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Multiphonon Raman scattering in semiconductor nanocrystals:
Importance of nonadiabatic transitions
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Multiphonon Raman scattering in semiconductor nanocrystals is treated taking into account both adiabatic
and nonadiabatic phonon-assisted optical transitions. Because phonons of various symmetries are involved in
scattering processes, there is a considerable enhancement of intensities of multiphonon peaks in nanocrystal
Raman spectra. Cases of strong and weak band mixing are considered in detail. In the first case, fundamental
scattering takes place via internal electron-hole states and is participated in bys andd phonons, while in the
second case, when the intensity of the one-phonon Raman peak is strongly influenced by the interaction of an
electron and of a hole with interface imperfections~e.g., with trapped charge!, p phonons are most active.
Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a good quantitative agreement
with recent experimental results.
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I. INTRODUCTION

The symmetry-breaking coupling of vibrational modes
degenerate electronic states described first by Jahn
Teller1 has been manifested in a wide range of transport
optical phenomena in various electron-vibrational syste
The role of the Jahn-Teller effect in the optical transitions
semiconductor nanocrystals has been recently studie
Refs. 2 and 3 for the strong-confinement regime, when
radius of a nanocrystalR is smaller than the Bohr radius o
an exciton in bulkRex , and in Refs. 4 and 5 for the weak
confinement regime, whenR.Rex . In the case of a strong
confinement, whenall the states of an exciton, including th
ground state, are degenerate due to band mixing, the J
Teller effect substantially influences the phonon-assisted
tical transitions already in the framework of the dipo
approximation.2,3As a result, the optical spectra of nanocry
tals with R,Rex can be different from the Franck-Condo
progressions typical of the adiabatic systems.

Recently, multiphonon peaks in Raman scattering spe
have been observed in CdSe, CdSexS12x , and PbS nano-
crystals~see, for example, Refs. 6–8!. Previously, the theo-
retical analysis of multiphonon Raman scattering in na
crystals has been generally based on the adiabatic app
mation due to the seminal works of Huang and Rhys9 and
Pekar.10 However, even taking into account band mixing, t
values of the Huang-Rhys factor for nanocrystals of radiR
51 nm toR55 nm appear to be considerably smaller th
unity. This result is at variance with those derived from t
experiments cited above. In the present paper, the theore
treatment is performed involving both adiabatic and nonad
batic optical transitions. The interaction of phonons w
an exciton in a degenerate state leads tointernal nonadiaba-
ticity of nanocrystals~the Jahn-Teller effect!, while the exis-
tence of exciton levels separated by an energy compar
0163-1829/2002/65~7!/075316~8!/$20.00 65 0753
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with that of the optical phonon results inexternal non-
adiabaticity ~the pseudo-Jahn-Teller effect!. The structural
imperfections of the real interface between a nanocrystal
a host medium can also substantially influence the proba
ties of phonon-assisted transitions, see, e.g., Ref. 11. M
over, these imperfections~e.g., trapped charge localized
the interface, as supposed in Refs. 8 and 12! can increase the
contribution of nonadiabatic transitions into the scatter
probability, as shown below.

