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Theory of fast quantum control of exciton dynamics in semiconductor quantum dots
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Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor
guantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time
of elementary quantum operations on excitons and hiexcitons by an order of magnitude or more. Analytic and
numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge
its quality. A modified quantum Fourier transform algorithm is constructed with only Rabi rotations and is
shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a
numerical simulation.
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[. INTRODUCTION guantum dots in the implementation of quantum algorithms
have been readily recogniz&d'! as well as in conjunction
The possibility of controlling the dynamics of a quantum with optical microcavities? **The use of optical control of
system has long captured the attention of workers in a widexcitons in dots for quantum operations has been
range of physical systems. Quantum control can be realizesuggested® and a theory for the physical implementation of
by engineering a time-dependent Hamiltonian that dependguantum algorithms in a dot using ultrafast optical pulses
on a finite set of parameters. In quantum chemistry, this enwas investigated® Ideas for a scalable quantum computer
gineering has led to the possibility of driving chemical reac-involving excitons in different dots and optical quantum con-
tions using tailored laser pulses and external fié'@.]an- trol were proposeaz_'”'ls Advances in ultrafast optics in
tum control has been recently extended to semiconductqfuantum dots make possible the manipulation of electronic
nanostructures leading, for instance, to controlled curfentseycitations in a semiconductor nanostructure with time reso-
coherent control of excnqﬁé and electron spif,and €on- |ytion in the femtosecond domain. So far, frequency selec-
trolled intersubband transitions of shallow donors using teray,, is used to avoid unwanted transitions to states out of the
hertz radiatiorf computational space. Laser pulses of a narrow frequency

In this paper we explore optical control of the ultimate range are too long in duration compared with the decoher-

quantum device in se_mlconductor nanotechnology, i.e., nce time for guantum operations. Thus, a design of fast
guantum dot. In a semiconductor quantum dot the electroni¢ .
ontrol is necessary. A fast control allows us to make a rea-

levels hav nsity of har ristic of a singl . . o
evels have a density of states characteristic of a single ato sonable number of operations well within the decoherence

Yet, the dot is amesoscopisystem, i.e., in contrast to the . S o
fime. It may also be made an ingredient in the realization of

single-atom case, the quantization of the electronic levels i . _ .
realized within a system that contains actually®10c® sophisticated error correction and decoupling schefhége

atoms. A key ingredient in the quantum control of theseWill give an explicit design for the realization of fast control
semiconductor nanostructures is the robustness of th@f two qubits encoded in two antiparallel-spin excitons in a
elementary excitation, the exciton. An electron-holesingle quantum dot. The slight increase in complexity of the
pair optically excited in an undoped quantum dot feelsoptical setup is within the capability of the current experi-
the presence of the large number of atoms in the materignents. An optimal design is an inverse problem to the find-
only through the static dielectric constant and the electroring a state given the Hamiltonian: the issue is to find a time-
and hole effective mass. This allows us to treat dependent optical electric field that produces a desired result
excitons as excitations in giant atoms and to control excitonin the shortest time as possible. The required experimental
with optical technigues similar to those used for the manipuresources are realistic: lasers generating Gaussian pulses
lation of atoms and molecules. However, unlike the atomiowith two different frequencies that can be phase locked. The
case, the dot is in a solid-state environment with the attensynthesis of phase-locked optical pulse from separate
dant decoherence. We shall also make use of the conductiofemtosecond lasers has been recently repéftadd here we
band electron and the valence-band hole as the constituergsopose an important application of this technique. We
of an exciton. A quantum dot is like an empty box that can beexplore the three different approaches to the control
filled with multiexciton complexes composed of many problem: an intuitive one making use of the area thedtem
interacting exciton&.In these multiexciton states, the Cou- and also give an analytical tool, the cluster expansion
lomb correlation is taken into account and yet the spin conef the evolution operation, much used in nuclear magnetic
figuration is transparent. The spin configuration can then beesonance (NMR)  spectroscopy? and  numerical
controlled by the light polarization of the optical optimization.
pulses. The implementation of a two-qubit quantum Fourier
The implementation of quantum algorithms is a particulartransfornf> (QFT) is used as a test case for the different
case of quantum control. The potentialities of semiconductomethods of design. Any algorithm can be decomposed as
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aseries of single-qubit rotations and two-qubit conditional — T e 464244
rotations?> A series of two-color phase-locked optical pulses
is suggested to realize the fast control of these fundamente — T e 44323 — T e 44323
rotations. Fidelity* is used to gauge the quality of the opera- —  oe4e+l22 R YR Y
tions and of the complete algorithm of QFT within the deco- ' '
herence time. Error correction could be added later to im- T e e 4493
prove the result. S S,
The paper is organized as follows. Section Il gives the s
structure of the multiexciton states from a microscopic i
model for a quantum dot. Section Il explains the principles & s
of three methods of design of optical pulses for a fast control 8:+£_+14_5

