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Counting statistics for entangled electrons
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The counting statistics~CS! for charges passing through a coherent conductor comprise the most general
quantity that characterizes electronic transport. The CS depend not only on the transport properties of the
conductor, but also on the correlations among particles which compose the incident beam. In this paper we
present general results for the CS of entangled electron pairs traversing a beam splitter, and we show that the
probability thatQ charges have passed is not binomial, as in the uncorrelated case, but is symmetric with
respect to the average transferred charge. We furthermore consider the joint probability for transmitted charges
of a given spin, and we show that the signature of entanglement distinctly appears in a correlation which is not
present for a nonentangled case.
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I. INTRODUCTION

Probably one of the most striking features of quant
mechanics is entanglement,1 which refers to the nonloca
correlations existing, even in the absence of interaction,
tween two ~spatially separated! parts of a given quantum
system. Besides the fundamental interest in the genera
and detection of entanglement, a great deal of interest
been brought forth by its role in quantum information, whi
has attracted vast effort due to the very important impac
its potential applications, ranging from quantum computat
to quantum teleportation.2 Entanglement is the main ingred
ent in all known examples of quantum speed-up in quan
computation and communication.

Most of the work on entanglement was performed in o
tical systems with photons,3 cavity QED systems,4 and ion
traps.5 Only recently have people begun to study how
generate and manipulate entangled pairs in a solid-state
vironment. The prototype setup was discussed in Ref
where it was shown that the presence of spatially separ
pairs of entangled electrons can be revealed by using a b
splitter, as in Fig. 1, and by measuring the correlations of
current fluctuation~noise! at the exiting terminals~labeled by
3 and 4 in the figure!. Provided that the electrons injecte
into leads 1 and 2 are in an entangled state,

uc&5
1

A2
~ â2↓

† â1↑
† 6â2↑

† â1↓
† !u0&, ~1!

bunching and antibunching behaviors are found depend
on whether stateuc& is a spin singlet~lower sign! or a spin
triplet ~upper sign!. More precisely, current noise is enhanc
by a factor of 2 with respect to nonentangled states in
former case, and suppressed to zero in the latter. Note
while this allows one to detect a singlet entangled state
does not discriminate between entangled and nonentan
triplets ~unless spin-dependent detectors are employe6!.
Given the general setup, in order to find the signatures
entanglement in the noise spectrum one needs a phy
realization of both theentangler~that enables the pair pro
0163-1829/2002/65~7!/075317~7!/$20.00 65 0753
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duction! and the beam splitter. As the entangler one can
sort to the phenomenon of Andreev reflection in hyb
normal-superconducting systems, as discussed in Refs.
Besides electrons, it is possible to produce entangled st
with Cooper pairs in superconducting nanocircuits10 or, by
coupling a mesoscopic Josephson junctions with superc
ducting resonators,11,12between Cooper pairs and the reson
tor mode.

In this paper we consider the same approach as in Re
and take for granted the existence of anentangler. We ad-
dress the question of whether the study of the full statistics
charge transport13 at exit terminals 3 and 4 of such system
can provide more information~as compared to the noise! on
the correlation of the injected particles in terminals 1 and
The main result of this paper is that not only the value of
noise characterizes the entangled singlet state with respe
uncorrelated states~as shown in Ref. 6!; in addition, the
whole probability distribution for the transfer of charges
qualitatively modified. More precisely, we show that th
probability distribution relative to incident particles in th
entangled singlet state is not binomial, in contrast to the c
of uncorrelated injected states; moreover, it is symme
around its average value. In addition, we show that the us
spin-sensitive electron counters, on the one hand, provid
more stringent tool for detecting entangled states which

FIG. 1. The prototype setup consists of anentanglerconnected
to a beam splitter. The entangler produces pairs of entangled e
trons from a source of uncorrelated particles entering from ter
nals 1’ and 2’. In the beam splitter, the entangled electrons injec
into terminals 1 and 2 are transmitted and reflected into termina
and 4 by the semitransparent mirror~dashed line!. No backscatter-
ing into leads 1 and 2 is allowed.
©2002 The American Physical Society17-1
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FABIO TADDEI AND ROSARIO FAZIO PHYSICAL REVIEW B65 075317
based on general properties of the probability distributi
On the other hand, as already noticed in Ref. 6, it allows
to distinguish between entangled and nonentangled tri
states. The paper is organized as follows. In Sec. II we g
a brief review of the scattering approach for counting sta
tics. Then, in Sec. III, we apply it to the case of a bea
splitter with entangled electrons. We first present the res
for the statistics of transmitted charges in a single termin
and then consider the cross correlation. We finally summ
rize all the results in Sec. IV.