In nanostructures, phonon spectra drastically differ fro
those in bulk materials.6,13–16 Previously, several models o
polar optical phonons and of the electron-phonon interac
have been developed for these structures. Thedielectric con-
tinuum model, which is proposed in Ref. 17 and used
planar,18–22 cylindrical, and spherical6,23 structures, exploits
only electrostatic boundary conditions. The alternativehy-
drodynamicmodel~see Refs. 24–27! treats only mechanica
boundary conditions. Distinctions between the two mod
consist in a choice of a complete orthogonal basis for
relative ionic displacementu(r ). It has been shown in Refs
28 and 29 that physical quantities expressed as a sum ove
phonon modes~scattering rates, polaron parameters, e!
slightly depend on a concrete basis. On the other hand,
culated Raman spectra are sensitive to mechanical boun
conditions. Various improvements of the dielectric co
tinuum model30,31 are developed in order to obtain bett
agreement between the macroscopic and microscopic29,32de-
scription of lattice vibrations and with experimental data
Raman scattering.33–35 Within the continuum model of opti-
cal phonons in spatially confined systems~Refs. 15, 16, and
36–38!, both electrostatic and mechanical boundary con
tions are imposed on ionic displacement. Themultimode di-
electric modeldeveloped by us~see Refs. 39 and 40!, in
addition, explicitly takes into account a finite number of ph
non degrees of freedom in a quantum dot.
©2002 The American Physical Society16-1
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In Sec. II, the set of phonon modes is determined using
effective dielectric function of a nanocrystal in a finit
dimensional basis for the field of ionic displacements. In S
III, multiphonon resonant Raman scattering in spheri
nanocrystals is considered using the obtained Hamiltonia
the electron-phonon interaction. The obtained analytical
numerical results are discussed and compared with exp
mental data in Sec. IV.

II. OPTICAL PHONONS IN NANOCRYSTALS

In the present investigation, optical vibrations in spheri
quantum dots are considered on the basis of the multim
dielectric model~see Refs. 39 and 40!. Polar optical phonons
in a semiconductor nanocrystal of radiusR embedded into a
polar medium can be described within the continuum
proach~whenR@a0, wherea0 is the lattice constant! by the
renormalized relative ionic displacement vector

wk~r !5
ek* uk~r !

V0kvk,TOA«0@«k~0!2«k~`!#
, ~1!

wherek51 for the nanocrystal,k52 for the host medium.
For thekth medium,uk(r ) is the relative ionic displacemen
ek* is the effective charge of an ion,vk,TO is the frequency of
the transverse-optical phonon in the Brillouin-zone cen
V0k is the volume of the elementary cell,«k(`) and «k(0)
are the high-frequency and static dielectric constants, res
tively, and«0 is the permittivity of vacuum. Dynamics of th
nondispersive polar optical phonons is determined by
Born-Huang equation41 combined with Maxwell equations
In order to analyze the time evolution ofwk(r ) taking into
consideration the spatial dispersion, the generalized equa
of motion39 is used,

~vk,TO
2 2v2!wk~r ,v!5vk,TOA«0@«k~0!2«k~`!#Ek~r ,v!

1E
Vk

Tk~r2x!wk~x,v!dx. ~2!

The right-hand side of Eq.~2! consists of two terms:~i!
the long-range force expressed by means of the macrosc
electric field Ek(r ,v) induced by the ionic-displacemen
vector wk(r ,v); ~ii ! the dispersion term of the short-rang
force with the spatial-dispersion tensorTk(r ). The action
range of this force can be estimated as a few lattice c
stants.

The set of equations to determine the polar-optic
phonon dynamics in both the nanocrystal and the host
dium consists of Eqs.~2!, the electrostatic Maxwell equa
tions, and the equation relating the electric field and
polarization to the electrostatic displacement for each m
dium. The form of the spatial dispersion tensorTk(r ) is cho-
sen in such a way that the bulk LO~TO! phonon dispersion
vLO (v (TO))(q) be reproduced when the equation of moti
~2! is solved in bulk. Further on, anisotropy of the dispers
of bulk phonons is neglected: the bulk-phonon frequenc
depend only on the wave numberq.
07531
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For a nanocrystal, the aforesaid set of equations mus
completed by electrostatic and mechanical boundary co
tions. In the present work, we choose the following mecha
cal boundary conditions:37,39

wk
'50 at the interfaces, k51,2. ~3!

