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Interlayer exchange interactions, SW4) soft waves, and skyrmions
in bilayer quantum Hall ferromagnets
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The exchange Coulomb interaction is the driving force for quantum coherence in quantum Hall systems. We
construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferro-
magnets, which is characterized by the(8Usospin structure. By taking a continuous limit, the Hamiltonian
gives rise to the S{4) nonlinear sigma model in the von Neumann-lattice formulation. The ground-state
energy is evaluated at filling factors=1,2,3,4. It is shown at=1 that there are three independent soft waves,
where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is
also shown atv=1 that there are three independent skyrmion states apart from the translational degree of
freedom. They ar€ P® skyrmions enjoying the spin-charge entanglement confined within the lowest Landau

level.
DOI: 10.1103/PhysRevB.65.075311 PACS nunter73.43—f, 73.21-b
I. INTRODUCTION 1 e2
= (1.2
Quantum coherence is a new aspect of quantum Hall 16(2m 4melg

(QH) systems. Electron spins are polarized spontaneousl
due to the exchange Coulomb interaction rather than co

pulsively by the Zeeman effect. Skyrmions arise as cohere . : . .
excitations. which have been observed experimentatas ntenS|on of the W alqebra is considerably complicated than
the SU2) extension:

guasiparticles. Intriguingly, an interlayer coherence may de- We overcome the problem by emploving an alternative
velop spontaneously between the two layers and lead tPormulation Namely, IC\)/ve constr){mt ;)L);ngau—site Hamil-
Josephson-like phenomena in bilayer (BLQH) systems. tonian by expanding the electron field operator in terms of

Recent experimental r n tunnellin rrent may well ; .
ecent experimental restlten tunnelling current may we the one-body wave functions of electrons confined to the

be interpreted as the dc-Josephson cufreéhbugh still .
controversiaP We expect even the S4) quantum coherence Ipwest Landau_ level. 'I_'hen, the exchange COUIOmb Interac-
tion emerges just as in ferromagnets. An effective Hamil-

due to the spin and layer degrees of freedofhe driving onian is derived by taking a continuum limit in the von

force of quantum coherence is the Coulomb exchan . . . .
9 9 eumann-—Ilattice formulation, where we substitute the spin

H +~a10,11 H H

interaction.”~* The exchan lomb interaction h | ) . o )

betzinaCt:rgued t?) € c(;egtege goigwb p;gsaea Otheascgnstz%nffness(l.Z) for the exchange integral. This is a consistent
2-14 ' procedure in the context of the &) coherence. We gener-

antiferromagnet,”in the BLQH system at the filling fac- alize this procedure to study the 81) coherence. In the

tor v=2. : . o : e
In this paper we analyze the exchange Coulomb interacsu(4)-|nvanant limit the effective Hamiltonian is given by

tion to explore the S coherence in BLQH ferromagnets. the SU4) nonlinear sigma model

P_f is a straightforward but complicated task to generalize the
U(2) scheme to the Si4) scheme, because the &W ex-

We are concerned about electrons confined to the lowest 15
Landau level, where the electron position is solely specified Hef= 23 d2>T auT 2 1.3
by the guiding centerX,Y) obeying x azl XL AT0] @3

where T,(x) is the isospin field normalized a&,T,T,
[X,Y]=—il é i (1.1 =3/8 atv=1. The present approach allows us to analyze QH

states at any filling factor. For the sake of simplicity, we

discuss only integer QH states, though fractional QH states
This brings in the noncommutative Walgebra® as the basic are treated similarly in the framework of the composite fer-
symmetry of the QH system. It implies that the electron po-mion theory®
sition cannot be localized to a point within the lowest Lan- It is our main purpose to make a thorough investigation of
dau level, and hence the system cannot be described by locsdft waves and skyrmion excitations supported by the ex-
field theory. We construct an effective field theory to describechange Hamiltonian, though some of them have been known
physics whose scale is larger than the magnetic lehgth previously>!’ We examine carefully what are the dynamical
=hleB. fields in the BLQH system. There are three degenerate soft

The effective Hamiltonian governing the &) coherence waves in the S#)-invariant limit, among which only one

has been derivéf* by making a derivative expansion of the soft wave is responsible for the coherent tunneling of elec-
Coulomb energy of spin or pseudospin texturesvatl, trons between the two layers. The soft modes are Goldstone
where the spin stiffnes3is explicitly calculated as modes associated with spontaneous breakdown of ti{¢)SU
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isospin symmetry. Actually, the degeneracy is resolved bya Landau site, which has the areal2 . Thus, it is reason-
the Zeeman effect and the tunneling interaction. Namely, theble that QH effects are described by the Landau-site Hamil-
SU(4) symmetry is broken explicitly but softly by these in- tonian.

teractions, and Goldstone modes turn into pseudo-Goldstone Substituting Eq(2.3) into Eqg. (2.1), we derive the direct
modes with gaps. It is also shown:at 1 that there are three and exchange Coulomb energies

independent skyrmion states apart from the translational de-

gree of freedom. They ai@P® skyrmions enjoying the spin- 1 S
charge entanglement confined within the lowest Landau HD_§ <izj> Uijn(n(j), (2.53
level. '
— Cotiinvetive (i ;
Il. QUANTUM HALL FERROMAGNETS HX‘%ZJ.) UET Jijeg(i)ei(iei)e,(j),  (2.5D

To elucidate quantum coherence we start _with monolayeyhere n(i)EzUCZ(i)CU(i) is the electron number at site
QH systems. Electrons make cyclotron motions under PeU;; andJ;; are the direct and exchange integrals
pendicular magnetic fielB. The number of flux quanta pass-

ing through the system N=BSY®, whereSis the area o o w .

and®p=2x#/e is the flux quantum. There afé;, electron Uij:f d*xd%y e (X) @i (YIV(X=Y) ¢i(X) j(y),
states per one Landau level by neglecting the spin degree of (2.6a
freedom, each of which is associated with one flux quantum.

