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Electro-optical properties of semiconductor quantum dots:
Application to quantum information processing
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A detailed analysis of the electro-optical response of single as well as coupled semiconductor quantum dots
is presented. This is based on a realistic—i.e., fully tridimensional—description of Coulomb-correlated few-
electron states, obtained via a direct-diagonalization approach. More specifically, we investigate the combined
effect of static electric fields and ultrafast sequences of multicolor laser pulses in the few-carrier, i.e., low-
excitation regime. In particular, we show how the presence of a properly tailored static field may give rise to
significant electron-hole charge separation; these field-induced dipoles, in turn, may introduce relevant exciton-
exciton couplings, which are found to induce significant—both intradot and interdot—Dbiexcitonic splittings.
We finally show that such few-exciton systems constitute an ideal semiconductor-based hardwarellfor an
optical implementation of quantum information processing.
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[. INTRODUCTION generate in a QD a single Coulomb-correlated electron-hole
pair, i.e., a single excitott*31t is even possible to detect the
In the past years increasing interest has been focused @ingle-exciton decaying energy emissiért® The quantized,
semiconductor nanostructuredhis is mainly due to their atomiclike, energy structure of QD’s allows for a rich optical
low-dimensional character, which allows one to tailor carrierspectrum and for a weak interaction of the QD system with
quantum confinement as well as Coulomb interaction. As &nvironmental degrees of freedofsuch as phonons, plas-
result, this has allowed one to fabricate nanostructured sysnons, eto. This latter feature implies that the quantum evo-
tems with a properly designed density-of-states which, irlution of the carrier subsystem is affected by low
turn, exhibit an increased optical efficiency as well as a redecoherencd?
duction of energy-relaxation and dephasing processes. Moreover, their reduced spatial extension—up to few
the case of two- and one-dimensional nanostructures, i.enanometers—Ileads to an increase of two-body interactions
quantum wells and wires, however, we deal with a partialamong carriers and to stronger Coulomb-correlation effects.
carrier confinement, i.e., the single-particle energy spectrurithe latter may be used to design a varietysimfgle-electron
is still continuous. This allows one to describe their many-devices In particular, as we shall show, they can be em-
body ultrafast optical response in terms of the usual mearployed to desigriully optical quantum gatess recently pro-
field approaches, typical of bulk systerhs. posed in Ref. 15. Indeed, the continuous progress in QD
The real scientific and technological “revolution” in the fabrication and characterizatittiet us foresee a near future
field was the introduction of quasi-zero-dimensior@bD) in which it will be possible to exactly tailor the few-carrier
systems, called semiconductor quantum daBmpared to  and optical properties of these 0D systems. In this respect, a
systems of higher dimensionality—such as quantum wellstep forward has been recently made by the analysis and
and wires—they have a discrete, i.e., atomiclike, energynderstanding of a single-QD excitonic emission spec-
spectrum and, more important, they exhibit genuine fewtrum**’ that uncovered “hidden” symmetries in isolated
carrier effects. Generally speaking, going from quantumQD structures, analogous to Hund’s rdfefor real atoms.
wells and wires to quantum dot®D’s) we move from These symmetries imply that, under suitable conditions,
many-electron systems to few-electron ones. This implies &oulomb correlations among excitons in the same dot
radical change in the theoretical schefas well as in the cancel.
experimental techniquésised to study such quasi-OD nano-  The primary goal of this paper is twofold. On the one
structures, often referred to a@miconductor macroatoms hand, we shall present a detailed investigation of the electro-
Apart from their relevance in terms of basic physics, theseptical response of single as well as coupled QD structures.
novel semiconductor nanostructures have attracted genenslore specifically, we shall focus on the combined effect of
attention because of their technological applications: thesstatic electric fields and ultrafast multicolor laser pulses. Our
range from laser emittefso charge-storage devicBdtom  investigation will present a variety of field-induced effects
fluorescent biological marketso quantum information pro- unexplored so far; in particular, we shall show how a prop-
cessing device¥ erly tailored external field can be used to induce or reinforce
In QD’s, the flexibility typical of semiconductors in con- exciton-exciton Coulomb coupling both in single and
trolling carrier densities has been brought to its extreme: it isoupled QD structures. On the other hand, we shall discuss
possible to electrically inject single electréhsr to photo-  the application of such field-induced few-exciton effects to
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design asemiconductor-based fully optical quantum infor- energy region of interest, they range from direct three-

mation processing stratedy dimensional(3D) plane-wave expansions, to factorized-state
The paper is organized as follows. In Sec. Il we shallsolutions, or to simplified two-dimensional parabolic-

introduce our theoretical approach for the analysis of theotential models.

electro-optical response of QD structures. Section Il pre-

sents a detailed investigation of the excitonic as well as biex- B. Coulomb-correlated carrier system

citonic response of prototypical semiconductor macroatoms | ) . .

and molecules in the presence of an applied static field. In Given the above single-particle representafidi{| ;) for

Sec. IV our quantum information processing strategy is dis€/€ctrons(holes—i.e., the set of 3D eigenfunctions;(r)

cussed and a few simulated experiments of basic quantuﬁ<r|'> [‘/’i(r)5<r|l>]_ and the corresponding energy levels

information/computation(QIC) operations are presented. €i(€j)—lét us now introduce the following creation and

Finally, in Sec. V we shall summarize and draw somedestruction operators for electrons and holes

conclusions. liyelloy—10y=cili), [jy=df[0)—]0)=d;lj), (2

Il. THEORETICAL APPROACH where |0) denotes the electron-hole vacuum state. Within

The physical system under investigation is a gas ofuch second-quantization picture, the single-particle Hamil-
electron-hole pairs confined in a quasi-OD semiconductofonian, i.e., the Hamiltonian describing the noninteracting
structure, i.e., a single as well as a multiple QD. In this caseSarriers within our OD confinement potential, can be written
the total Hamiltonian of our semiconductor nanostructure®S
can be regarded as the sum of two terhhs;H°+H': Aterm
He descr.ibing the Corr.elated electron_—hole subsy;tem, i._e., He=He+HM= eici*rciJrz El_d_‘rd__ 3)
free carriers plus confinement potential plus carrier-carrier i j
Coulomb interaction, and a tertd’ describing the interac-
tion of the carrier subsystem with coherent-light sources and The carriers(electrons and holg¢swithin our quasi-0D
environmental degrees of freedom, i.e., carrier-light plushanostructure, however, interact via the two-body Coulomb

carrier-phonon interactions. potentialV(r—r’). Due to such interaction, several correla-
tion effects take place. Here, only processes conserving the
A. Single-particle description total number of carriers are considered, thus Auger recombi-

Let us first consider the aas of noninteractin Carriersnation and impact ionization are neglected. Such processes
9 9 are known to become important only at very high densities

electrons(e) and holes(h) confined within the quasi-0D and at energies high up in the bafdn this case the Hamil-
semiconductor structure. The quantum confinement can bt

Bnian describin ier-carrier int ti ithi ingle-
. ) ; /h g carrier-carrier interaction within our single
defscrlb.ed in terms of an eﬁect!ve potentielf thse particlei/j picture can be written as

height is dictated by the conduction/valence band disconti-

nuities. Since the energy region of interest is relatively close HCC= Heet+ Hhh4+ Heh
to the band gagy,, of the semiconductors forming our het-
erostructure, we shall describe the bulk band structure in 1 o
terms of the usual effective-mass approximafidm addi- =2, izi i Visiyizi,Ci,Ci,CisCi,
tion, since the confinement potentidi " is a slowly varying e
function on the scale of the lattice periodicity, we shall work 1 -
within the “envelope-function” picturé? ) 2> Visiisiadi,di,di di,
Within such approximation scheme, the noninteracting Jplzdada
carriers in our quasi-0OD structure are then described by the
following Schralinger equation: _il,iszl,Jz Viij 1JzizCiT1diTldizCiz’ (4)

where

2p2
r e/h
[ 2me/h +Vc (l')
where my, is the bulk effective mass for electrons/holes V,M,zth' drf dr’z//r,(r)z/;r,(r’)V(r—r’)¢|2(r’)z,//,l(r),
while i/j denotes the set of single-particle quantum numbers, ! 2 (5)
including charge as well as spin degrees of freed®Hiere,
(1) is the envelope function of stai€j), the eigenvalues are the matrix elements of the Coulomb potential for the
€;,j correspond to the energy levels of the carriers induced bgeneric two-particle transitiorl;l,—1115. The first two
the confinement-potential profil\eﬁ’ h: since the latter—for terms on the rhs of Eq4) describe the repulsive electron-
any realistic semiconductor nanostructure—is finite, the low-electron and hole-hole interactions while the third one de-
est part of the single-particle energy spectreiis discrete, scribes the attractive interaction between electrons and holes.
while for increasing energies it evolves into a continuum. We stress the full 3D nature of the present approach based
The different approaches commonly employed for the soluen the detailed knowledge of the 3D carrier wave funcijon
tion of EqQ.(1) are described in Appendix A; according to the The explicit evaluation of the above matrix elements for a

Wi (1) = € i5(1), 1)
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generic 3D confinement-potential proﬂuf’h, i.e., for a ge- . AN
neric set of envelope functiong;;, is described in Appen- |2 (HINIQ_EXNE'N'&)UI;, =0, (12)
dix B. N
Combining the single-particle Hamiltonian in E§) with  \yhere
the Coulomb-interaction term in E¢4), we get the follow-
ing many-body Schrdinger equation for our Coulomb- H; o =(InHe ) =€ 8 47+ vy (13
correlated system: NN NN NN
are the matrix elements of the carrier Hamiltonkhin our
He|W)=(H°+H®)|¥)=£ V). (6)  single-particle basis. They are given by a diagonal—i.e.,
noninteracting—contribution plus a nondiagonal term given

Here, W) denotes the interacting many-body state in Ourby the matrix elements of the Coulomb-interaction Hamil-

Fock space and the corresponding total energy. o ) _ / ; ‘L

. tonian in Eq.(4): »=(I\|Heel 1) Their explicit form—
Let us now introduce the total-number operators for elec-~ | a.(4) V'N'N _< N[Hedll) P ]

trons and holes which involves the various two-body Coulomb matrix ele-

ments in Eq.5)—is given in Appendix C for the excitonic
(N=1) and biexcitonic N=2) case.
Nezz ciTci , thz dJ-TdJ- . (7) In the presence of Coulomb interaction, the Hamiltonian
: ! matrix in Eq.(13) is nondiagonal; therefore, the interacting

It is easy to show that the above global operators commutB1any-body state\y) are, in general, a linear superposition
with the carrier Hamiltoniam® in Eq. (6). We can therefore ©f all the single-particle stategy) [see Eq.(11)], whose
look for many-body state$¥) corresponding to a given coefﬂmentsU,NN can be regarded as elements of the unitary
number of electronsN,) and holes K). In particular, we  transformation connecting the single-particle to the interact-
shall consider the case of intrinsic semiconductor matefals, ing basisUM=(Iy[\y).

for which N.= Ny, ; in this case the good quantum number is N

the total number of electron-hole paifd=N.=N;, and the
Schralinger equation(6) can be rewritten as

The numerical evaluation of our Coulomb-correlated
states is thus performed by direct diagonalization of the
Hamiltonian matrix H® in Eq. (13), using a large—but

Ho A ) =& A ®) finite—single-particle basis set.

