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Theory of fast quantum control of exciton dynamics in semiconductor quantum dots

C. Piermarocchi, Pochung Chen, Y. S. Dale, and L. J. Sham
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Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor
quantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time
of elementary quantum operations on excitons and biexcitons by an order of magnitude or more. Analytic and
numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge
its quality. A modified quantum Fourier transform algorithm is constructed with only Rabi rotations and is
shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a
numerical simulation.
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I. INTRODUCTION

The possibility of controlling the dynamics of a quantu
system has long captured the attention of workers in a w
range of physical systems. Quantum control can be real
by engineering a time-dependent Hamiltonian that depe
on a finite set of parameters. In quantum chemistry, this
gineering has led to the possibility of driving chemical rea
tions using tailored laser pulses and external fields.1 Quan-
tum control has been recently extended to semicondu
nanostructures leading, for instance, to controlled curren2

coherent control of excitons3,4 and electron spin,5 and con-
trolled intersubband transitions of shallow donors using te
hertz radiation.6

In this paper we explore optical control of the ultima
quantum device in semiconductor nanotechnology, i.e
quantum dot. In a semiconductor quantum dot the electro
levels have a density of states characteristic of a single a
Yet, the dot is amesoscopicsystem, i.e., in contrast to th
single-atom case, the quantization of the electronic level
realized within a system that contains actually 105– 106

atoms. A key ingredient in the quantum control of the
semiconductor nanostructures is the robustness of
elementary excitation, the exciton. An electron-ho
pair optically excited in an undoped quantum dot fe
the presence of the large number of atoms in the mate
only through the static dielectric constant and the elect
and hole effective mass.7 This allows us to treat
excitons as excitations in giant atoms and to control excit
with optical techniques similar to those used for the mani
lation of atoms and molecules. However, unlike the atom
case, the dot is in a solid-state environment with the att
dant decoherence. We shall also make use of the conduc
band electron and the valence-band hole as the constitu
of an exciton. A quantum dot is like an empty box that can
filled with multiexciton complexes composed of man
interacting excitons.8 In these multiexciton states, the Co
lomb correlation is taken into account and yet the spin c
figuration is transparent. The spin configuration can then
controlled by the light polarization of the optica
pulses.

The implementation of quantum algorithms is a particu
case of quantum control. The potentialities of semiconduc
0163-1829/2002/65~7!/075307~10!/$20.00 65 0753
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quantum dots in the implementation of quantum algorith
have been readily recognized,9–11 as well as in conjunction
with optical microcavities.12–14The use of optical control of
excitons in dots for quantum operations has be
suggested,15 and a theory for the physical implementation
quantum algorithms in a dot using ultrafast optical puls
was investigated.16 Ideas for a scalable quantum comput
involving excitons in different dots and optical quantum co
trol were proposed.12,17,18 Advances in ultrafast optics in
quantum dots make possible the manipulation of electro
excitations in a semiconductor nanostructure with time re
lution in the femtosecond domain. So far, frequency sel
tion is used to avoid unwanted transitions to states out of
computational space. Laser pulses of a narrow freque
range are too long in duration compared with the decoh
ence time for quantum operations. Thus, a design of
control is necessary. A fast control allows us to make a r
sonable number of operations well within the decohere
time. It may also be made an ingredient in the realization
sophisticated error correction and decoupling schemes.19 We
will give an explicit design for the realization of fast contr
of two qubits encoded in two antiparallel-spin excitons in
single quantum dot. The slight increase in complexity of t
optical setup is within the capability of the current expe
ments. An optimal design is an inverse problem to the fin
ing a state given the Hamiltonian: the issue is to find a tim
dependent optical electric field that produces a desired re
in the shortest time as possible. The required experime
resources are realistic: lasers generating Gaussian p
with two different frequencies that can be phase locked. T
synthesis of phase-locked optical pulse from sepa
femtosecond lasers has been recently reported,20 and here we
propose an important application of this technique. W
explore the three different approaches to the con
problem: an intuitive one making use of the area theore21

and also give an analytical tool, the cluster expans
of the evolution operation, much used in nuclear magne
resonance ~NMR! spectroscopy,22 and numerical
optimization.

The implementation of a two-qubit quantum Fouri
transform23 ~QFT! is used as a test case for the differe
methods of design. Any algorithm can be decomposed
©2002 The American Physical Society07-1
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aseries of single-qubit rotations and two-qubit conditio
rotations.23 A series of two-color phase-locked optical puls
is suggested to realize the fast control of these fundame
rotations. Fidelity24 is used to gauge the quality of the oper
tions and of the complete algorithm of QFT within the dec
herence time. Error correction could be added later to
prove the result.