II. SCATTERING APPROACH

In the calculation of counting statistics we adopt the sc
tering approach of Landauer and Buttiker.14–16 Within this
framework, the transport properties of a metallic pha
coherent structure attached ton reservoirs are determined b
the matrixS of scattering amplitudes. Such amplitudes a
defined through asymptotic wave functions, known as s
tering states, for particles in the leads~which connect the
reservoirs to the sample!. In one dimension, for example
such scattering states arising from a unitary flux of partic
at energyE, originating in thei th reservoir, read

w i~x!5
eiki (E)x1r i~E!e2 iki (E)x

Ahv i~E!
~2!

for the i th lead, and

w j~x!5
t j i ~E!e2 ik j (E)x

Ahv j~E!
~3!

for the j th lead, with j Þ i . Here r i(E) is the reflection am-
plitude for particles at energyE with wave vectorki(E) and
group velocityv i(E) in the i th lead, andt j i (E) is the trans-
mission amplitude from leadi to leadj. Note thatur i u2 is the
probability for a particle to reflect back into thei th lead, and
ut j i u2 is the probability for the transmission of a particle fro
lead i to lead j. In the second quantization formalism, th
field operatorĉ j s(x,t) for spin s particles in leadj is built
from scattering states, and is defined as

ĉ j s~x,t !5E dE
e2 iEt/\

Ahv j~E!
@ â j s~E!eik jx1f̂ j s~E!e2 ik j x#,

~4!

where â j s(E) @f̂ j s(E)# is the destruction operator for in
coming~outgoing! particles at energyE, with spins in lead
j. Such operators are related through the scattering matrS
of the structure as

S f̂1↑

f̂1↓

f̂2↑
A

D 5SS â1↑

â1↓

â2↑
A

D , ~5!

and obey anticommutation relations
07531
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$âis
† ~E!,â j s8~E8!%5d i , jds,s8d~E2E8!. ~6!

In the case of two- and three-dimensional leads, one
separate longitudinal and transverse particle motions. S
the transverse motion is quantized, the wave function rela
to the plane perpendicular to the direction of transport
characterized by a set of quantum numbers which identi
the channels of the lead. Such channels are referred t
‘‘open’’ when the corresponding longitudinal wave vecto
are real, since they correspond to propagating modes. N
that the case of a single open channel corresponds to a
dimensional lead.

As far as charge transport is concerned, the quanti
which are most frequently considered are the conducta
and the noise, the latter arising due to the discrete natur
the charge carriers, even at zero temperature. However
more general to consider the probability distribution for t
transfer of charges,17,18 of which conductance and noise a
the first and second moments, respectively. Following R
17 and 18, within the scattering approach the character
function of the probability distribution for the transfer o
particles in a structure attached ton leads at a given energyE
can be written as

xE~lW !5K )
j 51,n

eil j (N̂I
j↑

1N̂I
j↓) )

j 51,n
e2 il j (N̂O

j↑
1N̂O

j↓)L , ~7!

where the bracketŝ•••& stand for the quantum-statistica
average in thermal equilibrium. Assuming a single chan
per lead,N̂I (O)

j s is the number operator for incoming~outgo-

ing! particles with spins in leadj, andlW is a vector ofn real
numbers, one for each open channel. Number operators
be written in terms of the above operators asN̂I

j s5â j s
† â j s

andN̂O
j s5f̂ j s

† f̂ j s . Note that Eq.~7! is simply a generaliza-
tion of the spinless, single-channel case, for which it is e
to show that

xE~l!ª (
m,n50

1

PE~m,n!eilme2 iln5^eilN̂Ie2 ilN̂O&. ~8!

Here PE(m,n) is the joint probability form particles to
propagate to the right andn particles to propagate to the lef
with energyE.

