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Counting statistics for entangled electrons
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The counting statisticéCS) for charges passing through a coherent conductor comprise the most general
guantity that characterizes electronic transport. The CS depend not only on the transport properties of the
conductor, but also on the correlations among particles which compose the incident beam. In this paper we
present general results for the CS of entangled electron pairs traversing a beam splitter, and we show that the
probability thatQ charges have passed is not binomial, as in the uncorrelated case, but is symmetric with
respect to the average transferred charge. We furthermore consider the joint probability for transmitted charges
of a given spin, and we show that the signature of entanglement distinctly appears in a correlation which is not
present for a nonentangled case.
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[. INTRODUCTION duction and the beam splitter. As the entangler one can re-
sort to the phenomenon of Andreev reflection in hybrid
Probably one of the most striking features of quantumnormal-superconducting systems, as discussed in Refs. 7-9.
mechanics is entanglemeniyhich refers to the nonlocal Besides electrons, it is possible to produce entangled states
correlations existing, even in the absence of interaction, bewith Cooper pairs in superconducting nanocircifitsr, by
tween two (spatially separatgdparts of a given quantum coupling a mesoscopic Josephson junctions with supercon-
system. Besides the fundamental interest in the generatiaducting resonators;“between Cooper pairs and the resona-
and detection of entanglement, a great deal of interest hdsr mode.
been brought forth by its role in quantum information, which  In this paper we consider the same approach as in Ref. 6,
has attracted vast effort due to the very important impact oind take for granted the existence of emtangler We ad-
its potential applications, ranging from quantum computatiordress the question of whether the study of the full statistics of
to quantum teleportatiohEntanglement is the main ingredi- charge transport at exit terminals 3 and 4 of such systems
ent in all known examples of quantum speed-up in quantuntan provide more informatiofas compared to the nojsen
computation and communication. the correlation of the injected particles in terminals 1 and 2.
Most of the work on entanglement was performed in op-The main result of this paper is that not only the value of the
tical systems with photoriscavity QED system$,and ion  noise characterizes the entangled singlet state with respect to
traps® Only recently have people begun to study how touncorrelated stategas shown in Ref. B in addition, the
generate and manipulate entangled pairs in a solid-state emwhole probability distribution for the transfer of charges is
vironment. The prototype setup was discussed in Ref. 6qualitatively modified. More precisely, we show that the
where it was shown that the presence of spatially separatgarobability distribution relative to incident particles in the
pairs of entangled electrons can be revealed by using a bea@mtangled singlet state is not binomial, in contrast to the case
splitter, as in Fig. 1, and by measuring the correlations of th@f uncorrelated injected states; moreover, it is symmetric
current fluctuatiorinoise at the exiting terminalflabeled by  around its average value. In addition, we show that the use of
3 and 4 in the figure Provided that the electrons injected spin-sensitive electron counters, on the one hand, provides a

into leads 1 and 2 are in an entangled state, more stringent tool for detecting entangled states which is
1 ... e 1 1
_ T oAt T ot
|'J/>—E(azianiazyau)|o>, (1) 3

bunching and antibunching behaviors are found depending Entangler

on whether statéy) is a spin singleflower sign or a spin
triplet (upper sign. More precisely, current noise is enhanced ;
by a factor of 2 with respect to nonentangled states in the - 2

former case, and suppressed to zero in the latter. Note th_at FIG. 1. The prototype setup consists of amanglerconnected
while this allows one to detect a singlet entangled state, ity a4 beam splitter. The entangler produces pairs of entangled elec-
does not discriminate between entangled and nonentanglggns from a source of uncorrelated particles entering from termi-
triplets (unless spin-dependent detectors are empfyed nals 1’ and 2. In the beam splitter, the entangled electrons injected
Given the general setup, in order to find the signatures ofhto terminals 1 and 2 are transmitted and reflected into terminals 3
entanglement in the noise spectrum one needs a physicahd 4 by the semitransparent mir@iashed ling No backscatter-
realization of both theentangler(that enables the pair pro- ing into leads 1 and 2 is allowed.
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based on general properties of the probability distribution. At 2 N s e