in a subspace of multiexciton states and compares their re_ -- - _

X i X e+e +12.2
sults in fundamental quantum operations. Section IV con- 2e+12.2 e 50 A0 2e, +12.2
tains a numerical simulation of the QFT algorithm in a quan- "
tum dot. The simulation takes into account the microscopic - e 450 + . A

details of the laser-exciton dynamics, including decoherence
and the presence of multiexciton levels outside the computa
tional space. Details of the decomposition of the QFT in 9
terms of only Rabi rotations for a generabjubit system are

relegated to the appendix. Section V summarizes and draws a FIG. 1. Energy levels of the multiexciton states in a quantum dot
number of conclusions. A brief description of the key idea ofin meV. e, =e_=1764 meV.

pulse shaping and the application to a different quantum al-

gorithm were published in Ref. 16. dipole effect seems to be stronger in quantum dots generated
by monolayer fluctuations than the self-assembled Hots.

€ s

- +

0.000

II. MULTIEXCITON STATES

The energies and wave functions of the multiexciton, QUANTUM CONTROL OF MULTIEXCITON STATES
states in a dot are calculated starting from two confined lev-

els of electrons and holes each in a parallelepiped?@QIhe A. Formulation of the problem
electronic levels included are the first two states deriving Quantum control consists in the design of a time-
from the localization ofs-like conduction-band states. They dependent addition to the system Hamiltonian, which will

carry a spint 3. The hole levels derive from the localization qive the state of the system from a prepared state to a des-
of states in thep-like valence-band heavy holes carrying @ ynateq state within a number of desirable conditions. In this

§ . . . . . .
tl;]z t(;)t?l Z%Lna'g;ge ?T;gec_tlotn qf tTe gf]r_ovtvthf ams.ﬂTh:a s![_ze of paper, we shall focus on the dynamics of two excitons in a
€ dot, nnT, 1S typical ol interface fluctuation quantum dot. The controlling agent is a sequence of laser

6 ; ; .
quantum dot$® Only Coulomb interaction between the car pulses. The dynamics of this two-exciton system not only

riers, which conserves their conduction- or valence-band in_erves as a powerful illustration of the more aeneral case of
dices is taken into account exactly. This amounts to neglect§ . ap 9 .
ultiple discrete states but also to form a set of “universal

ing the electron-hole exchange, which gives a fine structurd” " e fund | . . ¢ which
of the excitonic levels depending on the symmetry of the dotdates,” I.e., fun amenta operations in terms of whic any
We calculated this effect to be of the order of a femeV, ~ duantum computation may be congtruc%éd?he system Is

which can thus be safely neglected in the discussion of fadjot closed. In addition to the laser interaction, the quantum

structure of the multiexciton states. The multiexciton levelsStrate and other dots is a source of decoherence. The time

include zero, one, two, three, and four excitons in the dotlimitation due to decoherence and the resonance conditions
The choice of two levels each of electrons and holes limitgo avoid the unintended dynamics form two contradictory
the resultant number of excitons to four. Theor — refers  requirements under which the dynamics of the two excitons
to the polarization of the light that has to be used to creatén a dot must be optimized.

each exciton. Only optically active multiexciton states are For the system of two excitons, we use a basis set of four
shown. Since the optically forbidden multiexciton states arestates in the following orders the ground stéik the two