We call it the Landau site. One Landau site occupies the area 10 5 o 4 .

SINg =273, and may accommodate two electrons with up Jij :EJ d*xdy e (X) ¢j (IV(X=y) ¢i(y) @;(X).

and down spins. The filling factor isB=N/Ng with N the (2.6b
total number of electrons. We are concerned about physics ) i
taking place in the lowest Landau level. These integrals are convergent because the wave function

The microscopic Hamiltonian is a sum of the Coulomb ¢i(X) is “localized” within one Landau sitei with area
term and the Zeeman term 27T|ZB. The sumZ ;) runs over all spin pairsi¢j) just

once.
1 The spinS(i) is defined at each siteby
He=s | xPVOyp0py), @)

(2.7)

Ta[ G
S =(cT,cT)—(
a T 12 Cl

1
=—_ 2T o1 (x)— pt
Hz ZAZJ d>p () =p (0], 2.2 with 7, the Pauli matrix. Using the algebraic relation

where V(x—y)=e?/4me|x—y| is the Coulomb potential, o . ) R
p?(X)= T (x)y?(x) is the electron density with the spin UET co(ez(i)eiey(j)=—28()-S(j)— 5n(i)n()),

index o=1,1,p(x)=p! () +p'(x), and Az=|g*ueB| is 2.8

the Zeeman gap witlg* the magnetigg-factor andug the )

Bohr magneton. we rewrite the exchange term as

We expand the electron field operator in terms of the one-

body wave functionsp;(x) in the lowest Landau level Hy= _4<izj> Jijs(i)'s(j)_“ED Jn(mnG). (2.9

Ng ' ’
PI)=2> ¢, (i)i(X), (2.3  The Hamiltonian has the global(8 symmetry: It is invari-

i=1 ant when all spins are rotated simultaneously.

At v=1, in the absence of the Zeeman effé22), the
spin direction is determined spontaneously to minimize the
exchange energy. The prodi) - S(j) takes the maximum
value S(i)-S(j)=1/4, when S(i)=S(j). Hence, provided

wherec,(i) is the annihilation operator of the up-spior (
=1) or down-spin ¢=|) electron at the Landau site

{c,,(i),cl(j )}=6ij 0o Jij>0, all spins are spontaneously polarized to minimize the
exchange energy, where the direction of polarization is arbi-
{c,(i),c,()y={cl(i).cl(j)}=0. (2.4)  trary: (i)=S for all pointsi but the direction ofS is arbi-

trary. Actually, the direction of the polarization is tkeaxis
As is well known!®*9it is impossible to choose an orthonor- due to the Zeeman effect however small it may be. The ex-
mal complete set of one-body wave functiopgx) in the  change interaction contributes to the ground-state energy by
expansion2.3). Consequently, the electron fiefl’(x) does
not satisfy a standard canonical anticommutation relation 1
{y7(x), 7T (y)} # 8(x—y), implying that an electron cannot (Hx)g= _ZOED Jij= _N<I>; Jij=- ESXN' (2.10
be localized to a point within the lowest Landau level. Nev- ’
ertheless, roughly speaking, an electron can be localized intohere
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®) & 1 1 P
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} aVAYAVAVAVAYAVAYAVAY b'= 7 (X+'Y):E(Z— y) (3.9
NOENOINOINOENOE: B

IR )
NTAVAVAVAVTAVAYAVAY
VAVAVAVAVAVAVAY,

where z=(x+iy)/2lg. We introduce an eigenstate of the
angular-momentum lowering operator

b|B)=BIB). (3.2

FIG. 1. An electron makes a cyclotron motion occupying anBecauseb is an annihilation operator, the stdtg) is a co-
area 2er§ and avoiding all others. Spin-polarized electrons fill the herent state by definition, and is given by
lowest Landau levelat the filling factar=1. Their configuration is
represented by a von Neumann lattice with the lattice point identi- |B>EeBbT—B*b|0>: e—\ﬁ\2/2eBbT|0>' (3.3
fied with the center of the cyclotron motion. Lattice points in the
nearest neighborhood of the poinare designated by open circles Where |0) is the angular-momentum zero state obeying
numbered by 1. Lattice points in the second nearest neighborhoda|0) =0. The wave functionpz(x) =(x|0) is calculated as
are designated by double circles numbered by 2. A square Iédice
and a triangular latticéb) are examples of von Neumann lattices.

D

N

1 i(YBret xﬁ.m>>

1
o= el | e )
3.4

where B=BretiBim- It describes an electron localized

around the poingz= B/+/2.

with i fixed arbitrarily; the sum runs over all sites fdy; The_coherent state has the minimum uncertainty subject to

£0. It is clear that the loss of the exchange energyis the Helsenperg uncertainty relation as;ouated with the non-
X commutativity (1.1) between the coordinates and Y. The

when one electron is removed from filled Landau sites. This tate|8) corresponds to the classical state describing a cy-
is equal to the energy necessary to flip one spin in the syste B resp ) 9 y
clotron motion around the point

(2.9. At v=2 we obtain(Hy),= —exNg=—32&xN since

J

S(i)=0 andn(i)=2 in Eq.(2.9. X:\/EIBIBRei y:_\/leﬂlm’ (3.5
as follows from Eqgs(3.1) and (3.2). BecauseB is an arbi-
I1l. VON NEUMANN LATTICE trary complex number, an electron may be localized around

. . : any point.
Because the QH system is robust against density fluctua- \ye consider the QH state at=1. The system is filled up

tlonts, tt)hf. dlrfelct tCOtL.Jlomb teri2.59 is L;re\l,svan_t ﬁst far asl with electrons each of which occupies an areal 2. It is
perturbalive fluctuations are concered. We wish 0 analyzg, o, nape to put electrons on a lattice with the unit cell area
the exchange interactiof2.9). As we have stated, the ex- 2 ) . .