They lead to a double hybridization of LO and interfa
modes. For planar multilayer structures, phonon spe
obtained in Ref. 37 when applying Eq.~3! are in
excellent agreement with experimental Raman-scatte
data.42

Owing to the spherical symmetry of a quantum dot, t
eigenvectors of phonon modesglm

J (r ,v) correspond to a
definite phonon angular momentuml and itsz projectionm.
The indexJ labels LO- and TO-phonon branches. We se
these eigenvectors as a superposition of orthogonal ve
functionsf lms

J (r ) that satisfy Eq.~3!,

glm
J ~r ,v!5(

s
Ul ,s

J ~v!f lms
J ~r !. ~4!

This basis is subdivided into three subsets describing
following.

~i! LO phonons with definite values of the angular m
mentuml, its projectionm, and of the radial quantum num
ber s,

f lms
LO ~r !5

A2/R

j l~bl ,s!Abl ,s
2 2 l ~ l 11!

H bl ,s

R
j l8S bl ,sr

R
DY lm

(21)~n!

1
Al ~ l 11!

r
j lS bl ,sr

R
DY lm

(1)~n!J , ~5!

wheren5r /r , j l(x) is a spherical Bessel function,bl ,s is the
sth zero of its derivativej l8(x), Y lm

(l)(n) (l50,61) is a
spherical vector of a definite parity.

~ii ! TO phonons of the ‘‘electric’’ type,

f lms
TO,E~r !5

A2/R

al ,sj l 11~al ,s!
HAl ~ l 11!

r
j l S al ,sr

R DY lm
(21)~n!

1
al ,s

R F j l8S al ,sr

R D1
R

al ,sr
j l S al ,sr

R D GY lm
(1)~n!J ,

~6!

whereal ,s is thesth zero of j l(x).
~iii ! TO phonons of the ‘‘magnetic’’ type,

f lms
TO,M~r !5

A2

R3/2j l 11~al ,s!
j l S al ,sr

R DY lm
(0)~n!. ~7!

Dimensionalities of the subsets~5!–~7! are implicitly deter-
mined by the inequalities

bl ,s<pR/a0 for LO modes, ~8!

al ,s<pR/a0 , for TO modes,
6-2
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MULTIPHONON RAMAN SCATTERING IN . . . PHYSICAL REVIEW B65 075316
which express the fact that the ‘‘wavelength’’ of a
optical phonon cannot be smaller than the double lattice c
stant.

Using the expansion~4! for a joint solution of Eq.~2! and
of the Maxwell equations with electrostatic boundary con
tions, we arrive at the dispersion equation

l 11

«1~ l ,v!
1

l

«2~v!
50, ~9!

where«2(v) is the dielectric function of the host medium
The function«1( l ,v) is determined by the formula

1

«1~ l ,v!
[

1

«1~`! S 12(
s

x l ,s

v1,LO
2 ~0!2v1,TO

2 ~0!

v1,LO
2 ~Ql ,s!2v2 D ,

~10!

whereQl ,s[bl ,s /R and the coefficientsx l ,s are

x l ,s5
2l

bl ,s
2 2 l ~ l 11!

. ~11!

These coefficients possess the property(s51
` x l ,s51.

We can interpret«1( l ,v) as the effective dielectric func
tion of the quantum dot, using a formal analogy of the d
persion equation~9! with that of the dielectric continuum
model @cf. Eq. ~13! of Ref. 6#. In the ‘‘nondispersive’’ limit,
when we set in Eq.~10! v1,LO(Ql ,s)5v1,LO(0), thefunction
«1( l ,v) becomes equal to the ‘‘bulk’’ dielectric functio
«1(v), and Eq.~9! turns into the dispersion equation of th
dielectric continuum model.6 The latter equation provides, i
particular, interface phonon frequenciesv j ,I( l ) @ j 51,2;
v j,TO(0),v j ,I( l ),v1,LO(0)].

Basis vectors of phonon modes are denoted asglmh
J (r ),

where the indexh labels the roots of Eq.~9!, v l ,h , at a
definite value of the angular momentuml . Generally speak-
ing, LO-phonon modes cannot be subdivided into bulkl
and interface ones. Therefore, they can be considered a
brids of both these types. The following explicit expressi
is obtained for the coefficients in Eq.~4!:

Ul ,s
LO~v l ,h!5

Cl~v l ,h!