not the source of unintended dynamics, they are removeéxcitons with the lowest energy at 1764 meV above the
from the following discussion. Our model adopts the mea-ground state and opposite polarizations denotedhbyand
sured dipole moment of 75 D for the single exciton in a|—), and the biexciton state- +) at 3527 meV. Ao+ po-
single GaAs fluctuation ddt and the transition-matrix ele- larized photon can drive the excitonic transiti®)—|+)
ments between the multiexciton states are then calculatednd the biexcitonic transitiop—)—|—+). The two transi-
The later values are used in the numerical simulations in Se¢ions have different energies due to the Coulomb binding
IV. Note that the values of the dipole moments in this kind ofenergy of the biexciton. We can write the Hamiltonian of the
systems are one or two orders of magnitude higher thafour-level systems coupled to an external electromagnetic
those of atoms. Theoretical estimates suggest that this giafield with o™ polarization, treated classically, in the form
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0 Q. (1)/2 0 0 N
= MICTE Y
Loz e o 0 V(T =11 Um0, ®
a 0 0 €_ fQ. (/2] whereN indicates the number of pulses in the train and
* 7.1 denote the beginning and the end of jitfe pulse. For a
0 0 fO*MDR2 e, [

given quantum operatiod (T, rg), the time optimization can
(1) : o v
be viewed as consisting of two components. The first is to
have a minimum number of pulsds$ in Eq. (3). Optical
where Q. (t)=X;d,E. j(t—7) represents a time- puylses can directly perform Rabi rotations with generatqrs
dependent Rabi energy provided by a train of phase-lockednd o, but rotations with generatar, need to be built as a
optical pulses. The dipole moment of the excifer) is de-  combination ofe, anda,. In our design of the laser imple-
noted bder andf iS a COI’reCtiOI’l faCtOI’ to the deOle moment mentation of a quantum a|gorithm we try to decompose the
in the exciton-biexciton transition-matrix element due torequired global transformation directly in rotations generated
Coulomb Interaction. Tfle aI’Tlplltude .Of the eleCtnC f|e|d by o-y and oy for both Sing|e_qubit and Conditiona' Opera_
E.j(t=m)=&, j(t—7)e '“+("7)e'% is assumed to be tions without appealing to Hadmard, controlleds, or con-
slowly varying. As in the atomic case, the conditien.  ditional phase shift. We have demonstrated this by the con-
>d. £, ; enables the rotating-wave approximation to used instruction of the Deutsch-Josza algoritffrand the quantum
H* above. Thus, the counter-rotating terms, suctHgs  Fourier transforn{see below Since the saving is not expo-
=Q7%/2, are set to zero. Similarly the Hamiltonian associatechential, in theory it may be considered trivial, but in practice,
with a o_ polarized electric field is given by especially in the initial stage of experimental implementa-
tion, the use of the right decomposition of the algorithms
may be advantageous.
The second component for a fast control is the time opti-

0 0 Q_(1)/2 0 mization of each pulse in the product of E8), which is the
0 0 0 ()2 main subject of this section. Consider the case of, gpulse.
H-— o B _ In the interaction representatio®=AOA" denotes the
Q*(1)/2 0 € 0 transformed operator fro®, with A (t)=e'"'o', whereH, is
0 fO* (1)/2 0 e . a diagonal matrix with elements @, ,e_,e_,). The term
) U}” in Eq. (3) becomes foro, pulse (with j understood
below)

For simplicity of exposition we consider a sequence of

nonoverlapping pulses, although in numerical simulations we . N .
have found it possible to pack the pulses with 10% overlap U =Texp —i5 fo dtvor(t) |, (4)
with negligible deterioration. Thus, we write the unitary
time-evolution operator from= 7, to t=T in the form whereV ()" is
0 Q. (t)e'st 0 0
Q* (t)e '+t 0 0 0
- 5
0 0 0 fQ, (t)eller )
0 0 fQ* (t)e Her AN 0

and A=e€,+€e_—e€_, is the biexciton binding energy. {jo+
When only a circularly polarized light is used, E§) shows J

that the four-level system behaves as a double two-level sys- coda/2) —sin(al2) 0 0

tem, the first-two-level transitiofiexciton transition being sin(a/2)  cod al?) 0 0

represented by0)—|+) and the secondbiexciton transi- = , I

tion) by |—)—|— +). 0 0 c@a 12) sin(a’/2)
Consider now the desired operation where the exciton 0 0 sina’/2)  coga'l2)

transition is a Rabi rotation through angieand the biexci- (6)

ton transition is a Rabi rotation through',
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The most direct solution for the realization of this transfor-£,d, <A. In order to shorten the time duration of the whole
mation would be a two-pulse combination, pulse, an intuitive approach would be to allow the two com-
, , , ponents of Eq(7) to overlap in frequency but keep each

E.(t)=Ee W9 e oty g W e iont1d - (7)  gatisfying the area theorem.