N )

where|\y) andé,  denote, respectively, theth many-body C. Interaction with coherent light sources

state and energy level correspondind\telectron-hole pairs. The Coulomb-correlated carrier system described so far

For any given numbeN of electron-hole pairs we thus will interact strongly with electromagnetic fields in the opti-
identify a subspace of the original Fock space, for whichcal range. For the case of a coherent light source—the one
there exists a natural bagi$,)}, given by the eigenstates of considered in this paper—the light-matter interaction Hamil-

the single-particle Hamiltonian in E@3): tonian in our second-quantization picture can be written as.
¢ = ’
H ||N> e_|N|IN>' (9) H :_E(t); [O'ﬁCdeJT‘f',U,ijdei], (14)
Here,Iy=i1,iz,...\in; J1:)2,---,) N IS @ COMpact notation for

the set of noninteracting electron and hole single-particléNhereE(t) is the classical light field and

guantum numbers corresponding to olNr electron-hole

pairs. Indeed, we have i =,ubu|kf Si(r) g (r)dr (15
o is the dipole matrix element for thg transition, up, being
)= Hin] n}>:nl;[l ¢l d] o) (10 its bulk value. In the presence of a time-dependent coherent
optical excitation the quantum-mechanical evolution of our
ande =3} (¢ +€ ) electron-hole system will be described by the following
N = n n’’

The noninteracting basis set in EQLO) constitutes the time-dependent Schdnger equation:

starting point of the direct-diagonalization approach used for d
the solution of the many-body Scluimger equatior(8). In- i —|VT(t)=H|¥(t))=(H°+H")|¥(t)). (16
deed, we can expand the unknown many-body stefg dt
over our single-particle basis Contrary to the carrier Hamiltoniad®, the carrier-light term
H' does not commute with the global number operators in
=S UAN|I (11) Eq. (7). Indeed, the two terms in E¢l4) describe, respec-
N) I N)- tively, the light-induced creation and destruction of an
electron-hole pair. Therefor®\ is no more a good quantum
By inserting the above expansion into @), the latter is number and the many-body state at tilmes, in general, a
transformed into the following eigenvalue problem: linear superposition of all the correlat®pair basis states
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The excitonic-absorption probability is then given by Eq.

[w()=2 2 ay (D). (A7 (20 with N=1:
N
By inserting the above expansion into the time-dependent ex :2_7’ ro2 _
Schralinger equatior(16) we get Pr(@) h [Hi ol 08y, ~hw), (22
d Sy where
in—a, (H)=E& a, (1)+ H . a (t), (18 ,
dt no N" N[, Mt TN HJ 0= (N1[H'[0) (23
where is the matrix element of the light-matter Hamiltonigl®) for
the 0—1 optical transition. Its explicit form is given in Ap-
H; N =(\nH/ NG (190  pendix C. The excitonic spectrum is finally obtained by sum-
NN

ming the absorption probability in E§22) over all possible

are the matrix elements of the light-matter Hamiltoniad)  final stategiy):
within our interactingN-pair basis{\ \}.

It can be easily showiisee Appendix Cthat the above AN w)=2, P w). (24)
matrix elements are different from zero only fo' =N P
+1; this confirms that the only possible transitions are
—N+1 or N+ 1—N which correspond, respectively, to the 2. Biexcitonic absorption
generation and destruction of Coulomb-correlated electron- | ot s now come to the so-called biexcitonic response
hole pairs, i.e., excitons, discussed above. Moreover, we de%_, the optical response corresponding to the2ltransi-
with well precise spin selection rules: the only matrix ele-ion 1n this case, the initialN=1) state coincides with the
ments in Eq.(19) different from zero are those conserving gy citonic staté,) in Eq. (21), while the final (N=2) state
the total spin of the carrier-light system. Indeed, the possibIeF)\2> corresponds to two Coulomb-correlated electron-hole
final stateg\y) depend on the spin configuration of the ini- pairs, i.e., a biexciton. Combining again E¢s0) and (12),
tial many-body stat¢\,,) as well as on the polarization of for N=2 we get
the electromagnetic fielt(t). In particular, we are allowed
to create two excitons with opposite spin orientati@e.,
antiparallel-spin configurationn the same orbital quantum
state. In contrast, due to the Pauli exclusion principle, two o ) .
excitons with the same spin orientatigie., parallel-spin Wherel,=i1j1,i5j, denotes the single-particle electron-hole
configuration cannot occupy the same orbital state. basis forN=2. _ o _

By treating Eq.(18) within the standard time-dependent Thg excitonic-absorption probability is then given by Eq.
perturbation-theory approach and assuming a monochrd20) with N=2:
matic light source of frequency, we can define the absorp-

INo)=2> Urzeldl ¢f df |0y, (25)
I2

o 1171171272

tion probability corresponding to they_;— \y transition P)L:ilei}\z(w): Zﬁ_ﬁ|H}’\2}\1|25(g)\2_g)\l_ﬁw), (26)
p ( :2_77 ! 2 - - where
AN—1— N ) A |H)\N>\N,1| 5(5>\N 5>\N,1 hw).
(20 Hi = (NalH ) (27)

I descnbes the many-exciton opt|c_al response qf our QQS the matrix element of the light-matter Hamiltonigl}) for
structure, i.e., the probability of creating a new exciton in the

presence oN—1 Coulomb-correlated electron-hole pairs. X];fple_n)ji;pcncal transition. Its explicit form is given again in

The biexcitonic spectrum is finally obtained by summing

the absorption probability in Eq26) over all possible final
As a starting point, let us consider the so-called excitoniGstateg|\ ,):

response, i.e., the optical response of our carrier system for

the 0—1 transition. In this case, the initiaN(= 0) state is the bie biex

(electron-hol¢ vacuum staté0), while the final (N=1) state AL (@)= AE PX(@)- (28)
|\1) corresponds to a Coulomb-correlated electron-hole pair, 2

i.e., an exciton. Combining Eq&L0) and(11), for N=1 we  We stress that, contrary to the excitonic spectrum in(24),
have the biexcitonic spectrum®®* is a function of the initial ex-

citonic state; .
Equations(22) and (26) will be employed in Sec. Il to
_ Mt gt
|)‘1>—|2 U|1lci1dj1|0>’ (2D investigate the electro-optical response of single as well as
' coupled QD structures. However, for the case of ultrafast
wherel,=i,,j; denotes the single-particle electron-hole ba-optical excitation and strong light-matter coupling, the above
sis forN=1. perturbation-theory picture can no longer be applied, and the

1. Excitonic absorption
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time evolution of our many-body stafe/(t)) can be ob- possible, andll) to identify the basic requirements needed
tained by solving the time-dependent Salinger equation for such a quasiparticle number representation and therefore
in Eq. (16). We stress that, contrary to the many-excitonfor QIC processing.

absorption probability in Eq(20), the number of excitons, To this end, let us introduce the following set of excitonic
ie., creation operators

N(t)= (¥ (D)[Ne| W (1)) = (P (1)[N| ¥ (1)), (29 IN)=X] |0, (34)

is a continuous function of time and changes according to th

o . fuhere, as usualp) denotes the electron-hole vacuum state
specific ultrafast laser-pulse sequence considered.

and\ , is the label for the generic excitoni®dl& 1) state. By
_ _ _ comparing Eq(21) with the above definition, we can write
D. Interaction with environmental degrees of freedom these excitonic operators in terms of the electron and hole

Let us finally come to the interaction of the carrier sub-OPerators, i.e.,
system with various environmental degrees of freedom, such
as phonons, plasmons, etc. They \{vill_ not be tr_ea_ted explic- XI :2 Ui)\.lcdeJT_ (35)
itly; instead, we shall adopt a statistical description of the L !

carrier subsystem in terms of its density-matrix operator . ,
Moreover, in view of the unitary character of the transforma-

p(t) =[P (t))(W(1)], (30) tion U, we get
the overbar denoting a suitable ensemble avetags.time ot Mk ot
evolution can be schematically written as cid; :% Uij1 Xxl- (36)

If we now consider the explicit form of the noninteracting
basis states in Eq10), the generidN-pair many-body state
(12) can formally be written as

The first term describes the deterministic evolution induced

(31

d  d d
ap(t)—ap(t) H+ap(t)

env

by the carrier HamiltoniarH according to the well-known _ Ay
Liouville—von Neumann equation |)\N>—{h21} Coy ) 37
d 1 with
PO = Hp(0], (32
" T
while the second one describes a nonunitary evolffiaue A= 1;! XM|O>' (38)

to energy-relaxation and dephasing processes. The latter will

be treated within the standafid T, model(see Sec. IV B The expansion in Eq37) would suggest to define a sort
As for the case of the Schdinger equation(16), it is  of excitonic number representation in terms of tRepair

convenient to describe the density-matrix opergteras  states{\;}). We stress that, in general, this is not possible.

well as its time evolution—within our Coulomb-correlated The point is that, in generalhe set of states in Eq. (38) do

N-pair basis. By combining Eq$17) and(30), we get not constitute a basis for our N-pair Hilbert subspadéis
is intimately related to the fact that—contrary to electron and
P, ,(U:axN(t)aIf (1): (33) hole creation and destruction operators—the excitonic opera-
N N’ tors in EQ.(35) do not obey canonic commutation relations.

the density matrix in the\ representation is bilinear in the 'N 9eneral, the commutator

state coefficient in Eq. (17).
s, in Eq. (17) CM,H:[XM'XI’] (39)
1
E. The excitonic picture is itself an operator. This clearly prevents the introduction of
As discussed in Sec. 11 B, the generic Coulomb-correlatechumber operators, and, therefore, of a genuine quasiparticle
N-pair state]\) can be written as a linear combinatifsee  number representation.
Eqg. (11)] of the noninteracting electron-hole basis states in As will be discussed in Sec. IV, two basic requirements
Eq. (10). Such single-particle picture is used to computeare needed to perform quantum information processing:
Coulomb-correlatedN-pair states and energy levels via the the tensor-product structure of the “computational space”
exact-diagonalization approach described in Appendix Cconsidered and(ii) the SUZ2) character of the raising/
However, it is often convenient to adopt—instead of alowering operators acting on our computational subsystems,
single-particle description—an excitoniclike picture, i.e., aknown as “qubits.” The main question is thus to study if—
guasiparticle number representation based on Coulomkand in which conditions—the Coulomb-correlated electron-
coupled electron-hole pairs. The aim of this sectiofljgso  hole system discussed so far may act as quantum hardware,
show that, in general, such an excitonic description is not.e., may be used to perform quantum information process-
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ing. This requires to identify a set of independent degrees dflere, thex sign refers, respectively, to electrons and holes.
freedom, qubits, with a S@) character, the one of spf- As discussed below, this sign difference will give rise to
systems. exciton-exciton coupling and significant field-induced energy
As a starting point, one should then check if there exist aenormalizations.
set of independent excitonic degrees of freedom; this corre- Within the usual envelope-function pictutethe single-
sponds to verify that for any pair of excitonic statesand  particle properties of our quasi OD structure are described by
\; the commutator of Eq(39) is equal to zero. the Schrdinger equation in Eq(1). Similar to the case of
Let us now discuss the tensor product structure of ousemiconductor quantum wiré$,a quantitative analysis of
computational subspace. To this end let us consider again ttiee whole single-particle spectrum requires a direct numeri-
case of two qubita andb. Generally speaking, we know that cal solution of Eq.(1); this can be performed using a fully
the Hilbert space of a bipartite system%g,®H,, where 3D plane-wave expansion, as described in Ref. 25 and briefly
H,, are the Hilbert spaces of the individual qubits. Thisrecalled in Appendix A.
means that if|l,)} is an orthonormal basis set fét, and If, in contrast, our interest is limited to the low-energy
{|lp)} is an orthonormal basis set féf;,, then{|l,)®|l )} is  range only, for most of the QD structures realized so far the
a basis set for the whole computational space. What ongarrier confinement can be described as the sum of two po-
needs to test is the possibility of writing the many-bodytential profiles, one acting along the growtr perpendicu-
ground state—corresponding in this case to a biexcitoni¢ar direction and one affecting the in-plaker paralle) co-
state\ ,—as the product of two independent excitonic state®rdinates only:
A% and\®. This corresponds to verify that

VN =V )+ V(). (43)
N (NN =1. (400 As a consequence, the 3D carrier envelope funafigncan

be factorized according to

Provided that the above requirements are fulfilled, let us
now focus on the single qubit, i.e., on one of the independent
excitonic states\;. In this case, we want to check that the
exciton creation/annihilation operators introduced in 4)
obey usual S(2) commutation relations. More specifically,
we are interested in defining thecomponent pseudospin
operatorS; as

G (D=9 5 (T g (1) (44)

and the single-particle spectrum is the sum of the parallel
and perpendicular ones:

— L I
fi/j—fii /jL+EiH/jH. (45)

