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Interlayer exchange interactions, SU„4… soft waves, and skyrmions
in bilayer quantum Hall ferromagnets
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The exchange Coulomb interaction is the driving force for quantum coherence in quantum Hall systems. We
construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferro-
magnets, which is characterized by the SU~4! isospin structure. By taking a continuous limit, the Hamiltonian
gives rise to the SU~4! nonlinear sigma model in the von Neumann–lattice formulation. The ground-state
energy is evaluated at filling factorsn51,2,3,4. It is shown atn51 that there are three independent soft waves,
where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is
also shown atn51 that there are three independent skyrmion states apart from the translational degree of
freedom. They areCP3 skyrmions enjoying the spin-charge entanglement confined within the lowest Landau
level.
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I. INTRODUCTION

Quantum coherence is a new aspect of quantum H
~QH! systems. Electron spins are polarized spontaneo
due to the exchange Coulomb interaction rather than c
pulsively by the Zeeman effect. Skyrmions arise as cohe
excitations,1 which have been observed experimentally2–4 as
quasiparticles. Intriguingly, an interlayer coherence may
velop spontaneously between the two layers and lead
Josephson-like phenomena in bilayer QH~BLQH! systems.5

Recent experimental results6 on tunnelling current may wel
be interpreted as the dc-Josephson current7 though still
controversial.8 We expect even the SU~4! quantum coherence
due to the spin and layer degrees of freedom.9 The driving
force of quantum coherence is the Coulomb excha
interaction.10,11 The exchange Coulomb interaction has a
been argued to create a new phase, the ca
antiferromagnet,12–14 in the BLQH system at the filling fac
tor n52.

In this paper we analyze the exchange Coulomb inte
tion to explore the SU~4! coherence in BLQH ferromagnets
We are concerned about electrons confined to the low
Landau level, where the electron position is solely specifi
by the guiding center (X,Y) obeying

@X,Y#52 i l B
2 . ~1.1!

This brings in the noncommutative Ẁalgebra15 as the basic
symmetry of the QH system. It implies that the electron p
sition cannot be localized to a point within the lowest La
dau level, and hence the system cannot be described by
field theory. We construct an effective field theory to descr
physics whose scale is larger than the magnetic lengthl B

[A\/eB.
The effective Hamiltonian governing the SU~2! coherence

has been derived10,11by making a derivative expansion of th
Coulomb energy of spin or pseudospin textures atn51,
where the spin stiffnessJ is explicitly calculated as
0163-1829/2002/65~7!/075311~11!/$20.00 65 0753
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1

16A2p

e2

4p« l B
. ~1.2!

It is a straightforward but complicated task to generalize
SU~2! scheme to the SU~4! scheme, because the SU~4! ex-
tension of the Ẁ algebra is considerably complicated tha
the SU~2! extension.11

We overcome the problem by employing an alternat
formulation. Namely, we construct a Landau-site Ham
tonian by expanding the electron field operator in terms
the one-body wave functions of electrons confined to
lowest Landau level. Then, the exchange Coulomb inter
tion emerges just as in ferromagnets. An effective Ham
tonian is derived by taking a continuum limit in the vo
Neumann–lattice formulation, where we substitute the s
stiffness~1.2! for the exchange integral. This is a consiste
procedure in the context of the SU~2! coherence. We gener
alize this procedure to study the SU~4! coherence. In the
SU~4!-invariant limit the effective Hamiltonian is given b
the SU~4! nonlinear sigma model

HX
eff52J(

a51

15 E d2x@]kTa~x!#2, ~1.3!

where Ta(x) is the isospin field normalized as(aTaTa
53/8 atn51. The present approach allows us to analyze Q
states at any filling factor. For the sake of simplicity, w
discuss only integer QH states, though fractional QH sta
are treated similarly in the framework of the composite f
mion theory.16

It is our main purpose to make a thorough investigation
soft waves and skyrmion excitations supported by the
change Hamiltonian, though some of them have been kno
previously.9,17 We examine carefully what are the dynamic
fields in the BLQH system. There are three degenerate
waves in the SU~4!-invariant limit, among which only one
soft wave is responsible for the coherent tunneling of el
trons between the two layers. The soft modes are Golds
modes associated with spontaneous breakdown of the S~4!
©2002 The American Physical Society11-1
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isospin symmetry. Actually, the degeneracy is resolved
the Zeeman effect and the tunneling interaction. Namely,
SU~4! symmetry is broken explicitly but softly by these in
teractions, and Goldstone modes turn into pseudo-Golds
modes with gaps. It is also shown atn51 that there are three
independent skyrmion states apart from the translational
gree of freedom. They areCP3 skyrmions enjoying the spin
charge entanglement confined within the lowest Land
level.

II. QUANTUM HALL FERROMAGNETS

To elucidate quantum coherence we start with monola
QH systems. Electrons make cyclotron motions under p
pendicular magnetic fieldB. The number of flux quanta pass
ing through the system isNF[BS/FD , whereS is the area
andFD52p\/e is the flux quantum. There areNF electron
states per one Landau level by neglecting the spin degre
freedom, each of which is associated with one flux quant
We call it the Landau site. One Landau site occupies the a
S/NF52p l B

2 , and may accommodate two electrons with
and down spins. The filling factor isn5N/NF with N the
total number of electrons. We are concerned about phy
taking place in the lowest Landau level.

The microscopic Hamiltonian is a sum of the Coulom
term and the Zeeman term

HC5
1

2E d2xd2yV~x2y!r~x!r~y!, ~2.1!

HZ52
1

2
DZE d2x@r↑~x!2r↓~x!#, ~2.2!

where V(x2y)5e2/4p«ux2yu is the Coulomb potential
rs(x)5cs†(x)cs(x) is the electron density with the spi
index s5↑,↓,r(x)5r↑(x)1r↓(x), and DZ5ug* mBBu is
the Zeeman gap withg* the magneticg-factor andmB the
Bohr magneton.

We expand the electron field operator in terms of the o
body wave functionsw i(x) in the lowest Landau level

cs~x![(
i 51

NF

cs~ i !w i~x!, ~2.3!

where cs( i ) is the annihilation operator of the up-spin (s
5↑) or down-spin (s5↓) electron at the Landau sitei,

$cs~ i !,ct
†~ j !%5d i j dst ,

$cs~ i !,ct~ j !%5$cs
†~ i !,ct

†~ j !%50. ~2.4!