27lg. Such a lattice is nothing but a von Neumann

change integral2.6b is convergent. Recall that we have lattice20-24 The states on a von Neumann lattice form a
expanded the electron field in terms of one-body wave func'minim.um complete s&t22in the lowest Landau level. Thus
tions ¢;(x) as in Eq.(2.3). The indexi may represent the P ) '

angular momentum in the symmetric gauge or the linear mo? € Mmay gxpand the electrqn field in terms Of. COhEFe”t states
(x) as in Eq.(2.3), wherei runs over all lattice points.

mentum in the Landau gauge. When we evaluate the exfi W i lattice f impliCiEFi ]
change integral either in the symmetric or Landau gaugeﬁ_, ve consider a square fa _|ce or simplict Fig. 1a)]
we find a large contribution from a spin pdir,j) even if attice points are given b= \m(m-+in) or
they are not in the nearest neighborhood of each other. Fur- _ _

thermore, it is not clear at all how the rotational and transla- Xm=\2mlem,  Yn=—y2mlsn, 3.6
tional symmetries are recovered in these gauges when ths that the unit cell area iSTﬂé, States are given by
continuum limit is taken: see Ref. 17, for instance.

It is most convenient for us to use a set of one-body wave |Xn,,Y,)=exd — w(m?+n?)Jexd Vm(m+in)b']|0).
functions ¢;(x) in Eqg. (2.3 so that the index runs over a (3.7
lattice such as a square lattice or a triangular lattiig. 1)
with the lattice point being the center of the cyclotron mo-
tion. We can construct such a lattice with the use of the -
coherent-state representation. (X » Y[ Xin ,Yn>=ex;{ — 5 L(m- m’)2+(n— n’)z]) .

We adopt the symmetric gauge, wheke= 3By and Ay 3.8
=—1Bx. The angular momentum is given hy=%b'b in 3.8
the lowest Landau level with The wave function3.4) reads

They are not orthogonal,
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1 1 2 We determine the parametedsand ex as follows. The
Emn(X)={(X|Xm,Yn) = —Zexp( —|z= —Bmn ) effective Hamiltonian(4.3) was first proposed to study skyr-
V2mlg \/2 mion excitations, where the spin stiffnes$was identified®
with
7
X ex (ym+xn) |, (3.9 2
p( V2lg __1 e
J= ooz dmely (4.9
which describes an electron localized around the lattice point 16v2ar B
(xy)=(Xm,Yn). The formula has been verified by evaluating explicitly the
energy of a spin textur®: ! We next estimate the parameter
IV. CONTINUUM LIMIT ey, by substituting the skyrmion configuration
In the von Neumann-lattice formulation it is straightfor- X « 1r2- 42
ward to take the field-theoretical limit of the exchange en- S=——, S=- _y’ S,== (4.5
ergy (2.9), by letting the lattice spacing vanish just as in a r2+ k2 r2+k? 2124 42

lattice model for ferromagnets. The resulting Hamiltonian, _ ) o
describes correctly physical phenomena whose typical size {8t0 the nonlinear sigma modg#k.3). One skyrmion in-

much larger than the spaciray creases the exchange enérby
We first analyze the nearest-neighbor terms, for which we B
setJ;;=J;. Let the lattice points be specified by lattice vec- (Hx)siy=47, (4.6

torsa® with =,a*=0. We expand the spin product as which is independent of the skyrmion sizein Eg. (4.5). In

1 its small-size limit ¢—0) the skyrmion is reduced to a
> S-S=5 > > S(x) - S(x+a%) hole?® The resultant system is the QH system from which
(.5 25 @ one electron has been removed. It corresponds to the loss of

1 the exchange energy in ferromagnets when one electron is
S(x)%— Saafd,S(x) - 9;(x) |, removed. Hencegy=4J.
27 Consequently, the effective Hamiltonian is given by Eq.
(4.1) (4.3), which is appropriate to analyze phenomena whose
scale is larger than the magnetic lengigh The ground-state
where a partial integration was made. The exchange Hamikexchange energy is given by
tonian (2.9 yields

1
=322

(Hy)g= —2mIN, @.7)
=3[ S afar

> 3:S(X) ;S(X) (4.2 together with the spin stiffnest.4). The effective Hamil-
X tonian (4.3) describes the spin wave in the QH ferromagnet
as the lowest order term in the derivative expansion. Thét»=1. The spin wave is a Goldstone mode associated with
ground-state energy is given by Eq2.10 with e, the global @3) symmetry spontaneously broken. Due to the
=2J,5,. We next analyze the second nearest-neighbo£eeman effect the Goldstone mode acquires a gap and the
terms with the lattice vectors?, for which we set);=J,. ~ coherent length is made finite, see E8.293.
We obtain the same formula as Ed.2) with the replace-
ment of a® by bP. Any lattice points can be treated in the V. BILAYER QUANTUM HALL FERROMAGNETS
same way.

