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In order to understand how screening is modified by electronic interferences in a mesoscopic isolated
system, we have computed both analytically and numerically the average thermodynamic and time-dependent
polarizabilities of two-dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux. Two
geometries have been considered: rings and squares. Mesoscopic correction to screening are taken into account
in a self consistent way, using the response function formalism. The role of the statistical ena@mbtecal
and grand canonicgl disorder and frequency have been investigated. We have also computed first order
corrections to the polarizability due to electron-electron interactions. Our main results concern the diffusive
regime. In the canonical ensemble, there is no flux dependence in the polarizability when the frequency is
much smaller than the level spacing. On the other hand, in the grand canonical ensemble for frequencies larger
than the mean broadening of the energy levykeis still small compared to the level spacinthe polarizability
oscillates with flux, with the periodicityh/2e. The order of magnitude of the effect is given by
Sal ax(Ng/WQ), where\ is the Thomas-Fermi screening lengthi,the width of the rings or the size of the
squares, and their average dimensionless conductance. This magnetopolarizability of Aharonov-Bohm rings
has been recently measured experimen{d@lyDeblock, Y. Noat, H. Bouchiat, B. Reulet and D. Mailly, Phys.

Rev. Lett.84, 3579(2000] and is in good agreement with our grand canonical result.
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I. INTRODUCTION In order to answer this question, we have calculated the
flux dependent correction to the average polarizability, which
we call “mesoscopic correction,” for two-dimensional meso-
Transport and thermodynamic properties of mesoscopigcopic samples in the presence of an Aharonov-Bohm flux.
metallic samples have been known for a long time to be quitqwo different geometries have been considered, namely, a
sensitive to the quantum phase coherence of the electronigo-dimensional ring or square in an in-plane electric field.
wave functions at low temperatuteln particular, it was The role of statistical ensemble, disorder, and finite fre-
shown that a mesoscopic ring threaded by a magnetic fielquency have been investigated. In the case of a time-
exhibits a persistent current periodic with the flux and with agependent electric field, we distinguish two different limits,
period of one flux quantung,=h/e. This current was mea- \hether the frequency is smaller or larger than the inverse
sured in several experimerfs} corresponding to different ejaxation time, or mean level broadening The case
situations and materials. More recently, the response of &<y corresponds to the thermodynamic limit whereas
mesoscopic system to a time-dependent magnetic field was ,, corresponds to the finite frequency limit. A preliminary

studied both theoretically and experimentalfy. account of this work is already publishéd.
The purpose of the present paper is to investigate how

screening is influenced by electronic interferences in a phase
coherent sample. In this spirit, we discuss how the electrical B. Scope of the paper

polarizability c, Whlch 'S the response of a metallic sample This paper is organized as follows. The definition of the
to a small electrostatic field and is directly related to screen-

ina. is also sensitive to Mesosconic effeciscan be experi electrical polarizability and the classical result for a macro-
mg’ntall measured by couplin tEe mesoscopic samples tosg:opic sample are given in Sec. Il
y Y piing P P In Sec. lll, we derive the expression of the electrical po-

cgpacnor. For sma!l voltages, clorresp(_)ndllng to the Imee}r e rizability of a system of non-interacting electrons, in the
gime, the change |n.the.c'apa0|tance is Q|rectly proportion pirit of the early work of Gorkov and EliashbefGE).8 A
to the average polarizabilitjer) of the particles. giant unphysical polarizability is obtained. However, it is
When the typical siz of the particle is much larger than qssiple 1o discuss in this very simple model the flux depen-
the Thomas-Fermi screening length,a is mostly deter-  gence of two quantities which contribute to the polarizability,
mined by the geometrical shape of the particle. For a Sphefhamely, the matrix element of the positiéor screened po-
cal particle, it is proportional to the voluméof the particle,  tentia) operator and the contribution of energy levels. Then,
with a small correction of the order ofs/L. we examine in Sec. IV how screening can be taken into
Now, what happens in the case of a quantum cohererdccount. In particular, we show how to incorporate contribu-
sample, i.e., wherL is the order of the phase coherencetions of electronic interferences. Using those results, a gen-
length? Is there a mesoscopic correction to the polarizabilityeral expression for the polarizability and its mesoscopic cor-
due to contribution from electronic interferences? rection for a time varying electric field are derived in Sec. V.