As is well known,18,19 it is impossible to choose an orthono
mal complete set of one-body wave functionsw i(x) in the
expansion~2.3!. Consequently, the electron fieldcs(x) does
not satisfy a standard canonical anticommutation rela
$cs(x),cs†(y)%Þd(x2y), implying that an electron canno
be localized to a point within the lowest Landau level. Ne
ertheless, roughly speaking, an electron can be localized
07531
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a Landau site, which has the area 2p l B
2 . Thus, it is reason-

able that QH effects are described by the Landau-site Ha
tonian.

Substituting Eq.~2.3! into Eq. ~2.1!, we derive the direct
and exchange Coulomb energies

HD5
1

2 (
^ i , j &

Ui j n~ i !n~ j !, ~2.5a!

HX52(
^ i , j &

(
s,t

Ji j cs
†~ i !ct

†~ j !ct~ i !cs~ j !, ~2.5b!

where n( i )[(scs
†( i )cs( i ) is the electron number at sit

i :Ui j andJi j are the direct and exchange integrals

Ui j 5E d2xd2yw i* ~x!w j* ~y!V~x2y!w i~x!w j~y!,

~2.6a!

Ji j 5
1

2E d2xd2yw i* ~x!w j* ~y!V~x2y!w i~y!w j~x!.

~2.6b!

These integrals are convergent because the wave func
w i(x) is ‘‘localized’’ within one Landau sitei with area
2p l B

2 . The sum(^ i , j & runs over all spin pairs (iÞ j ) just
once.

The spinS( i ) is defined at each sitei by

Sa5~c↑
† ,c↓

†!
ta

2 S c↑
c↓

D ~2.7!

with ta the Pauli matrix. Using the algebraic relation

(
s,t

cs
†~ i !ct

†~ j !ct~ i !cs~ j !522S~ i !•S~ j !2
1

2
n~ i !n~ j !,

~2.8!

we rewrite the exchange term as

HX524(
^ i , j &

Ji j S~ i !•S~ j !2(
^ i , j &

Ji j n~ i !n~ j !. ~2.9!

The Hamiltonian has the global O~3! symmetry: It is invari-
ant when all spins are rotated simultaneously.

At n51, in the absence of the Zeeman effect~2.2!, the
spin direction is determined spontaneously to minimize
exchange energy. The productS( i )•S( j ) takes the maximum
value S( i )•S( j )51/4, when S( i )5S( j ). Hence, provided
Ji j .0, all spins are spontaneously polarized to minimize
exchange energy, where the direction of polarization is a
trary: S( i )5S for all points i but the direction ofS is arbi-
trary. Actually, the direction of the polarization is thez axis
due to the Zeeman effect however small it may be. The
change interaction contributes to the ground-state energ

^HX&g522(
^ i , j &

Ji j 52NF(
j

Ji j 52
1

2
«XN, ~2.10!

where
1-2
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«X[2(
j

Ji j ~2.11!

with i fixed arbitrarily; the sum runs over all sites forJi j
Þ0. It is clear that the loss of the exchange energy is«X
when one electron is removed from filled Landau sites. T
is equal to the energy necessary to flip one spin in the sys
~2.9!. At n52 we obtain^HX&g52«XNF52 1

2 «XN since
S( i )50 andn( i )52 in Eq. ~2.9!.

III. VON NEUMANN LATTICE

Because the QH system is robust against density fluc
tions, the direct Coulomb term~2.5a! is irrelevant as far as
perturbative fluctuations are concerned. We wish to ana
the exchange interaction~2.9!. As we have stated, the ex
change integral~2.6b! is convergent. Recall that we hav
expanded the electron field in terms of one-body wave fu
tions w i(x) as in Eq.~2.3!. The indexi may represent the
angular momentum in the symmetric gauge or the linear m
mentum in the Landau gauge. When we evaluate the
change integral either in the symmetric or Landau gaug
we find a large contribution from a spin pair^ i , j & even if
they are not in the nearest neighborhood of each other.
thermore, it is not clear at all how the rotational and trans
tional symmetries are recovered in these gauges when
continuum limit is taken: see Ref. 17, for instance.

It is most convenient for us to use a set of one-body w
functionsw i(x) in Eq. ~2.3! so that the indexi runs over a
lattice such as a square lattice or a triangular lattice~Fig. 1!
with the lattice point being the center of the cyclotron m
tion. We can construct such a lattice with the use of
coherent-state representation.

We adopt the symmetric gauge, whereAx5 1
2 By and Ay

52 1
2 Bx. The angular momentum is given byL5\b†b in

the lowest Landau level with

FIG. 1. An electron makes a cyclotron motion occupying
area 2p l B

2 and avoiding all others. Spin-polarized electrons fill t
lowest Landau levelat the filling factorn51. Their configuration is
represented by a von Neumann lattice with the lattice point ide
fied with the center of the cyclotron motion. Lattice points in t
nearest neighborhood of the pointx are designated by open circle
numbered by 1. Lattice points in the second nearest neighborh
are designated by double circles numbered by 2. A square lattic~a!
and a triangular lattice~b! are examples of von Neumann lattices
07531
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b[
1

A2l B

~X2 iY!5
1

A2
S z* 1

]

]zD ,

b†[
1

A2l B

~X1 iY!5
1

A2
S z2

]

]z* D , ~3.1!

where z5(x1 iy)/2l B . We introduce an eigenstate of th
angular-momentum lowering operatorb,

bub&5bub&. ~3.2!

Becauseb is an annihilation operator, the stateub& is a co-
herent state by definition, and is given by

ub&[ebb†2b* bu0&5e2ubu2/2ebb†
u0&, ~3.3!

where u0& is the angular-momentum zero state obeyi
bu0&50. The wave functionwb(x)5^xu0& is calculated as

wb~x!5
1

A2p l B
2

expS 2Uz2
1

A2
bU2

1
i ~ybRe1xb Im!

A2l B
D ,

~3.4!

where b5bRe1 ib Im . It describes an electron localize
around the pointz5b/A2.