For long measurement timest,19 the total characteristic
function x is the product of contributions from different en
ergies, so that

x~lW !5et/h *dE logxE(lW ), ~9!

and the joint probability distribution for transferringQ1 elec-
tronic charges in lead 1,Q2 in lead 2, etc., is given by

P~Q1 ,Q2 , . . . !5
1

~2p!nE2p

1p

dl1dl2 . . . x~lW !eilW •QW .

~10!

In Refs. 20 and 21 it was first proved that in a quantu
conductor with a single open channel the distribution pro
ability is binomial, in contrast to the classical case where
7-2
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COUNTING STATISTICS FOR ENTANGLED ELECTRONS PHYSICAL REVIEW B65 075317
distribution is Poissonian. In Ref. 22 the characteristic fu
tion was generalized to many open channels, and an exp
expression for its cumulants was obtained. This allowed
to prove that the probability distribution for a tunnel barri
with very small transmission recovers a Poissonian distri
tion. Counting statistics was so far studied for several s
tems including a hybrid normal-metal–superconduc
structure,18,23,24 metallic diffusive wires,22,25 and chaotic
cavities.26 As far as the experimental measurement is c
cerned, two possible schemes for measuring the coun
statistics were recently proposed in Ref. 27.

In the rest of the paper we specialize to the beam spl
of Fig. 1, for whichn54. In analogy with the optical case
we consider the ideal situation where particles injected fr
branch 1 ~2! impinge on a semitransparent mirror, fro
which they are transmitted into branch 4~3! and reflected
into branch 3~4!.

III. CHARACTERISTIC FUNCTION FOR ENTANGLED
ELECTRONS

We concentrate on a calculation of the probability dis
bution for the transfer of particles in leads 3 and 4, wh
particles are injected from leads 1 and 2. Since we are
interested in counting the particles passing through the en
ing leads 1 and 2, we setl15l250, so that Eq.~7! becomes

xE~l3 ,l4!5^eil3(N̂I
3↑

1N̂I
3↓)eil4(N̂I

4↑
1N̂I

4↓)

3e2 il3(N̂O
3↑

1N̂O
3↓)e2 il4(N̂O

4↑
1N̂O

4↓)&. ~11!

We assume, as usual, that the incoming particles are inde
dent, and originate from reservoirs. Therefore, we set
chemical potentials of reservoirs connected to leads 3 an
to zero, and chemical potentials of reservoirs connecte
leads 1 and 2 either to zero or to eV. At zero temperature,
statistical average over the Fermi distribution function in E
~11! simplifies to the expectation value onto the state c
taining two electrons in the energy range 0,E,eV, with
opposite spin either in lead 1 or 2. The situation we
interested in corresponds to the propagation of entangled
cident states from branches 1 and 2, as if originating from
entangler. Such a device provides incident electrons, at
same given energyE, described by the state28

uc&5
1

A2
@ â2↓

† ~E!â1↑
† ~E!6â2↑

† ~E!â1↓
† ~E!#u0&. ~12!

In Eq. ~12! the minus sign refers to the spin singlet and t
plus sign to the spin triplet. For 0,E,eV, Eq.~11! reduces
to

xE~l3 ,l4!5^e2 il3(N̂O
3↑

1N̂O
3↓)e2 il4(N̂O

4↑
1N̂O

4↓)&, ~13!

since the incoming states do not contain incoming partic
from leads 3 and 4. By using the identity

e2 il j N̂O
j s

5@11~e2 il j21!N̂O
j s# ~14!
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j s are projector operators#, the evaluation of
xE(l3 ,l4) is reduced to a calculation of expectation valu
of number operators and their products. The procedur
further simplified by assuming no backscattering into term
nals 1 and 2, so that the scattering matrix obeys the rela

S f̂3s

f̂4s
D 5S r 31

s t32
s

t41
s r 42

s D S â1s

â2s
D , ~15!

if no spin-mixing processes are present. Herer i j
s (t i j

s ) is the
reflection~transmission! amplitude for an incoming particle
from leadj to be reflected~transmitted! into leadi.

