)iAo(k,w), (100 as th_e_differential form for_ the scaling equation fpr The
2 )k k2 coefficients,A, andB, are given by
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1 qd-t 1 de evant and as a consequence cannot change the phase diagram
f dq +f of the on-site charging model, contrary to the claims of Das
o (g?+1+r)? Jo(l+ew?+r))? and Doniactf! Simply put, nearest neighbor interactions

(14)  constitute an irrelevant perturbation in the phase-disordering
and transition in complete agreement with the standard scaling
argument$? Because the critical point in the JJA model is of
1 1+ 2%+ 2r, the Wilson-Fisher typey,, regardless of its magnitude, can-
f dggd t—-%F—— not mediate a critical point separating phases that are trans-
0 (1+g%+r))? lationally and rotationally invariant. This automatically rules
out aV,-mediated uniform Bose metal phase.
(15) However, short-range interactions can mediate an inho-
' mogenous charge-ordered phase such as a supefsblich.
such instances, the effective field theory reddtes two
coupled O(3) vector models. Nonetheless, if the broken

h h th H ¢ h £ th symmetry state is rotationally and translationally invariant,
through the parameter . Hence, from the structure of the o critical point is of the Wilson-Fisher type where short-

scaling equg?onr,]fogl ,hEQ-(lf’), we f'gd thart]thqgj=C:1f|xeq range interactions are strictly irrelevant. In light of this con-
point is stable through one-loop order. That is, there is nQygion the only candidate for a Bose metal phase that re-
signature in weak coupling that finigecan drive a different g js our recent propodathat in the standard quantum
critical point. This conclusion is consistent with the standardg;sordered regime, a cancellation arises between the expo-
view that as long as the broken symmetry state is rotatlonall¥]emia”y long quasiparticle scattering time and the exponen-

and translationally invariant, the critical point is of the 5\ sma|l quasiparticle population, leading ultimately to a
Wilson-Fisher type where it is well known that short—rangeﬁnite dc conductivity.

interactions cannot lead to a different critical point.
Becauseye \V,, the one-loop scaling equation fgmec- We thank E. Fradkin for helpful comments. This work
essarily implies that nearest-neighbor interactions are irrelwas funded by the DMR98-12422 of the NSF research fund.

2K 4

- (27T)d+1

A

2Ky

B/= d+1
(2m)

fl 2+ w?+2r,

+ | do————

0 (1+w2+r|)2

whereKy is the area of al-dimensional unit sphere. These
coefficients are positive and depend on the scaling lehgth
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