The coherent state has the minimum uncertainty subjec
the Heisenberg uncertainty relation associated with the n
commutativity ~1.1! between the coordinatesX and Y. The
stateub& corresponds to the classical state describing a
clotron motion around the point

x5A2l BbRe, y52A2l Bb Im , ~3.5!

as follows from Eqs.~3.1! and ~3.2!. Becauseb is an arbi-
trary complex number, an electron may be localized arou
any point.

We consider the QH state atn51. The system is filled up
with electrons each of which occupies an area 2p l B

2 . It is
reasonable to put electrons on a lattice with the unit cell a
2p l B

2 . Such a lattice is nothing but a von Neuman
lattice.20–24 The states on a von Neumann lattice form
minimum complete set21,22 in the lowest Landau level. Thus
we may expand the electron field in terms of coherent sta
w i(x) as in Eq.~2.3!, wherei runs over all lattice points.

We consider a square lattice for simplicity@Fig. 1~a!#.
Lattice points are given bybmn5Ap(m1 in) or

Xm5A2p l Bm, Yn52A2p l Bn, ~3.6!

so that the unit cell area is 2p l B
2 . States are given by

uXm ,Yn&5exp@2p~m21n2!#exp@Ap~m1 in !b†#u0&.
~3.7!

They are not orthogonal,

^Xm8 ,Yn8uXm ,Yn&5expS 2
p

2
@~m2m8!21~n2n8!2# D .

~3.8!

The wave function~3.4! reads

i-

od
1-3
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wmn~x!5^xuXm ,Yn&5
1

A2p l B
2

expS 2Uz2
1

A2
bmnU2D

3expS iAp

A2l B

~ym1xn!D , ~3.9!

which describes an electron localized around the lattice p
(x,y)5(Xm ,Yn).

IV. CONTINUUM LIMIT

In the von Neumann–lattice formulation it is straightfo
ward to take the field-theoretical limit of the exchange e
ergy ~2.9!, by letting the lattice spacinga vanish just as in a
lattice model for ferromagnets. The resulting Hamiltoni
describes correctly physical phenomena whose typical siz
much larger than the spacinga.

We first analyze the nearest-neighbor terms, for which
setJi j [J1. Let the lattice points be specified by lattice ve
tors aa with (aaa50. We expand the spin product as

(
^ i , j &

Si•Sj5
1

2 (
x

(
a

S~x!•S~x1aa!

.
1

2 (
x

(
a

FS~x!22
1

2
ai

aaj
a] iS~x!•] jS~x!G ,

~4.1!

where a partial integration was made. The exchange Ha
tonian ~2.9! yields

HX
eff.J1S (

a
ai

aaj
aD(

x
] iS~x!•] iS~x! ~4.2!

as the lowest order term in the derivative expansion. T
ground-state energy is given by Eq.~2.10! with «X
52J1(a . We next analyze the second nearest-neigh
terms with the lattice vectorsbb, for which we setJi j [J2.
We obtain the same formula as Eq.~4.2! with the replace-
ment of ab by bb. Any lattice points can be treated in th
same way.

We explicitly consider a square lattice@Fig. 1~a!# as a
simplest von Neumann lattice, where(a51

4 ai
aaj

a52a2d i j

and (x5a22*d2x. Hence, Eq.~4.2! amounts to the O~3!
nonlinear sigma model

HX
eff52JE d2x] iS~x!•] iS~x!, ~4.3!

whereJ5J1 andhX58J1 in the ground-state energy~2.10!
for the nearest-neighbor terms. It is easy to see thatJ5J1
12J214J31••• and «X58J118J218J31••• by taking
into account all lattice points; the series would converge r
idly. When we adopt another lattice such as the triangu
lattice@Fig. 1~b!# and take the continuum limit, we reproduc
the same effective Hamiltonian~4.3! together with the
ground-state energy~2.10! but with different definitions ofJ
and«X in terms of the exchange integralsJi j .
07531
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We determine the parametersJ and «X as follows. The
effective Hamiltonian~4.3! was first proposed to study skyr
mion excitations,1 where the spin stiffnessJ was identified25

with

J5
1

16A2p

e2

4p« l B
. ~4.4!

The formula has been verified by evaluating explicitly t
energy of a spin texture.10,11We next estimate the paramet
«X , by substituting the skyrmion configuration

Sx5
kx

r 21k2
, Sy52

ky

r 21k2
, Sz5

1

2

r 22k2

r 21k2
~4.5!

into the nonlinear sigma model~4.3!. One skyrmion in-
creases the exchange energy1 by

^HX&sky54pJ, ~4.6!

which is independent of the skyrmion sizek in Eq. ~4.5!. In
its small-size limit (k→0) the skyrmion is reduced to
hole.26 The resultant system is the QH system from whi
one electron has been removed. It corresponds to the los
the exchange energy«X in ferromagnets when one electron
removed. Hence,«X54pJ.

Consequently, the effective Hamiltonian is given by E
~4.3!, which is appropriate to analyze phenomena who
scale is larger than the magnetic lengthl B . The ground-state
exchange energy is given by

^HX&g522pJN, ~4.7!

together with the spin stiffness~4.4!. The effective Hamil-
tonian ~4.3! describes the spin wave in the QH ferromagn
at n51. The spin wave is a Goldstone mode associated w
the global O~3! symmetry spontaneously broken. Due to t
Zeeman effect the Goldstone mode acquires a gap and
coherent length is made finite, see Eq.~8.29a!.

V. BILAYER QUANTUM HALL FERROMAGNETS

We generalize arguments to analyze electrons in the l
est Landau level in BLQH systems. The SU~2! pseudospin
structure is introduced by assigning up~down! pseudospin to
the front~back! layer. One Landau site contains four electr
states in the lowest Landau level, which are distinguished
the SU~4! isospin indexs5 f↑, f↓,b↑,b↓. For instance,s
5 f↑ implies that the electron is in the front layer and its sp
is up. The group SU~4! is generated by the Hermitian, trace
less, 434 matrices. There are (4221) independent matrices
We take a standard basis,27 la , a51,2, . . .,15, normalized
as Tr(lalb)52dab . They are the generalization of the Pau
matrices.