On the other hand, as already noticed in Ref. 6, it allows one {ai,(E),aj,(E")}= 6 ;0,0 S(E-E"). (6)

to distinguish between entangled and nonentangled tripldh the case of two- and three-dimensional leads, one can
states. The paper is organized as follows. In Sec. Il we giveeparate longitudinal and transverse particle motions. Since
a brief review of the scattering approach for counting statisthe transverse motion is quantized, the wave function relative
tics. Then, in Sec. lll, we apply it to the case of a beamto the plane perpendicular to the direction of transport is
splitter with entangled electrons. We first present the resultsharacterized by a set of quantum numbers which identifies
for the statistics of transmitted charges in a single terminalthe channels of the lead. Such channels are referred to as
and then consider the cross correlation. We finally summatopen” when the corresponding longitudinal wave vectors

rize all the results in Sec. IV. are real, since they correspond to propagating modes. Note
that the case of a single open channel corresponds to a one-
Il. SCATTERING APPROACH dimensional lead.

As far as charge transport is concerned, the quantities
In the calculation of counting statistics we adopt the scatwhich are most frequently considered are the conductance
tering approach of Landauer and Buttikér® Within this  and the noise, the latter arising due to the discrete nature of
framework, the transport properties of a metallic phasethe charge carriers, even at zero temperature. However it is
coherent structure attachedrigeservoirs are determined by more general to consider the probability distribution for the
the matrix S of scattering amplitudes. Such amplitudes aretransfer of charge¥,*® of which conductance and noise are
defined through asymptotic wave functions, known as scatthe first and second moments, respectively. Following Refs.
tering states, for particles in the leadshich connect the 17 and 18, within the scattering approach the characteristic
reservoirs to the samplein one dimension, for example, function of the probability distribution for the transfer of
such scattering states arising from a unitary flux of particlegarticles in a structure attachedrideads at a given enerdy

at energyE, originating in theith reservoir, read can be written as
ik (E)X 1. —ik;(E)x R R R
ain= S TEe @ xe®y={ T[ en®=) ] e-n8+ib)) ()
vho,(E) j=1n i=1n
for theith lead, and where the bracket$- - -) stand for the guantum-statistical
average in thermal equilibrium. Assuming a single channel
tji(E)e_ikj(E)X per Iead,N{E’o) is the number operator for incomir(gutgo-
@j(x)= e (3 ing) particles with spinr in leadj, andx is a vector of real
ViUj

numbers, one for each open channel. Number operators can
for the jth lead, withj#i. Herer;(E) is the reflection am-  be written in terms of the above operatorsfﬂgzéfgéjg
plitude for particles at energ with wave vectork;(E) and 54 Ng: qAb,-T,,f;S,-U. Note that Eq(7) is simply a generaliza-

group velocityo;(E) in theith lead, and;;(E) is thg rans- ion of the spinless, single-channel case, for which it is easy
mission amplitude from leadto leadj. Note thatr;|“ is the {5 show that

probability for a particle to reflect back into thth lead, and

|t;i|? is the probability for the transmission of a particle from 1 . . R

leadi to leadj. In the second quantization formalism, the xe(\):= X Pg(m,n)e*mMe M= (g\Nig=irNoy  (g)
. ~ . . . . . m,n=0

field operatory;,(x,t) for spin o particles in lead is built

from scattering states, and is defined as Here Pg(m,n) is the joint probability form particles to
propagate to the right amtparticles to propagate to the left,
. e IEUR A _ with energyE.
'pja(xvt):f dE———=[a,(E)e"i*+ ¢;,(E)e™ "], For Ior?é]/ measurement timeés® the total characteristic
vho;(E)