In this case, the original 3D problem is reduced to the solu-
1 tion of two independent Schdinger equations, along the
Sf\l’:ECM'M' (41  growth direction and within the parallel plane. This can be
still performed employing the plane-wave-expansion ap-
proach described in Appendix A.
In order to check that this is really acomponent spin op- For most of the state-of-the-art QD structures we have
erator, we should Verify that its average value over OUrstrong Confinemer(few nanometebﬁk}ng the growth direc-
many-body state is either plus or minus one. Deviations fronjon while the in-plane confinement potentidf" is much
this ideal scenario can be regarded as a measure of the legfaaker. Moreover, as far as the low-energy region is con-
age from our computational space due to the presence @gned, the in-plane confinement is well described in terms
external, i.e., noncomputational, excitonic states. In Sec. I\ 5 2p parabolic potential. For this case the Sdimger
we shall show that for prototypical GaAs-based quantum-doggyation within the 2D parallel subspace can be solved
molecules all the above requirements are well fulfilled a”danalytically—also in the presence of the static fi€ldsee
our excitonic system can indeed be used as quantum hardy,nendix A—and thus the problem reduces to a numerical
ware. solution of the Schidinger equation along the perpendicular
direction. The analysis of the electro-optical response of
Ill. ELECTRO-OPTICAL RESPONSE OF sgmicon(_:luctpr quantum dot.s present(_ad in the remainder of
SEMICONDUCTOR QUANTUM DOTS this section is based on th|s .pa.\rabollc—g:onﬁnem(.ant model,
whose derivation and validity limits are discussed in Appen-
In this section we shall analyze the electro-optical prop-dix A.
erties, i.e., the optical response in the presence of a static

elegtric fiel_d F, of singl_e as W_eII as coupl_ed QD structures. A. Single QD structure
While the light-matter interaction is described by the Hamil- ) S
tonianH’ in Eq. (14), the presence of a static fiekican be Let us start our analysis by considering the case of a

single QD structure in the presence of an in-plane static elec-
tric field: F=(F,,F,=F,0). Within the parabolic-
confinement model previously introducéske also Appendix

o/h o/h A), the quasi-0D carrier confinement for both electrons and
Ve (n—=Vgi(r)xeF.r. (420 nholes is described by an in-plane parabolic potert['

accounted for by adding to the confinement poter\ltérl‘ in
Eq. (1) the corresponding scalar-potential term
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FIG. 1. Single-particlddashed curyeand excitonic absorption : L1 \ i
spectra(solid curve in the field-free caseR=0). The inset shows cHl J\ i
how the exciton binding energq¢ is reduced as the in-plane elec- ‘ ‘ ‘ ‘ L .
tric field F increases. 1810 1830 1850 1870 1890
energy (meV)
[see Eq(A5)] plus a squarelike potenti®®" corresponding FIG. 2. Single-particlga) and excitonic absorption spectfl)
to the interface band offset along the growth direction. for an in-plane field==50 kV/cm. The excitonic spectrum iip)—

As a starting point, we have considered an ideal QD strucapart from a rigid shift due to Coulomb interaction—is now com-
ture characterized by the following material and confinemenparable to the single-particle one. Here, numbers from 1 to 4 iden-
parameters for electrons and holes: effective mags tify corresponding transitions in each spectrum.
=0.05m., m,=0.08n-, and parabolic-confinement energy
hwe=40meV, hw,=25meV; the well width isw=50A  dashed curves in Figs. 1 an(R As already pointed out, in
and the static dielectric constafgéee Eq.(B3)] has been this case the optical transitions connect the equally spaced
taken to bes,=12. Within this ideal QD model, the square- Single-particle electron and hole states.
like potential profile along the growth direction is character- As discussed in Appendix A, fof =0 the only allowed
ized by an infinite barrier height, i.e., Agp optical transitions are those conserving the envelope function
>#27%2mg,W2. By choosing the above material and con-total angular momentum, i.em=—-m’ [see Eq.(A20)];
finement parameters for electrons and holes, we deal with Boreover, due to the special symmetry between electrons
very special case for which the set of electron and holénd holes previously discussed, we have=n_ [see Eq.
single-particle envelope functiong® and 4" coincide. In-  (A12)]. Their amplitude is dictated by the joint state degen-
deed, the in-plane spatial extensianin Eq. (Al11) is the  eracy, which for the single-particle cateee dashed linds
same for electrons and holes. Moreover, we shall discusgiven by (.+1). In contrast, for finite values of the in-
how this symmetry, not present in a realistic QD structureplane static field= [see parta) in Fig. 2], the above selection
(see below, is related to special features in the optical re-rules are relaxedsee Appendix A and we deal with new
sponse of the systeifihidden symmetry”), as described in optical transitions corresponding to+m’#0 andn.#n_,

Ref. 13. not present in the field-free case. Moreover, in the presence

Due to the strong perpendicular carrier confinement, foiof the static field the spectra exhibit a significant reduction in
both electrons and holes we deal with a single localizedscillator strength. This is ascribed to a reduction of the in-
state; therefore, the low-energy single-particle spectrum iplane overlap between electrons and h¢kse Eq.(A18)],
simply given by a sequence of equally spaced discrete leveldue to the charge separation induced by the applied|[fele
corresponding to the 2D parabolic confinemég¢aee Eq. Eq.(A8)]. This can be clearly seen in Fig. 4, where we show
(A12)]. This scenario is not affected by the presence of thehe single-particle electron and hole ground-state charge dis-
in-plane static field=, which manifests itself only through an tributions (dashed curves corresponding to the single-
overall redshiftA £ of the single-particle spectrum, known as particle spectra of Fig. 2. Fdf=0 (see Fig. 3 the electron
Stark shift[see Eq.(A9)]. and hole parabolic-potential minima coincide and, therefore,

In the absence of Coulomb interaction, both the excitonidhe two charge distributions exhibit the same symmetry cen-
and the biexcitonic absorption speciisee Egs.(24) and ter. In contrast, in the presence of the in-plane fleltie two
(28)] will exhibit optical transitions connecting the above potential minima are shifted toward different directions.
single-particle energy levels. As usual, their amplitude is dic-This, in turn, induces an electron-hole charge separation, as
tated by the corresponding optical matrix elements, i.e., oselearly shown in Fig. 4. Such charge displacement—which
cillator strength, as well as by the combined state degeneorresponds to the formation of an in-plane electrical
eracy, i.e., joint density-of-staté®0O9). dipole—is responsible for the oscillator-strength reduction in

Figures 1 and @) show the excitonic-absorption spec- Fig. 2 previously discussed.
trum for F=0 and F=50kV/cm, respectively. Moreover, Let us now come to the Coulomb-correlated césee
the excitonic-absorption spectra are compared to the singlesolid curves in Figs. 1 and 2 and Figs. 3 and W the
particle ones, i.e., the ones evaluated in the absence of Copresence of Coulomb interaction—which for the excitonic
lomb interaction, which respectively correspond to thecase N=1) corresponds to electron-hole attraction—the
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10 ot The square modulus &F ** will then describe the conditional
gl a | probability of finding the electron with coordinatg and the
" e hole with coordinate,. If we now integrate such quantity
= 6l , over one of the two coordinates we get
”i 41 ]
= fi(re>=f [WRAre.r)Pdry= 2 UF*US 0t (re)ir(re)
r q i’
, 47
%00 100 0 100 200 and
x (A)
FIG. 3. Effective electron and hole charge distribution for the fi;(rh):f [T (re,rn)|?dre= > Ui)}*Ui}\-rlﬁ*(fh)lﬂ"(rh)-

. 3. j'7 J
ground-state exciton in the field-free case. The three curves corre- BIN (48)
spond to noninteractingNi) as well as to Coulomb-correlatedh
pairs as indicated. The quantityf¥" can be regarded as an effective single-

particle probability distribution, which accounts for the
main effect is a global redshift of the Coulomb-correlated€lectron-hole correlation described by the excitonic wave
spectrum compared to the single-particle one. More prefunction in Eq.(46). In the absence of Coulomb correlation
cisely, for F=0 we find a relatively strong redshift of the the transformatiott) reduces to the identityl((; = 5, ;;) and
lowest optical transitiorjof about 20 meY. For higher tran-  the effective single-particle distribution‘§’ h coincide with
sitions this effect is reduced, which can be understood conthe square modulus of the single-particle wave functions of
sidering that high-energy states are characterized by an irlectrons and holes, i.e.,ff(ro)=|¢i(ro)l? f]h(rh)
creasing spatial extension and, therefore, by a larger average|y;;(ry)|.
distance between electrons and holes. Moreover, the The effective charge distributions for electrons and
Coulomb-correlated spectrum exhibits a transfer of oscillatoholes—defined, respectively, in Eq47) and(48)—are plot-
strength toward low energies between quasidegenerate opted in Figs. 3 and 4 for the ground-state-exciton case. As
cal transitions. This scenario is well established, and charagxpected, in the presence of Coulomb correlation the charge
terizes also systems of higher dimensionality, such as quanfistribution deviates from the corresponding Coulomb-free
tum wells and wire$:** For increasing values of the applied case(dashed curvesFor F=0 (Fig. 3 the average distance
field we have a progressive reduction of the excitonichetween electrons and holes is very limited, which leads to a
redshift as well as of the oscillator-strength transfer, i.e., oktrong exciton bindingsee Fig. 1 For increasing values of
the electron-hole attraction. This is confirmed by the inset othe applied fieldFig. 4 we see again an increasing charge
Fig. 1, where the exciton binding energy is reported as &eparation. However, the effect is now reduced, compared to
function of the applied field. the Coulomb-free cagsee dashed curves his is due to the
In order to better understand the physical origin of thiscompetition between the displaced parabolic potentials and
field-dependent behavior, we have carried on a detailed inthe electron-hole Coulomb attracti¢see also Fig. 12 in Sec.
vestigation of the excitonic wave function projected into the||l C). The latter is progressively reduced due to a significant
electron and hole subspaces. More precisely, by rewritingncrease of the electron-hole average distasee again Fig.
Eq. (21) in the coordinate representation, the two-body exci-4). This also explains the reduction of the excitonic binding
tonic wave function is given by energy reported as inset in Fig. 1.
The analysis presented so far suggests that the behavior of
the system is governed by the following three characteristic
VH(re.r) =2 UL dhi(re) gy (rp). (46)  lengths.
J (i) The radial extensiomr of the parabolic ground state,
which in this case is the same for electrons and hfdes

10 : . Eq. (A11)].
g F=50kviem (i) The excitonic Bohr radius

“ hi%e

o 0

= of 1 a%¥=——, (49)

X eun

4L |

> where u is the reduced electron-hole mass.
2l 1 (iii ) The total electron-hole displacemeht |d"ﬂ— dj| [see
—200 -100 0 100 200 Generally speaking, whem<a® we are in the so-called

X (A) strong-confinement limit: the carrier confinement is dictated

by the single-particle parabolic potential only, which implies
FIG. 4. Same as in Fig. 3 but for an in-plane fiekl  that the wave function of the excitonic ground state coincides
=50kV/cm. with the product of the electron and hole single-particle wave
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functions, i.e., the expansion in EG6) contains just one oo ‘
term. In the opposite case, called weak-confinement limit i 7
(a>a®), the excitonic wave function depends on the rela- I ]
tive coordinate only and resembles the 2D hydrogen-atom
solution.