We decompose the microscopic Coulomb interaction i
two terms

HC
15

1

2E d2xd2yV1~x2y!r~x!r~y!, ~5.1a!
1-4
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HC
25

1

2E d2xd2yV2~x2y!Dr~x!Dr~y!, ~5.1b!

whereHC
1 depends on the total densityr(x), andHC

2 on the
density differenceDr(x) between the front and back layer

Dr~x!5r f↑~x!1r f↓~x!2rb↑~x!2rb↓~x!. ~5.2!

The Coulomb termHC
1 is invariant under the SU~4! transfor-

mation.
The electron fieldcs(x) is expanded as in Eq.~2.3!,

cs~x![(
i 51

NF

cs~ i !w i~x!, ~5.3!

wherecs( i ) is the annihilation operator of the electron wi
isospins at site i. Substituting the expansion~5.3! into the
Coulomb term~5.1!, we extract the direct and exchange Co
lomb terms. Because the QH system is robust against de
fluctuations, the direct Coulomb term arising from t
SU~4!-invariant term~5.1a! is irrelevant as far as perturba
tive fluctuations are concerned. The direct term from
SU~4!-noninvariant term~5.1b! is

Hcap5«cap(
i 51

NF

Pz~ i !Pz~ i !, ~5.4!

wherePz5Pz
↑1Pz

↓ at each site and

«cap5
e2

4p« l B
Ap

2
~12ed2/2l B

2
$12erf~d/A2l B!%! ~5.5!

with the error function erf(x). Here,P↑( i ) is the SU~2! pseu-
dospin at sitei made of the two component spinor (cf↑ ,cb↑)
as in Eq. ~2.7!. We call the SU~4!-noninvariant Coulomb
interaction~5.1b! the capacitance term since«capPz( i )Pz( i )
describes the capacitance energy per one Landau site.

We proceed to study the exchange Coulomb interact
For this purpose we define the SU~4! isospin at each sitei by

Ta5~cf↑
† ,cf↓

† ,cb↑
† ,cb↓

† !
la

2 S cf↑
cf↓
cb↑
cb↓

D . ~5.6!

Substituting the expansion~5.3! into Eq. ~5.1a!, and using
the algebraic relation

(
s,t

cs
†~ i !ct

†~ j !ct~ i !cs~ j !522T~ i !•T~ j !2
1

4
n~ i !n~ j !,

~5.7!

we obtain the SU~4!-invariant exchange energy as

HX
1524(

^ i , j &
Ji j

1S T~ i !•T~ j !1
1

8
n~ i !n~ j ! D . ~5.8!

The exchange integralJi j
1 is defined by Eq.~2.6b! with the

use of the Coulomb potentialV1(x2y). The Hamiltonian
~5.8! takes the minimum value when the produ
07531
-
ity

e

n.

T( i )•T( j ) takes the maximum value. It occurs forT( i )
5T( j ), whereT( i )•T( j )53/8 atn51.

It is convenient to decompose the exchange term~5.8! in
terms of various SU~2! components

HX
1524(

^ i , j &
Ji j

1@Sf~ i !•Sf~ j !1Sb~ i !•Sb~ j !#xy

24(
^ i , j &

Ji j
1@P↑~ i !•P↑~ j !1P↓~ i !•P↓~ j !#xy

24(
^ i , j &

Ji j
1@ I ~ i !•I ~ j !1 Ĩ ~ i !• Ĩ ~ j !#xy

22(
^ i , j &

Ji j
1S (

s51

4

ns~ i !ns~ j !D , ~5.9!

where@Sf( i )•Sf( j )#xy[Sx
f ( i )Sx

f ( j )1Sy
f ( i )Sy

f ( j ), etc., and

Sa
f 5~cf↑

† ,cf↓
† !

ta

2 S cf↑
cf↓

D , Sa
b5~cb↑

† ,cb↓
† !

ta

2 S cb↑
cb↓

D ,

Pa
↑5~cf↑

† ,cb↑
† !

ta

2 S cf↑
cb↑

D , Pa
↓5~cf↓

† ,cb↓
† !

ta

2 S cf↓
cb↓

D ,

I a5~cf↑
† ,cb↓

† !
ta

2 S cf↑
cb↓

D , Ĩ a5~cf↓
† ,cb↑

† !
ta

2 S cf↓
cb↑

D .

~5.10!

The exchange energy due to the SU~4!-noninvariant term
~5.1b! is also evaluated. Combining them we obtain

HX524(
^ i , j &

Ji j @Sf~ i !•Sf~ j !1Sb~ i !•Sb~ j !#xy

24(
^ i , j &

Ji j
d @P↑~ i !•P↑~ j !1P↓~ i !•P↓~ j !#xy

24(
^ i , j &

Ji j
d @ I ~ i !•I ~ j !1 Ĩ ~ i !• Ĩ ~ j !#xy

22(
^ i , j &

Ji j S (
s51

4

ns~ i !ns~ j !D , ~5.11!

whereJi j
d [2Ji j

12Ji j .
The exchange Hamiltonian~5.11! is valid at any integer

filling factor with common exchange integralsJi j andJi j
d . It

is an operator which may act on states possessing var
isospins. We may restrict the Hilbert space appropriately
specific filling factor. We examine two special limits to se
that it is reduced to the well-established results atn51.
First, we apply a large bias voltage and move all electron
the front layer. The resulting system is dynamically equiv
lent to the monolayer system with spin. Indeed, by us
Sz5(n↑2n↓)/2 and n5n↑1n↓, it is easy to see that Eq
~5.11! is reduced to the exchange interaction~2.9! describing
the monolayer QH ferromagnet. Second, we assume a l
Zeeman effect so that all spins are forced to be polariz
1-5
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where the system describes the spin-frozen bilayer sys
We now usePz5(nf2nb)/2 andn5nf1nb to rewrite Eq.
~5.11! as

HX524(
^ i , j &

$Ji j Pz~ i !Pz~ j !1Ji j
d @Px~ i !Px~ j !

1Py~ i !Py~ j !#%2(
^ i , j &

Ji j n~ i !n~ j !. ~5.12!

By taking the continuum limit as in Sec. IV, the effectiv
Hamiltonian is found to be

HX
eff52JdE d2x@] i Px~x!•] i Px~x!1] i Py~x!•] i Py~x!#

12JE d2x] i Pz~x!•] i Pz~x!, ~5.13!

where the pseudospin field obeys the normalization condi
P(x)251/4 atn51; the stiffnessJ is given by Eq.~4.4! and

Jd5
1

8
r0l B

4E d2q

2p
V~q!e2uqudq2 expF2

l B
2

2
q2G ~5.14!

or

Jd

J
52A2

p

d

l B
1S 11

d2

l B
2 D ed2/2l B

2
@12erf~d/A2l B!#.

