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Logic functions from three-terminal quantum resistor networks for electron wave computing
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Electron transmission characteristics through a generalized three-terminal clean Aharonov-Bohm ring is
investigated with an arbitrary terminal configuration. This three-terminal ring is shown to be the most basic
quantum resistor network that is suitable for electron wave computing, as we demonstrate in this work. There
are four basic classes of three-terminal rings. The scaling relation in each class is deduced. Thus the transmis-
sion characteristics in each class are valid from an atomic-scale-sized ring to a mesoscopic-scale-sized one,
limited only by the electron phase-breaking length. The Buttiker symmetry rule is essential when searching for
basic logic functions. Logic functions such as IF-THEN, AND, OR, XOR, and INVERT are shown here as the
basic building blocks for a possible massive parallel electron wave computing machine. The node equation
method, linking the wave function of one terminal node with its neighboring terminal nodes, is used. The rules
governing each terminal node are summarized. This method is equivalent to the Kirchhoff current conservation
law in classical circuit theory.

DOI: 10.1103/PhysRevB.65.075313 PACS number~s!: 05.60.Gg, 03.67.Lx, 85.35.Ds, 85.35.Be
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I. INTRODUCTION

As our technology for fabricating nanostructure condu
ing wires continues to advance, in the future it will be po
sible to produce manmade conducting structures on a n
atomic scale. This will open the possibility for us
synthesize interconnected wired networks. In such a
work, the coherent wave nature of electrons will be realiz
over the entire network at very low temperature, since
inelastic scattering are negligible. Such an interconnec
electron waveguide network is a quantum resistor netw
~QRN! in the sense that the value of the transmission pr
ability from one location to another in the network is pr
vided by a theory based on the Landauer-Buttik
formulation.1–5 A classic example of such a QRN is a tw
terminal Aharonov-Bohm~AB! ring. In such a ring, the
transmission probability from an input terminal to an outp
terminal can be tuned by an applied electric field or magn
flux. This was demonstrated experimentally and theoretic
by many investigators.4–7 An electron wave inside a clea
AB ring was shown in recent experiments to be able to
circle the ring up to six times, and the damping of the A
oscillation amplitude is proportional to the length of the i
terference paths.7 This demonstrates that there is a valid s
and temperature for which interconnected AB rings can
used for networking applications. It is also clear that only
generalization from a two-terminal ring to a multitermin
ring will allow us to construct a useful network. An interco
nected two-terminal ring remains a one-input–one-out
network. A sharply varying transmission probability exis
only in a small magnetic flux range, for example. This
sembles a resonant-tunneling device,8 and its usefulness is
very limited. The minimum requirement to form a QRN is
three-terminal device. This can be achieved by adding a t
terminal to an existing two-terminal AB ring. This genera
zation will prove to be useful for electron wave computin
which we describe in this work. A QRN can be considered
a set of nodes with interconnected quasi-one-dimensio
bond paths between the nodes. The computing principle f
0163-1829/2002/65~7!/075313~10!/$20.00 65 0753
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QRN is entirely different from the traditional electron com
puting. In electron wave computing, the switching princip
of a transistor is replaced by the interference principle
coherent electron waves inside a QRN. In sequential e
tronic computing, a high switching speed for a transistor
very desirable. On the other hand, electron wave compu
is based on routing and rerouting massive channels of wa
in a network to their desirable output locations. Thus t
computing time is determined by the propagation time j
like optical wave computing. Therefore, a dc response o
QRN is sufficient for our understanding. We show here tha
is possible to construct a massive parallel-processing
chine just as in optical computing, another branch of wa
computing. Many important logic functions needed for
electron wave-computing scheme are shown to be possib
this work. For example, with a three-terminal generaliz
AB ring, branching or routing an electron wave to one of t
two possible paths is now possible. This allows one to c
struct a logic IF-THEN gate. This was first shown by one
us and collaborators.9 In many situations, reflections from
QRN are not part of a computation scheme. In this case,
reflection from such a particular node has to be remo
from further computation, so that a forward-moving electr
wave will not interfere with it. This requires an insertio
between the two nodes of a quantum circulator, a thr
terminal AB ring, to dump the unwanted computation. F
logic function applications, this involves multiple cohere
inputs. In this case, it is important to realize that the Buttik
symmetry rule10 must be taken into consideration in order
gather useful functions.