In the case of entangled incident states@Eq. ~12!#, we find
that

xE~l3 ,l4!5S 1

2
2AD ~e22il31e22il4!12Ae2 i (l31l4),

~16!

where

A5 1
2 @T↑T↓1R↑R↓6~r 42

↑ t41
↑* r 42

↓* t41
↓ 1t41

↑ r 42
↑* t41

↓* r 42
↓ !#

~17!

with the upper sign referring to the triplet state and the low
sign referring to the singlet state.Rs5ur 31

s u25ur 42
s u2 andTs

5ut32
s u25ut41

s u2 are reflection and transmission probabilitie
respectively. Note that the second equalities in the ab
relationships are completely general in the case of no ba
scattering. For comparison, in the case of uncorrelated
coming particles the characteristic function is given by

xE~l3 ,l4!5 )
s5↑,↓

~Rse2 il31Tse2 il4!. ~18!

As it appears from Eqs.~16! and ~18!, the characteristic
function relative to entangled pairs of incident particles@Eq.
~16!# possesses a different structure with respect to the
relative to the ordinary situation of independent partic
@Eq. ~18!#. In particular, while Eq.~18! depends only on
probability coefficients, the characteristic function for e
tangled electrons depends directly on the scattering am
tudes. Furthermore, unlike Eq.~16!, Eq. ~18! can be factor-
ized into spin-up and spin-down contributions, reflecting t
fact that, in an ordinary situation, electrons with differe
spins undergo independent scattering processes. In the
plest case of spin-independent transport, such thatr i j

↑ 5r i j
↓

and t i j
↑ 5t i j

↓ , the constant in Eq.~17! takes the valueA
5 1

2 (utu22ur u2)2 for the entangled singlet andA51/2 for the
entangled triplet. This implies that pairs of particles in
entangled triplet state show the same characteristic func
as for nonentangled triplets~of the form uc&5â1s

† â2s
† ),

namely,

xE~l3 ,l4!5e2 i (l31l4). ~19!

Note, moreover, that the result given in Eq.~19! for nonen-
tangled triplets does not depend on transport amplitudes

It is worthwhile noting that if we allow for spin-polarized
transport, for example using ferromagnetic metals for ter
7-3
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FABIO TADDEI AND ROSARIO FAZIO PHYSICAL REVIEW B65 075317
nals 3 and 4, the characteristic functions for all cases will
distinguished from each other. The constantA in Eq. ~16!, in
fact, will take the value

A5 1
2 ~ t↑!t↓6r ↑!r ↓!~ t↑t↓!6r ↑r ↓!! ~20!

in the case of a symmetric beam splitter~wherer 31
s 5r 42

s 5r
and t32

s 5t41
s 5t). This causes the characteristic function

the entangled spin triplet to differ from the one relative
nonentangled triplets, since in the latter casexE is again
given by Eq.~19!, independent of scattering amplitudes.

A. Counting statistics on a single terminal

Let us now turn our attention to the probability distrib
tions for the transfer of particles. As already mentioned
Sec. II, these can be easily computed by a Fourier transf
of the total characteristic function@Eq. ~9!#, so that the prob-
ability for transferring a number ofQa electronic charges
regardless their spin, into leada is given by

P~Qa!5
1

2pE2p

1p

dlax~la!eilaQa. ~21!

Note thatx(la) is obtained from the completex(lW ) by set-
ting to zero everylb with bÞa. In the limit of small bias
voltageV and zero temperature, the total characteristic fu
tion @Eq. ~9!# can be reduced tox(lW )5@x0(lW )#M with M
5eVt/h, in such a way that one only needs to calculate
characteristic function at zero energy. For entangled incid
particles@see Eq.~12!# we find that

P~Q3!5 (
k5uQ32M u

M S M

k D S 1

2
2AD k

~2A!M2kS k

Q32M1k

2
D ,

~22!

with the sum restricted to values ofk such that (Q32M
1k) is an even number, andP(Q3)50 for Q3.2M . It is
easy to show that distribution~22! is symmetrical with re-
spect to the position of the maximum (Q35M ), independent
of the scattering amplitudes. This result is in contrast w
the ordinary situation of independently injected partic
where, as expected, the distribution is binomial,

P~Q3!5S 2M

Q3
DRQ3~12R!2M2Q3, ~23!

and centered around the valueQ352MR, for spin-
independent transport~the factor 2 comes from the spin de
generacy!. Note that the width of Eq.~22!, for a spin singlet
is double with respect to the ordinary case of Eq.~23!, and
zero for the triplet. In particular, for an entangled spin trip
we have

P~Q3!5dQ3 ,M , ~24!