~5.15!

It agrees with the effective Hamiltonian obtained from t
Coulomb energy of the pseudospin texture,10,11 where J
5rA andJd5rE in their notation.

VI. U „1… GAUGE SYMMETRIES

The density imbalances0[2^Pz( i )& between the two
layers is controlled by applying a bias voltage. It affects
system via the interaction term

Hbias52eVbias(
i

Pz~ i !. ~6.1!

The tunneling interaction is

HT52DSAS(
i

Px~ i !, ~6.2!

whereDSAS is the tunneling gap between the symmetric a
antisymmetric states. The total HamiltonianH tot is the sum
of the exchange term~5.11! and

HD5(
i 51

NF

@2DZSz~ i !1«capPz~ i !Pz~ i !2DSASPx~ i !

2eVbiasPz~ i !#. ~6.3!

It consists of the Zeeman term, the capacitance term,
tunneling term and the bias term.

Since one electron has four components, we may perf
local U~4! transformations to the electron field. However, t
07531
m.

n

e

d

e

m

Hamiltonian is not invariant under most of them. The sy
metry of the direct interactionHD is a direct product of two
U~1! symmetries U↑(1)^ U↓(1),

S c f↑~x!

cb↑~x!
D→eia(x)S c f↑~x!

cb↑~x!
D ,

S c f↓~x!

cb↓~x!
D→eib(x)S c f↓~x!

cb↓~x!
D . ~6.4!

The exchange interactionHX breaks this into a single U~1!
symmetry

cs~x!→eia(x)cs~x!. ~6.5!

This is the exact local symmetry of the total Hamiltonian.
should be emphasized, however, that there is no gap
mode because there is no propagating mode associated
it: Indeed, the kinetic term of the would-be phase fie
cs†(x)]kc

s(x), is absent in the Hamiltonian.
It is important to recognize17 that the gauge symmetr

~6.5! characterizes the genuine BLQH system.@See Eq.
~8.14! why we call it the gauge symmetry.# To show this, let
us consider a system where the two layers are separated
ficiently so that there are no interlayer exchange interac
(Ji j

d 50) nor the tunneling interaction (DSAS50). Then, the
total Hamiltonian is invariant under two local transform
tions U f(1) andUb(1), which act on electrons on the tw
layers independently,

S c f↑~x!

c f↓~x!
D→eia(x)S c f↑~x!

c f↓~x!
D ,

S cb↑~x!

cb↓~x!
D→eib(x)S cb↑~x!

cb↓~x!
D . ~6.6!

We may also consider a case without the interlayer excha
interaction (Ji j

d 50) but with the tunneling interaction
(DSASÞ0). Then, the symmetry~6.6! is broken into the sym-
metry ~6.5!. The number of U~1! gauge symmetries distin
guish various bilayer systems. We come back to this ob
vation to examine the dynamical degrees of freedom in S
VIII.

VII. GROUND-STATE ENERGIES

We evaluate the ground-state energy. Let us consider
casen51. Unlesŝ Pz( i )&561/2 electrons are not localize
in one of the two layers but rather expand over the t
layers. The ground state is the up-spin bonding state, wh
is reduced to the up-spin symmetric state in the balan
configuration witĥ Pz( i )&50. When^Pz( i )&5s0/2, the ex-
change Coulomb energy reads

^HX&n5152(
^ i , j &

@~11s0
2!Ji j 1~12s0

2!Ji j
d #

522p~J11s0
2J2!NF , ~7.1!

where 2J6[J6Jd. The ground-state energy is
1-6
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^H&n51

NF
52

1

2
~DZ1DSAS!1

1

4
s0

2«cap2
1

2
s0eVbias

22p~J11s0
2J2!. ~7.2!

In particular,^H&n5152 1
2 (DZ1DSAS)NF22pJ1NF in the

balanced configuration (s050).
We next consider the casen52. Since two electrons exis

in one Landau site, we make the composition of~pseu-
do!spins1

2 ^
1
2 50% 1. We have two types of states within th

lowest Landau level:~a! three pseudospin-singlet and spi
triplet states~the spin sector! and~b! three pseudospin-triple
and spin-singlet states~the ppin sector!.

The spin sector consists ofu f ↑,b↑&,(1/A2)(u f ↑,b↓&
1u f ↓,b↑&),u f ↓,b↓&. They are the eigenstates of the to
Hamiltonian within the sector. The ground state is given
u f ↑,b↑&, and the ground-state energy is

^H&n52
spin 52~DZ14pJ!NF . ~7.3!

The state is stable only in the balanced configuration.
The ppin sector consists ofu f ↑, f ↓&,(1/A2)(u f ↑,b↓&

2u f ↓,b↑&), ub↑,b↓&. Within the sector the total Hamiltonia
reads

Hppin5NFS «cap1eVbias 2DSAS/A2 0

2DSAS/A2 0 2DSAS/A2

0 2DSAS/A2 «cap2eVbias

D
~7.4!

apart from a constant exchange energy. The eigenvalue e
tion is easily solved in the balanced configuration with t
zero bias voltage (Vbias50). The ground state is given by

ug&n52
ppin 52cosuuS↑,S↓&1sinuuA↑,A↓&, ~7.5!

where tanu5«cap/(2DSAS1A4DDSAS
2 1«cap

2 ). Here, uS↑,S↓&
anduA↑,A↓& are the symmetric and antisymmetric states. T
ground state is no longer a symmetric state unless«cap50 or
d50. A certain amount of the antisymmetric state is nec
sarily mixed due to the capacitance effect. The ground-s
energy is

^H&n52
ppin

NF
5

1

2
~«cap2A4DSAS

2 1«cap
2 !22p~J1Jdcos22u!

~7.6!

in the balanced configuration. The state is stable also in
balanced configurations.