We ex)pl)licitly consider a square lattid€ig. 1(a)] as a We generalize arguments to analyze electrons in the_ low-
simplest von Neumann lattice, Whe@izlaf*af“=2a25ij est Landau level in BLQH systems. The @Y pseudospin

202 structure is introduced by assigning (gown) pseudospin to
?gﬁli)é;rasigfrgaxrhydeer;ce, Eq.(4.2 amounts to the () the front(back layer. One Landau site contains four electron
states in the lowest Landau level, which are distinguished by
the SU4) isospin indexo=f1,f|,bT,b|. For instanceo
H)e(“: ZJJ d?xd;S(x) - 9;S(X), 4.3 =f1 implies that the electron is in the front layer and its spin
is up. The group SU}) is generated by the Hermitian, trace-
whereJ=J, andhy=8J; in the ground-state energ.10  l€ss, 4X4 matrices. There are ¢4 1) independent matrices.
for the nearest-neighbor terms. It is easy to see dhaf, ~ We take a standard badish,, a=1,2, .. .,15, normalized
+2J,+4d3+ - andex=8J,+8J,+8J5+--- by taking @S Trahp) =26,,. They are the generalization of the Pauli
into account all lattice points; the series would converge rapmatrices. . . . o
idly. When we adopt another lattice such as the triangular We decompose the microscopic Coulomb interaction into
lattice[Fig. 1(b)] and take the continuum limit, we reproduce tWo terms
the same effective Hamiltoniar4.3) together with the L
ground-state energ§2.10 but with different definitions ofl +_~| 242 _
andey in terms of the exchange integrals . HC_ZJ dXAEYV (x=y)p(X)p(y), (5.13
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1 o o T()-T(j) takes the maximum value. It occurs fdi(i)
HC:EJ dxdYV_(x=y)Ap(x)Ap(y), (51D —7(j), whereT(i)- T(j)=3/8 atv=1.
It is convenient to decompose the exchange t€5r8) in
whereH depends on the total densijiyx), andHc on the  terms of various S(2) components
density differencel p(x) between the front and back layers

Ap(x)=p' () +p™ ()~ p* ()~ p(x). (5.2 Hx==42, Jj[S'0)-S()+ ) S1)]y
The Coulomb ternH( is invariant under the SW4) transfor-
mation. =42 J5IPI()-PI()+PHI)-PU()) Iy
The electron field)”(x) is expanded as in Eq2.3), ({.5)
N(I) . . ~ . 3.
P ()= c (i) ei(X), (5.3 _4%> JLH) -1 +T) - T()) Ty
i=1
4

wherec,(i) is the annihilation operator of the electron with B + Ol
isospino at sitei. Substituting the expansiai®.3) into the 2(% Ji ( (,Zl n(in (J)>’ (5.9

Coulomb term(5.1), we extract the direct and exchange Cou-

lomb terms. Because the QH system is robust against densighere[ S'(i) - S'(j) Ixy=Si(i) Si(j) + Si(i) S|(j). etc., and
fluctuations, the direct Coulomb term arising from the

SU(4)-invariant term(5.19 is irrelevant as far as perturba- Sf_(CT of )E Csy Sb—(cT of )E b1
tive fluctuations are concerned. The direct term from the CE ) cry )’ a™ \*bl bl 5 Cp, /)’
SU(4)-noninvariant term5.1b) is

Ne T_(at T T2 CfT) L+ .\ TalChl
. . P,=(cs;,C )—( . Pl=(cl el )= ,
"icap:“v'capizl P(1)P(i), (5.4 a fr->b17 2 Cpy a fl b/ 5 Co|

whereP,=P)+ P, at each site and + 4 TalCf1) < t 4. Ta[Cfy
la=(Cf;,Cp) 5 o 1a=(Ct ,Cpp)s .
2\c el e
s g\ (1€ 8{1—erf(d/\2lg)}) (5.5
B The exchange energy due to the (8)dnoninvariant term

with the error function erf). Here,P'(i) is the SU2) pseu-  (5.1b is also evaluated. Combining them we obtain
dospin at site made of the two component spinas(,Cp;)
as in Eq.(2.7). We call the SW4)-noninvariant Coulomb
interaction(5.1b) the capacitance term sineg,P,(i)P(i)
describes the capacitance energy per one Landau site.

We proceed to study the exchange Coulomb interaction.
For this purpose we define the 8isospin at each siteby

Hx= =42 3[SD)- (1) +S(0)- S (D)

—4021_> ISP PI(j)+ P - PH(j) Iy

o —4 IR G)+T) T Ty
A Cfl (1)
Ta=(c, ¢l el el )= : (5.6
2 CbT 4 - -
o, —2% Jij(UEl n"(u)n“(;)), (5.11)

Substituting the expansio(b.3) into Eqg. (5.18, and using

d_o3t_73.
the algebraic relation whereJj; =2J;; — Jj; .

The exchange Hamiltonia¢b.11) is valid at any integer
1 filling factor with common exchange integralg andJﬂ Lt
2 cf,(i)cl(j)cr(i)c(,(j)z—2T(i)~T(j)— Zn(i)n(j), is an operator which may act on states possessing various
a7 isospins. We may restrict the Hilbert space appropriately at a
(5.7 specific filling factor. We examine two special limits to see
we obtain the S#)-invariant exchange energy as that it is reduced to the well-established resultsvatl.
First, we apply a large bias voltage and move all electrons to
+ Y R the front layer. The resulting system is dynamically equiva-
HX:_4<%‘4> Jj| TO-T(H+gnn()]. (58  jent to the monolayer system with spin. Indeed, by using
S,=(n'-n"/2 andn=n'+n!, it is easy to see that Eq.
The exchange integral; is defined by Eq(2.6b with the  (5.11) is reduced to the exchange interacti@®) describing
use of the Coulomb potentidf, (x—y). The Hamiltonian the monolayer QH ferromagnet. Second, we assume a large
(5.8 takes the minimum value when the productZeeman effect so that all spins are forced to be polarized,
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where the system describes the spin-frozen bilayer systeriamiltonian is not invariant under most of them. The sym-
We now useP,=(n"—nP)/2 andn=nf+n® to rewrite Eq. metry of the direct interactiohip is a direct product of two