Abl ,s
2 2 l ~ l 11!@v1,LO

2 ~Ql ,s!2v l ,h
2 #

. ~12!

The transformation~4! is unitary~see Ref. 39!. The normal-
ization constantCl(v l ,h) is then found to be

Cl~v l ,h!5F(
s

1

@bl ,s
2 2 l ~ l 11!#@v1,LO

2 ~Ql ,s!2v l ,h
2 #2G21/2

.

~13!

Finally, the phonon Hamiltonian takes the form

ĤL5(
n

\vnS ân
†ân1

1

2D , ~14!

while the Hamiltonian of the electron-phonon interaction
07531
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Ĥe-L5(
n

~ĝnân1ĝn
†ân

†!, ~15!

where the set of indexesn5( l ,m,h) labels the obtained LO
modes. The amplitudes of the electron-phonon interac
can be explicitly expressed in terms of the unitar
transformation coefficients as follows:

g lmh~r !5
2\v1,LO

AR
S \

mv1,LO
D 1/2

~A2pa1!1/2Y lm~n!

3(
s

Ul ,s~v l ,h!

Abl ,s
2 2 l ~ l 11!

F j l~bl ,sr /R!

j l~bl ,s!

2
~ l 11!«2~v l ,h!

l«11~ l 11!«2~v l ,h!
S r

R
D l G , ~16!

wherea1 is the Fröhlich electron-phonon coupling consta
of a nanocrystal. The Hamiltonian of the exciton-phon
interaction has a form similar to Eq.~15! with the
replacement ofĝn by the exciton-phonon interaction ampl
tudes

b̂n~re ,rh![ĝn~re!2ĝn~rh!. ~17!

It is worth noting that in CdSe and in PbS, where disp
sion of bulk LO phonons is strong~see Refs. 34, 43, and 44!,
the LO phonon modes as derived from Eq.~9! appear to be
hybrids of bulklike and interface vibrations.

III. RAMAN SPECTRA

Within the context of the long-wavelength approximatio
the interaction of an electron with an electromagnetic field
described by the operatorV̂(t)5V̂Ie

2 iV I t1V̂S
†eiVSt, where

the termsV̂I and V̂S
† correspond, respectively, to the absor

tion of a photon with the frequencyV I ~incoming light! and
to the emission of a photon with the frequencyVS ~scattered
light!. The interaction amplitudeV̂I (S) is proportional to the
projection of the electron dipole momentum operatord̂ on
the polarization vectoreI (S) of the relevant wave:d̂I (S)

5eI (S)
•d̂. From the second-order perturbation theory, t

transition probability between an initialu i & and a finalu f &
state is

wi→ f5
2p

\4 U(m ^ f uV̂S
†um&^muV̂I u i &

vmi2V I1 id U2

3d~v f i2V I1VS!, d→10. ~18!

Here, vmi and v f i are transition frequencies. For phono
assisted Raman scattering in a semiconductor nanocry
u i &, u f &, and um& are quantum states of the exciton-phon
system. Both the initial and the final states contain no cha
carriers~electrons or holes!, so that these states are describ
by a direct product of a wave function of free phonons w
6-3
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that of the exciton vacuum. Intermediate statesum& are
eigenstates of the Hamiltonian

Ĥ5Ĥex1Ĥph1Ĥex-ph , ~19!

whereĤex is the Hamiltonian of an exciton,Ĥph is the pho-
non Hamiltonian~14!, andĤex-ph is the Hamiltonian of the
exciton-phonon interaction.

