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Logic functions from three-terminal quantum resistor networks for electron wave computing
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Electron transmission characteristics through a generalized three-terminal clean Aharonov-Bohm ring is
investigated with an arbitrary terminal configuration. This three-terminal ring is shown to be the most basic
guantum resistor network that is suitable for electron wave computing, as we demonstrate in this work. There
are four basic classes of three-terminal rings. The scaling relation in each class is deduced. Thus the transmis-
sion characteristics in each class are valid from an atomic-scale-sized ring to a mesoscopic-scale-sized one,
limited only by the electron phase-breaking length. The Buttiker symmetry rule is essential when searching for
basic logic functions. Logic functions such as IF-THEN, AND, OR, XOR, and INVERT are shown here as the
basic building blocks for a possible massive parallel electron wave computing machine. The node equation
method, linking the wave function of one terminal node with its neighboring terminal nodes, is used. The rules
governing each terminal node are summarized. This method is equivalent to the Kirchhoff current conservation
law in classical circuit theory.
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I. INTRODUCTION QRN is entirely different from the traditional electron com-
puting. In electron wave computing, the switching principle
As our technology for fabricating nanostructure conduct-of a transistor is replaced by the interference principle of
ing wires continues to advance, in the future it will be pos-coherent electron waves inside a QRN. In sequential elec-
sible to produce manmade conducting structures on a neatronic computing, a high switching speed for a transistor is
atomic scale. This will open the possibility for us to very desirable. On the other hand, electron wave computing
synthesize interconnected wired networks. In such a netis based on routing and rerouting massive channels of waves
work, the coherent wave nature of electrons will be realizedn a network to their desirable output locations. Thus the
over the entire network at very low temperature, since alcomputing time is determined by the propagation time just
inelastic scattering are negligible. Such an interconnectetike optical wave computing. Therefore, a dc response of a
electron waveguide network is a quantum resistor networlQRN is sufficient for our understanding. We show here that it
(QRN) in the sense that the value of the transmission probis possible to construct a massive parallel-processing ma-
ability from one location to another in the network is pro- chine just as in optical computing, another branch of wave
vided by a theory based on the Landauer-Buttikercomputing. Many important logic functions needed for an
formulation!=® A classic example of such a QRN is a two- electron wave-computing scheme are shown to be possible in
terminal Aharonov-Bohm(AB) ring. In such a ring, the this work. For example, with a three-terminal generalized
transmission probability from an input terminal to an outputAB ring, branching or routing an electron wave to one of the
terminal can be tuned by an applied electric field or magneti¢wo possible paths is now possible. This allows one to con-
flux. This was demonstrated experimentally and theoreticallystruct a logic IF-THEN gate. This was first shown by one of
by many investigator$:’ An electron wave inside a clean us and collaboratorsin many situations, reflections from a
AB ring was shown in recent experiments to be able to enQRN are not part of a computation scheme. In this case, any
circle the ring up to six times, and the damping of the ABreflection from such a particular node has to be removed
oscillation amplitude is proportional to the length of the in- from further computation, so that a forward-moving electron
terference path§This demonstrates that there is a valid sizewave will not interfere with it. This requires an insertion
and temperature for which interconnected AB rings can bdetween the two nodes of a quantum circulator, a three-
used for networking applications. It is also clear that only aterminal AB ring, to dump the unwanted computation. For
generalization from a two-terminal ring to a multiterminal logic function applications, this involves multiple coherent
ring will allow us to construct a useful network. An intercon- inputs. In this case, it is important to realize that the Buttiker
nected two-terminal ring remains a one-input—one-outpusymmetry rulé® must be taken into consideration in order to
network. A sharply varying transmission probability exists gather useful functions.
only in a small magnetic flux range, for example. This re- A three-terminal ring was first investigated in Ref. 9 in a
sembles a resonant-tunneling devicend its usefulness is special case when the three terminals are equally spaced. In
very limited. The minimum requirement to form a QRN is a this work, we generalize the discussion to three arbitrarily
three-terminal device. This can be achieved by adding a thirdpaced terminals. In this general situation, we are able to
terminal to an existing two-terminal AB ring. This generali- classify all three-terminal AB rings into four classes, and to
zation will prove to be useful for electron wave computing, deduce the scaling relation in each class. Under those scaling
which we describe in this work. A QRN can be considered aselations, the transmission characteristics of a QRN are valid
a set of nodes with interconnected quasi-one-dimensiondfom an atomic scale to a possible nanoscale as long as in-
bond paths between the nodes. The computing principle for elastic scattering do not play an important role. It is impor-
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node points, labeled1, B1, andS1, respectively. If an input
of amplitudea is coming from terminalA into the A1 node
and a reflection of amplitudb is coming from node point
Al to terminalA, then a node equation for node poisi
can be written &g