If the two pulses are resonant, respectively, with the two
transitions, i.e.,wg;, =€, and w;,=€_, —€_, and suffi-
ciently narrow in frequency, the pulse resonant with the ex- The cumulant expansiotfalso known as the Magnus
citon transition would have negligible effect on the biexcitonexpansiof® of the evolution operatofJJf’* in Eq. (4) is
transition and vice versa. However, this has been shown tgiven by??

be costly in time'® The problem is to find a composite pulse

2. The average Hamiltonian method

that would take much less time with tolerable deterioration ~ 1. -
of quality of the transformation. U; *zex;{ - §(V1+V2+---)} : 12
For the quality of the transformation, we follow Ref. 24 in
defining the fidelity of the transformation as The first term of the expansion corresponds to a time average

of the interaction Hamiltonian,
F= (il 07U [y |, (8)

whereU; is the ideal unitary operatiod is the unitary trans-
formation generated by the optical pulses, and the overline o
denotes the average over all the possible initial states. ThEhe second term is given by

operatorU TU; is denoted by for short. The average over all — .
the possible states is done by considering an initial state with \72:__'[ dtf dt’[V(t), V(). (14)
arbitrary complex coefficient,) = =;c;|j) with the nor- 4 Jo Jo

malization constrain;|c;|?=1. The fidelity can be then
written in the form

V= f:dﬁ/(t). (13

Keeping only the first term in the exponent constitutes the
average Hamiltonian approximation. An estimation of the er-
ror in the truncation of the cumulant expansion is given by

F:% crejcr el (9 the second term.

ij

and, in the four-level system considered here, the over- 3. Numerical approach

line average is then on a hypersph&@én C° determined The parameters in E7) are varied to find the maximum

by ~the normalization condition. This average fidelity. To lessen the numerical effort, physical consider-
(1/S) f sd?cid®c d’cad?c,cf cick ¢y is easily evaluated in  ations guide the reduction of the number of parameters var-
polar coordinates and gives ied. The first two approximation methods are also useful as
starting points.
F=%2 [1il®+52 (alf+15n). (10
i I#] C. Examples of pulse design
The difference of the coefficients from those of Ref. 24 is  We illustrate the above methods for a single-qubit opera-
due to their additional restrictions on the coefficienits Our  tion, i.e., a parallel rotation of both the exciton and biexciton
choice gives a more conservative estimation of the error irtransitions. For simplicity, lef=1 ands;=s. Both theoret-
the operations. ical estimates and experimental measurements havé an
value not far from unity. In any case, the extensiorf 1
B. Pulse design can be made in a manner similar to the treatment of the
conditional rotation given below. We consider a composite
Opulse by superposing and phase locking the two pulses in Eq.
“(7) with =&, wgr =€, , andw,, =€, —A. It remains to
choose a value fafy(s) by each of the three methods above
and tests its efficacy by evaluating the fidelity of the opera-
In the limit of very long pulses, the area theoférdeter-  tion.
mines the intensity of a Gaussian pulse that has to be used |n Fig. 2(a) the fidelity for «= ' = rotation is plotted
for a given rotationa, as a function of the temporal width of the Gaussian pslse
The corresponding value for the peak of the Rabi energy
a Qo=d_ &(s) is also given in Fig. &). The value of the
syrd, 1D biexcitonic binding energy is 1 meV. The results of the
area-theorem approximation are shown as the dashed lines.
For a single two-level system the pulse widiln Eq. (11) The fidelity is close to unity only fos>1/A, corresponding
can be made arbitrarily small, but in the four-level case weto a region where the frequency selectivity is preserved. If,
are strongly limited by the resonance condition te, 1/ for instance, a 98% fidelity is required, the area-theorem ap-

In this section, we explain three different approaches t
pulse design to shorten the time of the quantum operation

1. Approximation by the area theorem

50:
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3 optimal curve &y(s) deviates considerably at short times
from the area-theorem approximation but is close to the av-
. erage Hamiltonian approximation throughout the whole
range ofs.
The second example is a conditional operation for two
- qubits, viz. ac | biexcitonic transition without affecting the
excitonic | +)—|0), i.e., a rotationU; in Eq. (6) with
=0 anda’ =. For the combined pulse in EGZ/) we con-
sider now ¢=, and again&y=&; and wo, =€, wqy
@ =e,—A.
’ From the average Hamiltonian approximati¢he first-
06 | , 7T e T aion | Order term in the cluster expansjonve obtain relations for
—— Numerical Maximization .
............ Average Hamiltonian i the three parameters of the pulgg s, ands; for the desired

i rotations,

0.2 - 1 1 1 1
0 1 2 3 4 5

_ 2
s (ps) a=d, Em(s—s e (45127, (17)