A. Motivation of the paper
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We then study separately the case of the grand canonicah the eigenstates will be however discussed in Sec. VII
and canonical statistical ensemble. The grand canonical awithin the Hartree-Fock approximation.
erage polarizability is found to depend only on the flux- The application of an electric field on a finite metallic
dependent matrix elements of the screened potential whereagstem, results in an induced dipolar moméntvhich, is
the canonical average depends also on the energy levels. Agoportional to the applied field when it is sufficiently small.
a result when the frequency is smaller than the level spacinghe range of validity of linear response is discussed in Ap-
the magnetopolarizability is found much smaller in the ca-pendix B:
nonical ensemble compared to the grand canonical case. Fi-
nally, we present results on the Hartree-Fock correction to P:f p(r)rdr=aE, )
the zero frequency polarizability. Section VI is devoted to a

comparison of these results with recent experiments. where « is by definition the polarizability of the conductor,

which can be expressed as a function of the response func-
II. BASIC CONCEPTS tion

A. Screening and polarizability

1
When an external fielt,,= — grad(s.,) is applied on a a= Ef X(r1,r2)E-ra¢(ry)drydr,. (6)
conductor, the charge density adjusts in such a way that the
effective field inside the conductor cancels. This phenom-
enon is called screening. In principle the computation of the B. Classical polarizability
potential inside the sample requires to solve a complex
N-body Hamiltonian taking into account the long-range Cou-
lomb interaction between electrons. However, it is possible The polarizability of a macroscopic piece of metal is de-
in general to treat the interactions in a mean field approxiscribed by classical electrostatics. In this approximation, the
mation. The screened potential inside the conductor is thedipolar moment can be calculated by solving Poisson equa-
given by tion AV+p/ey=0, in all space and imposing as well that the
conductor is at a constant potential. The problem is solvable
analytically for a sphere of volum¥:a=ey,(47/3)V. It is
D)= dexra) + f dp(rz)U(ry,rz)dry, @ aso possible to estimate the polarizabilityoof a metallic plate
) o _ of thicknessa in a constant electric field perpendicular to the
where ép(r>) is the charge density induced at the paipt  pjate. The induced charge density is such that the electric

a_md U(rq,ry) is Fhe_ Coulomb interaCtiO_n potential. In th_e field cancels inside the plate. Neglecting border effects, we
linear response limitgp(r,) can be described by the electric ,5ye

response functiory(r¢,r,), which relates the variation of

1. Plate with perpendicular electric field

charge in the system a4 to a local perturbation at; , 6(r): Eeg a a
p(l’)—T 5X—§ -0 X+E . (7)
5p(l’2)=J’ X(11,r2) g(ry)dry. @) Integrating Eq.(5), one finds the classical polarizability
Relation(1) can then be written more conveniently in a a=€a’=e€yV. (8)
matrix form

2. Two-dimentional(2D) and 1D systems in longitudinal
¢=(1-Ux) ‘dex- ©) electric fields

In a clean infinite system, the induced charge density is sim- We now examine the case of 2D conductors, and more
ply related to the screened potentiaél in Fourier space specifically a strip of lengt. and widthW, with L>W, in
8p(a) = x(q) ¢(q), where ¢(q)=[€'%"p(r)dr. The prob- an in-plane electric field perpendicular to its long axis. In
lem is more complex in a disordered system, which does nderder to determine the induced charge density, the effective
have the translational invariance. In any case for a finiteelectric field inside the strip is imposed to be zero. In the
system, it is possible to compute the response function fronfimit o_f an infinite strip, this condition leads to the following
the eigenstatelsr) of the system in the absence of the exter-€quation:

nal field, associated to the eigenvalugs

f L o) e o )
N * . —E=0.
Yo (r)p(ra) a(r) (ra) 2mey x—x’
X(T1,F2)221 Z BE — £ = tce.
atlpra B Ta @ We have calculated numerically the solution of

Eg. (9) in the case of an infinite striplFig. 1). In
In most cases we will identify these eigenstates as the solicontrast with the three-dimensional case, the charge
tion of the hamiltonian of the system without electron inter-distribution spreads over the full width of the strip in order
actions which will be taken into account only by consideringto cancel the external field. The numerical solution is very
the screening on the applied field. The effect of interactionglose to a logarithm. Assuming that the density is of the form
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a=——", (11
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104 where ag= e,m?R® which reads in the limit>1:
eqm’R3

a= |—R.
" w

As a result both longitudinal polarizabilities of a ring and a
disk scale like the cube of their radius, just as in the polar-
izability of a sphere.