[cotkl+cotkn—iD ] (Al)—e "’csckny(B1)
—e'’csckly(S1)=0. )

HereD=(1-R)/(1+R), andR=b/a is the reflection co-

n efficient. Note that/(Al), ¢(B1), and(S1) are the wave
FIG. 1. Generalized three-terminal AB ring with m, r) as the ~ functions at node point&1, B1, andSl respectively. The
configuration of the three terminals. energy of an incoming electron wae is related tok by
72212

tant to realize that generalized three-terminal AB rings are 1he threaded magnetic flux will provide an additional
divided into several classes. Certain logic function existd’hase shift to thf;n\gvave function &1, so thaty(B1) is
only in a particular class of rings. Classes of rings with evenchanged  to e™"%(B1), ~where 6=(d/ro)(p/ o)
and odd-numbered lattice spacings between two adjacent ter=(27/M)(/ ¢o), with ro being the radius of the ring. The
minals offer drastically different transmission characteristicsYalue ofk for such a ring must satisfy cési=cos(2m/M)[s
This is demonstrated in this work. Even in a two-terminal *(¢/¢o)], wheres=1.23,..., and, at the Fermi energy, a
AB ring, it was already showh that even and odd-numbered Proper value os must be P'Cke_d- Similarly the wave func-
rings provide entirely different transmission probabilities. lon at the S1 node point is changed fromj(S1) to
When the total number of atoms or sites in a two-termina®’ ' #(S1). Thus a node equation relates the wave function
AB ring is an even number, the upper and lower paths can bat the center node to its three nearest neighbors.

equal, and the reflection probability is a periodic function of At node pointsB1 andSl, there are no inputs from ter-
the applied magnetic flux with a single periodicity. However, minal B andS. However, the input from termina results in
when the total number of atoms in the ring is an odd numberoutgoing waves through terminaisandS. The correspond-
the upper and lower paths must differ by at least one atomi#’g node equation can be written by settibg=—1 (or a
spacing. In this case, the periodicity of the reflection prob-=0) in Eq. (1) to obtain

ability is doubled. This universal double periodicity is in _

contrast with the ensemble-averaged double periodicity from [cotkm+ cotkn+i]y(B1)—e 'Mfcsckmy(S1)

a thick ring, as shown in Ref. 12. -

Most discussions of the AB effect employ &@matrix —e"Y(A1)=0 &)
approach?® Here we use a more convenient node-equatiorgu,]d
approach developed by one of us earltek network is con-
sidered to consist of nodes and bonds connecting the nodes. . i
At each node, a Kirchhoff law must be satisfied, just as in [cotkl+cotkm+i]y(S1) —e ™" “esckly(AL)
classical circuit theory. This Kirchhoff law is a result of the —eMicsckmy(B1) =0. 3
conservation of electron current at the node. This approach
greatly simplifies our analysis for obtaining electron waveEquations(1), (2), and (3) are valid for an arbitrary three-
functions at all node points in a multiterminal QRN. This is terminal AB ring of (I, m, n) configuration. The node equa-
presented in Sec. Il. The classification of all three-termination method is very similar to the Kirchhoff current law in
rings and the scaling relations are shown in Sec. lll. Logicelementary circuit theory. For each node point, there is asso-
functions for wave computing are summarized in Sec. IVciated a linear equation connecting the wave function of that
and a conclusion appears in Sec:*V node point to all its nearest neighbors through the current
conservation law. The rules governing each node point can
be summarized as follows.