A three-terminal ring was first investigated in Ref. 9 in
special case when the three terminals are equally space
this work, we generalize the discussion to three arbitra
spaced terminals. In this general situation, we are able
classify all three-terminal AB rings into four classes, and
deduce the scaling relation in each class. Under those sca
relations, the transmission characteristics of a QRN are v
from an atomic scale to a possible nanoscale as long as
elastic scattering do not play an important role. It is impo
©2002 The American Physical Society13-1
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C. H. WU AND DIWAKAR RAMAMURTHY PHYSICAL REVIEW B 65 075313
tant to realize that generalized three-terminal AB rings
divided into several classes. Certain logic function exi
only in a particular class of rings. Classes of rings with ev
and odd-numbered lattice spacings between two adjacen
minals offer drastically different transmission characteristi
This is demonstrated in this work. Even in a two-termin
AB ring, it was already shown11 that even and odd-numbere
rings provide entirely different transmission probabilitie
When the total number of atoms or sites in a two-termi
AB ring is an even number, the upper and lower paths can
equal, and the reflection probability is a periodic function
the applied magnetic flux with a single periodicity. Howev
when the total number of atoms in the ring is an odd numb
the upper and lower paths must differ by at least one ato
spacing. In this case, the periodicity of the reflection pro
ability is doubled. This universal double periodicity is
contrast with the ensemble-averaged double periodicity fr
a thick ring, as shown in Ref. 12.

Most discussions of the AB effect employ anS-matrix
approach.13 Here we use a more convenient node-equat
approach developed by one of us earlier.11 A network is con-
sidered to consist of nodes and bonds connecting the no
At each node, a Kirchhoff law must be satisfied, just as
classical circuit theory. This Kirchhoff law is a result of th
conservation of electron current at the node. This appro
greatly simplifies our analysis for obtaining electron wa
functions at all node points in a multiterminal QRN. This
presented in Sec. II. The classification of all three-termi
rings and the scaling relations are shown in Sec. III. Lo
functions for wave computing are summarized in Sec.
and a conclusion appears in Sec. V.14,15

II. NODE EQUATIONS FOR A THREE-TERMINAL
GENERALIZED AB RING WITH ONE INPUT

A generalized three-terminal one-dimensional clean
ring is illustrated in Fig. 1. The total number of atoms or si
~node points! in the ring isM5 l 1m1n, wherel, m, andn
are the dimensionless separation distances between term
in units of the atomic spacingd. We will denote~l, m, n! as
a set of numbers that characterizes the configuration o
three-terminal AB ring with a threaded magnetic flux in un
of f05hc/e, the elementary flux. The three terminals in F
1, labeledA, B, andS, are connected to the ring at the thr

FIG. 1. Generalized three-terminal AB ring with~l, m, n! as the
configuration of the three terminals.
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node points, labeledA1, B1, andS1, respectively. If an input
of amplitudea is coming from terminalA into theA1 node
and a reflection of amplitudeb is coming from node point
A1 to terminalA, then a node equation for node pointA1
can be written as11

@cotkl1cotkn2 iD #c~A1!2e2 inucscknc~B1!

2eil ucscklc~S1!50. ~1!

Here D5(12R)/(11R), andR5b/a is the reflection co-
efficient. Note thatc(A1), c(B1), andc(S1) are the wave
functions at node pointsA1, B1, andS1 respectively. The
energy of an incoming electron waveE is related tok by
\2k2/2m.

The threaded magnetic flux will provide an addition
phase shift to the wave function atB1, so thatc(B1) is
changed to e2 inuc(B1), where u5(d/r 0)(f/f0)
5(2p/M )(f/f0), with r 0 being the radius of the ring. The
value ofk for such a ring must satisfy coskd5cos(2p/M)@s
7(f/f0)#, where s51,2,3,..., and, at the Fermi energy,
proper value ofs must be picked.11 Similarly the wave func-
tion at the S1 node point is changed fromc(S1) to
e1 i l uc(S1). Thus a node equation relates the wave funct
at the center node to its three nearest neighbors.