4) function y is the product of contributions from different en-

ergies, so that
where a;,(E) [;,(E)] is the destruction operator for in- A gyt
coming (outgoing particles at energf, with sping in lead x(\)=e NE), 9
J'fst#Ch topetrators are related through the scattering matrix 5 yhe joint probability distribution for transferrir@, elec-
ot the structure as tronic charges in lead 1Y, in lead 2, etc., is given by

b1y agg g . G
d)li - all P(Ql!QZ’ .. ) (zw)nf_w d)\ld)\z .. X()\)e .
T l=s| T, ) (10)
b2y asy
. . In Refs. 20 and 21 it was first proved that in a quantum
conductor with a single open channel the distribution prob-
and obey anticommutation relations ability is binomial, in contrast to the classical case where the
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distribution is Poissonian. In Ref. 22 the characteristic funcy g
tion was genergllzed to many open ch.annels, gnd an explic e(N3,N\4) is reduced to a calculation of expectation values
expression for its cumulants was obtained. This allowed on f number operators and their products. The procedure is
to prove that the probability distribution for a tunnel bamerfurther simplified by assuming no backscattering into termi-

with very small transmission recovers a Poissonian distribuz 515 1 ang 2, so that the scattering matrix obeys the relation
tion. Counting statistics was so far studied for several sys-

tems including a hybrid normal-metal-superconductor (&3) (rgl tgz)(él)
(o8 ag

iO”)2=NjO‘T are projector operatofsthe evaluation of

structuret®?*24 metallic diffusive wire$>?® and chaotic
cavities?® As far as the experimental measurement is con-

cerned, two possible schemes for measuring the countinép no spin-mixing processes are present. Hefe(t?) is the
. f

statistics were recently proposed in Ref. 27. ! M . . . .
In the rest of the paper we specialize to the beam Sp"ttegeflectmn(transmussmh amplitude for an incoming particle

of Fig. 1, for whichn=4. In analogy with the optical case, rom leadj to be reflectedtransmltted into leadi. ,
we consider the ideal situation where particles injected from In the case of entangled incident stafiEs. (12)], we find
branch 1(2) impinge on a semitransparent mirror, from that

which they are transmitted into branch(3) and reflected 1

into branch 3(4). Xe(A3,Ng)= (5 —A) (e7 234 @ 2Ny 4 DA I (Mgt ha)

(16)

(15

g g ~
ty Ta)\ ay,

;2)40'

Ill. CHARACTERISTIC FUNCTION FOR ENTANGLED
ELECTRONS where

We concentrate on a calculation of the probability distri- A= 3[T' T+ RIR = (rjthir i3ty +thriitiiriy)]
bution for the transfer of particles in leads 3 and 4, when (17
particles are injected from leads 1 and 2. Since we are NQLith the upper sign referring to the triplet state and the lower
interested in counting the particles passing through the enter- PP 9 9 P

: L sign referring to the singlet statB’=|rg;|>=|rg,/*> and T
ing leads 1 and 2, we sk =X,=0, so that Eq(7) becomes =|t5,]2=]tg,/? are reflection and transmission probabilities,

respectively. Note that the second equalities in the above
relationships are completely general in the case of no back-
scattering. For comparison, in the case of uncorrelated in-
coming particles the characteristic function is given by

Xe(hg,hg) = (@M e + R g+ R
% e—ix3(r§1(3)1mgi)e,m4(,;,4ox+,;‘4oi)>. (11)

We assume, as usual, that the incoming particles are indepen- ' ‘
dent, and originate from reservoirs. Therefore, we set the xe(hg )= [ (R7e M3+ Toe™Na), (18
chemical potentials of reservoirs connected to leads 3 and 4 o=l

to zero, and chemical potentials of reservoirs connected to

leads 1 and 2 either to zero or to eV. At zero temperature, thFunction relative to entangled pairs of incident partidlEs.

statistical average over the Fermi distribution function in Eq. : .
o . (16)] possesses a different structure with respect to the one
(11) simplifies to the expectation value onto the state con-

taining two electrons in the energy rangecB<eV, with relative to the ordinary situation of independent particles
opposite spin either in lead 1 or 2. The situation we arJEq' (18]. In particular, while Eq.(18) depends only on

. ! . . probability coefficients, the characteristic function for en-
interested in corresponds to the propagation of entangled ir)- : . .
. e angled electrons depends directly on the scattering ampli-
cident states from branches 1 and 2, as if originating from an :
. . e tudes. Furthermore, unlike E¢L6), Eq. (18) can be factor-
entangler Such a device provides incident electrons, at the