At a given node point, labeled a nodleconnecting tos
neighboring node points, labelgdthere is a linear equation

A generalized three-terminal one-dimensional clean ABrelating wave function at node (i), to the wave functions
ring is illustrated in Fig. 1. The total number of atoms or sitesof all its neighbors,y(j). The coefficients for each wave
(node pointsin the ring isM=1+m-+n, wherel, m, andn  function are(1) Elecot(klij)—iD for nodei. Here the sum-
are the dimensionless separation distances between terminatgtion is over alj neighbors, and =(1—-R)/(1+R) if the
in units of the atomic spacind. We will denote(l, m, ) as  node point receives an external input, otherwiBes —1.

a set of numbers that characterizes the configuration of @he coefficient for all the neighboring nodes-scsckl;;).
three-terminal AB ring with a threaded magnetic flux in units  For the two neighboring ring nodes affected by the
of ¢o=hcle, the elementary flux. The three terminals in Fig. threaded magnetic flux, the wave functions are further modi-
1, labeledA, B, andS are connected to the ring at the threefied by multiplying a phase facta™"'i? by the wave func-

1. NODE EQUATIONS FOR A THREE-TERMINAL
GENERALIZED AB RING WITH ONE INPUT
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FIG. 2. Transmission and re-
flection probability for configura-
tions (1,1,7) and (1,3,5 for class
(1). Note that at¢/¢py==+0.25
one output terminal has the trans-
mission probability of unity.

Transmission Probability

Magnetic Flux

tions. Here the positive sign is for the clockwise neighbor r = cotkl + cotkm+ cotkn,

and the minus sign for the counter clockwise neighbor, @nd

is as given earlier. s=cotkm,
The above rules are for free-electron network only. If

there is a potential associated with each node point, then a t=cotkl cotkmcotkn,

form factor will replace the cokg)) function. This is shown

in Ref. 11. u=csckl csckmcsokn,
Equations(1), (2), and(3) can be solved to obtain reflec-

tion coefficientR by setting the determinant equal to zero. v=cotkl cotkm+ cotkmcotkn+ cotkl cotkn.

The D function is found to be given b : .
unetion 1s fou g y The wave functions at node poinddl, B1, andS1 can then

. be solved. The transmission probability from termiAato
D— (3r—s—2t+2ucosMo)+i(2—2v) (4 terminal B, denoted byltap|?, is then given by|4(B1)|2.
(r+s)+i(2—v) ’ Similar, |t,{?=|#(S1)|?. It is easy to observe that the Her-
mittian matrix from Eqgs.(1), (2), and (3) insures that the
with conservation of probability
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FIG. 3. Transmission and reflection probabil-
ity for configuration(2,4,6 with input at terminal
A for class(2).

(2,4,6) with Input at A

|R|2+|tab|2+|tas|2:1 5)

is satisfied.

Ill. CLASSIFICATION AND SCALING RELATION OF
THREE-TERMINAL AB RINGS

the threaded magnetic flux with a single periodicfty. The

flux periodicity for the reflection probability, on the other
hand, depends on whether the total number of sites in a ring
is an even or odd number. An even-numbered ring has a
single periodicity and an odd-numbered ring has a double
periodicity, just as in the situation in two-terminal rints.
Our classifications can be described as follows:

Just as there are two basic classes of two terminal AB Class (1) When the set of numbel§ m, n) is comprised
rings, there are four basic classes of three-terminal ringsf all odd numbers, an input from terminalcan be totally

They are classified according to whether the seti,ain, n)
numbers are even or odd numbers.

transmitted to either termind@ or terminal S at a specified
flux of ¢/¢po=£0.25. This is shown in Fig. 2 for the con-

The transmission probabilities are all periodic function offigurations of (1,1,1 and (1,3,5. Note that |t (d/ do)|

0.9 T T T —T— T T T

08| --B

07}
0.6t}

osF 4 / Sa,

_____
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04r ;%

0.3/

0.2

A
0.1

FIG. 4. Transmission and reflection probabil-
ity for configuration(2,4,6 with input at terminal
Sfor class(2).