At node pointsB1 andS1, there are no inputs from ter
minal B andS. However, the input from terminalA results in
outgoing waves through terminalsB andS. The correspond-
ing node equation can be written by settingD521 ~or a
50! in Eq. ~1! to obtain

@cotkm1cotkn1 i #c~B1!2e2 imucsckmc~S1!

2einuc~A1!50 ~2!

and

@cotkl1cotkm1 i #c~S1!2e2 i l ucscklc~A1!

2eimucsckmc~B1!50. ~3!

Equations~1!, ~2!, and ~3! are valid for an arbitrary three
terminal AB ring of ~l, m, n! configuration. The node equa
tion method is very similar to the Kirchhoff current law i
elementary circuit theory. For each node point, there is as
ciated a linear equation connecting the wave function of t
node point to all its nearest neighbors through the curr
conservation law. The rules governing each node point
be summarized as follows.11

At a given node point, labeled a nodei, connecting tos
neighboring node points, labeledj, there is a linear equation
relating wave function at nodei, c( i ), to the wave functions
of all its neighbors,c( j ). The coefficients for each wav
function are~1! ( j 51

s cot(klij)2iD for nodei. Here the sum-
mation is over allj neighbors, andD5(12R)/(11R) if the
node point receives an external input, otherwise,D521.
The coefficient for all the neighboring nodes is2csc(kl i j ).

For the two neighboring ring nodes affected by t
threaded magnetic flux, the wave functions are further mo
fied by multiplying a phase factore6 i l i j u by the wave func-
3-2
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FIG. 2. Transmission and re
flection probability for configura-
tions ~1,1,1! and ~1,3,5! for class
~1!. Note that at f/f0560.25
one output terminal has the trans
mission probability of unity.
o
d

I
n

-
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r-
tions. Here the positive sign is for the clockwise neighb
and the minus sign for the counter clockwise neighbor, anu
is as given earlier.

The above rules are for free-electron network only.
there is a potential associated with each node point, the
form factor will replace the cos(kd) function. This is shown
in Ref. 11.

Equations~1!, ~2!, and~3! can be solved to obtain reflec
tion coefficientR by setting the determinant equal to zer
The D function is found to be given by

D5
~3r 2s22t12u cosMu!1 i ~222n!

~r 1s!1 i ~22n!
, ~4!

with
07531
r

f
a

.

r 5cotkl1cotkm1cotkn,

s5cotkm,

t5cotkl cotkmcotkn,

u5csckl csckmcsokn,

n5cotkl cotkm1cotkmcotkn1cotkl cotkn.

The wave functions at node pointsA1, B1, andS1 can then
be solved. The transmission probability from terminalA to
terminal B, denoted byutabu2, is then given byuc(B1)u2.
Similar, utasu25uc(S1)u2. It is easy to observe that the He
mittian matrix from Eqs.~1!, ~2!, and ~3! insures that the
conservation of probability
3-3
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FIG. 3. Transmission and reflection probab
ity for configuration~2,4,6! with input at terminal
A for class~2!.
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uRu21utabu21utasu251 ~5!

is satisfied.

III. CLASSIFICATION AND SCALING RELATION OF
THREE-TERMINAL AB RINGS

Just as there are two basic classes of two terminal
rings, there are four basic classes of three-terminal rin
They are classified according to whether the set of~l, m, n!
numbers are even or odd numbers.