The ~pseudo!spin composition atn53 reads 1
2 ^

1
2 ^

1
2

5 1
2 %

1
2 %

3
2 , where only the doublet is allowed within th

lowest Landau level. The ground state is a pseudospin d
blet and spin doublet. It is essentially the same as the bila
state atn51. The ground state is

ug&n535
1

A2
~ u f ↑, f ↑,b↓&1u f ↑,b↓,b↑&), ~7.7!

and its energy is
07531
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^H&n53

NF
52

1

2
~DZ1DSAS!2p~5J1Jd! ~7.8!

in the balanced configuration. The state is stable also in
balanced configuration.

At n54 all the Landau sites are filled up. The groun
state is pseudospin-singlet and spin-singlet. The ground s
is

ug&n545u f ↑, f ↓,b↑,b↓& ~7.9!

and its energy is

^H&n54528pJNF . ~7.10!

The state is stable only in the balanced configuration.
In the SU~4!-invariant limit, whered→0 andJd→J, the

exchange energy is reduced to a unified formula^HX&
522pJN at n51,2,3,4. In the SU~4!-noninvariant case we
note the following intriguing properties.~A! In the ‘‘layer
basis,’’ where we take four independent one-body sta
u f↑&,u f↓&,ub↑&, and ub↓&, the exchange interaction operat
only between the same isospin states, i.e.,

^HX&522pJN ~7.11!

between a pair ofu f↑& ’s, a pair ofu f↓& ’s, a pair ofub↑& ’s and
a pair of ub↓& ’s: All others vanish.~B! In the ‘‘SAS’’ basis,
where we take four independent one-body sta
uS↑&,uS↓&,uA↑&, and uA↓&, we naively expect that the ex
change interaction operates only between the same iso
states as before, i.e.,

^HX&52p~J1Jd!N ~7.12!

between a pair ofuS↑& ’s, a pair of uS↓& ’s, a pair of uA↑& ’s,
and a pair ofuA↓& ’s: Actually there appears also an exchan
interaction between different isospin states, i.e.,

^HX&52p~J2Jd!N ~7.13!

betweenuS↑& and uA↑&, and betweenuS↓& and uA↓&: All
others vanish. We recover the naive expectation in the SU~4!
invariant limit.

We explain why the exchange termJd does not appear in
the layer basis but does in the SAS basis. It arises for
stance from the termP↑( i )•P↑( j ) in Eq. ~5.11!. We find

^ f↑uP↑~ i !u f↑&5^ f↓uP↓~ i !u f↓&5S 0,0,
1

2D ,

^b↑uP↑~ i !ub↑&5^b↓uP↓~ i !ub↓&52S 0,0,
1

2D , ~7.14!

while

^S↑uP↑~ i !uS↑&5^S↓uP↓~ i !uS↓&5S 1

2
,0,0D ,

^A↑uP↑~ i !uA↑&5^A↓uP↓~ i !uA↓&52S 1

2
,0,0D . ~7.15!
1-7
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Because only thex andy components contributes to the e
change interaction~5.11!, there is no contribution in the laye
basis but there is in the SAS basis.

VIII. SU „4… SOFT WAVES

We investigate the SU~4! soft waves atn51, which are
perturbative excitations supported by the exchange inte
tion. To identify the dynamical degree of freedom we use
composite boson ~CB! theory of quantum Hall
ferromagnets9,26 by attaching flux quanta to electrons.28–30

The CB fieldfs(x) is defined by making a singular phas
transformation to the electron fieldcs(x),

fs~x!5e2 ieQ(x)cs~x!, ~8.1!

where the phase fieldQ(x) attaches one flux quantum t
each electron via the relation« i j ] i] jQ(x)5fDr(x). We
then introduce the normalized CB fieldns(x) by

fs~x!5f~x!ns~x!, ~8.2!

so that theN-component fieldns(x) obeys the constraint

n†~x!•n~x!5(
s

ns†~x!ns~x!51. ~8.3!

It follows that f(x)5Ar(x). Because the QH system is ro
bust against density fluctuations, as far as perturbative fl
tuations are concerned, we may setr(x)5r0 or

fs~x!5Ar0ns~x!, ~8.4!

wherer05N/S is the average electron density.
We count the number of independent fields. The fieldn(x)

consists of four complex fields, but one real field is elim
nated by the constraint~8.3!. Furthermore, the U~1! phase
field is not dynamical due to the gauge symmetry~6.5!, or

ns~x!→eia(x)ns~x!. ~8.5!

See also Eq.~8.12!. This is the only gauge symmetry in th
BLQH system. Hence, it contains only three independ
complex fields. Such a field is the CP3 field.32

A comment is in order. But for the tunneling interactio
and the interlayer exchange interaction, the symmetry gr
is given by Eq.~6.6!, or

S nf↑~x!

nf↓~x!
D→eia(x)S nf↑~x!

nf↓~x!
D ,

S nb↑~x!

nb↓~x!
D→eib(x)S nb↑~x!

nb↓~x!
D . ~8.6!

Because there exist two U~1! gauge symmetries, we have
set of twoCP1 fields rather than oneCP3 field.

We conclude that the dynamical field is theCP3 field in
the BLQH system due to the exchange interaction and
tunneling interaction. See also Sec. IX. The isospin fieldT
and theCP3 field n are related by
07531
c-
e

c-

t

p

e

Ta~x!5n†~x!
la

2
n~x!. ~8.7!

Though there are 15 isospin components, only 6 of them
independent.

Let us first analyze the exchange Hamiltonian in t
SU~4!-invariant limit, where the exchange interaction~5.8!
yields a nonlinear sigma model

HX
eff52J1 (

a51

15 E d2x@]kTa~x!#2. ~8.8!

The SU~4! isospin field obeys the normalization conditio
T(x)253/8 atn51.

Since the independent fields are theCP3 fieldsns(x), we
rewrite the exchange Hamiltonian~8.8! in terms of them. Let
us define

T~x!5(
a

Ta~x!
la

2
. ~8.9!

We then have

T ab~x!52
1

2N
@dab2Nnb†~x!na~x!# ~8.10!

with N54 for the SU~4! isospin field. Using this, it is
straightforward to derive31 from Eq. ~8.8! that

HX
eff52J1E d2x$~] jn

†
•] jn!2~n†

•] jn!~] jn
†
•n!%.

~8.11!