(2,4,6) with Input at S

0.4 0.5
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FIG. 5. Transmission and reflection probabil-
ity for configuration(1,1,2 with input at terminal
A. This is a clas$3) ring with a distributed prob-
ability at positive flux value.

Transmission Probability

Magnetic Flux

(1,1,2) with Input at A

=|ta(— @/ Po)| Symmetry is satisfied in the case when all of The scaling relation of clasél) rings can generally be
(I, m, n are equal and odd, as shown in Fig. 2 in configura-described as follows. All the transmission characteristics
tion (1,1,1). This characteristic makes it possible for this de-from an input at terminal at configuration(l, m, n), with a
vice to be used as a two-way master-slave quanturflux value of$/¢,, are exactly the same as those at configu-
circulator® When this device is inserted between two quan-ration (+2m+2n+2) with a flux value of —@/d,.

tum processors at this specified flux, the reflection is deTherefore we will denote such a scaling law as

flected to the dumped terminal and will not interfere with the

incoming wave. Thus the problem of handling unwanted re- ( ,m,n)(,,,%:(l +2m+ 2,n+2),¢,¢0, (6)
flections in a quantum computing network can be solved by

attaching three-terminal quantum circulators at all appropriso that alternate odd-numbered clébsrings have the same
ate places. The same quantum circulator can also be used @ansmission behavior. This means thaflz3,9 ring and a

a logic IF-THEN gate function when the flux is switched (3,5,7) ring transmit inputs exactly the same way, except that
from ¢/py=+0.25 for TRUTH to ¢/¢py=—0.25 for their B andSterminals are interchanged if the input is from

FALSE. More logic functions are discussed below. terminal A. This scaling relation is valid from an atomic-

0.9 T T T T T T T T T

0.8

0.7
208
5 L . .
§ FIG. 6. Transmission and reflection probabil-
508 ity for configuration(2,3,4 with input at terminal
S A. Note that a horizontal line at a transmission
g 0.4 probability value near 0.45 will exhibit the sym-
a metry of a probability between terminggandB
Z o3 for any flux value. This is a clagg) ring.

0.2

0.1

0 i 1 1 1 1 A | 1 1
0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

Magnetic Flux
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scale ring to a larger mesoscopic-scale one, as long as theheres=1,2,3,.... For example, the transmission character-
electron phase-breaking length is even larger. _ istics for the(2,2,2 configuration at¢/¢,=0 is the same
Class (2) When the set of numbex§ m, r) is comprised 35 those for the4,4,4 configuration até/¢e=+0.5. In

of all even numbers, the outputs are always finite all overyiher words, the origin of periodicity is shifted by/ ¢,
three terminals, and an input cannot be routed only to a par= . o 5

ticular terminal by tuning the flux and the reflection probabil- -~ 545 (3) When the set of numberd, m, 1) is comprised
ity is finite at any flux. This is shown in Fig. 3 for t{&,4,6 of two odd numbers and one even number, the transmission

configuration. Note that at near zero flux rang| =tap- probabilities will be distributed all over in a single flux pe-
To show that the Buttiker symmetry rule is satisfied, we pro-. o . .
riod. However, it is now possible to route an input only to a

vide Fig. 4 with an input from terminaS Note that particular terminal while blocking the rest. This is shown in
[tas( @/ do)| =|tsa( = ¢/ bo)| Is satisfied by comparing the Fig. 5 at¢/¢,=0. By observing the flux range fromp/ ¢,