For definite polarizations of the incoming and the sc
tered light, the scattering probability is obtained by aver
ing Eq. ~18! over the initial states and by summing over t
final ones. Since the phonon HamiltonianĤL is quadratic
and the Hamiltonian of the exciton-phonon interactionĤex-L
is linear in phonon creation and annihilation operators,
analytical averaging over the equilibrium phonon ensem
can be performed in Eq.~18!. As a result, we can express th
shape of the Raman spectrum in terms of time-ordered
erators averaged over exciton states only,

W~V I ,eI ,VS ,eS!5E
2`

`

dt ei (VS2V I )tE
0

`

dtE
0

`

ds

3exp@2d~t1s!2 iV I~t2s!#

3 (
m1m2

(
m18m28

~dm
18

I
dm2

S !* dm1

I dm
28

S

3exp@ i ~ṽm1
t2ṽm

18
s!#^m18u^m2uTs8Ts

2

3exp$F@b̂,b̂8#%um1&um28&. ~20!

Here, ṽm are the frequencies anddm
I (S)[^mud̂I (S)u0& are the

dipole-matrix elements for a transition from the excit
vacuumu0& to the eigenstatesum& of the HamiltonianĤex .
The ‘‘influence phase’’ of the phonon subsystemF@b̂,b̂8# is
the following operator:

F@b̂,b̂8#5
1

\2 (
n

H E
0

t

dsE
0

s

ds8

3Tvn
* ~ t1s2s8!b̂n8~s8!b̂n

†~ t1s!

2E
0

t

dsE
0

s

ds8Tvn
~s2s8!b̂n~s!b̂n

†~s8!

2E
0

s

dsE
0

s

ds8Tvn
* ~s2s8!b̂n8~s8!b̂n

†8~s!J .

~21!

In Eqs.~20! and~21!, primed~unprimed! exciton-phonon
amplitudes are chronologically~antichronologically! ordered
operators, which act on primed~unprimed! exciton states.
The phonon Green’s function

Tv~ t !5
cosh@v~ i t 2\/2kBT!#

sinh~\v/2kBT!
~22!

describes the phonon emission and absorption processe
07531
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Because electron-phonon coupling is weak in nanocr
tals, such as CdSe, CdSexS12x and PbS, theK-phonon scat-
tering intensity, corresponding to a definite combinator
frequency( j 51

K vn j
, can be analyzed to the leading (Kth)

order in the electron-phonon coupling constant.45 The scat-
tering intensity within thisleading-term approachis then
expressed through a squared modulus of the scattering
plitude,

FK
(6)~n1 , . . . ,nK!

5 (
m0•••mK

dm0

I ~dmK

S !*

ṽm0
2V I1 i G̃m0

3)
j 51

K ^m j ub̂n j
um j 21&

ṽm j
2V I6 (

k51

j

~vnk
6 iGnk

!1 i G̃m j

,

~23!

where G̃m is the inverse lifetime of an exciton in the sta
um&, while Gn is the inverse lifetime of a phonon of the mod
n.

The following treatment is related to the regime
strong confinementR,Rex , where Rex is the exciton
Bohr radius. In this case, the Coulomb electron-h
interaction can be treated as a perturbation, and the con
of the exciton means the same as that of the electron-
pair.

If one considers states of the electron-hole pairum j& in Eq.
~23! within the model of simple bands, then diagonal mat
elements of amplitudes of the electron-phonon interaction
the wave function of the ground electron-hole state van
which suppresses the one-phonon Raman scattering.
suppression can be removed by one of the following mec
nisms:~i! the Coulomb electron-hole interaction,46 ~ii ! band
mixing,47 ~iii ! the influence of interface imperfections on th
exciton wave functions,11 ~iv! nonadiabatic transitions with
the participation of virtual phonons. The latter mechani
exists only beyond the leading-term approach.

Two particular cases are of interest when one of th
mechanisms dominates:~i! strong band mixing~CdSe in
glass6,7!, ~ii ! weak band mixing~PbS in polyvinyl alcohol8!
when one-phonon transitions are determined mainly
the scattering of an electron and of a hole by the poten
due to the imperfections. It is worth recalling that, in th
strong-confinement regime, the Coulomb interaction o
slightly influences the electron-hole states and the Ram
spectra.