The paper is organized as follows. Section II gives
structure of the multiexciton states from a microsco
model for a quantum dot. Section III explains the princip
of three methods of design of optical pulses for a fast con
in a subspace of multiexciton states and compares thei
sults in fundamental quantum operations. Section IV c
tains a numerical simulation of the QFT algorithm in a qua
tum dot. The simulation takes into account the microsco
details of the laser-exciton dynamics, including decohere
and the presence of multiexciton levels outside the comp
tional space. Details of the decomposition of the QFT
terms of only Rabi rotations for a generaln-qubit system are
relegated to the appendix. Section V summarizes and dra
number of conclusions. A brief description of the key idea
pulse shaping and the application to a different quantum
gorithm were published in Ref. 16.

II. MULTIEXCITON STATES

The energies and wave functions of the multiexcit
states in a dot are calculated starting from two confined
els of electrons and holes each in a parallelepiped QD.25 The
electronic levels included are the first two states deriv
from the localization ofs-like conduction-band states. The
carry a spin6 1

2 . The hole levels derive from the localizatio
of states in thep-like valence-band heavy holes carrying
6 3

2 total spin in the direction of the growth axis. The size
the dot, 4033535 nm3, is typical of interface fluctuation
quantum dots.26 Only Coulomb interaction between the ca
riers, which conserves their conduction- or valence-band
dices is taken into account exactly. This amounts to negl
ing the electron-hole exchange, which gives a fine struc
of the excitonic levels depending on the symmetry of the d
We calculated this effect to be of the order of a fewm eV,
which can thus be safely neglected in the discussion of
control considered in this paper. Figure 1 shows the ene
structure of the multiexciton states. The multiexciton lev
include zero, one, two, three, and four excitons in the d
The choice of two levels each of electrons and holes lim
the resultant number of excitons to four. The1 or 2 refers
to the polarization of the light that has to be used to cre
each exciton. Only optically active multiexciton states a
shown. Since the optically forbidden multiexciton states
not the source of unintended dynamics, they are remo
from the following discussion. Our model adopts the me
sured dipole moment of 75 D for the single exciton in
single GaAs fluctuation dot27 and the transition-matrix ele
ments between the multiexciton states are then calcula
The later values are used in the numerical simulations in S
IV. Note that the values of the dipole moments in this kind
systems are one or two orders of magnitude higher t
those of atoms. Theoretical estimates suggest that this g
07530
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dipole effect seems to be stronger in quantum dots gener
by monolayer fluctuations than the self-assembled dots.28

III. QUANTUM CONTROL OF MULTIEXCITON STATES

A. Formulation of the problem

Quantum control consists in the design of a tim
dependent addition to the system Hamiltonian, which w
drive the state of the system from a prepared state to a
ignated state within a number of desirable conditions. In t
paper, we shall focus on the dynamics of two excitons i
quantum dot. The controlling agent is a sequence of la
pulses. The dynamics of this two-exciton system not o
serves as a powerful illustration of the more general cas
multiple discrete states but also to form a set of ‘‘univer
gates,’’ i.e., fundamental operations in terms of which a
quantum computation may be constructed.23 The system is
not closed. In addition to the laser interaction, the quant
dot has other excitonic states and its environment of the s
strate and other dots is a source of decoherence. The
limitation due to decoherence and the resonance condit
to avoid the unintended dynamics form two contradicto
requirements under which the dynamics of the two excito
in a dot must be optimized.

For the system of two excitons, we use a basis set of f
states in the following orders the ground stateu0&, the two
excitons with the lowest energy at 1764 meV above
ground state and opposite polarizations denoted byu1& and
u2&, and the biexciton stateu2 1& at 3527 meV. As1 po-
larized photon can drive the excitonic transitionu0&→u1&
and the biexcitonic transitionu2&→u21&. The two transi-
tions have different energies due to the Coulomb bind
energy of the biexciton. We can write the Hamiltonian of t
four-level systems coupled to an external electromagn
field with s1 polarization, treated classically, in the form

FIG. 1. Energy levels of the multiexciton states in a quantum
in meV. e15e251764 meV.
7-2
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THEORY OF FAST QUANTUM CONTROL OF EXCITON . . . PHYSICAL REVIEW B65 075307
H15F 0 V1~ t !/2 0 0

V1* ~ t !/2 e1 0 0

0 0 e2 f V1~ t !/2

0 0 f V1* ~ t !/2 e21

G ,

~1!