For the case under investigation the situation is as fol-
lows. In the field-free casalE&0), the excitonic Bohr radius
(a®=200A), is of the same order of the electron and hole
ground-state radial extensiow460 A), which implies that
the exciton wave function deviates from the product of the A , AN
corresponding single-particle states. This is confirmed by the 1820 1830 1840 1850 1860
Coulomb-correlated carrier distribution of Fig. 3, compared energy (meV)
to the Coulomb-free onédashed curve However, we are
not very far from the ideal Strong-conﬁnement limit previ- FIG. 5. Excitonic(solid curve and biexcitonic optical response
ously discussed; Indeed, our numerical analysis has show@dashed curvefor the antiparallel-spin configuration in the pres-
that the single-particle expansion in Eg6) can be limited ~&nce _of an in-pla_me electric fiel€l_= 30 kV/cn_1. The ins_et show_s the
to a relatively small number (86) of electron-hole states. biexcitonic splittingA £ as a function of the in-plane fielg. NOll?e
For increasing values of the applied field—and, therefore, ofhat forF =0, the latter becomes very small{=0.7 meV), which
the charge displacememnt—the average distance between Is due to the special symmetry of the QD structure considetrgd:
electrons and holes increases, thus reducing Coulomb- ¢h (see text
correlation effects. This is confirmed by the absorption spec-
tra in Fig. 2 as well as by the carrier distributions in Fig. 4,9round state and for an ideal structure as the one we are
where the difference between Coulomb-correlated an@onSideriﬂg, the biexcitonic Spllttlng is exaCtly Zero, because
Coulomb-free results is significantly reduced. We can thereln this case the various attractive and repulsive Coulomb
fore conclude that the presence of an in-plane static field interactions cancel exactly. This can be understood as fol-
induces a net electron-hole charge separation, which leads {@ws. In the strong-confinement limit—which is not far from
a significant suppression of electron-hole Coulomb correlathe regime considered here—and for antiparallel spins, the
tion. biexcitonic splitting can be very well approximated by the

Let us now move to the biexcitonic response of our ideanoninteracting single-particle probability distributiorfg
QD system. As discussed in Sec. I C, contrary to the exci=|¢|? andf=|yf|? only, i.e.,
tonic case investigated so far, the latter depends on the spin
configuration of both initial N=1) and final N=2) o2 AF(DAF()
Coulomb-correlated states. More precisely, due to the spin AE= _f drf dr'————, (51)
selection rules in the light-matter interaction Hamiltonian, €0 Ir—r’|
we deal with two relevant cases only: the parallel- and the
antiparallel-spin one. whereAf=fS— {0 is the difference between the electron and

Let us consider first the antiparallel-spin configuration. Inhole single-particle probability densities. Due to the special
this case both excitons can occupy the low-energy orbitalymmetry of the ideal QD structure under investigation, in
state. Figure 5 shows the biexcitonic spectrydashed  the field-free case we havkf =0 and the biexcitonic split-
curve compared to the excitonic ongolid curve for F ting is zero as well.
=30kV/ecm. We can clearly identify a biexcitonic transition  As already pointed out, in the QD structure under inves-
(see first peak of the dashed curwehich is blueshifted with  tigation we are not far from the strong confinement limit.
respect to the ground-state excitonic transitisee first peak However, since our calculation of the biexcitonic splitting is
of the solid curvg This energy renormalization is known as nonperturbative, we get, even in the field-free case, a nonva-
biexcitonic shift nishing AE. This small, but not negligible biexcitonic split-

ting [AE(F=0)=0.7 meV, see inset in Fig.]3neasures the
AE=¢&,— &~ & (50)  Coulomb-interaction contribution, underlying that the real
ground-state biexcitonic wave function has contributions
This positive energy shift can be understood as follows: thelso from higher-level single-particle states. This value is
applied field induces for both excitons the same charge sepaompatible with the one given in Ref. 4.
ration (see Fig. 4 which results in a repulsive dipole-dipole ~ We shall now show that the above field-free behavior is
coupling. This is confirmed by the field-dependent behaviodue to the special choice of material and confinement param-
of the biexcitonic splittingA& shown in the inset in Fig. 5.  eters of the ideal QD structure investigated so far. To this

Moreover, as shown in the inset, in the field-free case, thaim, let us now move to the case of a realistic semiconductor
dot behaves as an artificial atom and the energy to add amacroatom. As prototypical system let us consider a GaAs/
exciton in a shell is, up to the first order in the CoulombAlAs QD structure characterized by the following material
interaction, independent of the shell occupafibindeed, parameters: effective masses,=0.061m, and m;
within first-order perturbation theory, whef=0 the two  =0.34m,, conduction- and valence-band offseétg=1 eV
excitons occupy the same spherically symmetric orbitabnd A,=0.58eV, parabolic-confinement energidsw,

25 50 75 100
F (kV/cm)

abs. (arb. units)

L
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FIG. 6. Excitonic(solid curve and biexcitonic optical response
(dashed curveof a realistic QD structure for the antiparallel-spin
configuration in the field-free case. The inset shows the biexcitoni(?

splitting A€ as a function of the in-plane field. Opposite to the splitting A€ as a function of the in-plane fielH. As can be seen

mmetri reviousl nsider Fig. 5, in this mor . . )
sym ?t C case previously co_sde €ke Fig. 3 in this more from the spectra, the latter is now negative For0. However, it
realistic case the spatial extension for electrons and holes as well as

their Coulomb matrix elements are considerably different; this is the ecomes positive at high fieldsee text
physical origin of the positive biexcitonic shift in the field-free case
(see text

FIG. 8. Excitonic(solid curve and biexcitonic optical response
dashed curveof a realistic QD structure for the parallel-spin con-
iguration in the field-free case. The inset shows the biexcitonic

the dot with the same spin orientation of the first one. Due to
the Pauli exclusion principle, the two excitons are not al-

=30meV and#e,=24meV, well widthw=50A, and lowed to occupy the same exciton state. As already pointed
static dielectric constamozlé.l. ’ out [see Eq.(28)], the biexcitonic spectrum of the system

Figure 6 shows again the comparison between excitoni@€Pends on its initial excitonic stafe,). In Fig. 8 we com-
(solid curve and biexcitonic spectrurfdashed curvefor the ~ Pare the biexcitonic spectrutdashed curvewith the corre-
antiparallel case in the field-free case. As we can see, corfPonding excitonic spectruisolid curve for the field-free
trary to the result in Fig. 5, we now deal with a significant €@S€- Here, the biexcitonic spectrum has been computed as-
biexcitonic splittingA& also in the absence of the in-plane SUMING, as initial state\,), the excitonic ground state. Let
field (see inset in Fig. 6 Indeed, for any realistic QD struc- US focus on the low-energy part of the spectrum: as expected,
ture we deal with different spatial extensioas and a;, of due to the Pauli pr|nC|pIe, the _excnon ground state is forb_ld—
the electron and hole single-particle in-plane ground state&len to the second exciton, which can occupy any other high-
In Fig. 7 we report the electron and hole single-particle€N€rdy state. Contrary to the antiparallel césee inset in
charge distributiong® and f" (solid curves as well as their F19- 6, we now deal with a negative biexcitonic Shift,
differenceA f (dashed curje As anticipated, due to the dif- 1-€- the lowest biexcitonic transitiofsolid curve is red-
ferent material and confinement parameters, the charge diShiftéd compared to the corresponding excitonic seeond
tributions for electrons and holes do not coincide anymoreP€aK of the dashed curveAs discussed in Ref. 25, such
This, in turn, gives rise to local violations of charge neutral-EN€rdy renormalizatiofin this case of the order of 10 meV
ity, i.e., Af#0, and therefore to a nonvanishing biexcitonic can be ascribed to_the aFtractlve dipole-dipole |nteract|(_)n t_)e-
shift [see Eq(51)]. We finally stress that the presence of thetween thg two excitons in the dot. Ingeed, due to the|r. dif-
in-plane static field leads to a further increaseAdf (see  ferentorbital quantum numbeks andh;—and thus to their
inset in Fig. 6. different spatial charge distributions—they exhibit significant

Let us now move to the parallel-spin configuration. In thisCoulomb coupling. Contrary to the antiparallel-spin case

case we study the probability of creating a second exciton ipreviously discussetsee inset in Fig. § now the presence
of an in-plane static fieldr leads to a reduction and eventu-

4p— ally to an inversion of the biexcitonic shifsee inset in Fig.

8). This can be understood as follows: the application of the
in-plane field leads to a progressive reduction of the attrac-
. tive, i.e., spatially antiparallel, dipole-dipole Coulomb cou-
pling; for high fields this is transformed into a repulsive, i.e.,
spatially parallel, dipole-dipole interaction, and therefore to a
positive biexcitonic splitting. The transition from red biexci-
tonic shifts to blue ones, occurs when the displacement in-
‘ ‘ ‘ ] duced by the electric field becomes of the same order or
-150 -100 -50 0 50 100 150 bigger than the excitonic Bohr radius.

X (A)

£ 10476

. o B. Coupled QD structure
FIG. 7. Effective electron and hole charge distributions for the

ground-state exciton in the field-free caselid curve$ as well as Let us now consider the case of a semiconductor macro-
their difference(dashed cunje Due to the realistic QD parameters molecule, i.e., a coupled QD structure. In particular, as pro-
considered, the charge neutrality is violatdd:# 0 (see text totypical system we shall investigate the GaAs/AlAs coupled
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FIG. 9. Schematic representation of the electron and hole charge = A A
distribution as well as of the confinement potential profile in our 1670 1680 1690 1700 1710
Coulomb-coupled QD structure. The latter is tailored in such a way energy (meV)
to allow for an energy-selective creation/destruction of bound
electron-hole pairs in dota and b. Moreover, the interdot barrier FIG. 10. Excitonic response of the array unit cell(b) in Fig.

width (w~50 A) is such to prevent single-particle tunneling and at9 for an in-plane field= =75 kV/cm. The Coulomb-correlated result
the same time to allow for significant interdot Coulomb coupling in (b) is compared to the Coulomb-free one(a.
(see text

correspond to optical transitions involving excited states of
QD structure schematically depicted in Fig. 9. The materiathe in-plane parabolic potential. Due to the strong in-plane
and confinement parameters are the same of the realistigyrrier confinement—compared to the relatively large
single-QD structure previously investigatésee Figs. 6, 8, electron-hole charge displacement—the two low-energy ex-

and 7: effective massesn,=0.067m, and m,=0.34ny,  citonic states are expected to closely resemble the corre-
conduction- and valence-band offsefg=1eV and A,  sponding single-particle ones.
=0.58eV, parabolic-confinement energiéso,=30 meV Let us now come to the biexcitonic response of our semi-

andwp,=24meV, static dielectric constaesy=12.1. The  conductor macromolecule. In view of the strong-confinement
squarelike carrier confinement along the growth direction forregime considered, we shall focus on the two ground-state
electrons and holes is schematically depicted in Fig. 9 for ouexcitons only. Moreover, since we are primarily interested in

semiconductor macromolecuder b. This is tailored in such  studying interdot Coulomb coupling, we shall consider the

a way to allow for an energy-selective creation/destruction oparallel-spin configuration.

bound electron-hole pairs in dogsandb. Indeed, the width In Fig. 11 the excitonic spectrurtsolid curve is com-

of wells a andb are slightly different, Which corre'sponds. to pared to the biexcitonic on@lashed curve The latter de-

a blueshift of about 10 meV of the single-particle optical scribes the generation of a second electron-hole pair in the

transitions of dob with respect to the corresponding transi- presence of a previously created excitdr-2 optical tran-
tion in dota. We stress that such energy shift is also present

in the absence of interdot tunneling and Coulomb coupling.