This Hamiltonian has the U~1! gauge symmetry~8.5!. To see
this more explicitly, we rewrite it as31,32

HX
eff52J1E d2x~] jn

†1 iK jn
†!•~] jn2 iK jn!, ~8.12!

with

Km~x!52 in†~x!]mn~x!. ~8.13!

The Hamiltonian~8.12! is invariant under the gauge tranfo
mation

ns~x!→eia(x)ns~x!, Km→Km1]ma~x!. ~8.14!

Here, the fieldKm is not a dynamical field,32 since it is an
auxiliary field defined by Eq.~8.13!.

We study small fluctuations of the SU~4! soft waves in the
balanced configuration with no bias voltage (Vbias50). The
ground state is an up-spin symmetric state atn51. It is
convenient to use the SAS basis rather than the layer b
The ground state is given by

~nS↑,nS↓,nA↑,nA↓!5~1,0,0,0!. ~8.15!

We expand theCP3 field up to the first order of fluctuation
fields ~Fig. 2!,

~nS↑,nS↓,nA↑,nA↓!.~1,z1 ,z2 ,z3!, ~8.16!

where
1-8



x-

i-

o

t

q

-
e-

are
ions

It
ipin

an
nt

pin

el
a

t

INTERLAYER EXCHANGE INTERACTIONS, SU~4! . . . PHYSICAL REVIEW B65 075311
z i~x!5
1

2
@s i~x!1 iq i~x!#. ~8.17!

They are canonical fields obeying@see Eq.~8.4!#

@z i~x!,z j
†~y!#5r0

21d i j d~x2y!. ~8.18!

It is manifest thatr0s i(x) denotes the number density e
cited from the ground stateuS↑& to the i th level designated
by Eq. ~8.16!. The field q i(x) is the conjugate phase var
able.

We expand the exchange interaction~8.12! up to the sec-
ond order

H X
eff52J1(

i 51

3

]kz i
†~x!]kz i~x!

5
J1

2 (
i 51

3

$~]ks i !
21~]kq i !

2%. ~8.19!

This Hamiltonian describes three Goldstone modes ass
ated with spontaneous symmetry breakdown of the SU~4!
isospin symmetry.

Actually, the SU~4! symmetry is broken explicitly bu
softly by various direct interactions. Important SU~2! opera-
tors are

Sz.2
1

4
~s1

21q1
21s3

21q3
2!1

1

2
, ~8.20!

Pz5
1

2
s2 , ~8.21!

Px.2
1

4
~s2

21q2
21s3

21q3
2!1

1

2
, ~8.22!

up to the second order of fluctuation fields. Note that E
~8.21! is an exact formula. Direct interaction terms read

H C
25

«capr0

4
s2

2 , ~8.23!

HZ5
DZr0

4
~s1

21q1
21s3

21q3
2!, ~8.24!

FIG. 2. The lowest Landau level contains four energy lev
corresponding to the two layers and the two spin states. They
represented~a! for DSAS.DZ and ~b! for DSAS,DZ . The lowest-
energy level consists of up-spin bonding states, and is filled an
51. Small fluctuations are Goldstone modesz1 ,z2, andz3.
07531
ci-

.

HT5
DSASr0

4
~s2

21q2
21s3

21q3
2!. ~8.25!

Taking into account the SU~4!-noninvariant exchange inter
action as well, we find that the effective Hamiltonian is d
composed into three independent modesH5Hspin1Hppin
1Hipin , where

Hspin5
J1

2
$~]ks1!21~]kq1!2%1

DZr0

4
~s1

21q1
2!,

~8.26!

Hppin5
J

2
~]ks2!21

Jd

2
~]kq2!21

«capr0

4
s2

2

1
DSASr0

4
~s2

21q2
2!, ~8.27!

and

Hipin5
J1

2
$~]ks3!21~]kq3!2%2

~DZ1DSAS!r0

4
~s3

21q3
2!.

~8.28!

They describe three independent soft waves, which
pseudo-Goldstone modes by acquiring gaps. Equat
~8.26! and ~8.27! agree with the results10,11 derived previ-
ously for the spin wave and the pseudospin wave~which we
call the ppin wave!, respectively. The group SU~4! is more
than SU(2)̂ SU(2).Equation~8.28! is the Hamiltonian ob-
tained newly for the SU~4! component missed in the
SU(2)^ SU(2) component, which we call the ipin mode.
is notable that the exchange interactions for the spin and
modes are solely determined by the SU~4!-invariant Cou-
lomb interaction~5.1a!. The SU~4!-noninvariant Coulomb
interaction contributes only to the interaction Hamiltoni
~8.27! of the ppin mode. This is because the noninvaria
term ~5.1b! involves only the density differenceDr or the
ppin modes252Pz .

The coherence lengths~correlation lengths! are not infi-
nite because the soft modes are gapful. They are

jspin5 l BA4pJ1

DZ
, ~8.29a!

j ipin5 l BA 4pJ1

DZ1DSAS
~8.29b!

for the spin and ipin modes. The ground state of the p
mode ~8.27! is a squeezed state,33 where the coherence
lengths are different between the conjugate variabless2 and
q2,

jppin
q 5 l BA4pJd

DSAS
, ~8.30a!

jppin
s 5 l BA 4pJ

«cap1DSAS
. ~8.30b!

s
re
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It is notable thatjppin
q is very large whenDSAS is very small.

However,jppin
s is quite small since«cap is quite large in ac-

tual samples.
It is important that the bias voltageVbiascouples only with

the ppin wave. The ipin wave connects the symmetric s
with the antisymmetric state and requires the tunneling
for its excitation, but it is insensible to the density differen
between the two layers. This is a direct consequence of
formula ~8.21!. Furthermore, it is easy to check that the ele
tromagnetic field couples only with the ppin mode becaus
does not affect the spin. Consequently, the pseudospin w
is only the one that is responsible to the coherent tunnelin
the BLQH system. The mode has been argued5 to lead to the
Josephson effect with chargee.