where V1(t)5S jd1E1, j (t2t j ) represents a time
dependent Rabi energy provided by a train of phase-loc
optical pulses. The dipole moment of the excitonu1& is de-
noted byd1 andf is a correction factor to the dipole mome
in the exciton-biexciton transition-matrix element due
Coulomb interaction. The amplitude of the electric fie
E1, j (t2t j )5E1, j (t2t j )e

2 iv1(t2t j )eif j is assumed to be
slowly varying. As in the atomic case, the conditionv1

@d1E1, j enables the rotating-wave approximation to used
H1 above. Thus, the counter-rotating terms, such asH0,2

1

5V1* /2, are set to zero. Similarly the Hamiltonian associa
with a s2 polarized electric field is given by

H25F 0 0 V2~ t !/2 0

0 e1 0 f V2~ t !/2

V2* ~ t !/2 0 e2 0

0 f V2* ~ t !/2 0 e21

G .

~2!

For simplicity of exposition we consider a sequence
nonoverlapping pulses, although in numerical simulations
have found it possible to pack the pulses with 10% over
with negligible deterioration. Thus, we write the unita
time-evolution operator fromt5t0 to t5T in the form
.

sy

ito

07530
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U~T,t0!5)
j 51

N

U j
s j~t j ,t j 21!, ~3!

whereN indicates the number of pulses in the train andt j ,
t j 21 denote the beginning and the end of thej th pulse. For a
given quantum operationU(T,t0), the time optimization can
be viewed as consisting of two components. The first is
have a minimum number of pulsesN in Eq. ~3!. Optical
pulses can directly perform Rabi rotations with generatorssx
andsy but rotations with generatorsx need to be built as a
combination ofsy andsx . In our design of the laser imple
mentation of a quantum algorithm we try to decompose
required global transformation directly in rotations genera
by sy and sx for both single-qubit and conditional opera
tions without appealing to Hadmard, controlled-NOT, or con-
ditional phase shift. We have demonstrated this by the c
struction of the Deutsch-Josza algorithm16 and the quantum
Fourier transform~see below!. Since the saving is not expo
nential, in theory it may be considered trivial, but in practic
especially in the initial stage of experimental implemen
tion, the use of the right decomposition of the algorithm
may be advantageous.

The second component for a fast control is the time o
mization of each pulse in the product of Eq.~3!, which is the
main subject of this section. Consider the case of as1 pulse.
In the interaction representation,Õ5LOL† denotes the
transformed operator fromO, with L(t)5eiH 0t, whereH0 is
a diagonal matrix with elements (0,e1 ,e2 ,e21). The term
U j

s j in Eq. ~3! becomes fors1 pulse ~with j understood
below!

Ũs15T expF2 i
1

2 E0

t

dtṼs1~ t !G , ~4!

whereṼ(t)s1 is
F 0 V1~ t !ei e1t 0 0

V1* ~ t !e2 i e1t 0 0 0

0 0 0 f V1~ t !ei ~e12D!t

0 0 f V1* ~ t !e2t~e12D!t 0

G ~5!
and D5e11e22e21 is the biexciton binding energy
When only a circularly polarized light is used, Eq.~5! shows
that the four-level system behaves as a double two-level
tem, the first-two-level transition~exciton transition! being
represented byu0&→u1& and the second~biexciton transi-
tion! by u2&→u21&.

Consider now the desired operation where the exc
transition is a Rabi rotation through anglea and the biexci-
ton transition is a Rabi rotation througha8,
s-

n

Ũ j
s1

5F cos~a/2! 2sin~a/2! 0 0

sin~a/2! cos~a/2! 0 0

0 0 cos~a8/2! 2sin~a8/2!

0 0 sin~a8/2! cos~a8/2!

G .

~6!
7-3
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The most direct solution for the realization of this transfo
mation would be a two-pulse combination,

E1~ t !5E0e2~ t/e!2
e2 iv01t1E1e2~ t/e1!2

e2 iv11t1 if. ~7!

If the two pulses are resonant, respectively, with the t
transitions, i.e.,v015e1 and v115e212e2 , and suffi-
ciently narrow in frequency, the pulse resonant with the
citon transition would have negligible effect on the biexcit
transition and vice versa. However, this has been show
be costly in time.16 The problem is to find a composite puls
that would take much less time with tolerable deteriorat
of quality of the transformation.