Moreover, the interdot barrier widthw(~50A) is such to = ’ ae
prevent single-particle tunneling and at the same time to al- = | 34'/ ;
low for significant interdot Coulomb coupling. We stress that = 0
. . = 0 25 50 75 100 i
the geometrical and material parameters of the proposed pro- 81 F (kV/em)
totypical structure in Fig. 9 are fully compatible with current % |
QD growth and characterization technolddy. chll
Let us discuss first the excitonic response ofgkeicon- L
ductor macromoleculéa+b) in Fig. 9. The excitonic (0 1670 1675 1680 1685 1690
—1) optical spectrum in the presence of an in-plane electric energy (meV)

field F=75kV/cm is shown in Fig. 10. Here, the Coulomb-  £15 11, Excitonic (solid curve and biexcitonic spectrum
correlated resultB) is compared to the Coulomb-free one (gashed curvefor an in-plane fieldF =75 kv/cm. Due to the well-
(A). The scenario is very similar to the single-dot case preyefined polarization of our laser source, the structure in the biexci-
viously investigatedsee Fig. ] for relatively strong values tonic spectrumdashed curvecorresponds to the formation of an
of the applied field, apart from a rigid redshift, the Coulomb- exciton in dotb given an exciton in dof. One obtains a similar
correlated result is very similar to the Coulomb-free one.structure in the biexcitonic spectrum, symmetrically blueshifted
Here, the two lowest optical transitions correspond to thewith respect to the excitonic transition in datif one considers as
formation of direct ground-state excitons in datand b, initial state an exciton in ddb. The biexcitonic shifA€ as a func-
respectively(see Fig. 9. In contrast, the high-energy peaks tion of the in-plane field- is also reported in the inset.
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sitions. In particular, here the previously generated excitonparticle basis set, we get deviations from the above ideal
is assumed to be in dat As for the single-dot case previ- result. As anticipated in Sec. Il E, this turns out to be a mea-
ously investigatedsee Fig. &, the crucial feature in Fig. 11 sure of the leakage of our qubit.

is the magnitude of the biexcitonic shift. For the QD struc- We can therefore conclude that ground-state excitonic
ture under investigation we get energy splittings up to 8 meMransitions in our coupled QD molecule fulfill all the basic
(see inset in Fig. 11 This can be ascribed again to the in- requirements for a semiconductor-based implementation of
plane static field=, which induces, in both dots, the excitonic QIC processing. They can be used as computational degrees
dipole previously investigatedsee Fig. 4. This, in turn, of freedom, i.e., qubits, and the standard pseudospin lan-
gives rise to significant interdot dipole-dipole coupling be-guage can be employed.

tween adjacent excitonic states. The microscopic nature of

such exciton-exciton coupling is the same of the Forster pro- C. A simplified model

cess exploited by Quiroga and John&oior the generation
of entangled states in coupled QD’s.

The physical origin of the biexcitonic shift€ is qualita-
tively described in Fig. 9, where we show the effective spa
tial charge distribution of the two electroiis, ande;,) and
holes (h, and h,) corresponding to the biexcitonic ground
state in Fig. 11. As we can see, the charge separation induc

by the static field increases significantly the average distance )- As a starting point, let us consider again the typical

between electrons and holes, thus decreasing their attracti ingle-QD structures of Sec. Il A, whose single-particle con-

interaction. On the other hand, the repulsive terms are bas inement is modeled in terms of a boxlike potential of width

. . - - .. _ain the growth(or perpendiculardirection and a 2D para-
giggge(lj?ﬁler;gﬁcp:{fﬁ]nki;—hisl is the origin of the positive bolic potential in the in-planéor paralle) directions. As pre-

Let us now investigate the possibility of using such QDviously discussed, this allows a factorization of the original

molecules as quantum hardware for QIC processing. As dii’D single-particle problem into a perpendicular and a paral-

In this section we shall present a simplified model able to
properly describe excitonic binding as well as interdot biex-
citonic coupling. Its analytical solution will allow for an ex-
tremely quick way of identifying suitable parameter sets
needed to employ the above coupled QD structure as

miconductor-based hardware for QIC process¢ieg Sec.

cussed in Sec. IlE, to this end a few basic requirement el one[see Eqs(44) and(45)]. However, in the presence of

should be fulfilled. First of all, the operators for the two oulomb in_teraction such factorization is, in principle, no
ground-state excitons in dotsandb should commute. By longer poss'b_'?- . . .
evaluating the average valuever the biexcitonic ground More speqﬂcally, let us con5|der_ the smgle-exqtop prob-
statg of the commutator in Eq(39), this came out to be ![ﬁm (N:;) ('jn the_bprgsbentche ?f anblnoiplane ﬁ:ecmc fiéid
negligibly small, thus confirming that these are indeed inde- IS can be described by the two-body Hamiltonian

pendent degrees of freedom. Moreover, due to the relatively o2
large interdot distance—compared to the spatial extension of H=HSrg)+H"(r,) — . (52
the carrier wave functions along the growth direction—the eolfe—rnl

biexcitonic ground state in Fig. 9 is expected to closely re-as discussed in Appendix A, the single-particle Hamilto-

semble the product of the two excitonic states in d&d  pians for electrons and holes can be written in the compact
b. Indeed, for the coupled QD structure under investigatiory, ., [see Eqs(A2), (A6), and (A7)]:
we find that the scalar product in EGLO) gives a value of ' ’ '

0.99, very close to 1. The product structure for the bipartite 2y2 1

system Hilbert space is therefore very well achieved. It is  H¥"(r)=— ——+V¥"(r )+ = mgpwZ|r,—d"?
worth noticing that, in the case in which the two excitonic 2Me/p 2

states are localized on the same dot, e.g., in the ground and +Aegy. (53)

first excited states, one gets a smaller value of about 0.9. This
is a clear indication that the tensor product structure for theHere, the presence of the applied field results in a displace-
many-body state is much better achieved in a coupled QBnentd?" [see Eq(A8)] of the parabolic-potential minimum
structure than in a single QD system, as the one proposed s well as in a rigid energy shifie., [see Eq.(A9)]. We
Ref. 25. want to show that for all the QD structures previously inves-
Let us finally focus on the S@2) character of our exci- tigated Eq.(52) can be approximated to an analytically solv-
tonic qubits. To this end, we have evaluated the averageble form, and important quantities as wave functions or
value (over the biexcitonic ground statef the pseudospin biexcitonic shifts can be easily estimated with a good degree
operatorS? introduced in Eq(41). By truncating the single- of accuracy.
particle basis considering just the lowest energy level in each In our QD structures the wave function is strongly con-
QD (strong-confinement limit one gets()lesill)\z): 1, fined along the growth direction by the square well potential,
thus confirming that the operators in Eq39) and(41) are SO that we can approximatef(— r')2 in the Coulomb term
the generators of a §P) algebra. In contrast, far from the Wwith its average valué®. We choosd to be twice the aver-
strong-confinement limit, we get a result which is of courseage length related to the ground state ofiafinite-height
dependent on how many single-particle states contribute tequare well of widtha, i.e., | =(2a/m) J(7?=6)/12. It is
form an exciton. Therefore, if we calculate again the mearthus possible to separate the Hamiltoni&s2) as H
value of the commutator considering an enlarged single=H;(rg,ry) tH (re ) +H (rn.), where  H, (r;))
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= przil/2mi +Vic(ru) is the single-particle Hamiltonian along
the growth direction—exactly solvable for the case of a para-
bolic potential as well as of an infinite-height square well. By

further defining the center of magsm) and relative coordi-
nates R=[mg(r¢—d) +my(ry—dMNI/M, (M=mg+my)

and r=rqy—rg, the in-plane Hamiltonian H,
becomes
P2 1 p 1
- 4+ 2p2y M L= 21d—1|?
H,(R,r) oM 2I\/IwRR 2 2,ua)r|d rl

e2
€0\ r2+|2,

where u=m,m,/M is the reduced massz=(1+A)(w>
+od)2,  w=1-A)(witwd)2, A=[(me—mp)/
M](03— 0d)/(w3+ w?), and

+ (@i wp)R-(d=r)— (54)

o h 1 1
d=—dj+d/=eF ol Mol (59

eWe  Muowy
denotes the total (electrerhole) field-induced in-plane
displacement.
In the limit (w2— wi)/(w2+ 0f)<1, the two coordinates
are only weakly coupled, and the ScHimger equation
associated to the cm coordinale is exactly solvable; in

F=0o (kV/cm)

—40}

=300 200 -100 0 100

x (A)

FIG. 12. Effective potentiaV/.(x) (solid line) as a function of
the x coordinate for three different values of the external fiEld
Here, the following parameters have been used=0.067m,,
m,=0.34m;, hw,=30 meV,iw,=24 meV. The dashed line rep-
resents the parabolic part ¥.z(xX) and the dashed-dotted line the
Coulomb term.

whereVo=Ve(X) and pw?=°V/ox%, . Within such ap-
proximation scheme, the eigenvalues and eigenfunctions of
Hci can be evaluated analytically and, in particular, the ap-
proximate ground state eigenfunction becom¥s(x)

= (palhr) Ve~ (1o xx)? |5 the regime we are in-
terested in(strong confinement and pronounced biexcitonic
shift, i.e., large enough external fi¢Jdhe Coulomb attrac-
tion between electron and hole can be regarded as a pertur-
bation. In this regime, its main effect is to reduce the dis-

the general case, we shall concentrate on the grc)unelacementd between electron and hole wave-function

state, though the generalization to higher states is straigh

forward. We can approximate the ground stateHyf as
Y(r,R) =¥, (x)x(y,R), where x and y denote, respec-
tively, the components of parallel and perpendicular to
2 2
the field F, x(y,R)=e Y2\t /(\2r)14 e R¥2%/(\27) 12,
N =Vhlpw,, and A\g=h/Mwg. By averagingH, over
x(¥,R), we get the effective HamiltoniaH 4= 32w, +Awg
+p§/2,u+veﬁ(x), characterized by the effective potential

x2+I2>
2\ )
with Ve(u)=—(e?/eqVm\,)e"Ko(u), K, being the zero-
order Bessel function.

(56)

I Pe
Veﬁ(x)—zﬂwr(x d)“+Vc

u—o
SinceKy(u) ~ J@/2ue Y, in the limit x—co, we regain
the expected behavior for the Coulomb term

2 Xzl e?

R

x2+12
2\?°

(X2 +12)/2>)\2 e

T oot 2

c

Notice that, considering the typical parameters of our sys

tems (I=20A and\,~50A), according to Eq(57) there

genters tox, while the two single particle wave functions
are, with a good approximation, rigidly translated. This can
be understood by looking at Fig. 12, where the potertial
is plotted for three different values of the external fi€ld
The solid lines correspond to the full potential, the dashed
lines to its parabolic part, the dashed-dotted line to the Cou-
lomb part(independent of). For small and intermediate
the influence of the Coulomb field on the total potential is
relevant. For intermediate fields the figure clearly shows that
the minimum of the total potential is shifted with respect to
the parabolic one. For strong and intermediate values of the
applied fieldF, the effect of the shallow Coulomb potential
on the region around the minimum of the total potential is
mainly a rigid shift with respect to the unperturbed parabolic
potential. For small fields, instead, the shape itself of the
potential is definitely modified by the Coulomb term.

In the regime of interest, we can wriig as

Xo=d—AXx, (59

with Ax<d. By inserting Eq.(59) into dVe/dX|x,=0 and
considering, in the resulting equation, terms up to first order
in Ax, the following analytical expression is obtained:

exists a relevant range of values fowhere we cannot ap- A% A exp(£) AK
proximateVc by its simpler asymptotic, Coulomb-like form. d a® [z N, exp(&)[d? ’
Since we are interested in the system ground state, we can 1- o= I FA(AK,K1)+AK
approximateV 4 around its minimum m r 80
where &= (d?+I 2)/2)\r2, K; denotes the first-order

1
Vei(X)~ Vot 5 p®*(X=X0)?, (58)

Bessel function, AK=Ky(&)—K(&), A(AK,K;)=2AK
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1ol ‘ ‘ " two-exciton Hamiltonian over such factorized ground state.
Within this approximation schem@¢& becomes an easy-to-
S 8 calculate sum of at most 2D integrals. In the corresponding
g 6. validity region the model provides a good estimate Adr.
~ Fig. 13 shows a comparison between the exact regdliiés
w 4 monds, the approximate resu(solid curve and the results
< 2 02,7 Aw /o, i obtained by neglecting completely Coulomb correlation in
0 80y 0 10 the wave functiongdotted ling. The dashed curve shows the
060 30 100 120 approximated results obtained settit\g)/ w,=0: as antici-
F (kV/cm) pated before, this correction is generally negligible.

In order to implement our quantum computing scheme,
FIG. 13. Biexcitonic shiftA¢ as a function of the in-plane field system parameters as,, w,, andF must satisfy some spe-
F. Here, the parameters used are the same as in Fig. 12. The squaggic requirements. This determines the parameter space

represent exact numerical results, the solid line the predictions ofyilable in designing our QD structures. To this end, let us
the model, the dashed line the predictions of the model after Sem”&nalyze the various constraints in details.