FIG. 2. (a) Fidelity as a function of the temporal width of the o' =d. Em(s _se—(As/2)2 18
Gaussians for a parallel rotation ofx=a' = 7. (b) Peak value of * 0\/_( 1 )- (18)
the Rabi energf)o,=d, &(s). Dashed lines: the area-theorem ap- For a given value o;, the other two parameters may be
proximation. Dotted lines: the average Hamiltonian approximation.splved in the case witak=0 anda’ =,

Solid lines: numerical maximization of the fidelity.

Fidelity

o
»~
T
AN

s=s,e” (45127 (19
proach will lead to optical pulses wite>4 ps. The area
theorem is not the_ best procedure of time optimization for Eo= \/;/d+(sl—se*ms’2)2). (20)
single-qubit operations.
Applying the average Hamiltonian approximation to theln the limit of large A the solution gives—0 eliminating
restricted pulse specified above leads to the single-qubit rahe term resonant with the excitonic transition a#g

tation U+ in the form of Eq.(6) with chosen values fow —>\/;/51d+ in accord with the area theorem for the biexci-

=a' and fors, leading to&, given by tonic transition. ForA # 0 this system has always a solution
for any a# «'. Correction to the average Hamiltonian ap-
@ proximation may be estimated in analogy with the parallel

(15) rotation case in the limis;, s<1/A and give forV, a diag-

o V. (1re 49 s in
onal matrix with elements « ¢1/2,1/2,— d5/2,0512),
The Gaussian term in the denominator on the right gives avhere
correction to the area theorem, E@.1). The results are
shown as dotted lines in Fig(l®. An estimate of the error of 1(d, &)\? 3 3 )
the average Hamiltonian approximation may be made by %17 35| 5| [(AS)"+2(Asy)"=3(As)(Asy)7],
evaluating the second-order term in the cluster expansion

given by Eq.(14). A rough estimate is provided by replacing 1(d,&\?
the Gaussians with square pulses of width Do~ %( A ) [(As)3+2(As)3—3(As;)(AS)?].
- _
V2=(d; &A)Tsin(As) —As+2Ascog As/2) In Fig. 3 we show(a) the fidelity and(b) the peak Rabi
—4sinAs/2)]E=¢E, (16)  energy for thea=0 anda’= 7 transformation for all three

methods. The area-theorem approximation amounts to taking

whereE is a diagonal matrix with elements-3, 3, 3, —3).  a single pulse resonant with the biexciton transition. For the
Expanding in the limit of short pulseAs<1 we get¢ numerical maximization we maximize the fidelity for a given
~—(d,&/A)?(As)%/3. The correction to the area theorem s, value as a function of and&, using the downhill simplex
in the first-order term, Eq(15), is by contrast~(d, &, method®® We see clearly that the average Hamiltonian again
/A)(As). Faster pulses make the lowest ordige>V,. The  gives a very good approximation: the deviations from the
resultant fidelity by the average Hamiltonian method isnumerical maximization are negligible in most of the region.
shown as dotted lines in Fig(d. Note that it is possible to Also in this case we see that the use of a composite pulse
obtain a 98% fidelity using much shorter pulses, of the ordeprovide a considerable saving in the time for the operation.
of 100 fs. In the limit of very short pulses this correspond to  As a last example, we investigate whether a single square
pulses spectrally very broad, which do not distinguish befulse shape can serve the function of the two overlapping
tween the two transitions but yield a nearly parallel rotation.pulses. For a square pulse, an exact analytical expression for