(5.11 as U(1) symmetries U(1)®U'(1),
L . (%) , $'(%)
Hy=—4>, {J;iP,(i)P,(j)+IL[Py(i)Py(j) _ela)
X <i,j){ ijrz ) IJ[ X x( (/IbT(X) e l,bbT(X) y
P =S Jndini pitoo) (0
+ Py(l)Py(J)]} <|El> ‘]Ijn(l)n(J)' (5-12) ( bl *)e|ﬁ(x) by . (6.4)
. . o _ . P (X) P+ (X)
By tqkmg thg continuum limit as in Sec. 1V, the effective The exchange interactiodyx breaks this into a single ()
Hamiltonian is found to be
symmetry
Heff=2gd f A2X[ 3Py (X) - 3Py (X) + i Py(X) - 3Py (X)] P (x)— e My(x). (6.5
This is the exact local symmetry of the total Hamiltonian. It
2y . o should be emphasized, however, that there is no gapless
+2Jf X9 PAX) - 9iPA(X), 613 mode because there is no propagating mode associated with

Indeed, the kinetic term of the would-be phase field
7T(x) b (), is absent in the Hamiltonian.
It is important to recogniZé that the gauge symmetry

where the pseudospin field obeys the normalization conditioH:
P(x)2=1/4 atv=1: the stiffness) is given by Eq.(4.4 and ¥

d2
1+
B

1 d%q 12 (6.5 characterizes the genuine BLQH systeffSee Eq.
Jd=§p0|éf EV(q)e—mqu2 exp{ — qu} (5.19 (8.19 w_hy we call it the gauge symmetiyTo show this, let
us consider a system where the two layers are separated suf-
or ficiently so that there are no interlayer exchange interaction
(Jﬂ =0) nor the tunneling interactioA(gas=0). Then, the
Jd 2d 427212 total Hamiltonian is invariant under two local transforma-
3= ;EJF e e[ 1—erf(d/\2lp)]. tions Uf(1) andUP(1), which act on electrons on the two
(5.15 layers independently,
It agrees with the effective Hamiltonian obtained from the P'1(x) a(x) o' (x)
Coulomb energy of the pseudospin texttfté! where J W (%) —€ W)
_ d_ . . .
=pp andJ®=pg in their notation.
Y71 (%) Y1 (x)
PP x) PPl x) )

VI. U(1) GAUGE SYMMETRIES (6.9

_>ei,8(><)(

The density imbalancero=2(P,(i)) between the two We may also consider a case without the interlayer exchange
layers is controlled by applying a bias voltage. It affects the y d . . Y hang
; : ; interaction (;;=0) but with the tunneling interaction

system via the interaction term i . .
(Agps#0). Then, the symmetr§6.6) is broken into the sym-

metry (6.5. The number of (1) gauge symmetries distin-

Hpjas= =€ Vhias>s Pa(i). (6.1 guish various bilayer systems. We come back to this obser-
' vation to examine the dynamical degrees of freedom in Sec.
The tunneling interaction is VIII.
Hr= _ASASEi P,(i), (6.2 VII. GROUND-STATE ENERGIES

We evaluate the ground-state energy. Let us consider the
whereAg,s is the tunneling gap between the symmetric andcasev= 1. Unless(P?*(i))= +1/2 electrons are not localized
antisymmetric states. The total Hamiltonibh, is the sum in one of the two layers but rather expand over the two
of the exchange terr(b.11) and layers. The ground state is the up-spin bonding state, which
is reduced to the up-spin symmetric state in the balanced

N . . . . .
) ) ) i configuration with(P%(i))=0. When(P?*(i)) = 0/2, the ex-
HD:iZl [—AzS,(1)+ caP2(1)P2(i) ~ AsasPx(i) change Coulomb energy reads ’
e VbadaD)] 63 (Hahyor=— 3 [(1+ 093+ (1- 0B
It consists of the Zeeman term, the capacitance term, the {0
tunneling term and the bias term. _ —2#(J++U§J*)N¢ 7.1

Since one electron has four components, we may perform
local U(4) transformations to the electron field. However, thewhere 2==J+J9. The ground-state energy is
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(Hoer Lo 0L, 1 (Hhvoa 1 (5345 78
N = E( z SAs) Z‘Togcap E(Toe bias Ng = E( z sas) — 7( ) (7.9
—27(J"+0337). (7.2 in the balanced configuration. The state is stable also in un-
balanced configuration.
In particular,(H),— 1= — 3(Az+AgagdNg— 273 "Ny, in the At v=4 all the Landau sites are filled up. The ground
balanced configurationo(=0). state is pseudospin-singlet and spin-singlet. The ground state

We next consider the case=2. Since two electrons exist s
in one Landau site, we make the composition (pseu-
do)spins3 ® 3 =04 1. We have two types of states within the |g),—4=|f1,f!,bT,bl) (7.9
lowest Landau level(a) three pseudospin-singlet and spin-
triplet stategthe spin sectgrand(b) three pseudospin-triplet
and spin-singlet statgghe ppin sector _

The spin sector consists off!,b'),(1//2)(/f!,bl) (H)y=s=—8mINg . (7.19
+|f1,0"1),|f!,bl). They are the eigenstates of the total The state is stable only in the balanced configuration.
Hamiltonian within the sector. The ground state is given by In the SU4)-invariant limit, whered—0 andJ%—J, the

and its energy is

|f1,b"), and the ground-state energy is exchange energy is reduced to a unified formgky)
_ =—-2wJNatv=1,2,3,4. In the S{¥)-noninvariant case we
(HYSP = —(Az+47I)Ng . (7.3  note the following intriguing propertieA) In the “layer

) i i i basis,” where we take four independent one-body states
The state is stable only in the balan%e(? conflguratlTon.L 11),/f1),|b7), and|b|), the exchange interaction operates
The ppin sector consists off',f ),(1/\/5)(|f_,b ) only between the same isospin states, i.e.,
—|f+,b")), |b',bl). Within the sector the total Hamiltonian

reads (Hxy=—2mIN (7.11
€capt €Vhias —Asas/ 2 0 betvv'een a pair off 1)’s, a pair Qf|f1)'s, a pair of|b7)’s and
opin \/— 0 \/— a pair of|b| )’s: All others vanish.(B) In the “SAS” basis,
HPPP=Ng | —Asas/\2 ~Asas/V2 where we take four independent one-body states
0 —Asas/ V2 €cap— € Vhias |S1).IS1),|AT), and|A]), we naively expect that the ex-