For the quality of the transformation, we follow Ref. 24
defining the fidelity of the transformation as

F5u^c inuŨ†Ui uc in&u2, ~8!

whereUi is the ideal unitary operationŨ is the unitary trans-
formation generated by the optical pulses, and the over
denotes the average over all the possible initial states.
operatorŨ†Ui is denoted byI for short. The average over a
the possible states is done by considering an initial state
arbitrary complex coefficientsuc in&5( j cj u j & with the nor-
malization constraint( j ucj u251. The fidelity can be then
written in the form

F5(
i jkl

ci* cjck* cl I i j I lk* ~9!

and, in the four-level system considered here, the ov
line average is then on a hypersphereS in C8 determined
by the normalization condition. This averag
(1/S)*Sd2c1d2c2d2c3d2c4ci* cjck* cl is easily evaluated in
polar coordinates and gives

F5 1
10(

i
uI i i u21 1

20(
iÞ j

~ I i i I j j* 1I i j* I i j !. ~10!

The difference of the coefficients from those of Ref. 24
due to their additional restrictions on the coefficientscj . Our
choice gives a more conservative estimation of the erro
the operations.

B. Pulse design

In this section, we explain three different approaches
pulse design to shorten the time of the quantum operatio

1. Approximation by the area theorem

In the limit of very long pulses, the area theorem21 deter-
mines the intensity of a Gaussian pulse that has to be u
for a given rotationa,

E05
a

sApd1

. ~11!

For a single two-level system the pulse widths in Eq. ~11!
can be made arbitrarily small, but in the four-level case
are strongly limited by the resonance condition to 1s,
07530
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E0d1!D. In order to shorten the time duration of the who
pulse, an intuitive approach would be to allow the two co
ponents of Eq.~7! to overlap in frequency but keep eac
satisfying the area theorem.

2. The average Hamiltonian method

The cumulant expansion~also known as the Magnu
expansion29! of the evolution operatorŨ j

s1 in Eq. ~4! is
given by22

Ũ j
s15expF2

1

2
~Ṽ11Ṽ21¯ !G . ~12!

The first term of the expansion corresponds to a time aver
of the interaction Hamiltonian,

Ṽ15E
0

`

dt Ṽ~ t !. ~13!

The second term is given by

Ṽ25
2 i

4 E
0

`

dtE
0

t

dt8@Ṽ~ t !,Ṽ~ t8!#. ~14!

Keeping only the first term in the exponent constitutes
average Hamiltonian approximation. An estimation of the
ror in the truncation of the cumulant expansion is given
the second term.

3. Numerical approach

The parameters in Eq.~7! are varied to find the maximum
fidelity. To lessen the numerical effort, physical consid
ations guide the reduction of the number of parameters
ied. The first two approximation methods are also usefu
starting points.

C. Examples of pulse design

We illustrate the above methods for a single-qubit ope
tion, i.e., a parallel rotation of both the exciton and biexcit
transitions. For simplicity, letf 51 ands15s. Both theoret-
ical estimates and experimental measurements havef
value not far from unity. In any case, the extension tof Þ1
can be made in a manner similar to the treatment of
conditional rotation given below. We consider a compos
pulse by superposing and phase locking the two pulses in
~7! with E05E1 , v015e1 , andv115e12D. It remains to
choose a value forE0(s) by each of the three methods abo
and tests its efficacy by evaluating the fidelity of the ope
tion.

In Fig. 2~a! the fidelity for a5a85p rotation is plotted
as a function of the temporal width of the Gaussian pulses.
The corresponding value for the peak of the Rabi ene
V05d1E0(s) is also given in Fig. 2~b!. The value of the
biexcitonic binding energyD is 1 meV. The results of the
area-theorem approximation are shown as the dashed l
The fidelity is close to unity only fors@1/D, corresponding
to a region where the frequency selectivity is preserved.
for instance, a 98% fidelity is required, the area-theorem
7-4
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THEORY OF FAST QUANTUM CONTROL OF EXCITON . . . PHYSICAL REVIEW B65 075307
proach will lead to optical pulses withs.4 ps. The area
theorem is not the best procedure of time optimization
single-qubit operations.

Applying the average Hamiltonian approximation to t
restricted pulse specified above leads to the single-qubi
tation Ũs1 in the form of Eq.~6! with chosen values fora
5a8 and fors, leading toE0 given by

E05
a

sApd1~11e2~Ds/2!2
!
. ~15!

The Gaussian term in the denominator on the right give
correction to the area theorem, Eq.~11!. The results are
shown as dotted lines in Fig. 2~b!. An estimate of the error o
the average Hamiltonian approximation may be made
evaluating the second-order term in the cluster expan
given by Eq.~14!. A rough estimate is provided by replacin
the Gaussians with square pulses of widths,

Ṽ25~d1E0D!2@sin~Ds!2Ds12Ds cos~Ds/2!