The transmission probabilities are all periodic function
07531
B
s.

f

the threaded magnetic flux with a single periodicityf0 . The
flux periodicity for the reflection probability, on the othe
hand, depends on whether the total number of sites in a
is an even or odd number. An even-numbered ring ha
single periodicity and an odd-numbered ring has a dou
periodicity, just as in the situation in two-terminal rings.11

Our classifications can be described as follows:
Class (1): When the set of numbers~l, m, n! is comprised

of all odd numbers, an input from terminalA can be totally
transmitted to either terminalB or terminalS at a specified
flux of f/f0560.25. This is shown in Fig. 2 for the con
figurations of ~1,1,1! and ~1,3,5!. Note that utas(f/f0)u
il-
FIG. 4. Transmission and reflection probab
ity for configuration~2,4,6! with input at terminal
S for class~2!.
3-4
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FIG. 5. Transmission and reflection probab
ity for configuration~1,1,2! with input at terminal
A. This is a class~3! ring with a distributed prob-
ability at positive flux value.
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5utab(2f/f0)u symmetry is satisfied in the case when all
~l, m, n! are equal and odd, as shown in Fig. 2 in configu
tion ~1,1,1!. This characteristic makes it possible for this d
vice to be used as a two-way master-slave quan
circulator.8 When this device is inserted between two qua
tum processors at this specified flux, the reflection is
flected to the dumped terminal and will not interfere with t
incoming wave. Thus the problem of handling unwanted
flections in a quantum computing network can be solved
attaching three-terminal quantum circulators at all appro
ate places. The same quantum circulator can also be us
a logic IF-THEN gate function when the flux is switche
from f/f0510.25 for TRUTH to f/f0520.25 for
FALSE. More logic functions are discussed below.
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The scaling relation of class~1! rings can generally be
described as follows. All the transmission characterist
from an input at terminalA at configuration~l, m, n!, with a
flux value off/f0 , are exactly the same as those at config
ration (l 12,m12,n12) with a flux value of 2f/f0 .
Therefore we will denote such a scaling law as

~ l ,m,n!f/f0
5~ l 12,m12,n12!2f/f0

, ~6!

so that alternate odd-numbered class~1! rings have the same
transmission behavior. This means that a~1,3,5! ring and a
~3,5,7! ring transmit inputs exactly the same way, except t
their B andS terminals are interchanged if the input is fro
terminal A. This scaling relation is valid from an atomic
il-

n
-

FIG. 6. Transmission and reflection probab
ity for configuration~2,3,4! with input at terminal
A. Note that a horizontal line at a transmissio
probability value near 0.45 will exhibit the sym
metry of a probability between terminalsSandB
for any flux value. This is a class~4! ring.
3-5
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FIG. 7. ~a! Vector plot for an OR gate ring
~2,2,1! with a phase ofB input p at f/f0

520.25. ~b! Transmission plot for an OR gat
ring ~2,2,1! with a phase ofB input p.
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scale ring to a larger mesoscopic-scale one, as long as
electron phase-breaking length is even larger.

Class (2): When the set of numbers~l, m, n! is comprised
of all even numbers, the outputs are always finite all o
three terminals, and an input cannot be routed only to a
ticular terminal by tuning the flux and the reflection probab
ity is finite at any flux. This is shown in Fig. 3 for the~2,4,6!
configuration. Note that at near zero flux range,utasu5utabu.
To show that the Buttiker symmetry rule is satisfied, we p
vide Fig. 4 with an input from terminalS. Note that
utas(f/f0)u5utsa(2f/f0)u is satisfied by comparing th
two figures.

The scaling relation of class~2! rings can be summarize
as

~ l ,m,n!f/f0
5~ l 14s22,m14s22,n14s22!~f/f0!60.5,

~7!
07531
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wheres51,2,3,... . For example, the transmission charac
istics for the~2,2,2! configuration atf/f050 is the same
as those for the~4,4,4! configuration atf/f0510.5. In
other words, the origin of periodicity is shifted byf/f0
560.5.