For a CdSe nanocrystal, exciton states are analyzed
using the spherical model of the exciton Hamiltonian48

supplemented by terms describing the electron-hole
change interaction,49

Ĥex5
1

2me
p̂e

21
g1

2m0
p̂h

22
g2

9m0
~P̂(2)

• Ĵ(2)!1VC~re ,rh!

2
2

3
eexcha0

3d~re2rh!~sŴ • Ĵ!, ~24!
6-4
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wherep̂e and p̂h (re and rh) are the electron and hole mo
menta~coordinate vectors!, g1 andg2 are the Luttinger pa-
rameters,m0 and me are the bare-electron mass and t
electron-band mass;P̂(2) andĴ(2) are irreducible second-ran
tensors of the momentum and of the spin-3

2 angular momen-
tum of a hole, respectively. The potential of the Coulom
attraction between an electron and a hole in a spherical n
crystalVC(re ,rh) is used from Ref. 39. In Eq.~24!, the last
term, which is proportional to the scalar product of the el

tron (sŴ ) and hole (Ĵ) spin operators, describes the electro
hole exchange interaction characterized by the strength
stanteexch. In CdSe, this constant is equal to 320 meV.49 The
Coulomb and the exchange interactions between an elec
and a hole are treated as perturbations when determining
exciton states. To the zeroth order in these perturbations
exciton statesum& are characterized by a definite electro
spin projections and the total angular momentum of a ho
F with the z projectionM,

um&[u1S,s;K,M &5C1S
e ~s!FK

h~M !, ~25!

whereK5nS3/2, nP1/2, nP3/2, nP5/2, etc. The indexn la-
bels the solutions of the equations for the radial compone
of the hole wave function.47

In contrast to CdSe, the conduction and valence band
PbS~Ref. 50! are both nondegenerate. As a result, band m
ing in PbS nanocrystals exerts a very small influence on
matrix elements of the exciton-phonon interaction. Note t
the exciton-phonon coupling due to this mixing in PbS qu
tum dots calculated using the four-band envelope-func
formalism8 is over two orders of magnitude smaller than t
value of CdSe quantum dots at all radii. Hence, the influe
of boundary-structure imperfections on the probabilities
one-phonon optical transitions becomes of paramount im
tance. This gives us a reason to consider electron-hole s
in PbS within the model of simple bands. The influence
interface imperfections is modeled by the potential expan
in spherical harmonicsYlm(q,w),

U imp~r !5(
l 51

`

(
m52 l

l

UlmS r

RD l

Ylm~q,w!, ~26!

which obeys the Laplace equation. Exciton quantum sta
um j& in Eq. ~23! are calculated in the first perturbation a
proximation on the potentialU imp(r ). Calculated scattering
intensities are then averaged on the Gaussian distributio
random amplitudesUlm with the varianceU0 as a fitting
parameter. Equation~26! describes, in particular, the electro
static potential induced bytrapped charge. This charge can
build up on the nanocrystals during the steady-state Ra
measurements.8,12

In Raman-scattering experiments,6–8 the frequency of the
incoming light is chosen to be in resonance with the exci
ground-state energy. Hence, only several lowest lev
should be considered when calculating scattering amplitu
~23!. Two types ofselection rulesmanifest themselves in th
phonon-assisted Raman scattering. The first group of se
tion rules results from the symmetry properties of thedipole-
matrix elements dm

I and dm8
S : ~i! for parallel polarizations
07531
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(eI ieS), the projection of the exciton angular momentum
preserved in the scattering process,M5M 8; ~ii ! for crossed
polarizations (eI'eS), M5M 861.