Aw=0, and the dotted line the results obtained by neglecting com- First of all, (i) in order to have well-defined qubits, tun-
pletely Com_JIomb interaction in the wave function. The inset re_portsne”ng between dots must be suppressed; in agreement with
]Eir;el dtsaehawor ofAw/w; and Ax/d for the same range of applied state-of-the-_art nanostructure technology, we have chosen for
: our calculations barrier heights of 1 g€lectrong and 0.58
+K4(&)/¢, anda®™ is the excitonic Bohr radius introduced in gi\ég}cizl)e 2)?r?glanlenr:?:)duort(gllgtigﬂaem;?géﬁIc?r;‘bt?rieortar:;:on
Eq. (49). Notice that the prefactor, /a®is a measure of the petween consecutive dots must be strong enough to produce
system confinement. In a similar way, settiéigF w, +Aw in 3 pjexcitonic shift of the order of a few meV; this can be
po= 3Vl we can calculate the effect of the Cou- optained either by tailoring in a suitable way the distance
lomb attraction on the potential shape between the two dots or by varying the strength of the in-
plane fieldF, since as a rough approximation

de_ M eXp(g)(dzA(AK Ky)+AK
_— | — , 2
o a% o7 N2 ' g L (62)
D 1
Ax d? [ d? 1 K1(€)
T d )\_rZ )\_rZ 2A(AK,Ky) = & AK+2 & whered is given by Eq(55). Unfortunately(iii) a side effect
of a strong electric field= is to decrease the oscillator
strength and, accordingly, the system response to driving la-
+3A(AK,K1)} ) 6D ger pulses; indeed, the electric field induces a spatial separa-
_ tion between electron and hole wave functions, thus decreas-
In the strong-field limit\?/d?<1 [see Eq.55)], Aw/w,= ing their overlap(see Fig. 4 If we now consider the

—Ax/doc—()\,/ae>‘)()\r3/d3), which shows that, in this re- confining parabolic potentialdjv) in order to have well-
gime, Coulomb corrections decrease very fast with increasdefined quantum dots, the system must be in the strong-
ing field. The conditionAx/d=<20% quantitatively defines confinement regime previously introduced: the characteristic
the validity regime of the proposed approximation schemelength \, associated to the parabolic potential in E§4)

The latter coincides with the intermediate- and strong-fieldnust be smaller than the corresponding excitonic Bohr ra-
one, which is the regime of interest for the QD structuresdiusa®. On the other sidgy) as shown by Eq62) and Eq.
investigated below. It is also easy to show that in this regimg55), a too strong parabolic confinement would in turn

the correction on the wave function due 4@/ w, is negli-  heavily decrease the biexcitonic shX€. Last but not least,
gible with respect to the correction given by the shift/d (vi) in order to be able to perform general QIC schemes, we
(see also Fig. 13 must be able to energetically address specific excitations of

As previously discussed, the most important quantity forthe system unambiguously. This means that the peaks of in-
implementing our QIC scheme is the biexcitonic shift. Thisterest in the optical spectra, namely ground-state excitonic
is in our case the energy shift due to the Coulomb interactiomnd biexcitonic states, must be well isolated from other high-
between two excitons sitting in neighboring ddtee Sec. energy transitions. This determines additional constraints on
[l1B). Within our model, we approximate the biexcitonic the value ofi w, andf wy, .
ground state as the product of two excitonic wave functions From the above discussion, it is clear that in order to
sitting in different dots and built according to the prescrip-satisfy at the same time all the requirements listed above
tion given above. The wave function in the growth direction[(i)—(vi)], the system parameters must be fine tuned so that a
is approximated by a Gaussian of widf2 and the two dots quick mean to scan the whole parameter space becomes nec-
are taken to have the same widthi.e., the average of the essary. The simplified model previously described came out
two dots widths. This is reasonable since, for constructionto be quite efficient in performing such detailed analysis. The
the two dots have almost the same width. The desired biexavailable parameter space for a reasonable fieldFof
citonic shift A€ is then obtained averaging the corresponding= 75 kV/cm is shown in Fig. 14. Here, the typical error in the
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34 ‘ : citations could be performed by exploitipesentultrafast
laser technology? that allows one to generate and manipu-
S 30t F =75 (kV/cm) late electron-hole quantum states on a subpicosecond time
“é scale: coherent-carrier-contraf® In this respect, decoher-
~— 261 ence times on nano/microsecond scales can be regarded as
& “long” ones. Based on this idea a few implementations have
& 22t been recently put forwart. However, while in these propos-
als single-qubit operations are implemented by means of ul-
18 \ - trafast optical spectroscopy, the control of two-qubit opera-
3 =2 36 40 tions still involves the application of external fields and/or
ho, (meV) microcavity-mode couplings, whose switching times are

G lot of th iiable o much longer than decoherence times in semiconductors. It
FIG. 14. Plot of the parameter space available for designing the,e a1y follows that such proposals are currently out of reach

QD molecule used as quantum hardware in our QIC implementag, o g of state-of-the-art optoelectronics technology.

'g)ene. 'tl'eh)éf has been calculated using the proposed analytical model As already pointed out in Ref. 14, in order to take full
advantage from modern ultrafast laser spectroscopy one
should be able to design fully optical gating schemes able to

calculated values ak€ is 10—20 %. The constraints imposed ; . )
perform single- and two-qubit operations on a sub-

are A£=3.5 meV, oscillator strength greater than Qulg., picosecond time scale. Following this spirit, we have re-

— ex.
hoe=>hoy, hoy—AE>10meV, and,/d*<0.6. Based on cently proposed the firsall-optical implementation with

this analysis, we have identified the parameter set used in thseemiconductor macromolecul&s.

S|mula_1ted experiments of QIC processing presented in the The aim of this section is to review and discuss the
following section. : . . .

semiconductor-based implementation in Ref. 15, whose

quantum hardware consists of coupled QD structures, similar

IV. QUANTUM INFORMATION PROCESSING to those investigated in Sec. Il B. As described below, the

As anticipated in the introductory part of the paper, thecruc_:ial ingr_edient in our QIC scheme is the field-induced
advent of QIC(Ref. 28 as an abstract concept, has Stimu_eXC|t0n-_eXC|to_n coupling d|scussed_ in Sec. III: Indeed, the
lated a great deal of new thinking about how to design ang€ntral idea in our QIC proposal is to exploit such few-
realize quantum information processing devices. This goal i€XCiton effects to desigoonditional operations
extremely challenging: generally speaking, one should be
able to perform, on a system with a well-defined quantum
state spacéhe computationalspace, precise quantum-state
preparation, coherent quantum manipulatiégating of ar- As discussed in Sec. IlE, two basic requirements are
bitrary length, and state detection as well. It is well knownneeded for QIC processing) the tensor-product structure of
that the major obstacle to implement this ideal scheme ishe quantum hardware ard) the SU(2) character of the
decoherencethe spoiling of the unitary character of quan- raising/lowering operators acting on the individual qubits.
tum evolution due to the uncontrollable coupling with envi- Based on the electro-optical-response analysis of Sec. lll, we
ronmental, i.e., noncomputational, degrees of freedomcan conclude that state-of-the-art coupled QD structures can
Mostly due to the need of low decoherence rates, the firdbe used as semiconductor-based hardware for quantum infor-
proposals for experimental realizations of quantum informa+mation processing. Indeed, as shown in the previous section,
tion processing devices originated from specialties in atomi¢hese requirements are well fulfilled by the prototypical QD
physics?® in quantum optics? and in nuclear and electron molecules studied above. Our detailed investigation has
magnetic-resonance spectroscéb@n the other hand, prac- shown that a proper tailoring of the QD confinement poten-
tically relevant quantum computations require a large numtial as well as of the interdot distance allows one to identify
ber of quantum-hardware unifgubits, that are known to be a well-precise subset of excitonic states, corresponding to
hardly achievable in terms of such systems. In contrast, iintradot ground-state excitons. Indeed, as clearly shown in
spite of the serious difficulties related to the “fast” decoher- Sec. Il B (see Fig. 9, we can associate to each QD structure
ence times, a solid-state implementation of QIC seems to ba ground-state exciton, i.e., its low-energy optical transition
the only way to benefit synergically from the recent progressorresponding to the creation/destruction of a Coulomb-
in ultrafast optoelectroniéé as well as in meso/ correlated electron-hole pair in that dot. We have shown that
nanostructure fabrication and characterizafiokmong the  for these low-energy intradot optical transitions the corre-
proposed solid-state implementations one should mentioaponding exciton wavefunctions are localized in the various
those in superconducting-device physteand in meso- and dots of the array; this allows us to label such subset of exci-
nanoscopic physic¥ In particular, the first semiconductor- tonic states according to their host QD. In addition, in view
based proposal, by Loss and DiVincenzo, relies on spin dyef the relatively strong carrier confinement, leakage effects
namics in quantum dots; it exploits the low decoherence ofsee Sec. |l Eare expected to play a minor role.
spin degrees of freedom in comparison to the one of charge More specifically, following the second-quantization no-
excitations. tation, let us denote withjn,) the absence n(,=0—no

As originally envisioned in Ref. 14, gating of charge ex- conduction-band electrons—and the presentg=(1) of a

A. Quantum hardware and computational subspace
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ground-state exciton—a Coulomb-correlated electron-hole _
pair—in dot »; they constitute the single-qubit basis for the &=E,+ E AE,,my. (66)
proposed QIC schem@®), and|1),. The whole computa- viEy

tional state-space is then spanned by the basis set In order to better illustrate this idea, let us focus again on

the two-QD structure, i.e., two-qubit system, of Fig. 9 and fix
{n.}h=®,[n,), (n,=0,1). (63)  our attention on one of the two dots, say toT he effective
energy gap betweej®), and|1), depends now on the oc-
The full many-body Hamiltoniatd=H°+H’ in Eq. (16) cupation of dota. This elementary remark suggests that we
restricted to the above computational space will be describedesign properly tailored laser-pulse sequences to implement

by the following matrix elements: conditional logic gates between the two QD qubits as well as
single-qubit rotations. Indeed, by sending an ultrafast laser
2 ’ 0 ! - i =
H{n,}{n;}=({np}|(H°+H )|{nv}>:H{nV}{n;}+ H{ny}{n,’,}' m-pulse with central energyiwy[nN,]=&,+A&N,, the

transition|n,)—|1—ny) (7 rotation of the target qubitdot
b) is obtained if and only if the control qubitot a) is in the

0state|na>. Notice that the above scheme corresponds to the

They are the sum of two contributions: the first one is due t ) . in NN .
the Coulomb-correlated carrier-system Hamiltonian; the sec§o'c"""ed selective population transfer in NMRaltemative

ond is due to the carrier-light interaction Hamiltonian in Eq'procedures used in that field can be adapted to the present

(14). As discussed in Sec. IIC, the latter describes the?roposal as well. Moreover, by denoting wiiff* the generic

creation/destruction of electron-hole pairs driven by ultrafastinitary transformation induced by the lasepulse of central

sequences of multicolor laser pulses. frequency wy[n,], it is easy to check that the two-color
Let us now focus on the terrd®. As discussed in Sec. pulse sequencll 3/ achieves the unconditionat rotation

[I B, it preserves the total number of electron-hole p&irs  of qubit b.

and this is still true within our reduced—i.e.,

computational—subspace. In general, the Hamilton Matrix B. A few simulated experiments

0 . . .
H{ny}{nL} is nondiagonal. However, for the case of the realis- In order to test the viability of the proposed quantum-
tic coupled QD structure analyzed in Sec. 1l B, nondiagonalcomputation strategy, we have performed a few simulated
terms are found to play a very minor role. In this case, theexperiments of basic quantum information processing. To
latter can be neglected and the Hamiltonian matfxis then  this aim, we have performed a direct time-dependent solution
diagonal in our number representation,}. This suggests to of the generalized Liouville-von Neumann equation in Eq.
introduce corresponding number operators acting on ouf31) restricted to our computational subspace, i.e., we have

(64)

computational subspacen,=3! _on,)n,(n,|=[1),(1],.  simulated the time evolution of the reduced density matrix
The HamiltonianH® reduced to our computational subspace B ,
can then be expressed in terms of such number operators. In p{ny}{“i}(t)_<{nV}|p(t)|{nV}>' (67)

particular, for an array of coupled QD's this can be written Sx¢ discussed in Sec. IID, this is governed by the total