Class (3): When the set of numbers,~l, m, n! is comprised
of two odd numbers and one even number, the transmis
probabilities will be distributed all over in a single flux pe
riod. However, it is now possible to route an input only to
particular terminal while blocking the rest. This is shown
Fig. 5 atf/f050. By observing the flux range fromf/f0
50 to 20.35, the transmission probability from terminalA to
terminalB is close to 0.9. The rapidly changing behavior
all the transmission curves at positive flux range in Fig
indicates that it is difficult to use this class of rings for log
functions.
3-6



LOGIC FUNCTIONS FROM THREE-TERMINAL QUANTUM . . . PHYSICAL REVIEW B65 075313
FIG. 8. ~a! Vector plot for an XOR gate ring
~2,2,1! with phase of 5p/8 at f/f050.25. ~b!
Transmission plot for an XOR gate ring~2,2,1!
with a phase of 5p/8.
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There are two scaling relations in class~3! rings. The first
scaling relation can be written as

~ l ,m,n!f/f0
5~3sl,3sm,3sn!f/f0

, ~8!

wheres51,2,3... .
Magnification of the ring three times gives the same tra

mission characteristics.
The second scaling relation is

~ l ,m,n!f/f0
5~ l 14s22,m14s22,n14s22!f/f060.5.

~9!

For example, the~1,2,3! configuration has the same transm
sion characteristics as in the~3,4,5! configurations with a
shift of flux periodicity origin by a half period as in Eq.~7!.
07531
-

Class (4): When the set of numbers~l, m, n! is comprised
of two even numbers and one odd number, the transmis
probabilities show a plateau near 0.45 atf/f0560.25. This
is shown in Fig. 6, with a probability symmetry between t
S and B terminals along a value near 0.45 at any magne
flux value. Note that in a flux range from20.05 to20.45,
the reflection probability is low and transmission probab
ties to both terminals are nearly equal with a value of ab
0.45, which is close to the maximum allowed value of 0.5
the Buttiker symmetry rule. Thus this class of rings is use
for logic functions, as we will show later in Sec. IV.

The scaling relation for class~4! rings can be written as

~ l ,m,n!f/f0
5~3l ,3m,3n!f/f0

. ~10!
3-7
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FIG. 9. ~a! Vector plot for inverter ring~1,2,3!
at f/f0520.25. ~b! Transmission plot for in-
verter ring~1,2,3!.
t

g

de

ith

wo

r
a
ea-
and
ue.
be-

on-
id
the
For example, the~2,3,4! configuration at flux, f/f0

510.25, has the same transmission characteristics as
~6,9,12! configuration at flux,f/f0520.25, and has an
identical behavior as in the~18,27,36! configuration at the
same flux value.

Finally, there is a special class for equally spaced rin
that needs to be discussed. Whenl 5m5n, whether it is an
even or odd number, the magnitude of the total amplitu
always equals to unity at any flux:

uR1tas1tabu51. ~11!

This is in addition to the conservation law of Eq.~5!.
07531
he
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IV. LOGIC FUNCTIONS FROM THREE-TERMINAL QRN

In Sec. IV, we described the transmission behavior w
one input~from terminalA! only. For logic function applica-
tions, this often requires more than just one input. When t
coherent inputs are present at terminalsA and B, the trans-
mission probability at terminalS is the square of the vecto
sum, utas1tbsu. In digital applications, the evaluation of
given logic function usually depends on one of the two m
surement methods. One method is to distinguish high
low transmission probabilities by setting a threshold val
The other method is to measure the transmission ratio
tween two output terminals, or to measure the so called ‘‘
off ratio.’’ We note that for a robust logic operation, the val
range of the threaded flux must be reasonably wide, and
output transmission probability must remain constant.
3-8
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In order to probe for possible logic functions using inte
ference principle of electron waves in a three-terminal QR
it is important to utilize the Buttiker symmetry rule first. I
the symmetry rule, the transmission probability at terminai,
due to an input at terminalj at a threaded flux of1f/f0 , is
the same as the transmission probability at terminalj due to
an input at terminali at threaded flux of2f/f0 . Thus this
symmetry rule imposes a condition on the maximum allow
transmission probability at a given terminal to 0.5 when
logic function requires two equal inputs. This also points o
that refreshing is needed before later iteration is perform

For example, in an XOR operation, when the two inp
areA51 andB50, the transmission that goes to terminaS
must be HIGH. Similarly, when two inputs areA50 andB
51, the transmission at terminalS is also HIGH at the same
flux value off/f0 . This means that when an input is plac
at terminalSat a flux value of2f/f0 , the outputs must go
equally to terminalsA andB. Therefore the best situation o
using terminalsA and B as two equal inputs is such tha
terminal S will have maximum transmission probability o
0.5 if the reflection probability is zero. The useful logic fun
tions can be summarized as follows.