The results of the numerical maximization using one vari-U* can be given. It has been suggestetiat off-resonant
able & by Brent's methotf are plotted as solid lines. The unwanted transitions can be corrected using square pulses.
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1.5 2 25 3 0 1 2 3 4 5 6 7
T T T T T T T T T b
40.0 ®) | 40.0 - i ( )f
3 3 ;
€ 200 ; € 200+ } ]
3 o AR
\\\
0.0 0.0 e e = — -
1 T T 1 O SOt b b i g
P (a) /f oI (a)
-~
/
> 08 . > 087 / , i
§ ——- Area Theorem 3 | //
it - Average Hamiltonian ic i
L o6 Nume?ical Maximization | “ o6t i // ——~ Square Pulse Area Theorem b
| // - Composite Pulse Average Hamiltonian
s
04 1 1 1 04 Ll 1 1 1 1 1 1 1 1
15 2 25 3 0 1 2 3 4 5 6 7 8 9 10
s, (ps) s, (ps)
FIG. 3. (a) Fidelity as a function of the temporal widg; of the FIG. 4. (a) Fidelity as a function of the temporal width of the

biexciton Gaussian component in the composite pulse for a rotatiofquare pulse and of the biexciton Gaussian component of the
of a’= only for the biexciton transition(b) Peak value of the shaped pulse, for a rotation ef =7 only for the biexciton transi-
Rabi energy. Dashed lines: the area-theorem approximation with #on. (b) Peak value of the Rabi energy. Dashed lines: when a single
single pulse resonant with the biexciton transition. Dotted lines: théquare pulse resonant with the biexciton transition and the area
averaged Hamiltonian approximation. Solid lines: numerical maxi-theorem is used. Dotted lines: composite Gaussian pulse using the
mization of the fidelity. average Hamiltonian approach, same as the dotted lines in Fig. 3.

The specific case discussed above this corresponds to the usie is given by the presence or absence of a polarized
of a single pulse resonant with the biexciton transition withexciton in the dot and the second qubit by e exciton.

s, satisfying the conditions For the single-qubit operation we have to act both in the
exciton and in the biexciton transition. The case of paratlel
s;A=\aAm?— 17, (21)  rotation discussed in the preceding section corresponds,
therefore, to a single-qubit operation on the first qubit. As a
sid =m, (22)  conditional two-qubit gate we use a controlledT opera-

tion, which is essentially the controlledsT operation with a
hg™ rotation replacing the logicalNOT operation. The

condition in Eq.(21) sets to zero the off-diagonal terms in controlledroT is the conditional dynamics of adding to the

the 2x2 block corresponding to the excitonic transition, duantum dot ar,. exciton only if an exciton withr_ polar-
However, additional phases in the diagonal corresponding ti#ation is already there. This corresponds  abiexcitonic
a o, rotation for the exciton transitions are introduced, whichtransitior? without affecting the excitonid+)—[0). The
decrease the fidelity of the operation. We calculate the fidel$€cOnd example discussed in the preceding sectiowi®a
ity and peak Rabi energy for a conditionalrotation using a  controlled by second qubit, i.e., by the exciton. Single-

single square pulse resonant with the biexcitonic transition agubit and conditional rotations are easily generalized to arbi-
functions of the temporal widts, of the square pulse and trary angles. The exact mapping for the four-level system to

compare it with the shaped pulse result of the average HamifV0 qubits is given by

tonian approximation in Fig. 4. In the comparison, note that

s, in the square wave is the temporal width but in the shaped {10),[+).[=).|—+)}—{[00),|01),|]10),[]1D)}. (23
pulse is the half-width of the biexciton Gaussian component. ) . o )

The fidelity of the square wave shows oscillations withUnlike the NMR implementations, it is not possible here to
maxima roughly corresponding to the conditions in E84) _make use of thg free evolution of th'e interacting qubllts since
and (22) but never reaches as high as the two-pulse casdl requires keeping track of the_ oscillation at the optical fre-
Moreover, the spread in frequency of the square-pulse spe§uency an(_JI, therefore, an optical control over sev_eral_ pico-
trum is a source for unintended dynamics for higher excitorfeconds with subfemtosecond accuracy. By working in the

energy levels in the physical dot, while Gaussian pu|Se,‘_§nteraction representation, we get rid of this drift term, mak-
avoid this problem. ing the design of the control more convenient. At the end of

the sequence of pulses for a given algorithm the interaction
representation does not affect the computation since the read-
out is always done in an eigenstate of the system. Therefore

The theory of control of the two excitons will now be the control of the qubit is always active and is constructed in
applied to construct a physical implementation of a quantunterms of rotations withor, and o, generators between pairs
algorithm, the two-qubit quantum Fourier transform. One qu-of levels in the four-level system.

with integerm. Equation(22) gives am rotation for the biex-
citonic transition in accord with the area theorem, and t