) . ized into spin-up and spin-down contributions, reflecting the
same given energlf, described by the stafe fact that, in an ordinary situation, electrons with different
L spins undergo independent scattering processes. In t?e sim-
— 1At At LA At plest case of spin-independent transport, such thatr;;
) \/E[azl(E)a”(E)_aZT(E)a”(E)”m' 12 and t =tj;, the constant in Eq(17) takes the vlelueﬁj\
= %(|t12—|r|2)2 for the entangled singlet andl=1/2 for the
In Eq. (12) the minus sign refers to the spin singlet and theentangled triplet. This implies that pairs of particles in an
plus sign to the spin triplet. ForOE<eV, Eq.(11) reduces entangled triplet state show the same characteristic function

to as for nonentangled tripletéof the form |y)=al al ),
namely,

As it appears from Eq916) and (18), the characteristic

Xe(ha ha) = (e TRode g +RE)) - (1 |
Xe(Ng,hg) =€ 'Oa3Fra), (19
since the incoming states do not contain incoming particle

from leads 3 and 4. By using the identity ?\Iote, moreover, that the result given in E9) for nonen-

tangled triplets does not depend on transport amplitudes.
iR i cio It is worthwhile noting that if we allow for spin-polarized
e "MTo=[1+(e""™M—-1)Ng] (14 transport, for example using ferromagnetic metals for termi-
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nals 3 and 4, the characteristic functions for all cases will be 0.5
distinguished from each other. The constanh Eqg. (16), in
fact, will take the value 0.4

A=t th=r Yttt =rTr (20) 0.3

P (Q3)
in the case of a symmetric beam splittehererg,=r,=r 0.2
andt3,=ty,=t). This causes the characteristic function of
the entangled spin triplet to differ from the one relative to 0.1 //’\
nonentangled triplets, since in the latter cage is again ‘ '
given by Eq.(19), independent of scattering amplitudes. 10 20 30 Q40 50 60 70
3
A. Counting statistics on a single terminal FIG. 2. Single-terminal counting statistid®(Q,) for a spin-

Let us now turn our attention to the probability distribu- insensitive electron counter. The dashed line is relative to uncorre-
tions for the transfer of particles. As already mentioned inlated electrons; the thin line and the bold line are relative to en-
Sec. I, these can be easily computed by a Fourier transforifingled singlet and triplet electrons, reSpeCtivfly' The spin-
of the total characteristic functidiq. (9)], so that the prob- dependent beam splitter is characterizedRy-0.2, R'=0.1, and

ability for transferring a number o, electronic charges, M=50. The mean num_pgr of yncorrelated partlc_le_s depends only
- .2 S on the reflection probabilities, since electrons are injected from lead
regardless their spin, into leadis given by

1, and(Q3)=M(R'+R")=15. In the case of entangled particles,
the mean number depends on the sum of reflection and transmission

1 (+~ .
P(Q.) = Ef_ d\ x(\,)eraRq, (22) probabilities, and it igQ3) =M =50.

Note thaty(\,) is obtained from the completg(X) by set- the two nonentangled triplet states, which remain of the form
ting to zero every ; with B+ . In the limit of small bias of Eq. (24)_. Such a _broadenlng is due to the fagt that t_he
voltageV and zero temperature, the total characteristic func-CQnStat;“A in Eq. (1630'2%)'"'%0”9” equallto _1/2|£.but2|nstea<|j [[S

. S S M given by expressiori20). As an example, in Fig. 2 we plo
102\/[53' i(r?)gu(z:inabv?/ar;/a(tj#actegnteq(()ﬁ?y_rggggg)t]o c\z/;\\llltt::Ia':{[le th G;[he probability distribution as a function of the number of
characteristic function at zero energy. For entangled inciden?harge@& Te'a""e to the various [mdent Pim'c'e states for
particles[see Eq(12)] we find that a beam splitter characterized ®/ =0.2, R'=0.1, andM

=50. The thin(thick) solid line represents the counting sta-

" Kk tistics relative to the entangled singlétiplet) state, whereas
1 k Mk the dashed line is the counting statistics for the ordinary
F’(Qe,)zkzglwI| K 7 A (2A) Qs—M+k1, independent particle state. The curve relative to the en-
: 2 tangled triplet has acquired a finite width, and becomes dis-