24 sin~Ds/2!#J5fJ, ~16!

whereJ is a diagonal matrix with elements~2 1
2 , 1

2,
1
2, 2 1

2 !.
Expanding in the limit of short pulsesDs!1 we get f
;2(d1E0 /D)2(Ds)3/3. The correction to the area theore
in the first-order term, Eq.~15!, is by contrast;(d1E0

/D)(Ds). Faster pulses make the lowest orderṼ1@Ṽ2 . The
resultant fidelity by the average Hamiltonian method
shown as dotted lines in Fig. 2~a!. Note that it is possible to
obtain a 98% fidelity using much shorter pulses, of the or
of 100 fs. In the limit of very short pulses this correspond
pulses spectrally very broad, which do not distinguish
tween the two transitions but yield a nearly parallel rotatio

The results of the numerical maximization using one va
able E0 by Brent’s method30 are plotted as solid lines. Th

FIG. 2. ~a! Fidelity as a function of the temporal width of th
Gaussianss for a parallel rotation ofa5a85p. ~b! Peak value of
the Rabi energyV05d1E0(s). Dashed lines: the area-theorem a
proximation. Dotted lines: the average Hamiltonian approximati
Solid lines: numerical maximization of the fidelity.
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optimal curve E0(s) deviates considerably at short time
from the area-theorem approximation but is close to the
erage Hamiltonian approximation throughout the who
range ofs.

The second example is a conditional operation for t
qubits, viz. as1 biexcitonic transition without affecting the
excitonic u1&→u0&, i.e., a rotationŨ j in Eq. ~6! with a
50 anda85p. For the combined pulse in Eq.~7! we con-
sider now f5p, and againE05E1 and v015e1 , v11

5e12D.
From the average Hamiltonian approximation~the first-

order term in the cluster expansion!, we obtain relations for
the three parameters of the pulseE0 , s, ands1 for the desired
rotations,

a5d1E0Ap~s2s1e2~Ds1/2!2
!, ~17!

a85d1E0Ap~s12se2~Ds/2!2
!. ~18!

For a given value ofs1 , the other two parameters may b
solved in the case witha50 anda85p,

s5s1e2~Ds1/2!2
, ~19!

E05Ap/d1~s12se2~Ds/2!2
!. ~20!

In the limit of largeD the solution givess→0 eliminating
the term resonant with the excitonic transition andE0

→Ap/s1d1 in accord with the area theorem for the biexc
tonic transition. ForDÞ0 this system has always a solutio
for any aÞa8. Correction to the average Hamiltonian a
proximation may be estimated in analogy with the para
rotation case in the limits1 , s!1/D and give forṼ2 a diag-
onal matrix with elements (2f1/2,f1/2,2f2/2,f2/2),
where

f1;
1

32S d1E0

D D 2

@~Ds!312~Ds1!323~Ds!~Ds1!2#,

f2;
1

96S d1E0

D D 2

@~Ds1!312~Ds!323~Ds1!~Ds!2#.

In Fig. 3 we show~a! the fidelity and~b! the peak Rabi
energy for thea50 anda85p transformation for all three
methods. The area-theorem approximation amounts to ta
a single pulse resonant with the biexciton transition. For
numerical maximization we maximize the fidelity for a give
s1 value as a function ofs andE0 using the downhill simplex
method.30 We see clearly that the average Hamiltonian ag
gives a very good approximation: the deviations from t
numerical maximization are negligible in most of the regio
Also in this case we see that the use of a composite p
provide a considerable saving in the time for the operatio

As a last example, we investigate whether a single squ
pulse shape can serve the function of the two overlapp
pulses. For a square pulse, an exact analytical expressio
Ũ1 can be given. It has been suggested31 that off-resonant
unwanted transitions can be corrected using square pu

.