The second group of selection rules is determined by
symmetry properties of matrix elements of theexciton-

phonon interactionamplitudeŝ m j ub̂n j
um j 21&. Only the fol-

lowing phonons take part in the one-phonon scattering:~i!
phonons withm50, in parallel polarizations;~ii ! phonons
with m561, in crossed polarizations. The selection ru
for the one-phonon Raman scattering in spherical nanoc
tals were analyzed in Ref. 16 supposing a nondegene
parabolic band structure, and the conclusion drawn was
only s phonons~with l 50) are active in the dipole scatterin
processes. This conclusion cannot be applied to nanocry
with a degenerate valence band, where due to band mixis
phonons andd phonons~with l 52) appear to be active in
the one-phonon Raman scattering.

In the multiphonon scattering amplitudes of Eq.~23! with
the phonon numberK>2, each matrix element of the
exciton-phonon interaction contains at least oneintermediate
quantum state, which can be optically active or inacti
Since in the scattering amplitudes of Eq.~23!, the summation
is carried out over all intermediate states, phonons of a
trary angular momenta can participate in multiphonon tr
sitions assisted by more than one phonon. It should be m
tioned that the adiabatic approximation allows participat
of only s phonons in multiphonon scattering processes.6

It is worth noting that the one-phonon Raman scatter
assisted byp phonons isforbiddenin the case when a nano
crystal has inversion symmetry. However, the potential d
to imperfections@Eq. ~26!# contains both even and odd term
and hencebreaks this symmetry down. Owing to the break-
down of the inversion symmetry, thep phonons~and other
phonons of the odd parity! can be active in the one-phono
Raman scattering.

IV. DISCUSSION OF RESULTS

For the calculation of Raman spectra for CdSe quant
dots, the following values of parameters are used:«1(`)
56.23, «1(0)59.56,51 the electron band massme50.11m0,
the bulk energy band gapEg51.9 eV,52 the Luttinger pa-
rametersg152.04, g250.58,53 and«252.25.6

For PbS quantum dots, we have takenEg50.307 eV,54

«1(`)518.5, «1(0)5190.55 The energy of the size quant
zation in the PbS nanocrystals under consideration~with R
;1 to 2 nm! is considerably larger than the bulk band ga
For such a large energy, the dispersion law of both an e
tron and a hole is substantially nonparabolic, so that
cannot use the effective-mass approach even for sim
bands. In this view, we determine exciton energies from
experimental absorption spectra of Ref. 8. The peak posit
observed in Ref. 8 for PbS nanocrystals of radius 1.5
correspond to the energiesEexc(1s,1s)'2.06 eV,
Eexc(1p,1p)'3.14 eV, Eexc(1d,1d)'4.18 eV. Since the
conduction and valence bands in PbS are known to be
proximately mirror images of each other, the energies
transitions between the lowest states of an electron and
6-5
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hole can be estimated asEe(h)(1p)2Ee(h)(1s)
'@Eexc(1p,1p)2Eexc(1s,1s)#/2'0.54 eV, Ee(h)(1d)
2Ee(h)(1s)'@Eexc(1d,1d)2Eexc(1s,1s)#/2'1.06 eV.

The Raman-scattering spectrum, calculated for a Gaus
ensemble of CdSe quantum dots in glass and compared
experimental data of Ref. 6, is shown in Fig. 1. The relat
size dispersiond[A^DR2&/^R& is taken to be 10%~see Ref.
6!. The parameterG̃m[G̃ describing the linewidth of exciton
states is taken to beG̃50.3v1,LO, which is close to values
measured in Ref. 56.