(22 tinguished from nonentangled triplets whose distribution is a
with the sum restricted to values &fsuch that Q;—M  Kronecker delta aQ;=>50 (not shown in the figure Note
+k) is an even number, anBl(Qs)=0 for Q;>2M. Itis  that, since the shot noise is proportional to the variance of

’ i : 2__
easy to show that distributiof®2) is symmetrical with re- P(Qa) through the relatiotf s;st/2e?=((Q3Qs)), where
spect to the position of the maximur®@¢= M), independent

of the scattering amplitudes. This result is in contrast with ﬁzlogx():)
the ordinary situation of independently injected particles {(Q3Qq))=i? > , (25
where, as expected, the distribution is binomial, IN3 x=0

2M

P(Q3) = ( ) RQ3(1—R)2M~ Qs (23 we have that

Qs
and centered around the valu®;=2MR, for spin- 4e3V (1
independent transpofthe factor 2 comes from the spin de- S33=T<§_A> (26)
generacy. Note that the width of Eq22), for a spin singlet
is double with respect to the ordinary case of E2B), and f tanaled particl d
zero for the triplet. In particular, for an entangled spin triplet or entangled particies, an
we have

2e’V
P(Q3)=dq, m" (24) S~ [R(1-R")+R(1-RH] (27)

equal to the nonentangled triplet states.

Let us now assume spin-dependent transport. In such far independent particles. For completeness we mention that
case the distributiof(Qs), relative to the triplet entangled the dashed curve in Fig. 2, relative to incoming uncorrelated
state, broadens to a finite width, and is distinguished fronelectrons, corresponds to the distribution

075317-4



COUNTING STATISTICS FOR ENTANGLED ELECTRONS PHYSICAL REVIEW B85 075317

min[Qz M1/ \1 tmd\, dhg . :
= ki1 _pTyM—k P , — ek )\a,)\ iNgQuTiNgQ ]
PQa= 2 ( k)(R)(l RT) Qs_k) (Qe:Qp) J 57 27 XNahpe 5%
X(RHFK1-RHM K, (28) "

We can distinguish between two situation§) spin-

which is a convolution of binomial distributions relative to insensitive counters witlyg given by Eq.(13); and(ii) spin-

the two different spin species. sensitive counters witlyg given by Eq.(29). In case(i) it is
To conclude this section, let us now consider a slightlyeasy to show that

different situation in which we suppose we are able to count

the number of electronic charges for a given spin, for ex- P(Q3,Q4)=P(Q3) 62m,q,+q,= P(Q4) 62m,0,+q,

ample, by placing a spin-up electron counter on terminal 3 (38)

and a spin-down electron counter on terminal 4. The appro- ) ) )
priate expression for the characteristic function reads holds, which merely expresses the conservation of particles.
2M being the total number of particles injected from leads 1

XE(M,M):<efm3r§1§efix4&g>, (290 and 2 over timet, and Q3 the number of particles exiting
lead 3,Q,=2M—Q3 will be the number of particles re-
giving corded by the counter in lead #(Qs,Q,), therefore, ex-
1 presses the correlations due to particles conservation. This
| —ix —ix —i(ha ) makes explicit the fact that a measure of the joint probability
XE(}\S’)\“)_(Z A)(e Tre M)+ A[L+e Cath] distribution on terminals 3 and 4 does not give more infor-
(30 mation than a measure of the probability distribution on a
2single terminal. Note, in particular, that this implies that the
cross-terminal shot noise is equal in magnitude to the same-
terminal shot noise, but with opposite sign,= —Ss3. The
spicture changes completely when the constraint of conserva-
tion of particles being counted is lifted, for example, by us-
ing spin-selective counters. This can be realized when a
spin-up electron counter is placed on terminal 3 and a spin-
M down electron counter on terminal 4. Note that the number of
P'(Qs) :< >_ (31)  particles counted is equal tdv2 only in the case where there
Qs/2M are no spin-down particles exiting lead 3 and no spin-up
particles exiting lead 4. In the case of pairs of entangled
incident particles, the joint probability of countin@s
spin-up charges in lead 3 afg, spin-down charges in lead

in the case of entangled incident particles from lead 1 and
It is worthwhile noting that for eithex;=0 or \,=0, func-
tion (30) is independent oA and, in particular, is equal for
singlet and triplet states. This results in the following expre
sion for the probability of separately countir@; spin-up
charges in terminal 3,

and Q, spin-down charges in terminal 4:

! (M) (32) 4 is given by
P = —, 32
Qo= ,|5m |
min[Q3+Q4,2M—=(Q3+ QA1 /N1 /1 k
For completeness, we mention that the characteristic funP’!(Q;,Q,) = ( )(——A) AM—K
tion in the ordinary case of independent incident particles k=]Q3~ Q4| k/\2
reads K M — Kk
xe(\g\g)=(T'+Rle™™3)(RI+Tle ™), (33 x| Qs=Qatk|| Qs+t Qu—k |, (39

which gives the following binomial probability distribution: 2 2

M with the sum restricted to values &fsuch thatf Q3= (Q4
PI(Q ):( )(RT)MQ3(1_RT)Q3_ (34) —k)] is an even number. We see immediately that in the
3 present case Eq(38) does not hold and, in particular,
o P'(Q3,Q,) cannot be expressed in terms Bf(Q3) and
For nonentangled spin triplets we have P!(Q,). This means, in contrast to ca§g that a measure of
P'(Q3,Q,) provides more information tham'(Q3) or

Nghg)=e""s, 35 _ _
Xe(Ng:ha) 39 PL(Q,) alone, and reflects the fact that particles counted in
which yields terminals 3 and 4 are correlated in a nontrivial way. Con-
versely, in the ordinary situation of independent incident par-
P'(Qs)=dq, m- (36) ticles coming from terminal 1 wittyg given by Eq.(33), we
have that
B. Counting statistics on both terminals: Joint probability M M
Let us now consider the joint probability for transferring a PT1(Q3,Q4) = 0 )(RT)MQS(TT)%(Q )
. . . 3 4
number ofQ, and Qg electronic charges into, respectively,
lead a and B3, given by X (RHM=Qa(T1)Q4 (40)
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which can be written as

P11(Q3,Q4)=P'(Q3)P'(Qa). (41)

Equation(40) confirms that the transfers of spin-up charges
into lead 3 and spin-down charges into lead 4 are indepen- 4 >

dent processes, since the joint probability is equal to the L2 2 ~
product of probabilities on individual terminals. For com- 2" ,;::' 241 N ".";:}:i
pleteness, we note that whex=1/2 in Eq. (39), i.e., the Sy
injected particles are in the entangled triplet states, we have

’.
..
S, 7
LA
S e,

15
Tl M)
P(Q3.Qa)= Qs 2—M5Q3,Q4. (42 y
and, when the triplets are nonentangled, 35
FIG. 3. Joint probabilityP™'(Q3,Q,) for a spin-up electron
Tl =
P(Q3,Qq)= 5Q3~M5Q4’0' (43 counter placed on lead 3 and a spin-down electron counter placed

on lead 4. The 3D plot is relative to entangled singlet electrons

Remarkably the two expressions above are different even 1Ecmjected from leads 1 and 2. The beam splitter is characterized by

spin-independent transport. T=0.7 andM =50.
The net result is that the relationship between joint prob-
ability, on the one hand, and single-terminal probabilities, on 263V 1
the other hand, depends on the specific incident particle state. shi= ( - _) ’ (45)
For entangled singlet electrons, in particular, such a relation- h 4

ship does not exist and furthermad®e'(Q;,Q,) depends on . o , .
the scattering amplitudes whi'(Qs) does not. The rel- Nonzero even for triplets. This is in contrast with case
evant consequence is that a measure of such a spin-sensiti\()’é1ere the. conservation .Of counted part_|cles |m_pl|es that
counting statistics can provide an unambiguous means é‘fross-f[erm'lnal shot noise IS always eqqal in magnitueith
detecting entangled singlet, triplet, or nonentangled stateQPPOSite sighto same-terminal shot noise.