7-5
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The specific case discussed above this corresponds to th
of a single pulse resonant with the biexciton transition w
s1 satisfying the conditions

s1D5A4m221p\, ~21!

s1V15p, ~22!

with integerm. Equation~22! gives ap rotation for the biex-
citonic transition in accord with the area theorem, and
condition in Eq.~21! sets to zero the off-diagonal terms
the 232 block corresponding to the excitonic transitio
However, additional phases in the diagonal correspondin
a sz rotation for the exciton transitions are introduced, whi
decrease the fidelity of the operation. We calculate the fid
ity and peak Rabi energy for a conditionalp rotation using a
single square pulse resonant with the biexcitonic transition
functions of the temporal widths1 of the square pulse an
compare it with the shaped pulse result of the average Ha
tonian approximation in Fig. 4. In the comparison, note t
s1 in the square wave is the temporal width but in the sha
pulse is the half-width of the biexciton Gaussian compone
The fidelity of the square wave shows oscillations w
maxima roughly corresponding to the conditions in Eqs.~21!
and ~22! but never reaches as high as the two-pulse c
Moreover, the spread in frequency of the square-pulse s
trum is a source for unintended dynamics for higher exci
energy levels in the physical dot, while Gaussian pul
avoid this problem.

IV. QUANTUM FOURIER TRANSFORM

The theory of control of the two excitons will now b
applied to construct a physical implementation of a quant
algorithm, the two-qubit quantum Fourier transform. One q

FIG. 3. ~a! Fidelity as a function of the temporal widths1 of the
biexciton Gaussian component in the composite pulse for a rota
of a85p only for the biexciton transition.~b! Peak value of the
Rabi energy. Dashed lines: the area-theorem approximation w
single pulse resonant with the biexciton transition. Dotted lines:
averaged Hamiltonian approximation. Solid lines: numerical ma
mization of the fidelity.
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bit is given by the presence or absence of as1 polarized
exciton in the dot and the second qubit by thes2 exciton.
For the single-qubit operation we have to act both in
exciton and in the biexciton transition. The case of parallep
rotation discussed in the preceding section correspo
therefore, to a single-qubit operation on the first qubit. A
conditional two-qubit gate we use a controlled-ROT opera-
tion, which is essentially the controlled-NOT operation with a
p rotation replacing the logicalNOT operation. The
controlled-ROT is the conditional dynamics of adding to th
quantum dot as1 exciton only if an exciton withs2 polar-
ization is already there. This corresponds to as1 biexcitonic
transition9 without affecting the excitonicu1&→u0&. The
second example discussed in the preceding section is aCROT

controlled by second qubit, i.e., by thes2 exciton. Single-
qubit and conditional rotations are easily generalized to a
trary angles. The exact mapping for the four-level system
two qubits is given by

$u0&,u1&,u2&,u21&%→$u00&,u01&,u10&,u11&%. ~23!

Unlike the NMR implementations, it is not possible here
make use of the free evolution of the interacting qubits sin
it requires keeping track of the oscillation at the optical fr
quency and, therefore, an optical control over several p
seconds with subfemtosecond accuracy. By working in
interaction representation, we get rid of this drift term, ma
ing the design of the control more convenient. At the end
the sequence of pulses for a given algorithm the interac
representation does not affect the computation since the r
out is always done in an eigenstate of the system. There
the control of the qubit is always active and is constructed
terms of rotations withsx andsy generators between pair
of levels in the four-level system.

n

a
e
i-

FIG. 4. ~a! Fidelity as a function of the temporal widths1 of the
square pulse and of the biexciton Gaussian component of
shaped pulse, for a rotation ofa85p only for the biexciton transi-
tion. ~b! Peak value of the Rabi energy. Dashed lines: when a sin
square pulse resonant with the biexciton transition and the
theorem is used. Dotted lines: composite Gaussian pulse using
average Hamiltonian approach, same as the dotted lines in Fig
7-6
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The QFT is the key ingredient in a number of importa
quantum algorithms, in particular, Shor’s factorization23

Consider ann-qubit state

ux&[uxn¯x1&, where x5(
i 51

n

xi2
i 21. ~24!

The QFT is defined as a linear operator on an orthonor
basis ofu0&,...,uN21&, whereN52n, with the action

UQFTux&5
1

AN
(
q50

N21

e2p ixq/Nuq& ~25!

analogous to the construction of Bloch states in a o
dimensional chain. The standard way to construct QFT e
ploys two basic operations: the Hadamard gate on thej th
qubit H j and the conditional phase gateSjk , wherej is the
control qubit andk is the target qubit.23 The two-qubit QFT
can be realized, for instance, by the simple seque
H2S2,1H1 . However, if we decompose each of the three o
erations in Rabi rotations we end up using more opti
pulses than necessary. In fact, each Hadamard transform
requires at least two optical pulsesRj (p,x̂)Rj (p/2,ŷ), where
Rj (u,ê) is the rotation of thej th qubit in theê direction with
angleu. Following the decomposition in Ref. 32, we findS12
with the sequence

R1S 2
p

2
,ŷDC2,1

ROTS p

2
,x̂DC2,1

ROTS 2
p

2
,x̂DR1S p

2
,x̂D

R1S p

2
,ŷDR2S 2

p

2
,ŷDR2S p

2
,x̂DR2S p

2
,ŷD . ~26!