IV. QUANTUM FOURIER TRANSFORM
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The QFT is the key ingredient in a number of important n _
quantum algorithms, in particular, Shor’s factorizatfon. 3|xy=[x), where 7:2 (1—x;)2' 1, (30
Consider am-qubit state i=1

n and B is the transformationX;—X,_;; 1), which may be
X)=|% - Xy), Where x= %21, (24)  termed boustropheddti,
=1
B[Xn-XX1) = [X1Xp Xn) = [X). (31)

The QFT is defined as a linear operator on an orthonormal
basis of|0),...,|N—1), whereN=2", with the action In the Appendix, we prove thallyorr is @ composition of
rotations of generators, ando for states of any number of
o rixalN qubits, denoted by yorr. By avoiding the pulse-consuming
UqrrX) = \/_ﬁ = e“™4N|q) (25) S;j , this saves time by using a smaller number of pulses than
i Uorr- Umorr can be used directly in phase estimation or
analogous to the construction of Bloch states in a onefactorization algorithms without the need fBrand X, the
dimensional chain. The standard way to construct QFT emglobal qubit transformations, which are just relabeling of the
ploys two basic operations: the Hadamard gate onjthe dubits. In a physical implementation there is the possibility
qubit H; and the conditional phase ga®s, wherej is the to make global qubit transformations that are simple relabel-
control qubit anck is the target qubit> The two-qubit QFT  INg, at no cost from the point of view of the quantum control.
can be realized, for instance, by the simple sequencH flor instance, a quantum computer is composed of a chain
H,S, H;. However, if we decompose each of the three op-©f 7 spins, at any time we can decide to flip all spin up into
erations in Rabi rotations we end up using more opticaSPin down and vice versa. This all-bit inversion is a simple
pulses than necessary. In fact, each Hadamard transformatié®abeling. We do not need to apply any pulse to the chain;
requires at least two optical pulsBS(,X)R;(7/2§), where ~ We have just to remember that in the readout. The same can
R;(6,8) is the rotation of thgth qubit in theé direction with P& done by switching in reading the string of qubits from the

angled. Following the decomposition in Ref. 32, we fifg, right to the left instead of from left to right, which corre-
with the sequence sponds to the boustrophedon transformation in Bd). Al-

though this saving in time is of the order polynomiahirfor
- the current attempt at physical implementation of prototype
E,)“() quantum computers it could provide a helpful simplification
of the experimental procedure.
Forn=2, N=4 the pulse sequence fahyger is

N—-1

w v
- 7)esg 7oz

W ~
5K R;

R Z.g|R W‘RW‘)RW“ 26
i1279)Re| ~29|Re[ 3 %|Re\ 3.9 (28 corl 7 7\ (w -
Coi| 5 X|Re| =5V |Re| 7 X Ry = 5,¥]. (32
In CFYT, j is the control qubit and is the target. For ex-
ample, We carried out a numerical simulation of the dynamics of
1 0 0 0 the multiexciton levels for this MQFT algorithm with and
without the use of composite pulses. We took the peak of the
N 0 0 Rabi energy to be 2 meV, larger than the 1 meV binding
C21(00=1 4 ¢ co$6/2) —isin(62) |’ energy of the biexciton. The width of the pulses is calculated
sing the area-theorem approximation and the average
0 0 —isin62) cog6l2) using pproximat verag

@7 Hamiltonian. The corresponding values of fidelity fogqrr

are 0.257 and 0.992. The pulse sequence is completed within
and the bar over subscript 2 indicates a rotation of the targét PS- .
only for the control qubit in the state 0, In order to check the robustness of the use of composite
pulses in the presence of dephasing, we include the sponta-

cog0/2) —isin(@/2) 0O O neous emission in the simulation by adding the Lindblad
o —isin6/2) cog6/2) 0 O operators in the equation of motion for the density matrix
CZl N 0 0 Loop d i . t_1 ¢t 1t
0 0 0 1 ap=—g[H,p]+gl(L,—pL,——szjL,-p—gpLij.
(28 (33
The total number of pulses for the QFT is then 12. where
We redefine the QFT as
Li=VI|0)(+]|, Ly=yI'|0){—],
Unoer=BUgerS, 29 1=Tl0)(+], Lo=1Tlox-|
where3 is the all-qubit inversionx;—1—x;), La=T|+)—+], Ls=T|=}—+]|, (34)
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I'=15ueV has been chosen to approximate the measured more realistic computer includes the interdot for scaling up

dephasing timé® These operators represent all the possiblghe system, design of optical control to minimize decoher-

spontaneous-emission pathways in the four-level system. €ence, and design of optical implementation of quantum error
There are many equivalent ways to solve the master equgorrections for digital control of decoherence and unintended

tion in terms of a nonlinear stochastic differential equationdynamics.