The structure of the phonon-assisted Raman-scatte
peaks for the spherical CdSe nanocrystals appears to b
follows. According to the selection rules discussed abo
only s andd phonons are active in the one-phonon spectru
In crossed polarizations, transitions assisted bys phonons are
forbidden. Hence, the one-phonon spectrum is determ
only by d phonons withm561. In CdSe nanocrystals, th
probabilities of transitions are determined mainly by the c
siderable effect of mixing between bands of heavy and li
holes, while the role of interface imperfections is of min
importance. It is worth noting that, as a result ofnonadia-
batic transitionswithin the state (1S,1S3/2), the contribution
to scattering intensity due tod phonons is significantly en
hanced compared to that calculated51,57 in the adiabatic ap-
proximation. This enhancement is a result of the Jahn-Te
effect. In the multiphonon scattering processes~with K>2),
the participation of phonons of other types, in particularp
and f phonons, is permitted under the above selection ru
It is also worth noting that transitions assisted byp phonons
through excited states (1S,1P3/2) and (1S,1P5/2) bring a key
contribution into the multiphonon scattering probabilities f
spherical CdSe quantum dots with typical radiiR;1 to 4
nm. Recently, in Ref. 46, the multiphonon Raman scatter
in spherical semiconductor nanocrystals has been tre
within the model15 for the phonon spectrum and for th

FIG. 1. Multiphonon Raman-scattering spectrum for t
ensemble of CdSe nanocrystals with^R&52 nm compared with
the experimental data of Ref. 6. The thin dashed line is
luminescence background. The following parameter values
used: «1(`)56.23, «1(0)59.56 ~Ref. 51!, me50.11m0 , Eg

51.9 eV ~Ref. 52!, g152.04, g250.58 ~Ref. 53!, and «252.25
~Ref. 6!.
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electron-phonon interaction. In Ref. 46, no imperfections a
no nonadiabatic effects are taken into account. Relative o
tone intensities, calculated in Ref. 46 using the effecti
mass approximation for excitonic states, quantitatively dif
from the experimental data of Ref. 6. In order to provide
quantitative description of the Raman spectra, in Ref. 4
correction factor has been introduced. As seen from Fig
our results compare well with those of Ref. 6 without usi
any correction factors.

The Raman-scattering spectrum obtained for an ensem
of PbS nanocrystals with a relative size dispersion 4%~Ref.
8! is shown in Fig. 2. This spectrum is calculated withU0

50.036 eV, which is much less than the typical energy d
ference between exciton levels. Furthermore, the valueGn

[G515 cm21 corresponds to the experimentally observ
peak broadening, which is attributed to a finite phonon li
time ~see Ref. 8!. The fundamental scattering intensity
PbS nanocrystals due to both adiabatic and nonadiab
transitions is determined by trapped charge and is prop
tional to U0

2, while overtone peaks are formed mainly as
result of nonadiabatic transitions through the lowest exci
states of an exciton.

The main contribution to both fundamental and overto
bands in PbS quantum dots comes from the exciton-pho
interaction with 1p and 2p phonons. This contrasts bot
with the results of the adiabatic approach, which implies
domination of peaks corresponding tos phonons, and with
those for CdSe quantum dots, wheres and d phonons are
active in the fundamental scattering. Peak positions given
the adiabatic theory differ significantly from those of th
experimental data.8

As a result of considerable LO phonon dispersi
in bulk material, the phonon frequencies in Pb
quantum dots vary substantially for different mode
i.e., v1s5235 cm21, v1p5217 cm21, v2p5192 cm21,

e
re

FIG. 2. Calculated Raman-scattering spectrum~the heavy
dashed curve! for the ensemble of PbS nanocrystals with^R&
51.5 nm. The experimental spectrum of Ref. 8 is shown by
solid line. The following parameter values are used:Eg

50.307 eV~Ref. 54!; «1(`)518.5, «1(0)5190 ~Ref. 55!.
6-6
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v1d5229 cm21, v2d5114 cm21. Therefore, the phenom
ena contributing to Raman peaks can be easily identified
particular, main peaks in both fundamental and overto
bands can be confidently assigned top phonons. It is evident
from Fig. 2, that a satisfactory agreement exists between
calculated Raman spectrum and the experimental resu8

with respect to both ratios between spectral intensities
peak positions.
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