two figures. S . :
The scaling relation of clas®) rings can be summarized =0 10 —0.35, the transmission probability from termirato
terminal B is close to 0.9. The rapidly changing behavior of

as
all the transmission curves at positive flux range in Fig. 5
(1,m,n) 414, = (1 +45=2M+45=2n+45=2) 4/4.)+05 indicates that it is difficult to use this class of rings for logic
(7)  functions.
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There are two scaling relations in cla&s rings. The first Class (4) When the set of numbek§ m, n) is comprised
scaling relation can be written as

of two even numbers and one odd number, the transmission
probabilities show a plateau near 0.45/dthp,= += 0.25. This
(8) is shown in Fig. 6, with a probability symmetry between the
S and B terminals along a value near 0.45 at any magnetic
flux value. Note that in a flux range from0.05 to —0.45,
_Magnification of the ring three times gives the same transyne reflection probability is low and transmission probabili-
mission characteristics.
The second scaling relation is

(I ,m,n)d,/%: (35|,38m,38n)¢/¢0,
wheres=1,2,3....

ties to both terminals are nearly equal with a value of about
0.45, which is close to the maximum allowed value of 0.5 by
the Buttiker symmetry rule. Thus this class of rings is useful
(1mn) g g,=(1+4s=2m+45—-2n+45-2) 4/ +05- for logic functions, as we will show later in Sec. IV.
9 The scaling relation for clag®) rings can be written as
For example, th€l,2,3 configuration has the same transmis-
sion characteristics as in th@,4,5 configurations with a
shift of flux periodicity origin by a half period as in E§?).

(I,m,n)¢/¢0:(3|,3m,3n)¢/¢0. (10)
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For example, the(2,3,4 configuration at flux, ¢/¢g
=+0.25, has the same transmission characteristics as the |, gac. IV, we described the transmission behavior with

(6,9,12 configuration at flux,¢/o=—0.25, and has an gne input(from terminalA) only. For logic function applica-

identical behavior as in thél8,27,36 configuration at the

same flux value.

IV. LOGIC FUNCTIONS FROM THREE-TERMINAL QRN

tions, this often requires more than just one input. When two
coherent inputs are present at terminaland B, the trans-

Finally, there is a special class for equally spaced ringsnission probability at termina is the square of the vector

that needs to be discussed. WHenm=n, whether it is an

sum, [tasttpg. In digital applications, the evaluation of a

even or odd number, the magnitude of the total amplitudegiven logic function usually depends on one of the two mea-

always equals to unity at any flux:

R+t 6+t =1.

This is in addition to the conservation law of E®).

(11)

surement methods. One method is to distinguish high and
low transmission probabilities by setting a threshold value.
The other method is to measure the transmission ratio be-
tween two output terminals, or to measure the so called “on-
off ratio.” We note that for a robust logic operation, the valid
range of the threaded flux must be reasonably wide, and the
output transmission probability must remain constant.
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In order to probe for possible logic functions using inter- XOR gate can be both realized by adjusting the phase of one
ference principle of electron waves in a three-terminal QRN of the inputs with respect to the other.
it is important to utilize the Buttiker symmetry rule first. In  (4) Inverter. In a special case, an XOR gate can also be
the symmetry rule, the transmission probability at termipal used as an inverter if we consider one of the inputs simply as
due to an input at terminglat a threaded flux of- ¢/ ¢, is @ supply line while the other is the input to be inverted. For
the same as the transmission probability at termjitale to ~ €xample, if terminal is the supply line, the’=1 always.
an input at terminai at threaded flux of- ¢/ ¢,. Thus this  In that case we havB=0, the output at termingb is high.
symmetry rule imposes a condition on the maximum allowed3ut whenB=1, the output a8is low from the XOR gate, as
transmission probability at a given terminal to 0.5 when ashown in Fig. 9 at flux¢/¢o= —0.25.
logic function requires two equal inputs. This also points out  This points out that a QRN is neither a passive nor active
that refreshing is needed before later iteration is performednetwork. It is simply a network that routes and reroutes two-
For example, in an XOR operation, when the two inputsdimensional vectors along the appropriate paths by the use of
areA=1 andB=0, the transmission that goes to termigal threaded magnetic fluxes. Since the QRN is a highly reflec-
must be HIGH. Similarly, when two inputs afe=0 andB tive network along the nodes of propagation, the forwarding
=1, the transmission at terminglis also HIGH at the same €lectron waves need to be refreshed after certain steps. This
flux value of ¢/ $,. This means that when an input is placed S in addition to a refreshing requirement imposed by the
at terminalS at a flux value of— ¢/ ¢, the outputs must go Buttiker symmetry rule. However, this requirement can be
equally to terminalsA and B. Therefore the best situation of €asily achieved using the supply line concept, as we illus-
using terminalsA and B as two equal inputs is such that trated in this example.
terminal S will have maximum transmission probability of
0.5 if the reflection probability is zero. The useful logic func-
tions can be summarized as follows.