~1! Logic AND-gate function: This can be achieved usin
the principle of two vector sum at terminalSwhen inputs are
from terminalsA and B. WhenA51 andB50 or whenA
50 and B51., the transmission probability at terminalS,
utasu2 or utbsu2, is low. But whenA51 andB51., the two
vectors can line up so thatutas1tbsu2 is four times larger than
utasu2 or utasu2. This is illustrated using a class~1! ring at
f/f050, and is discussed in Ref. 11.

~2! Logic OR-gate function: The principle for an OR-gate
function can be achieved using three equal-sided trian
among the three vectorsutasu, utbsu, andutas1tbsu. Therefore,
in the three situations of~1! A51 andB50, ~2! A50 and
B51 and~3! A5B51, the corresponding three transmissi
probabilities at terminalS are all equally high. Since the
vector utasu or utbsu can be rotated by providing an extr
phase from the input, this triangle relation can be easily
isfied. This is shown in Fig. 7~a! in a class~4! ring with a
B5eip input. Note thatutasu25utbsu250.45 at flux f/f0
520.25, which is close to the maximum value of 0.5 im
posed by the Buttiker symmery rule. This is shown in F
7~b!.

~3! Logic XOR-gate function: When two output vectors
are nearly equal in magnitude but are in opposite directio
it is possible to construct an XOR gate. The rotation of o
of the outputs is provided by the same phase given in
input. This is shown in Fig. 8 in the same class~4! ring with
A51 andB5e2 i5p/8 inputs. Therefore, an OR gate and
. B
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XOR gate can be both realized by adjusting the phase of
of the inputs with respect to the other.

~4! Inverter: In a special case, an XOR gate can also
used as an inverter if we consider one of the inputs simply
a supply line while the other is the input to be inverted. F
example, if terminalA is the supply line, thenA51 always.
In that case we haveB50, the output at terminalS is high.
But whenB51, the output atS is low from the XOR gate, as
shown in Fig. 9 at fluxf/f0520.25.

This points out that a QRN is neither a passive nor act
network. It is simply a network that routes and reroutes tw
dimensional vectors along the appropriate paths by the us
threaded magnetic fluxes. Since the QRN is a highly refl
tive network along the nodes of propagation, the forward
electron waves need to be refreshed after certain steps.
is in addition to a refreshing requirement imposed by
Buttiker symmetry rule. However, this requirement can
easily achieved using the supply line concept, as we ill
trated in this example.

V. CONCLUSION

It is possible that massive parallel channels of thin-wir
electron waveguides can become a powerful electron w
computing machine for the future. For that purpose, we h
investigated a general three-terminal clean AB ring to
used as components of a QRN. The transmission chara
istics can be evaluated using the node equation appro
developed. The rings are shown to be divided into four ba
classes. Each class has its own distinct transmission cha
teristics as well as its scaling relation. For logic applicatio
it is necessary to consider the output as a vector sum du
two inputs as well as the restriction imposed by Buttik
symmetry rule. The concept of quantum circulator, I
THEN, XOR, OR, AND as well as INVERTER rules, ar
shown to be possible. Thus higher-order functions, such
half-adder or full-adder functions can be constructed fr
the logic devices presented here. Those higher order Q
can be used as a massive routing-rerouting network for v
large inputs through the tuning magnetic fluxes. We note t
it is desirable that magnetic flux be applied globally. In th
scheme, similar classes of rings are grouped together in
location so that the same flux can be applied to all th
rings. A QRN is neither a passive nor active network, b
cause the supply line concept for refreshing can be achie
The unwanted reflection between two processors can
taken care of with a quantum circulator. Therefore, it is p
sible to build a computing scheme based on the QRN c
cept for the next generation computer.
ev.
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