In Cj ,k
ROT, j is the control qubit andk is the target. For ex-

ample,

C2,1
ROT~u,x̂!5F 1 0 0 0

0 1 0 0

0 0 cos~u/2! 2 i sin~u/2!

0 0 2 i sin~u/2! cos~u/2!

G ,

~27!

and the bar over subscript 2 indicates a rotation of the ta
only for the control qubit in the state 0,

C
2̄,1

ROT
~u,x̂!5F cos~u/2! 2 i sin~u/2! 0 0

2 i sin~u/2! cos~u/2! 0 0

0 0 1 0

0 0 0 1

G .

~28!

The total number of pulses for the QFT is then 12.
We redefine the QFT as

UMQFT5BUQFTS, ~29!

whereS is the all-qubit inversion (xi→12xi),
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Sux&5ux̄&, where x̄5(
i 51

n

~12xi !2
i 21, ~30!

and B is the transformation (xi→xn2 i 11), which may be
termed boustrophedon,33

Buxn¯x2x1&5ux1x2¯xn&5ux̃&. ~31!

In the Appendix, we prove thatUMQFT is a composition of
rotations of generatorssx andsy for states of any number o
qubits, denoted byUMQFT . By avoiding the pulse-consumin
Si j , this saves time by using a smaller number of pulses t
UQFT. UMQFT can be used directly in phase estimation
factorization algorithms without the need forB and S, the
global qubit transformations, which are just relabeling of t
qubits. In a physical implementation there is the possibi
to make global qubit transformations that are simple relab
ing, at no cost from the point of view of the quantum contr
If, for instance, a quantum computer is composed of a ch
of 1

2 spins, at any time we can decide to flip all spin up in
spin down and vice versa. This all-bit inversion is a simp
relabeling. We do not need to apply any pulse to the cha
we have just to remember that in the readout. The same
be done by switching in reading the string of qubits from t
right to the left instead of from left to right, which corre
sponds to the boustrophedon transformation in Eq.~31!. Al-
though this saving in time is of the order polynomial inn, for
the current attempt at physical implementation of prototy
quantum computers it could provide a helpful simplificati
of the experimental procedure.

For n52, N54 the pulse sequence forUMQFT is

C2,1
ROTS p

2
,x̂DR2S 2

p

2
,ŷDR2S p

4
,x̂DR1S 2

p

2
,ŷD . ~32!

We carried out a numerical simulation of the dynamics
the multiexciton levels for this MQFT algorithm with an
without the use of composite pulses. We took the peak of
Rabi energy to be 2 meV, larger than the 1 meV bindi
energy of the biexciton. The width of the pulses is calcula
using the area-theorem approximation and the aver
Hamiltonian. The corresponding values of fidelity forUMQFT
are 0.257 and 0.992. The pulse sequence is completed w
6 ps.

In order to check the robustness of the use of compo
pulses in the presence of dephasing, we include the spo
neous emission in the simulation by adding the Lindb
operators in the equation of motion for the density matrix34

d

dt
r52

i

\
@H,r#1(

j 51

4

~L jrL j
†2 1

2 rL j
†L jr2 1

2 rL j
†L j !,

~33!

where

L15AGu0&^1u, L25AGu0&^2u,

L35AGu1&^21u, L45AGu2&^21u, ~34!
7-7
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G515meV has been chosen to approximate the measu
dephasing time.26 These operators represent all the possi
spontaneous-emission pathways in the four-level system

There are many equivalent ways to solve the master e
tion in terms of a nonlinear stochastic differential equat
for a normalized state vectoruc&. We choose to use the quan
tum state diffusion equation35

udc&52
i

\
Huc&dt1(

j
~^L j

†&L j2
1
2 L j

†L j2
1
2 ^L j

†&

3^L j&!uc&dt1(
j

~L j2^L j&!uc&dh j , ~35!

where ^L&5^cuLuc& and h j are independent complex ran
dom variables. The density matrix can be expressed ar
5M uc&^cu, whereM denotes ensemble average and the
pectation value of any operatorO is given by M ^cuOuc&.
Inclusion of dephasing in this way reduces the fidelity for t
shaped pulse sequence of MQFT from 0.992 to 0.892.