(12

pPX)

-10 1 C. A mesoscopic correction to the polarizability?

In the following, we define the quantity we wish to cal-
2/a=10"5 culate. As we have just seen, the classical polarizability of a
metallic sample is determined by geometrical factors. How-
ever, due to the Pauli principle, charges cannot strictly accu-
-20 T T T T T T T T T T T 1 f
06 04 02 00 0.2 0.4 06 mulate on the border of the sample, but the charge density
distribution rather extends on the screening length This
effect reduces the polarizability compared to its classical
FIG. 1. Induced charge density of a conducting strip in an in-value by a quantitpa+¢ of the order ofA /L, wherelL is the
plane uniform electric field: the function diverges logarithmically as typical size of the conductor along the electric field. In a
a function of the cutoff\/a. coherent sample, electronic interferences might also give rise
to a contributiondag to the polarizability. The total polariz-
p(X)~EWIN(W2—x)/In(Wi2+x), the integral(5) of the  2Pility can thus be writtem = ag + Sare+ dag . In order to
previous function gives~ e;W2L. show evidence of this correction, a magnetic flixcan be
This result extrapolates to a two-dimensional sample O]a_pplled through the s_,ampl_e n _order to "?Od'fy tt'e phase
typical sizeW, for which the in-plane polarizability scales as difference of electronic trajectories. We will call “mesos-

a~ e, WS, For instance the polarizability of a disk of radius _copic correction” the flux-dependent part of the polarizabil-

Ris® a=€,16R%3 ity da(P). We will focus on the ensemble average of this
In the case of a one-dimensional wire, whose lerigth quantity Sa(®), which is® /2 periodic.We will characterize

much longer than its diametér, in an electric field along its the flux dependence afa by 64 (@) = Sa(Py/4)— Sa(0).

axis, the polarizability has been showio be oL In(D/L).

Similarly as in the 2D case, the charge density has to spread D. Model used for the numerical simulations

over the entire wire in order to screen the external potential. Part of th vsi h q | ter si
The case of a 1D ring is also exactly solvable. In order, art of the analysis we have done rely on computer simu-

to take screening into account, we first assume that the irEit'onS' The two-dimensional rings or squares are model_ed
duced charge density in the ring is of the form y the Anderson model. Each atomic site is coupled to its

_ _ . . nearest neighbor by a hopping tetnDisorder is introduced
gl(gad );ggasn(?j(ﬁﬁﬁe I;?)n,gfrom which we deduce the in by on-site energies randomly distributed in the interval
[—w,w]. The Anderson Hamiltonian can be written in sec-
ond quantization

x/a

2
Ding(0) = J; de’. (10

H= ; eccicttei?cle,,  +te el o, (13

1 p(0")
R

8mey | (0— 0')
sin| —
where ¢, is the creation operator associated with site

The integral is logarithmically diverging and it is necessaryk. The magnetic flux is introduced in this Hamiltonian
to introduce a cutofd.=W/R, related to the finite widttW  through the phase factor of the hoping element with
of the ring ¢ig(0) =~ —\ cos@)In(8)/4meg. O =27P/Do(X— X+ 1)/L for a ring of sizeL. In the case

The screened potential reags 6) = cos@)(E+\J), with  of squares we have taken into account the penetration of the
J=In(1/6.)/4me,. The polarizability is obtained either from magnetic field in the sample: the phase factor appearing in
the potential calculated above, either from the expression ahe hopping matrix elements is computed from the integral of
the charge. This self-consistent relation sets the value of thihe potential vector between concerned neighbors. In two
parametei, from which we deduce the polarizability of the dimensi}gns, an estimation of the elastic mean free path is
ring: given b
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t\2 nator, the polarizability will in particular be very sensitive to
le~ 30( v_v) (14)  the electric field induced coupling between the last occupied
levels and the first non occupied ones. Note also that this

allowing us to choose values tfw so that the system is in expression of the polarizability is also from E35) identi-
the diffusive regime. Averages are always performed over theal to the second derivative of the total energy of the system
number of electrons in the system between one quarter angith respect to electric field:
three quarter filling. It has been checked that expresdidn
remains valid in this energy range. On the other hand, we
have not done disorder averaging which needs much longer a= -
computation time. For this reason we have restricted our

analysis to a moderate range of disorder, corresponding tphese results present strong similarities with the paramag-
the diffusive ergodic regime where disorder and energy avpetic contribution of orbital susceptibility of a mesoscopic