for a normalized state vectgp). We choose to use the quan-

tum state diffusion equatid ACKNOWLEDGMENTS
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where(L)=(y|L|4) and ; are independent complex ran- APPENDIX

dom variables. The density matrix can be expresseg as In this appendix the pulse sequences for the MQFT are
=M| )¢, whereM denotes ensemble average and the exeonstructed for an arbitrary number of qubits. From E25)
pectation value of any operat@ is given by M{|O| ). and(29), the action of MQFT and the inverse are given by
Inclusion of dephasing in this way reduces the fidelity for the
shaped pulse sequence of MQFT from 0.992 to 0.892. 1 N1 —
- 27igx/N
V. CONCLUSIONS V) \/quo © @, (A1)
In the quantum control of multiexciton states in semicon-

ductor quantum dots, we have shown that the use of com-
posite pulses makes possible the realization of quantum op- QFT|q> \/—
erations in time scales of the order of a hundred
femtoseconds. In addition to the theory of methods of con-
structing the pulses, we gave explicit examples to help ex-
perimental implementation. We adopted the concept of fidel-
ity as a measure of the quality of a pulse sequence. We
showed how to construct a sequence of pulses-based only on
the physicalo, and o, rotations. A numerical simulation of

N—1
E e 2qu/N|X> (AZ)

DefineR, to be ay rotation on all the qubits. Then,

Ry|x>EH R(— m/2,9)|x)

the application of the shaped pulses to the two-qubit quan- 1t o
tum Fourier transform in a single semiconductor quantum = \/_szo ex 121 mipj(1-x))||p). (A3)

dot provided a test of the pulse shaping. While the work so
far provides a complete blueprint for an experimental dem-
onstration of a simple guantum computation, future work forNow consider the combined transformation

N—1 N 1N-1 n
RUMQFT|Q> E Ry|X><X|U oFrla) = E E exp| ]2 mip;(1—X;) —ZWiEY/N]m) (A4)
1 - n 1
NZ Hl 2, ex mi(1-x))(p; =42~ p) (A5)
= =1 =
-1 n )
=> 1 e ™" cog mq112) 8y o +isin(7Q1/2) 84 1 5 1|p) (A6)
p=0 j=1 iPi i
N—1 n n
= pzo kl:[2 e aqujljl [cosmq12) 8y o +isin(mq"/2) 5 1 1IP) (A7)
N—1 n
=2 eClL (e, 1 e ns, 0>H [(cosmqV12) 8y p +isin(mq112) 5 1 11P), (A8)
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where we use the definitiog)=37_;.,qk2!"%. The a is
defined through the relatioli™_ ;e ™" =I11"_ &'k and

a=3},_,ay. Note thata), depends only ok andN.
The two products in EqA8) may be related to the rota-
tions
= B
n
11 Ri(an 2)|0)= H (€25, 1+ e %5, gla),  (A9)
n
R(—mqV,%)=Rj| -7 > g2 ) @'
k=j+1 L L

FIG. 5. Circuit diagram for QFT, Eq(A12), with the opera-
tions in the order from left to right. Each horizontal line represents
) a qubit. The operations are explained in the text. The ones
These relations lead via connecting two quibit lines represent logic gates of controlled

n rotations.
RUjqrr= 'H’ZH H CY(=m2 K011 R(en,)

e (A11)  Note thatCi™ may be moved to the right as in the circuit
diagram of Fig. 5 but not past any rotation involving
the target qubit j. Finally, by using Ra,2

n n =R(—7/2y)R(a,X)R(7/2,y) we obtain a pulse sequence

Umorr=e"?[] I CRYN (w2175 %) which involves only rotations and conditional rotations in

J=1 k=it the x, ydirection to implement MQFT. Note that the total

. . f tions f its i 2).
><|=H2 R(—a 'Z)ngl R.(—m/29). (A12) number of operations fan qubits isO(n<)

n
= [I cfo(—m2i"k%). (A10)
k=j+1

to the conclusion that
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