since it relies on properties of the characteristic function

rather than on the value of quantities like shot noise. In prac- IV. CONCLUSIONS

tice, one should separately measir¢Q;),P!(Q,), and fi-

nally P''(Q5,Q,), and compute the ratio In this paper we have studied the counting statistics of a

beam splitter when pairs of entangled electrons are injected

P1(Q4.Q4) fr_om 'ghe e_nterin_g termi_na_ls 1 anql 2. First we considered the

Pag=—— =4 (44)  situation in which spin-insensitive electron counters are
PT(Q3)PH(Qy) placed on terminals 3 and 4. We found, on the one hand, that

. . . the single-terminal probability distribution relative to singlet

If p3,=1 independently 0Q@; andQ,, we are in the ordinary  entangled electrons qualitatively differs from the one relative

situation of independent particles injected either from lead %o yncorrelated electrons. In the former case, in fact, the
or 2. If p3;=1, but withP'' #0, only in the point M,0) of

the (Q3,Q,4) plane and zero everywhere else, then we are in
the presence of nonentangled tripletspdfi# 1, but different
from zero only along the directio@3;=Q,, we are in the
presence of triplet entangled states. Finallyp4i# 1 and is
finite independently of); andQ, we are in the presence of

a singlet entangled state. For definiteness, note that we do
not consider other kinds of correlations. The rapig, pro-
vides a signature of entanglement in the absence of interac-r 2
tion and spin-flip scattering. As an example, in Figs. 3 and 4 1
we plot distribution(39) and the ratigs,, respectively, for a 0
singlet entangled state injected in a spin-independent beam 15
splitter characterized by=0.7 andM =50. Figure 3 shows

that P’} possesses an elongated shape along the direction
Q4=M —Q3, which becomes sharper @sgoes toward 1/2.

Figure 4 shows thaps, varies very considerably in the

(Q3,Q.) plane: this allows an easy distinction between dif-

ferent injected particles states. As a final remark we note that FIG. 4. 3D plot of the ratiops,(Qs,Q,) defined in Eq.(44)

the cross-terminal shot noise in the case of independent inelative to entangled singlet particles injected into leads 1 and 2.
jected particles is zero, whereas in the entangled case it isThe beam splitter is characterized By 0.7 andM = 50.
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distribution is not binomial, in contrast to the latter case;depending on whether they are entangled or not. Note that
furthermore it is symmetric with respect to the average numthe single-terminal counting statistics for the entangled states
ber of transmitted charges. On the other hand, we found thas also binomial as for the uncorrelated case, but with prob-
distributions relative to the triplet states, both entangled anability of the two outcomes being equal to 1/2, and therefore
nonentangled, are equal, and given by unity when the chargadependent of scattering amplitudes and the total angular
transferred isM and zero otherwise. Triplet states can bemomentum of the pair. Operatively, we concluded by show-
distinguished, however, when the transport is spin polarizedng that the ratio defined in Eq44) can serve as a tool for

for example when ferromagnetic terminals are used. If this igliscerning among the differently correlated incident electron
the case, the single-terminal counting statistics for the enstates. As shown in Sec. lll B, a plot of such a ratio as a
tangled triplet broadens to a finite width, while the nonen-function of the number of transferred charges provides an
tangled triplets remain as before. Interestingly we also note@asy and definite way to identify entangled singlet and triplet
that the joint probability for countin@; electrons arriving states from factorizable, uncorrelated incident states. We be-
in lead 3 andQ), electrons arriving in lead 4 does not contain lieve that these results can be used to detect the presence of
more information than single-terminal probabilities becauseentanglement in electronic systems, and to provide an addi-
of the conservation of particles. Such a constraint can b&onal means for studying and understanding the production
lifted by using spin-sensitive electron counters, for exampleand manipulation of entangled electrons.

by placing a spin-up counter on terminal 3 and a spin-down
counter on terminal 4. In this case the joint probability un-
ambiguously characterizes the state of the incident electrons.
In particular we found that, unlike in the uncorrelated case, The authors would like to thank E. Paladino, G. Falci, G.
in the presence of entanglement the joint probability cannoM. Palma, and F. Plastina for helpful discussions. This work
be expressed as a product of single-terminal probabilities. Iwas supported by the EUST-FET-SQUBIT) and by INFM-
addition, triplet states exhibit distinguished joint probabilities PRA-SSQI.
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