IX. CP3 SKYRMIONS

Provided the Zeeman effect is small enough, charged
citations are skyrmions in monolayer QH ferromagne1

They are topological solitons in the O~3! nonlinear sigma
model ~4.3!. It should be emphasized that the existence
skyrmions is based on the topological reasoning. It is arg
as follows. The dynamical field of the nonlinear sigma mo
is the O~3! spin field S(x). Since it takes value in the two
sphereS2, the topological stability is guaranteed based on
theorem p2(S2)5Z implying that the second homotop
class ofS2 is the set of integersZ5$0,61,62, . . .%. The
theorem is rephrased asp2(CP1)5Z. We now argue that
skyrmions arise based on the theoremp2(CP3)5Z in the
BLQH system with the SU~4! coherence.

We consider a generic excitation in SU(N) QH ferromag-
nets atn51. Here,N52 in monolayer QH ferromagnets an
N54 in BLQH ferromagnets. It can be proved9,26 that any
excitation confined to the lowest Landau level is expresse
terms of the CB field~8.2! as

fs~x!5Ar~x!ns~x!5eA(x)vs~z!, ~9.1!

wherev(z) is an arbitrary analytic function, andA(x) is an
auxiliary field obeying

“

2A~x!52p@r~x!2r0#. ~9.2!

The holomorphicity ofvs(z) in Eq. ~9.1! is a consequence
of the requirement that the excitation is confined within t
lowest Landau level.

We solve Eq.~9.1! for the CPN21 field

ns~x!5
vs~z!

A(
s

uvs~z!u2
. ~9.3!

Substituting Eqs.~9.1! and ~9.3! into Eq. ~9.2! we find

1

4p
“

2 ln r~x!2r~x!1r05Jsky
0 ~x!, ~9.4!

where
07531
te
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f
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Jsky
0 ~x!5

1

4p
“

2 ln(
s

uvs~z!u2. ~9.5!

With the aid of the Cauchy-Riemann equation forv(z) in
Eq. ~9.3!, this is shown26 to be the time component of th
topological current32 defined by

Jsky
m ~x!5

1

2p
«mnl]nKl~x!, ~9.6!

with Eq. ~8.13!. The topological charge is given by

Qsky5E d2xJsky
0 ~x!. ~9.7!

It is conserved trivially,]mJsky
m (x)50.

Equation ~9.3! is the generic formula for skyrmions.32

Equation ~9.4! implies that the density modulationdr(x)
[r(x)2r0 is induced around a skyrmion. It follows from
Eq. ~9.4! that

E d2x@r~x!2r0#52E d2xJsky
0 ~x!52Qsky521,

~9.8!

as implies that one skyrmion removes one electron.
The key of the topological stability is whether the sky

mion configuration~9.1! can be brought into the ground-sta
configuration by a continuous deformation of the CB fie
First, the CPN21 field ~9.3! with QskyÞ0 cannot be de-
formed continuously into the ground-state value based on
topological theoremp2(CPN21)5Z. Second, the density
r(x) cannot be deformed continuously into the ground-st
value r0 because in the midstream of this deformation t
field configuration escapes the lowest Landau level. Inde
we have shown thatr(x) should obey the soliton equatio
~9.4! as far as it is confined within the lowest Landau lev
Consequently, skyrmions are stable in QH systems beca
p2(CPN21)5Z and the QH system is robust against dens
fluctuations.

The topological charge~9.7! is determined by the highes
power of vs(z). We find Qsky5n if vs(z)→aszn with
(suasu2Þ0. The lightest skyrmion has the topologic
chargeQsky51. It is given by the choice ofvs(z)5asz
1bs with a•b50 in Eq. ~9.3!. The skyrmion field~9.3!
transforms under the action of SU(N). Since it is specified
by two parametersa and b with a•b50, there areN(N
21) skyrmion states apart from the translational degree
freedom. If the energy is solely determined by the nonlin
sigma model~4.3! or ~8.8!, all these states are degenera
with the energy given by Eq.~4.6!. When the skyrmion is
required to approach a specific ground state asymptotic
the parametera is fixed, and hence there areN21 degener-
ate skyrmion states. This is physically reasonable since th
exists one ground state andN21 excitation states in the
lowest Landau level~Fig. 2!.

Let us review skyrmions in monolayer QH ferromagne
(N52). The skyrmion is required to approach the spin p
larized ground stateS5(0,0,1/2) asymptotically, and there i
no degeneracy sinceN2151. The skyrmion configuration
1-10
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~4.5! is uniquely given byv5(z,k) in terms of theCP1

field. It gives Eq.~4.5! via Sa5 1
2 n†tan.

We study skyrmions in BLQH systems (N54). The skyr-
mion is required to approach the ground state~8.15! asymp-
totically, and there are three degenerate states sinceN21
53. Typical three skyrmions are given by

vspin5~z,k,0,0!,

vppin5~z,0,k,0!,

vipin5~z,0,0,k!, ~9.9!

which we call the spin skyrmion, the ppin skyrmion and t
ipin skyrmion, respectively. They are essentially SU~2! skyr-
mions embedded in the SU~4! theory.

The degeneracy of these three types of skyrmions is
solved by the Zeeman effect and the tunneling interact
Estimation of their excitation energies is straightforwa9

and compared with experimental data.34,35 As is obvious in
Fig. 2, it depends on a competition between the Zeem
effect and the tunneling interaction whether spin skyrmio
or ppin skyrmions are excited thermally.

X. DISCUSSION

We have derived the Landau-site Hamiltonian~5.11! for
the exchange interaction in BLQH systems. It is valid at a
ys

o

ys

ys

v.

07531
e-
n.

n
s

y

integer filling factor. A field-theoretical Hamiltonian is con
structed from it based on the von Neumann–lattice formu
tion. We may use it to analyze phenomena whose scal
larger than the magnetic lengthl B . We have analyzed care
fully BLQH states atn51. The dynamical field is theCP3

field because of the U~1! gauge symmetry inherent in th
system. We have found that there are three soft waves
three skyrmions. They are excitations from the ground s
to three excitation levels~Fig. 2! in the lowest Landau level

Though there are three types of skyrmions, only the lig
est skyrmions are excited thermally. They are spin skyrmi
when the Zeeman gap is small enough compared with
tunneling gap, while they are ppin skyrmions when the tu
neling gap is small enough compared with the Zeeman g

It is interesting to apply the present results to BLQH sy
tems atn52. In a forthcoming paper we would analyze th
predicted canted antiferromagnetic phase.12–14 We would
also examine a prediction that one skyrmion is composed
two skyrmions,9 which seems to have some experimen
supports.34,35
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