(7.4 change interaction operates only between the same isospin

_ states as before, i.e.,
apart from a constant exchange energy. The eigenvalue equa-

tion is easily solved in the balanced configuration with the (Hy)=—m(J+JI9)N (7.12
zero bias voltage\(,.<=0). The ground state is given by
between a pair ofST)’s, a pair of|S|)’s, a pair of|AT)’s,
|g>g§“2: — cos&lST,Sl>+ sin 9|AT,Al>, (7.5 and a pair ofA| )'s: Actually there appears also an exchange

interaction between different isospin states, i.e.,
where tard=eqay/ (28 sast VAASgast 65, Here |S|,S!)
and|A',Al) are the symmetric and antisymmetric states. The (Hx)=—m(3J—J)N (7.13

ground state is no longer a symmetric state uniggs=0 or )
d=0. A certain amount of the antisymmetric state is necespetweemST) and |AT), and betweer|S|) and |Al): Al

sarily mixed due to the capacitance effect. The ground—stat%tcs:isa:?ﬁﬁ;' We recover the naive expectation in thetiU

energy 1s We explain why the exchange terdfl does not appear in
(H ppin 4 the layer basis but does in the SAS basis. It arises for in-
Nv:2 _ E(Scap_ m&_zﬂ.(‘]_{_‘]dcos’-zg) stance from the ter®'(i)-P'(j) in Eq. (5.11). We find
o
(7.6

. . 1
(P I (1P =003,

in the balanced configuration. The state is stable also in un-
balanced configurations.

The (pseudaspin composition atv=3 reads;®:® 31 - B Lo _ 1
=1ola?, where only the doublet is allowed within the (bT[PI()[bT)=(b|P*()|bl)=—] 0,05, (7.14
lowest Landau level. The ground state is a pseudospin dou-
blet and spin doublet. It is essentially the same as the bilayakhile
state atv=1. The ground state is 1

1 <STIPT(i)IST>=<Sl|PL(i)ISl>=(5,0,0),

—a=—=(|f1,f1,bY+]fT,bt,b"Y), 7.

9)0-3 ﬁ(l )+ ) (7.7)

1
(ATIPT(i)IAT):<Al|Pl(i)|Al>=—(5,0,0)- (7.19

and its energy is

075311-7



Z. F. EZAWA AND K. HASEBE PHYSICAL REVIEW B65 075311

Because only th& andy components contributes to the ex- Na
change interactiof5.11), there is no contribution in the layer Ta(x)= nT(X)7 n(x). (8.7)
basis but there is in the SAS basis.
Though there are 15 isospin components, only 6 of them are
VIII. SU (4) SOFT WAVES independent. o
Let us first analyze the exchange Hamiltonian in the

We investigate the S4) soft waves atv=1, which are  SU(4)-invariant limit, where the exchange interacti¢f8)
perturbative excitations supported by the exchange interagdelds a nonlinear sigma model
tion. To identify the dynamical degree of freedom we use the

composite boson (CB) theory of quantum Hall off N o ) 5
ferromagnet$?® by attaching flux quanta to electroffs.>° Hyx'=2J azl f dx[aTa(x)]° 8.9
The CB field ¢?(x) is defined by making a singular phase
transformation to the electron fieltl”(x), The SU4) isospin field obeys the normalization condition
T(x)?=3/8 atv=1.
d7(x)=e 18Oy (x), (8.1 Since the independent fields are (B@° fieldsn“(x), we

_ rewrite the exchange Hamiltonid8.8) in terms of them. Let
where the phase fiel®(x) attaches one flux quantum to (s define

each electron via the relation;;d;d;®(x) = ¢pp(x). We
then introduce the normalized CB field(x) by

$7(X)=p(X)n(x), 8.2

so that theN-component fielch?(x) obeys the constraint

Na
=2 T80 5. (8.9
We then have

1
TP (x)= — m[ 5P —NnfT(x)n%(x)] (8.10
nf(x)-n(x)=>, n“f(x)n7(x)=1. (8.9
7 with N=4 for the SU4) isospin field. Using this, it is
It follows that ¢(x) = \p(x). Because the QH system is ro- Straightforward to derivé from Eq. (8.8) that
bust against density fluctuations, as far as perturbative fluc-

tuations are concerned, we may p€k) =pg Or HE= 23+f dzx{(ﬁjnT-&jn)—(nT-ajn)(ajnT- n}.
$7(x)=poh“(x), (8.4 (8.11)

This Hamiltonian has the (1) gauge symmetr{8.5). To see

wherepo=N/S is the average electron density. this more explicitly, we rewrite it a&32

We count the number of independent fields. The fielx)
consists of four complex fields, but one real field is elimi-
nated by the constrain®.3). Furthermore, the (1) phase H>e<ﬁ=2\]+f d?x(a;n"+iK;n")- (4;n—iK;n), (8.12
field is not dynamical due to the gauge symmeyb), or

with
n(x)—e' *®n(x). (8.
) ( 9 K,(x)=—in"(x)d,n(x). (8.13
See also Eq(8.12. This is the only gauge symmetry in the I . .
BLQH system. Hence, it contains only three independen{rhi.Ham'lton'an(s'lz) is invariant under the gauge tranfor-
complex fields. Such a field is the &Reld. mation
A comment is in order. But for the tunneling interaction N7(x)— el ?®no(x K K 49 al(x 8.1
and the interlayer exchange interaction, the symmetry group (x) 00, K=Kyt dual). 8.19
is given by Eq.(6.6), or Here, the fieldk , is not a dynamical field? since it is an
auxiliary field defined by Eq(8.13).
n'1(x) ~Inf(x) We study small fluctuations of the $4) soft waves in the
nf(x) —ele® n'l(x))’ balanced configuration with no bias voltagé,s—=0). The

ground state is an up-spin symmetric statevatl. It is

BT (x) BT (x) convenient to use the SAS basis rather than the layer basis.