(1) Logic AND-gate functionThis can be achieved using |t js possible that massive parallel channels of thin-wired
the principle of two vector sum at termin@when inputs are  glectron waveguides can become a powerful electron wave
from terminalsA andB. WhenA=1 andB=0 or whenA  computing machine for the future. For that purpose, we have
=0 andB=1,, the transmission probability at termin8l  jnvestigated a general three-terminal clean AB ring to be
|tasl? O |tpel?, is low. But whenA=1 andB=1., the two  used as components of a QRN. The transmission character-
vectors can line up so thiths+t,4|® is four times larger than  istics can be evaluated using the node equation approach
|tad? Or [tag®. This is illustrated using a clagd) ring at  developed. The rings are shown to be divided into four basic
¢l $o=0, and is discussed in Ref. 11. classes. Each class has its own distinct transmission charac-

(2) Logic OR-gate functianThe principle for an OR-gate teristics as well as its scaling relation. For logic applications,
function can be achieved using three equal-sided triangl@ is necessary to consider the output as a vector sum due to
among the three vectoft,d, |tpd, and|t,s+t,¢. Therefore, two inputs as well as the restriction imposed by Buttiker
in the three situations dfl) A=1 andB=0, (2) A=0 and  symmetry rule. The concept of quantum circulator, IF-
B=1 and(3) A=B=1, the corresponding three transmissionTHEN, XOR, OR, AND as well as INVERTER rules, are
probabilities at terminalS are all equally high. Since the shown to be possible. Thus higher-order functions, such as
vector |t,d or |t,d can be rotated by providing an extra half-adder or full-adder functions can be constructed from
phase from the input, this triangle relation can be easily satthe logic devices presented here. Those higher order QRNs
isfied. This is shown in Fig. (3) in a class(4) ring with a  can be used as a massive routing-rerouting network for very
B=¢'" input. Note that|t,J?=]ty?=0.45 at flux /¢y large inputs through the tuning magnetic fluxes. We note that
= —0.25, which is close to the maximum value of 0.5 im- it is desirable that magnetic flux be applied globally. In this
posed by the Buttiker symmery rule. This is shown in Fig.scheme, similar classes of rings are grouped together in one
7(b). location so that the same flux can be applied to all those

(3) Logic XOR-gate functianWhen two output vectors rings. A QRN is neither a passive nor active network, be-
are nearly equal in magnitude but are in opposite directionssause the supply line concept for refreshing can be achieved.
it is possible to construct an XOR gate. The rotation of oneThe unwanted reflection between two processors can be
of the outputs is provided by the same phase given in théaken care of with a quantum circulator. Therefore, it is pos-
input. This is shown in Fig. 8 in the same clddsring with  sible to build a computing scheme based on the QRN con-
A=1 andB=e '*" inputs. Therefore, an OR gate and an cept for the next generation computer.

V. CONCLUSION
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