equal to the nonentangled triplet states.
Let us now assume spin-dependent transport. In suc

case the distributionP(Q3), relative to the triplet entangled
state, broadens to a finite width, and is distinguished fr
07531
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the two nonentangled triplet states, which remain of the fo
of Eq. ~24!. Such a broadening is due to the fact that t
constantA in Eq. ~16! is no longer equal to 1/2, but instead
given by expression~20!. As an example, in Fig. 2 we plo
the probability distribution as a function of the number
chargesQ3, relative to the various incident particle states f
a beam splitter characterized byR↑50.2, R↓50.1, andM
550. The thin~thick! solid line represents the counting st
tistics relative to the entangled singlet~triplet! state, whereas
the dashed line is the counting statistics for the ordin
independent particle state. The curve relative to the
tangled triplet has acquired a finite width, and becomes
tinguished from nonentangled triplets whose distribution i
Kronecker delta atQ3550 ~not shown in the figure!. Note
that, since the shot noise is proportional to the variance
P(Q3) through the relation13 s33t/2e25Š^Q3Q3&‹, where

Š^Q3Q3&‹5 i 2
]2logx~lW !

]l3
2 U

lW 50

, ~25!

we have that

s335
4e3V

h S 1

2
2AD ~26!

for entangled particles, and

s335
2e3V

h
@R↑~12R↑!1R↓~12R↓!# ~27!

for independent particles. For completeness we mention
the dashed curve in Fig. 2, relative to incoming uncorrela
electrons, corresponds to the distribution

FIG. 2. Single-terminal counting statisticsP(Q3) for a spin-
insensitive electron counter. The dashed line is relative to unco
lated electrons; the thin line and the bold line are relative to
tangled singlet and triplet electrons, respectively. The sp
dependent beam splitter is characterized byR↑50.2, R↓50.1, and
M550. The mean number of uncorrelated particles depends
on the reflection probabilities, since electrons are injected from l
1, and^Q3&5M (R↑1R↓)515. In the case of entangled particle
the mean number depends on the sum of reflection and transmi
probabilities, and it iŝ Q3&5M550.
7-4
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COUNTING STATISTICS FOR ENTANGLED ELECTRONS PHYSICAL REVIEW B65 075317
P~Q3!5 (
k5max[0,Q32M ]

min[Q3 ,M ] S M

k D ~R↑!k~12R↑!M2kS M

Q32kD
3~R↓!Q32k~12R↓!M2Q31k, ~28!

which is a convolution of binomial distributions relative
the two different spin species.

To conclude this section, let us now consider a sligh
different situation in which we suppose we are able to co
the number of electronic charges for a given spin, for
ample, by placing a spin-up electron counter on termina
and a spin-down electron counter on terminal 4. The app
priate expression for the characteristic function reads

xE~l3 ,l4!5^e2 il3N̂O
3↑

e2 il4N̂O
4↓

&, ~29!

giving

xE~l3 ,l4!5S 1

2
2AD ~e2 il31e2 il4!1A@11e2 i (l31l4)#

~30!

in the case of entangled incident particles from lead 1 an
It is worthwhile noting that for eitherl350 or l450, func-
tion ~30! is independent ofA and, in particular, is equal fo
singlet and triplet states. This results in the following expr
sion for the probability of separately countingQ3 spin-up
charges in terminal 3,

P↑~Q3!5S M

Q3
D 1

2M
, ~31!

andQ4 spin-down charges in terminal 4:

P↓~Q4!5S M

Q4
D 1

2M
. ~32!

For completeness, we mention that the characteristic fu
tion in the ordinary case of independent incident partic
reads

xE~l3 ,l4!5~T↑1R↑e2 il3!~R↓1T↓e2 il4!, ~33!

which gives the following binomial probability distribution

P↑~Q3!5S M

Q3
D ~R↑!M2Q3~12R↑!Q3. ~34!

For nonentangled spin triplets we have

xE~l3 ,l4!5e2 il3, ~35!

which yields

P↑~Q3!5dQ3 ,M . ~36!

B. Counting statistics on both terminals: Joint probability

Let us now consider the joint probability for transferring
number ofQa andQb electronic charges into, respectivel
leada andb, given by
07531
y
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P~Qa ,Qb!5E
2p

1pdla

2p

dlb

2p
x~la ,lb!eilaQa1 ilbQb.

~37!