(X X) (X The ground state is given by
— . (8.6
nP!(x) nP!(x)
(n®1,n® A nA)=(1,0,0,0. (8.19
Because there exist two(ll) gauge symmetries, we have a 3. ) )
set of twoC P fields rather than oné P2 field. We expgnd theCP* field up to the first order of fluctuation
We conclude that the dynamical field is tod3 field in  fields (Fig. 2),

the BLQH system due to the exchange interaction and the
tunneling interaction. See also Sec. IX. The isospin field

and theCP? field n are related by where

(nSTinSl7nAT!nAl)2(l=§l7§21§3)! (816)
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@ Agas > 4z (0) Agas< 47 Asaspo

v=4 =X A* v=4 o1 A¢ Hr= 2 (05+ 95+ 05+ 95). (8.29
3 3

= A =3 ———— N . . .

v=3 A Agas 4 v=3 A Az B¢ Taking into account the Sd)-noninvariant exchange inter-
[P g4 action as well, we find that the effective Hamiltonian is de-
v=2 oA Azi B¢ v=2 h Ao t Ad composed into three independent modés Hpint+ Hppin
Vo el Bd Vo1 i B4  +Hpin, where
FIG. 2. The lowest Landau level contains four energy levels J* 5 o Azpo 5,
corresponding to the two layers and the two spin states. They are HspinZT{(‘akUl) + ()} + (o1+97),
representeda) for Agas™>A, and(b) for Agas<A,. The lowest- (8.26
energy level consists of up-spin bonding states, and is filled at '
=1. Small fluctuations are Goldstone modgs{,, and 3. d
Hopnm o (oh2) 2+ o ()24 S0 2
1 ppin 2 k2 2 kvV2 4 2
i(X)=z[ai(X)+i;(x)]. 8.1
5(0=5L(X)+i9(x)] (8.1 oo
7 (o5+33), (8.27
They are canonical fields obeyiigee Eq.(8.4)]
T 1 and
[£i(X),Zj(Y)]=pgo ~6ij 6(X=Y). (8.18

It is manifest thatpyoj(x) denotes the number density ex- I 2 o (BzFAsadpo 5 o

_ oo : nsity Hipin="1(03) "+ (d¥3) 7} — ———— (03+ 93).
cited from the ground stateS[) to theith level designated 8.28

by Eg. (8.16. The field ¥;(x) is the conjugate phase vari-
able.

We expand the exchange interacti@l12 up to the sec-
ond order

3
H §”=2J+i§1 LT ()AL (%)

v 2
?21 {(dxai)?+ (9D %

(8.19

They describe three independent soft waves, which are
pseudo-Goldstone modes by acquiring gaps. Equations
(8.26) and (8.27) agree with the resuft$! derived previ-
ously for the spin wave and the pseudospin wewkich we

call the ppin wavg respectively. The group 3Y) is more
than SU(2R® SU(2).Equation(8.28 is the Hamiltonian ob-
tained newly for the Sy} component missed in the
SU(2)® SU(2) component, which we call the ipin mode. It
is notable that the exchange interactions for the spin and ipin
modes are solely determined by the (8invariant Cou-

This Hamiltonian describes three Goldstone modes assodiemb interaction(5.13. The SU4)-noninvariant Coulomb

ated with spontaneous symmetry breakdown of theg4$U
isospin symmetry.

Actually, the SUW4) symmetry is broken explicitly but
softly by various direct interactions. Important &) opera-
tors are

1 2 2 2 2 1
SZZ—Z(Jl+15‘l+a'3+1‘}3)+ > (8.20
1
PZ=§0'2, (8.21)
1 o 2 2,42, 1
PX=—Z(02+192+0'3+1‘}3)+§, (8.22

interaction contributes only to the interaction Hamiltonian
(8.27 of the ppin mode. This is because the noninvariant
term (5.1b involves only the density differencAp or the
ppin modeo,=2P, .

The coherence lengthgorrelation lengthsare not infi-
nite because the soft modes are gapful. They are

- [4m)*
spin— 'B A,

(8.2939
47 J*
Epn=ls\ T (8.29B
P Az+Asas

for the spin and ipin modes. The ground state of the ppin
mode (8.27) is a squeezed statd,where the coherence

up to the second order of fluctuation fields. Note that Eqléngths are different between the conjugate variabigand

(8.21) is an exact formula. Direct interaction terms read ¥,
4]
—_ €capfo 9 _ /
HC = 4 O'g, (823) gppln |B ASAS, (8303
AP0 2y 52 o4 92 N
2=— (oi+ O+ o5+ 97, (8.24 &Eppin=8 oont Dope (8.30b
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It is notable that, in IS very large whem\g,g is very small. 1
However, &5, is apuite small since 4 is quite large in ac- I = EVZ In; l?(2)|2. (9.5
tual samples.

It is important that the bias voltagé,;,scouples only with ~ With the aid of the Cauchy-Riemann equation tefz) in
the ppin wave. The ipin wave connects the symmetric stat&q. (9.3), this is showR® to be the time component of the
with the antisymmetric state and requires the tunneling gagopological curreri defined by
for its excitation, but it is insensible to the density difference
between the two layers. This is a direct consequence of the
formula(8.21). Furthermore, it is easy to check that the elec-
tromagnetic field couples only with the ppin mode because it ) o
does not affect the spin. Consequently, the pseudospin waVith Ed. (8.13. The topological charge is given by
is only the one that is responsible to the coherent tunneling in
the BLQH system. 'I_'he mode has been arguedead to the Qsiy= f dzxjgk SX). 9.7)
Josephson effect with charge

1
o0 = 53, K\ (), (9.6

It is conserved trivially,d,J4(x)=0.