Hamiltonian’ reduced to our computational subspésee
Ho=> en + EE AE N, (65) Egs.(64) and (65)] plus a nonunitary t_erFﬁ due to energy-
w20 Ty relaxation and dephasing processes induced by environmen-
tal degrees of freedom, such as phonons, plasmons, etc. The
Here, £, denotes the energy of the ground-state exciton ifatter has been treated within the stand@;d, model*®
dot v while A&, is the biexcitonic shift due to the Coulomb ~ We stress that the present density-matrix description, re-
interaction between dotsand’, introduced in Sec. ll[see  stricted to our computational subspace, does not account for
Eq. (50 and Fig. 11. leakage effects.e., it neglects processes connecting states of
The effective Hamiltonian in Eq(65) has exactly the the computational subspace to other—noncomputational—
same structure of the one proposed by Lloyd in his pioneerexcitonic states, and vice versa. Due to the strong-
ing paper on quantum cellular automataand it is the confinement character of our QD structuresge Sec. I
Model Hamiltonian currently used in most of the NMR such leakage effects are expected to play a very minor role. A
quantum-computing schem&sThis fact is extremely impor- quantitative evaluation of the leakage dynamics would re-
tant since it tells us the following. quire the inclusion in our density-matrix description of non-
(i) The present semiconductor-based implementation coreomputational states.
tains all relevant ingredients for the realization of basic QIC The above simulation scheme has been applied to the
processing. coupled-QD structure of Fig. 9 in the presence of an in-plane
(i) It allows one to establish a one-to-one correspondencstatic fieldF =75kV/cm: £,=1.673 eV, £,=1.683 eV, and
between our semiconductor-based scheme and much mof£=4 meV (see inset in Fig. 10
mature implementations, such as NMR. We shall start our time-dependent analysis by simulating a
According to Eq.(65), the single-exciton energy, is  basic conditional two-qubit operation, the so-calledn-
renormalized by the biexcitonic shit&,,,, induced by the trolled not (CNOT) gate. Our first simulated experiment is
presence of a second exciton in doét shown in Fig. 15. The multicolor laser-pulse trasee cen-
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FIG. 16. Time-dependent simulation of a CNOT quantum gate
transforming the factorized staj@,0)+|1,0) into a maximally en-
tangled staté0,0)+|1,2) for the coupled QD structura+b in Fig.

9 (see text Exciton populations, andn,, (upper pangland diag-
onal density-matrix elementdower panel as a function of time.
The laser-pulse sequence is also sketdivedtral panel

FIG. 15. Time-dependent simulation of a two-qubit operation
realizing the first prescriptiofj1,0—|1,1)) for a CNOT logic quan-
tum gate on dots andb (see text Exciton populations, andn,
(upper pangland diagonal density-matrix elemerkswer panel as
a function of time. The laser-pulse sequence is also sketiesd
tral panel.

ingredient in any quantum-computation protocol is entangle-

tral pane) is able to perform first ar rotation of the qubit; ment. Generally speaking, this corresponds to a nontrivial
Then, the second pulse is tuned to the frequefigy AE, linear combination of our basis states.
thus performing ar rotation of the qubitb since this corre- We shall now show that the CNOT gate previously dis-
sponds to its renormalized transition enefgge Eq.(66)]  cussed is able to transform a factorized state into a maxi-
when the neighbor qubié is in state|1),. The scenario mally entangled one. Figure 16 shows a simulated two-
described so far is confirmed by the time evolution of thequbit operation driven again by a two-color laser-pulse se-
exciton occupation numbers, andny, (upper panelas well  quence(see central pangl Initially, the system is in the
as of the diagonal elements of the density matrix in our fourstate |0,0). The first laser pulseat t=0) is tailored in
dimensional computational bagi®wer pane). such a way to induce now a2 rotation of the qubit

More specifically, at the beginning the system is in thea:|0,00—(|0,0)+|1,0))/v2. At time t=1 ps a second pulse in-
state|0,00=[0),®|0),. Due to the first pulse a=0 the duces a conditionakr rotation of the qubitb:|0,0+|1,0
computational state moves to the st@1e)=|1),®|0),.  —|0,0)+|1,1). This last operation plays a central role in any
Finally, at timet=1 ps the second pulse brings the systemQIC processing, since it transformdactorizedstate[ (|0),
into the statd1,1)=|1),®|1)y. +1]1),)®|0)] into an entangledstate (0),®|0),+|1)4

This realizes the first part of the well-known CNOT gate: ®|1),).
the target qubib is rotated if the control qubia is in state As we can see, during the pulse energy-nonconveriong
|1)a. To complete it, one has to show that the state of theff-resonant transitiong take place; however, at the end of
target qubitb remains unchanged if the control qubiis in  the pulse such effects vanish and the desired quantum state is
state|0),. This has been checked by a second simulatedeached. The experiments simulated abtsee Figs. 15 and
experiment(not reported hepewhere the first pulse, being 16) clearly show that the energy scale of the biexcitonic
now off-resonantwith respect to do&), does not change the splitting A€ in our QD moleculeg(see Fig. 11is compatible
computational state of the system. As a consequence, thgith the subpicosecond operation time scale of modern ul-
second pulse is no more into resonance with the excitonictrafast laser technology.
transition energy of dab, since the latter is no more renor-
malized by the excitonic occupation of datTherefore, the
initial state of the system i,0) and the final one is again
|0,0. We have presented a detailed analysis of the electro-

The simulated experiments discussed so far clearly showptical response of single as well as coupled QD structures.
the potential realization of the CNOT gate, thus confirmingMore specifically, we have investigated the effect of a static
the validity of the proposed semiconductor-based QIC stratelectric field on the many-exciton optical response of
egy. However, the analysis presented so far deals with faguasi-OD semiconductor nanostructures. Our analysis has
torized states, i.e., we have simulated the CNOT gate actinghown that a proper tailoring of the single-particle confine-
on basis state§n,}) only. It is well knowrf® that the key ~ment potential as well as of the interdot distance and applied

V. SUMMARY AND CONCLUSIONS
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field allows one to induce and control intradot as well as ACKNOWLEDGMENTS
interdot exciton-exciton coupling; this, in turn, may give rise
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to significant energy shifts of the optical transitions. g
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realistic state-of-the-art QD structures are good candidates
for quantum-information encoding and manipulation. The
subpicosecond time scale of ultrafast laser spectroscopy al-
lows for a relatively large number of elementary operations
within the exciton decoherence time. In this section we shall describe the numerical approach
At this point a few comments are in order. First, we stresaused for the evaluation of the single-particle properties—3D
a very important feature of the proposed semiconductorwave functions and energy levels—for single as well as
based implementation: as for NMR quantum computingcoupled QD structures. Within the standard envelope-
two-body interactions are always switched (timis should be ~ function picturel,9 the noninteracting carriers in our quasi-0D
compared to the schemes in which two-qubit gates are reagtructure in the presence of a static electric field are de-
ized by turning on and off the coupling between subsystemsscribed by the Schainger equatior1) with the confinement
e.g., by means of slowly varying fields and cavity-mode coudPotential in Eq.(42):
plings); conditional as well as unconditional dynamics is re-

APPENDIX A: EVALUATION OF SINGLE-PARTICLE
PROPERTIES

. . . 22
alized by means of sequences of ultrafast single-qubit opera- _ hev; e/h B
tions whose length does not scale as a function of the total 2Mg/n TV ()= eFr (1) =eiyjdi(r). (A1)
number of QD’s in the arra}’

Let us now come to thetate measuremerin view of the As for the case of semiconductor quantum wies
few-exciton character of the proposed quantum hardware, thguantitative analysis of the whole single-particle spectrum
conventional measurement of the carrier subsystem by speeg;; requires a direct numerical solution of the above Sehro
trally resolved luminescence needs to be replaced by mordinger equation. This can be performed using a fully 3D
sensitive detection schemes. To this end, a viable strategylane-wave expansion described in Ref. 25, which is a
could be to apply to our semiconductor-based structure thatraightforward generalization to QD structures of the 2D
well-known recycling techniques commonly used in plane-wave expansion proposed in Ref. 24.
quantum-optics experiment® Generally speaking, the idea  As anticipated in Sec. Ill, when—as in this paper—we are
is to properly combine quantum- and dielectric-confinementnterested in the low-energy range only, for most of the QD
effects in order to obtain well-defined energy levels, onStructures realized so far the carrier confinement can be de-
which  design  energy-selective  photon-amplificationscribed as the sum of two potential profiles acting along
schemes. An alternative approach would be to adopt different directiongsee Eq(43)], which allows us to factor-
storage-qubit schemas recently proposed in Ref. 41. ize the original 3D problem in EqA1) into a perpendicular

The nanoscale range of the interdot coupling we em{L) direction and a paralldl)) plane[see Eqs(44) and(45)].
ployed for enabling conditional dynamics does not allow forMoreover, as far as the low-energy region is concerned, the
space-selective optical addressing of individual qubits. Foi-plane or parallel confinement is well described by a 2D
this reason, at least for our basic QD molectde-p), we parabolic potential. In this case the Sdiirgger equation
resorted to an energy-selective addressing scheme. Howev#fithin the 2D parallel subspace can be solved analytically
extending such strategy to the whole QD array would imply(s€e below and thus our problem reduces to a numerical
different values of the excitonic transition in each QD, i.e.,Solution of the Schrdinger equation along the perpendicular
£,#&, . This, besides obvious technological difficulties, direction
would constitute a conceptual limitation of scalability to-
wards massive quantum computations. The problem can be f’zZV,ZL
avoided following a completely different strategy originally H@l/ii /jL(M)= -
proposed by Lloyéf and recently improved in Ref. 42: by
properly designed sequences of multicolor global pulses =€ i o 5 (ro). (A2)
within a cellular-automaton scheme, local addressing is re- R
placed by information-encoding transfer along our QD arrayThjs has been solved using the plane-wave-expansion tech-

Finally, a present limitation of the proposed quantumpique previously discussé@?® Within such approach, the

hardware are the nonuniform structural and geometricalinknown envelope function is written as a linear combina-
properties of the QD's in the array, which may give rise t0tjon of plane waves, i.e.,

energy broadenings larger than the biexcitonic shift. How-

ever, recent progress in QD fabrication—including the real-

ization of QD structures in microcavities—will allow us, we o qo(r)=
believe, to overcome this purely technological limitation. +1e

— e/h + Lo
2mon +VI(r ) xeF.r; 1/’|L/]L(M)

% bge'®', (A3)

-

L
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whereG=n(2#/L) are reciprocal lattice vectors associated n!
to the periodicity boxL. By substituting the above plane- (1 @)=a (M+D pr
wave expansion into EqA2), the latter is transformed into '

the following eigenvalue problem: . r?
Xe—'m¢rme—f2/2“2£nm(;z), (A10)

% (Hoer— € er)be =0, (A4)  where
whergHQG, are the matr_ix_elements of the singlg-partiple a:<w) (A11)
Hamiltonian in Eq.(A2) within our plane-wave basis. A di- fi

rect diagonalization of{gcs will then provide the desired 5 the spatial extension of the harmonic-oscillator ground
perpendicular energy levels: as well as the wavefunction state—ewg = \kgx /Moy being its oscillation frequency—

coefficientsbg . _ while £IM(x) denotes the generalized Laguerre polynomial
Let us now come back to the in-plane or parallel—subspac?h the dimensionless variabte=r2/ a2

pr?]?ilr?mn,] X%Ch d ;Ner \}ireatl Vr\gthé?i rfhg i2D parabolic- In view of the central symmetry of the problem, our quan-
contineme odel previously mentioned, 1.€., tum numbers are those of the angular momentum in two
dimensions, i.e., a radial numbern=0,1,2,...) plus an or-

1 .
Vf/h(fu)Zike/hff- (A5)  bital numberm (m=-n,—n+2,.n—2n). The corre-
sponding in-plane single-particle energy spectrum is given
The corresponding Schdinger equation is of the form by
) enm=hogn(2n—|M[+1)=fwgn(n+1), (AL2)
ﬁZVr” 1 ,
— + = Kgnl FeFy-r, (plil i (r”)zey i ,p‘i‘ (T W_here n.=2n—|m| denotes the energy quantum number
2Mgy - 2 e S with degeneracyr(.+1).
(A6) The 3D single-particle energy spectrum is then given by