We can distinguish between two situations:~i! spin-
insensitive counters withxE given by Eq.~13!; and~ii ! spin-
sensitive counters withxE given by Eq.~29!. In case~i! it is
easy to show that

P~Q3 ,Q4!5P~Q3!d2M ,Q31Q4
5P~Q4!d2M ,Q31Q4

~38!

holds, which merely expresses the conservation of partic
2M being the total number of particles injected from lead
and 2 over timet, and Q3 the number of particles exiting
lead 3, Q452M2Q3 will be the number of particles re
corded by the counter in lead 4.P(Q3 ,Q4), therefore, ex-
presses the correlations due to particles conservation.
makes explicit the fact that a measure of the joint probabi
distribution on terminals 3 and 4 does not give more inf
mation than a measure of the probability distribution on
single terminal. Note, in particular, that this implies that t
cross-terminal shot noise is equal in magnitude to the sa
terminal shot noise, but with opposite sign:s3452s33. The
picture changes completely when the constraint of conse
tion of particles being counted is lifted, for example, by u
ing spin-selective counters. This can be realized whe
spin-up electron counter is placed on terminal 3 and a s
down electron counter on terminal 4. Note that the numbe
particles counted is equal to 2M only in the case where ther
are no spin-down particles exiting lead 3 and no spin
particles exiting lead 4. In the case of pairs of entang
incident particles, the joint probability of countingQ3
spin-up charges in lead 3 andQ4 spin-down charges in lead
4 is given by

P↑↓~Q3 ,Q4!5 (
k5uQ32Q4u

min[Q31Q4 ,2M2(Q31Q4)] S M

k D S 1

2
2AD k

AM2k

3S k

Q32Q41k

2
D S M2k

Q31Q42k

2
D , ~39!

with the sum restricted to values ofk such that@Q36(Q4
2k)# is an even number. We see immediately that in
present case Eq.~38! does not hold and, in particular
P↑↓(Q3 ,Q4) cannot be expressed in terms ofP↑(Q3) and
P↓(Q4). This means, in contrast to case~i!, that a measure o
P↑↓(Q3 ,Q4) provides more information thanP↑(Q3) or
P↓(Q4) alone, and reflects the fact that particles counted
terminals 3 and 4 are correlated in a nontrivial way. Co
versely, in the ordinary situation of independent incident p
ticles coming from terminal 1 withxE given by Eq.~33!, we
have that

P↑↓~Q3 ,Q4!5S M

Q3
D ~R↑!M2Q3~T↑!Q3S M

Q4
D

3~R↓!M2Q4~T↓!Q4, ~40!
7-5
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which can be written as

P↑↓~Q3 ,Q4!5P↑~Q3!P↓~Q4!. ~41!

Equation~40! confirms that the transfers of spin-up charg
into lead 3 and spin-down charges into lead 4 are indep
dent processes, since the joint probability is equal to
product of probabilities on individual terminals. For com
pleteness, we note that whenA51/2 in Eq. ~39!, i.e., the
injected particles are in the entangled triplet states, we h

P↑↓~Q3 ,Q4!5S M

Q3
D 1

2M
dQ3 ,Q4

, ~42!

and, when the triplets are nonentangled,

P↑↓~Q3 ,Q4!5dQ3 ,MdQ4,0 . ~43!

Remarkably the two expressions above are different even
spin-independent transport.

The net result is that the relationship between joint pr
ability, on the one hand, and single-terminal probabilities,
the other hand, depends on the specific incident particle s
For entangled singlet electrons, in particular, such a relat
ship does not exist and furthermoreP↑↓(Q3 ,Q4) depends on
the scattering amplitudes whileP↑(Q3) does not. The rel-
evant consequence is that a measure of such a spin-sen
counting statistics can provide an unambiguous mean
detecting entangled singlet, triplet, or nonentangled sta
since it relies on properties of the characteristic funct
rather than on the value of quantities like shot noise. In pr
tice, one should separately measureP↑(Q3),P↓(Q4), and fi-
nally P↑↓(Q3 ,Q4), and compute the ratio

p345
P↑↓~Q3 ,Q4!

P↑~Q3!P↓~Q4!
. ~44!