V. CONCLUSIONS

In the quantum control of multiexciton states in semico
ductor quantum dots, we have shown that the use of c
posite pulses makes possible the realization of quantum
erations in time scales of the order of a hundr
femtoseconds. In addition to the theory of methods of c
structing the pulses, we gave explicit examples to help
perimental implementation. We adopted the concept of fid
ity as a measure of the quality of a pulse sequence.
showed how to construct a sequence of pulses-based on
the physicalsx andsy rotations. A numerical simulation o
the application of the shaped pulses to the two-qubit qu
tum Fourier transform in a single semiconductor quant
dot provided a test of the pulse shaping. While the work
far provides a complete blueprint for an experimental de
onstration of a simple quantum computation, future work
07530
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a more realistic computer includes the interdot for scaling
the system, design of optical control to minimize decoh
ence, and design of optical implementation of quantum e
corrections for digital control of decoherence and unintend
dynamics.
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APPENDIX

In this appendix the pulse sequences for the MQFT
constructed for an arbitrary number of qubits. From Eqs.~25!
and ~29!, the action of MQFT and the inverse are given b

UMQFTux&5
1

AN
(
q50

N21

e2p i q̃ x̄/Nuq&, ~A1!

UMQFT
† uq&

1

AN
(
x50

N21

e22p i q̃ x̄/Nux&. ~A2!

DefineRy to be ay rotation on all the qubits. Then,

Ryux&[)
j

Rj~2p/2,ŷ!ux&

5
1

AN
(
p50

N21

expF (
j 51

n

p ip j~12xj !G up&. ~A3!

Now consider the combined transformation
RyUMQFT
† uq&5 (

x50

N21

Ryux&^xuUMQFT
† uq&5

1

N (
p50

N21

(
x50

N21

expH F (
j 51

n

p ip j~12xj !G22p i q̃ x̄/NJ up& ~A4!

5
1

N (
p50

N21

)
j 51

n

(
xj 50

1

exp@p i ~12xj !~pj2q̃2 j 2n!#p& ~A5!

5 (
p50

N21

)
j 51

n

e2p iq~ j !/2@cos~pq~ j !/2!dqj ,pj
1 i sin~pQ~ j !/2!dqj ,12pj

#up& ~A6!

5 (
p50

N21

)
k52

n

eiakqk)
j 51

n

@cos~pq~ j !/2!dqj ,pj
1 i sin~pq~ j !/2!dqj ,12pj

#up& ~A7!

5 (
p50

N21

eia/2)
k52

n

~eiah/2dqk,11e2 iak/2dqn,0!)
j 51

n

@~cos~pq~ j !/2!dqj ,pj
1 i sin~pq~ j !/2!dqj ,12pj

#up&, ~A8!
7-8
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where we use the definitionq( j )5Sk5 j 11
n qk2 j 2k. Theak is

defined through the relationP j 51
n e2p iq( j )

5Pk52
n eiakqk and

a5Sk52
n ak . Note thatak depends only onk andN.

The two products in Eq.~A8! may be related to the rota
tions

)
j 52

n

Rj~ak ,ẑ!uq&5)
j 52

n

~eiak/2dqk,11e2 iak/2dqk,0!uq&, ~A9!

Rj~2pq~ j !,x̂!5Rj S 2p (
k5 j 11

n

qk2
j 2k,x̂D

5 )
k5 j 11

n

Ci , j
ROT~2p2 j 2k,x̂!. ~A10!

These relations lead via

RUMQFT
† 5eia/2)

j 51

n

)
k5 j 11

n

Ci , j
ROT~2p2 j 2k,x̂!)

k52

n

Rk~ak ,ẑ!

~A11!

to the conclusion that

UMQFT5e2 ia/2)
j 51

n

)
k5 j 11

n

Ck, j
ROT~p2 j 2k,x̂!

3)
l 52

n

Rl~2a l ,ẑ! )
m51

n

Rm~2p/2,ŷ!. ~A12!
i-
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Note thatCk, j
ROT may be moved to the right as in the circu

diagram of Fig. 5 but not past any rotation involvin
the target qubit j. Finally, by using R~a,z!
5R(2p/2,y)R(a,x)R(p/2,y) we obtain a pulse sequence,
which involves only rotations and conditional rotations i
the x, ydirection to implement MQFT. Note that the tota
number of operations forn qubits isO(n2).

FIG. 5. Circuit diagram for QFT, Eq.~A12!, with the opera-
tions in the order from left to right. Each horizontal line represe
a qubit. The operations are explained in the text. The o
connecting two quibit lines represent logic gates of control
rotations.
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