It is well known that the presence of a static uniform electricth® sum of equally-spaced energy-level sequences, i.e.,

field F, does not change the parabolic nature of our confine- _ I .
ment potential. Indeed, EGA6) can be rewritten as €l 6'Li+ €nm €t+(n€+1)ﬁwe’h' (AL3)

for each energy levek'—obtained by solving the eigen-

ﬁzvrzu 1 2| value problem ifA4)—we deal with an harmonic-oscillator
T 2men 2 Kernl Ty —di iy iy (1) spectrum with energy separatiémy, .
Given the single-particle state factorization in Eg4),
=(e‘i‘H ,J-”—Ase,h)lp!‘” 1, (T)- (A7)  the corresponding dipole matrix elements in Ep) can be

factorized as well
The presence of the applied field results in a shift

i =woundi T 5 (A14)
eF .
dfih=5 (Ag)  with
ke/h
of the parabolic-potential minimum as well as in a rigid en- Iiih:f lﬂi(&)lﬂt(h)dh (A15)
ergy shift
and
1 2
Aegn=— = kend®™, (A9)
e 2nem jiluj”:f i, (r) g (rpdr. (A16)

often referred to as Stark shift. We stress that in the Presenqsy inserting the plane-wave expansioh3) into Eq. (A15)
of the electric fieldF, we have different symmetry centers o get

for electrons and holes; this, in turn, introduces significant

modifications in the selection rules governing interband op- N o

tical transitions(see below Iiljizé bgbg- (AL7)
As anticipated, the Schdinger equation(A7) can be

solved analytically. Due to the central symmetry of the prob- | et ys finally focus on the in-plane integral in E&16).

lem (with respect to the parabolic-potential minimafi"), it This can be rewritten in terms of the polar-coordinater set
is convenient to adopt a 2D polar-coordinate set. By denotingnhtroduced in Eq(A10):

with r=|r,—d®"| the radial coordinate and with the azi-

muthal coordinate measured with respect to the field direc-
tion, we have P Ty = f UnmlTer @) U (Th o ep)dr . (AL8)
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Here, ren=|r,— dH | and ¢, are the corresponding azi- e? o
muthal angles. In general, the two polar-coordinate sets forV(r—r')= P T i f dgKo(qlry—ri])er
electrons and holes do not coincide. Indeed, in the presence (B3)

of a static fieldF, we have different symmetry centdrsee ) o )

Eq. (A8)]. In contrast, forF,=0 the two coordinate sets Here, &, is the static dielectric constafit,q denotes the
coincide ¢,=r,¢=re,@e="n,on) and the above equation Fourier-transform parameter, while
reduces to

= cosydy

is the zero-order modified Bessel function.
In this case—for which the symmetry centers for electrons By inserting the Fourier expansidB3) into Eq.(B2), we
and holes coincide—we deal with a number of well-knownrealize a factorization of the two space coordinatesand
selection rules. In particular we have ri . Indeed, by introducing the form factors

Ko(X)= (B4)

Ilr|1mn 'm' T f lzb m(rs @)l//n m,(r,QD)I’dI’d(p_ (A19)

Tonrme * Omsm - (A20)

TII’(Q):J drlgbﬁ*(rl)e'qriwll,(rl), (B5)
This tells us that in the electron-hole generation process the
total angular momentum is conserved. Moreover, for the spethe Coulomb matrix elements in EgB2) can be simply
cial case of equally extended electron and hole wave funcwritten as
tions, i.e.,a.= ay, (see discussion in Sec. lI)Awe have

IH

nm,n’m’

2
I o & N E,
oc‘sm-%—m’an,n'= 5m+mr5ne,né! (A21) VIi'é'Z'l(rH r”) Eqm f Ko(C]|r” r” |)ﬂlll(q)ﬁél2(q)(dq)
B6
Therefore, the evaluation of the effective Coulomb potential
Eq. (B2) reduces to the evaluation of the form factdrén

g. (B5). To this end, by replacing the wave functiors
gwth their plane-wave expansion in EGA3) we get

i.e., the energy quantum numbey is conserved as well.

In contrast, in the presence of the static field the above
selection rules are violated, due to the fact that theE
Harmonic-oscillator wave functions in EQA10) are no
longer eigenstates of the total angular momentum. As w
shall see, the same considerations apply to the case of the )

Fwo—bod_y Coulomb matrix elements discussed in the follow- Fu(n=2 b b'(E,O(G’ -G+q), (B7)
ing section. GG’

where
APPENDIX B: EVALUATION OF TWO-BODY COULOMB

1 :
MATRIX ELEMENTS O(K) = EJ ekridr, (B9)

In this section we shall describe the numerical approach
used for the evaluation of the two-body Coulomb matrixare plane-wave overlap integrals over the periodicity region
elements. Starting again from the single-particle state factort, whose explicit form can be evaluated analytically.
ization in EqQ.(44), the Coulomb matrix elements in E(b) Therefore, for any shape of the perpendicular confinement
can be rewritten as potential, starting from the numerically computed eigenvec-

tors b [see Eqs(A3) and (A4)], we are able to obtain the
ll n* I / various form factorsF which, in turn, allow us to numeri-
Vi = Jdr“f dr”zp (r” ( ”)V'ilélzll(r”_r”) cally evaluate the effective in-plane Coulomb potential in
Eqg. (B2). Once the latter is known over a suitable space grid,
‘ﬂnzmz( Il)wnlml(r")' (B the original six-dimensional integral in E@5) is then re-
duced to the evaluation of the four-dimensional integral in
Eq. (B1). This requires some care, since the effective poten-
tial V! is singular for|r,—r |=0. In order to eliminate such
| 1oy (ry—rp)= jdrlj drltpl,*(rl)wﬁ*(ri) singularity, it is convenient to replace the integration coordi-
' 2 nater | with the relative coordinate=r,—r| . Indeed, if we
XV(r—r')lﬁz(ri)tﬁi(H) (B2) move to 2D polar-coordinate sets for the new integration
variablesr; andT,, the presence of the Jacobian function
can be regarded as an in-plane effective potential obtained lgorresponding to the relative coordinajecancels the poten-
integrating the original 3D Coulomb potentdt—multiplied  tial singularity.
by the corresponding wave functiogs —over the perpen- We stress that—as for the case of optical matrix elements
dicular direction. previously discusse@see Appendix A—in the absence of

Let us consider the explicit form of the 3D Coulomb po- applied static fields the symmetry centers for electrons and
tential in Eq.(B2) written in terms of its Fourier transform holes coincide[see Eq.(A8)] and, due to global rotation
along the perpendicular direction symmetry, we get

where
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Cc
Vlilélzllocéml+m2,mi+mé (Bg) Hiljlyiij]’_:(fil_FEjl)ﬁiljl'iiji' (CS)
and the numerical integration in E¢B1) reduces to three |, o similar way, combining Eq.C1) with the explicit form

variables only: one angular and two radial coordinates. A$¢ the carrier-carrier Hamiltoniamc® in Eq. (4), after a

for the optical matrix elements previously discussed, the se-, . . cc -~

lection rule in Eq.(B9) describes the conservation of the straightforward calculation we Obtalﬂiljlyiiji__Vililii‘i'

total angular momentum in the Coulomb interaction process: Let us now come to the evaluation of biexcitonic states,

m;+my,=m;+m,. i.e., states corresponding to two Coulomb-correlated
In contrast, in the presence of an applied static field thelectron-hole pairs. In this case the proper basis set is given

selection rule(B9) is relaxed and we need to numerically by the single-particle states in EGLO) with N=2, i.e.,

solve the four-dimensional integral in E@1).

12)=li1]aiz] 2>=C?1dflf:?2dfz|0>- (C6)

APPENDIX C: EVALUATION OF MANY-EXCITON STATES

AND OPTICAL MATRIX ELEMENTS The corresponding Hamiltonian matrix is given by

In this section we shall apply the exact-diagonalization Hiljlizjz'iijiiéjé: ?ljliZjZ’iijiiéjé ?leisz!iijiiéJé
approach introduced in Sec. Il B to the excitoni=1) and (C7)
biexcitonic (N=2) case. Generally speaking, the method
consists in a numerical diagonalization of the interacting-With
carrier HamiltonianH® written in the single-particle basis c el
{lIn)} [see Eqs(8), (11), and(12)]. Ry sigig.igiiy = (daialol H¥lidaiof2) - (C)

For the evaluation of excitonic states, i.e., states corre-
sponding to a single Coulomb-correlated electron-hole pail"fmd
the proper basis set is given by the single-particle states in cc el e
Eq. (10) with N=l, i.e., Hiljlizjzriijiiéi£:<lljll2J2|H ||1]1|212>' (C9)

[1)=liqj 1>:Ci’fldj’rl|o>, (Cy Again, combining Eq.(C6) with the explicit form of the
_ o o noninteracting Hamiltoniaki® in Eq. (3) and making use of
The corresponding Hamiltonian matrix is given by the Fermionic commutation relations, in this case we get:
S =HS L AHSS C2 c =
oyl gy iyl €2 Hiﬂlizjzviijiiéié_(eil—'_Ei2+6j1+6j2)5i1j1'iij15i2j2'iéjé
with
—(ei e, T e, €) 000,000
H o =(i1j4|Hi}); C3
|111,|111 < 1Jl| | 1Jl ( ) _(6i1+€i2+6j1+Ejz)éiljl'iéjiéizj?iijé
and
+(Eil+€i2+ 6j1+ EJZ)6i1j1'iéjé5i2j2'iiji'
cc T )
Hiljl’iiji_<ll]1|HCC||111>' (Cq (C10

Combining Eq.(C1) with the explicit form of the noninter- In a similar way, combining Eq(C6) with the explicit form
acting HamiltonianH® in Eq. (3) and making use of the of the carrier-carrier Hamiltoniatd®® in Eq. (4), after a
Fermionic commutation relations we get straightforward calculation we obtain

cc
I A A
S FRETELPIP

1
= 5(Vi1i2i1ié—Vi2iliiié—Vili2iéii+Viziliéii)(5jlj2,jijé_ 5jljz,j§ji)+ 5(leiziijg_ijjliijé_vjljzjéii
TViaiigi) Gusigigiy ™ Gigiguigi) ™ Visiaigig iaiz igiy T Visisigipdizizigis T Viniaigi Oiai giy ™ Visiaigis ol ifig
+V, g

11510000557 Vigiaidi it ™ Viginidi! Oigig il iy T VinisisinOninitit F Vigisiit Gy .isis ™ VigisilisOigiyiibi)
taiaigig Oai igiy T Vigiai1iOiniz igit ™ Vigiaigi; inigiiig ™+ VigiaigisOisiziigis T Vigiaisiy Oisin igiy ™ Viaigigdiniy iy

(C1D)
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Let us finally discuss the explicit form of the carrier-light  For the biexcitonic absorptiofsee Eq.(26)] the corre-
matrix elementg19) entering the many-exciton absorption sponding matrix elements are defined in E2y). Combining
probability in Eq.(20). the explicit form of the carrier-light interaction Hamiltonian

For the excitonic absorptiofsee Eq.(22)] the corre- (14) with that of the excitonic state in E¢21) as well as of
sponding matrix elements are defined in E28). Combining  the biexcitonic state in EJ25), we obtain
the explicit form of the carrier-light interaction Hamiltonian
(14) with that of the generic excitonic state in EQ1), we )
get H>\2>\2

E(t)E UPZ{(UN il + U )

'211

N
i1ip.0102 1) UllJ ’U“'sz U|2J2M'111}

(C13

Hi0= — B U, (C12 x (26

Iy

whereU, M s the unitary transformation from the noninter-

acting baS|s to the interacting onl, is the noninteracting Where againJ, ' ' is the unitary transformation from of the
two-particle label corresponding to the single-particle Statefiilomnteractlngl\l particle basis to the interacting onejs the
iy and thej;, while w =u; j is the single-particle dipole single-particle dipole matrix element, ag=ij,i,j, is
matrix element given in Eql5). the generic label for the noninteracting two-pair basis.
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