If p3451 independently ofQ3 andQ4, we are in the ordinary
situation of independent particles injected either from lea
or 2. If p3451, but with P↑↓Þ0, only in the point (M ,0) of
the (Q3 ,Q4) plane and zero everywhere else, then we are
the presence of nonentangled triplets. Ifp34Þ1, but different
from zero only along the directionQ35Q4, we are in the
presence of triplet entangled states. Finally, ifp34Þ1 and is
finite independently ofQ3 andQ4 we are in the presence o
a singlet entangled state. For definiteness, note that we
not consider other kinds of correlations. The ratiop34 pro-
vides a signature of entanglement in the absence of inte
tion and spin-flip scattering. As an example, in Figs. 3 an
we plot distribution~39! and the ratiop34, respectively, for a
singlet entangled state injected in a spin-independent b
splitter characterized byT50.7 andM550. Figure 3 shows
that P↑↓ possesses an elongated shape along the dire
Q45M2Q3, which becomes sharper asT goes toward 1/2.
Figure 4 shows thatp34 varies very considerably in th
(Q3 ,Q4) plane: this allows an easy distinction between d
ferent injected particles states. As a final remark we note
the cross-terminal shot noise in the case of independen
jected particles is zero, whereas in the entangled case it
07531
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m
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s34
↑↓5

2e3V

h S A2
1

4D , ~45!

nonzero even for triplets. This is in contrast with case~i!,
where the conservation of counted particles implies t
cross-terminal shot noise is always equal in magnitude~with
opposite sign! to same-terminal shot noise.

IV. CONCLUSIONS

In this paper we have studied the counting statistics o
beam splitter when pairs of entangled electrons are injec
from the entering terminals 1 and 2. First we considered
situation in which spin-insensitive electron counters a
placed on terminals 3 and 4. We found, on the one hand,
the single-terminal probability distribution relative to singl
entangled electrons qualitatively differs from the one relat
to uncorrelated electrons. In the former case, in fact,

FIG. 3. Joint probabilityP↑↓(Q3 ,Q4) for a spin-up electron
counter placed on lead 3 and a spin-down electron counter pla
on lead 4. The 3D plot is relative to entangled singlet electro
injected from leads 1 and 2. The beam splitter is characterized
T50.7 andM550.

FIG. 4. 3D plot of the ratiop34(Q3 ,Q4) defined in Eq.~44!
relative to entangled singlet particles injected into leads 1 and
The beam splitter is characterized byT50.7 andM550.
7-6
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distribution is not binomial, in contrast to the latter cas
furthermore it is symmetric with respect to the average nu
ber of transmitted charges. On the other hand, we found
distributions relative to the triplet states, both entangled a
nonentangled, are equal, and given by unity when the cha
transferred isM and zero otherwise. Triplet states can
distinguished, however, when the transport is spin polariz
for example when ferromagnetic terminals are used. If thi
the case, the single-terminal counting statistics for the
tangled triplet broadens to a finite width, while the none
tangled triplets remain as before. Interestingly we also no
that the joint probability for countingQ3 electrons arriving
in lead 3 andQ4 electrons arriving in lead 4 does not conta
more information than single-terminal probabilities becau
of the conservation of particles. Such a constraint can
lifted by using spin-sensitive electron counters, for examp
by placing a spin-up counter on terminal 3 and a spin-do
counter on terminal 4. In this case the joint probability u
ambiguously characterizes the state of the incident electr
In particular we found that, unlike in the uncorrelated ca
in the presence of entanglement the joint probability can
be expressed as a product of single-terminal probabilities
addition, triplet states exhibit distinguished joint probabiliti
ic

m
e,

un

J.
d,

07531
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at
d
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n-
-
d

e
e
,

n
-
s.
,

ot
In

depending on whether they are entangled or not. Note
the single-terminal counting statistics for the entangled st
is also binomial as for the uncorrelated case, but with pr
ability of the two outcomes being equal to 1/2, and theref
independent of scattering amplitudes and the total ang
momentum of the pair. Operatively, we concluded by sho
ing that the ratio defined in Eq.~44! can serve as a tool fo
discerning among the differently correlated incident elect
states. As shown in Sec. III B, a plot of such a ratio a
function of the number of transferred charges provides
easy and definite way to identify entangled singlet and tri
states from factorizable, uncorrelated incident states. We
lieve that these results can be used to detect the presen
entanglement in electronic systems, and to provide an a
tional means for studying and understanding the produc
and manipulation of entangled electrons.
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