026a

a=1 gE2 "

erages give identical results. ring pierced by a flux line which is identical to expression
(16) where theE-r is replaced byeA-p, where A is the
lIl. QUANTUM POLARIZABILITY OF A SYSTEM OF potential vector an is the kinetic momentum operator. The
NONINTERACTING ELECTRONS total magnetic susceptibility contains also a constant diamag-
netic term —Ne?’/m which does not exist in the electric

We now examine the electrical response of a quantu”n]esponsé'll
system of noninteracting electrons, which was first calcu- '
lated by GE(Ref. 8 for a metallic grain both in the diffusive ] . .
and ballistic limit. Their conclusion is quite surprising: in the B. One-dimensional Aharonov-Bohm ring
diffusive regime,« is bigger than the classical polarizability = Using expressior{16) it is possible to calculate exactly
by a factor @/ag)?, wherea is the typical size of the grain the induced dipolar moment in a 1D nondisordered ring in an
and a,=h?/(m¢) is the Bohr radius. Later on, Ri¥® in plane electric field. Wave functions only depend on the
stressed the lack of screening in the calculation of GE andngled, indicating the position in the ring, and satisfy the 1D
showed that when screening is taken into account, one recoGhradinger equation — (42/2mL?)(5%/362) () =Ey(6).
ers the classical polarizability. We will see in the following Furthermore, the magnetic flux, associated with the period-
that it is useful to consider the flux dependence of the polaricity in the ring, imposes the boundary condition
izability within this crude approximation, since many results y( 9+ 27) =e'27(#/%0 (6). This equation can be solved.

remain qualitatively true in the presence of screening. Using the parity and periodicity of the spectrum, we then
order the eigenvalues and the corresponding wavefunctions
A. Position of the problem in ascending order in the intervpt ¢o/2,¢0/2]:
The polarizability of a system of a numbhrof noninter- 52 2
acting electrons can be understood as the sensitivity of the €0 = (p+ ﬁ) oo(6) = iei 0(p+ ¢i)
energy spectrum to an external electric field, very similar to 2 omL2 b TP JL o
persistent currents measure the sensitivity of the spectrum to (17)
an Aharonov-Bohm flux. As a matter of fact, the eigenstates 52 2 1 P
|a) of the syst(_am_and the eigenvalugs, are modified by an €2p+1= | P~ _> Waps1(0)= ——€ 0=+ o).
external electric fieldE: 2mL b0 VL
) |{a|€E-r|B)|? As a consequence of the particular geometry of the sys-
€,= €, (aleE-1] aH;ﬂ T”L T tem, the electric field only couples certain states. In particu-
poe lar, the matrix element between adjacent states cancels unless
(B|eE r|a) the quantum numberset q are such thap—q=*2, in this
|a) ~|a)+ —|B)+ . (15  case(p|X|q)=R/4w. The polarizability depends on the par-
Bra  €pT €q ity of the number of electronbl and reads
Consequently, it exists an induced charge density 2R2 1
op(r)=exN_.|y/(r)|?>—|¢.(r)|? associated with the an(®)= € (
asymmetry of each wave function generatedebysing the 872 | €n+2(P) — en(P)

definition (5) of «, the expression of the polarizability in the

absence of screening at zero temperature can be found: — ! ) (18)
! en+1(P) —en-1(P)
2 . 2
_2& M. (16)  Atzerofluxand folN>1: ay=L*87"agN. Itis possible to
E2 a=1 j7a €5 €q4 evaluatedq,a by computing @y 1— an)/2. As a result,

This expression depends on the eigenenergies of the unper- s 1
turbed system and its eigen-functions through the matrix el- S0 S (19
ements of the position operator. Due to the energy denomi- @ N?
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FIG. 2. Magnetopolarizability of a 1D ring, of length= 100,
calculated with the Anderson model, for several values of the dis- z
order:w=10"% 0.1, 0.4, 0.7, 1.4. 5