IX. CP® SKYRMIONS Equation (9.3) is the generic formula for skyrmioré.
. . Equation (9.4) implies that the density modulatiofp(X
. P.rowded the Zeema” (_effect is small enough, charged exé?)(x)—p(o is) indEced around a skyrn):ion. It followg(fr)om
citations are skyrmions in monolayer QH ferromagrtets. Eq. (9.4) that
They are topological solitons in the(8 nonlinear sigma
model (4.3). It should be emphasized that the existence of
skyrmions is based on the topological reasoning. It is argued f d?x[ p(X)— pol= —f d2xJ2k))(x)= — Q= —1,
as follows. The dynamical field of the nonlinear sigma model 9.9
is the Q3) spin field S(x). Since it takes value in the two-
sphereS?, the topological stability is guaranteed based on theas implies that one skyrmion removes one electron.
theorem 7,(S?)=Z implying that the second homotopy The key of the topological stability is whether the skyr-
class ofS? is the set of integer&={0,+1,=2,...}. The  mion configuratior(9.1) can be brought into the ground-state
theorem is rephrased agz(cpl):z_ We now argue that configuration by a continuous deformation of the CB field.
skyrmions arise based on the theorem(CP3) =Z in the  First, the CPN™* field (9.3) with Qg,#0 cannot be de-
BLQH system with the S) coherence. formed continuously into the ground-state value based on the

We consider a generic excitation in WY QH ferromag-  topological theoremm,(CPN"1)=Z. Second, the density
nets atv=1. Here,N=2 in monolayer QH ferromagnets and p(X) cannot be deformed continuously into the ground-state
N=4 in BLQH ferromagnets. It can be prO\?e?(ff that any value po because in the midstream of this deformation the
excitation confined to the lowest Landau level is expressed ifield configuration escapes the lowest Landau level. Indeed,

terms of the CB field8.2) as we have shown that(x) should obey the soliton equation
(9.4) as far as it is confined within the lowest Landau level.
»7(x) = Jp(x)n?(x) = e M w(z), (9.1  Consequently, skyrmions are stable in QH systems because

m,(CPN"1)=Z and the QH system is robust against density
wherew(z) is an arbitrary analytic function, and(x) is an  fluctuations.

auxiliary field obeying The topological charg€9.7) is determined by the highest
power of w’(z). We find Qgy=n if w?(z)—a’z" with
V2A(x)=2m[p(X)— pol. (9.2  =,a’l?+0. The lightest skyrmion has the topological

o ) . chargeQg,=1. It is given by the choice ofb’(z)=a“z
The holomorphicity ofw?(z) in Eq. (9.1 is a consequence 1 po with a-b=0 in Eq. (9.3. The skyrmion field(9.3)

lowest Landau level. N1 . by two parametera and b with a-b=0, there areN(N
We solve Eq(9.1) for the CP™" " field —1) skyrmion states apart from the translational degree of
freedom. If the energy is solely determined by the nonlinear
w’(2) sigma model(4.3 or (8.9), all these states are degenerate
n7(x) = —————. (93 with the energy given by Eq4.6). When the skyrmion is
/2 |07(2)|2 required to approach a specific ground state asymptotically,
p the parametea is fixed, and hence there ake—1 degener-

ate skyrmion states. This is physically reasonable since there
Substituting Eqs(9.1) and (9.3 into Eq. (9.2 we find exists one ground state afd—1 excitation states in the
lowest Landau leve(Fig. 2).
1_, 0 Let us review skyrmions in monolayer QH ferromagnets
27 Y Inp(x)=p(X)+po=Jg(X), 94 (N=2). The skyrmion is required to approach the spin po-
larized ground stat&=(0,0,1/2) asymptotically, and there is
where no degeneracy sincdd—1=1. The skyrmion configuration
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(4.5 is uniquely given byw=(z,«) in terms of theCP* integer filling factor. A field-theoretical Hamiltonian is con-
field. It gives Eq.(4.5) via S®=inT7,n. structed from it based on the von Neumann—lattice formula-
We study skyrmions in BLQH systemdl&4). The skyr-  tion. We may use it to analyze phenomena whose scale is
mion is required to approach the ground st@d5 asymp- larger than the magnetic lengtg. We have analyzed care-
totically, and there are three degenerate states dihed  fully BLQH states atv=1. The dynamical field is th€ P®

=3. Typical three skyrmions are given by field because of the (1) gauge symmetry inherent in the
_ system. We have found that there are three soft waves and
@spin= (2,x,0,0), three skyrmions. They are excitations from the ground state

to three excitation level&-ig. 2) in the lowest Landau level.
Though there are three types of skyrmions, only the light-
(9.9 est skyrmions are excited thermally. They are spin skyrmions
when the Zeeman gap is small enough compared with the
which we call the spin skyrmion, the ppin skyrmion and theyynneling gap, while they are ppin skyrmions when the tun-
ipin skyrmion, respectively. They are essentially(8lskyr-  nejing gap is small enough compared with the Zeeman gap.
mions embedded in the $4) theory. It is interesting to apply the present results to BLQH sys-

The degeneracy of these three types of s_kyrmions is_ 'fems atr=2. In a forthcoming paper we would analyze the
solved by the Zeeman effect and the tunneling mteractlonpredic,[ed canted antiferromagnetic ph&sé* We would
Estimation of their excitation energies is straightforward also examine a prediction that one skyrmion is composed of

a_nd CO”?pared with experlmental_qéfai As is obvious in two skyrmions’ which seems to have some experimental
Fig. 2, it depends on a competition between the Zeemagupport§’4'35

effect and the tunneling interaction whether spin skyrmions
or ppin skyrmions are excited thermally.

@ppin=(2,0,4,0),

wipin: (Z,0,0,K) ’
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