Ll . M B | L P B
100 2 5 101 2 5 10
It is a very small effect, since it decreases rapidly with the e/A
number of electrons in the ring. This result remains true for a . )
multichannel ring. We attribute this effect to selection rUIeSE‘ :Lﬁ-g36f'5|2sg?r¥Ldfggnxﬁﬂﬁ f‘;tf(':eh ;r?:;?g;::lsfgjé?; ?/laelng:tS
e B o pesp e 07 N e ader—0., 1.2, 14, 1.7 ot h aional s o
. . . . served fore=~5A, which corresponds to the Thouless energy in
eigenstates close to a level crossing. In particular it has bee{ne transverse direction of the rifgD/W2, whereW is the width
showrt? that these selection rules do not exist in the hexagobf the rin '
nal lattice where giant magnetopolarizability is expected for g
particular values of flux at the same level of approximation.
In order to investigate the effect of disorder we have per
formed numerical simulations using the Anderson model. O

Fig. 2 is plotted the magnetopolarizability for a ring of length

The GE result is then recovered assuming that the Fermi
‘wave length is of the order of the Bohr radius. We will see in
fhe next section that this result is modified by screening. It is,

. however, worth continuing this analysis in this oversimpli-
L=100 and several values of the disorderin absence of g y P

disorder. th it . litati © with f fied picture of noninteracting electrons in the case of an
ISorder, the resulls areé in guaiitative agreement With 101 5 ,on0y-Bohm ring. From expressi@¢h6) the polarizabil-

mula (1931' Theh efflect thlen dec\:%asgs vvhen the ((jjlsorder 'ﬁy is expected to exhibit flux dependence both from the ma-
increased, with a law close tot7. ne 1S ter_npte to a.t' trix elements and energy denominators. We discuss in the
tribute this result to occurrence of localization in the 1D N9 following separately these two contributions which is justi-

However we will see in the following that this cancellation fied in the context of random matrix theory where eigenfunc-

of the ﬂux-dependent_ pqlanzabl!lty IS also_observed N 3tions and eigenenergies constitute two sets of independent
multichannel ring or disk in the diffusive regime. random variable&

C. Diffusive system 1. Energy denominator

We focus on the flux dependence of the quantity
K=(Z,<gl1/(es—€,)]). This quantity depends only on the
energy differencese(,— €;), and can be expressed as a func-
tion of R(e€), the two levels correlation function :

In the following we discuss a diffusive system in dimen-
sion d, characterized by a diffusion coefficient
D=(1/d)vel. wherel, is the elastic mean free path which is
assumed to be shorter than the system aiatong the elec-
tric field. It has been shoWt®!*using semiclassical argu- . c R
ments that the average square matrix eleméatX|B)|? K:f ’“axdef du(_u). (21)
depends mainly on the energy differenee|ez—€,| and 0 0 u
the Thouless energ§.=hD/L?. For e<E, it is of the order
of a/lg whereg=E_/A is the ratio between the Thouless In the diffusive regimeR(s) is well described by random
energy and the mean level spacing At higher energy it ~matrix theory® and the average probability to find two de-
decreases asél. This behavior is illustrated in Fig. 3 show- generate adjacent levels is zero. This property is characteris-
ing numerical results on a sample for different values oftic of level repulsion in the spectrum of a random matrix,
disorder where these two regimes can be clearly distinwhich is stronger in a system where reversal symmetry is
guished. broken compared to a system where it is not. As a conse-

It is then easy to deduce the order of magnitude of thejuenceK decreases as a function of the flux at low magnetic
polarizability noting that the summation in expressid@®)  flux and increases back in the vicinity @fy/2 where time
can be restricted tha— B|<g as a result: reversal symmetry is recovered.

We have calculated numerically in a disordered ring of

lengthL =80 and widtha=8 for several value of the on-site
a~e?a?/A. (20 disorderw corresponding to the diffusive regime. Figure 4
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FIG. 6. Flux dependence of the matrix element and energy de-

FIG. 4. K calculated numerically in a ring 8@, for different  nominators contributions to the average unscreened polarizability of
values of the disordev=1, 1.5, 3, 4. a disordered square 3®0, calculated with the Anderson model for

w=23. These two contributions nearly compensate yielding to the

illustrate the effect described above. In the absence of othébsence of magnetopolarizability. Full line: sum of the flux depen-

contributions, this term would give rise to a negative mag-dences of energy denominator and average square matrix elements.
netopolarizability. Squares: exact calculation.

2. Matrix element (X2 ) is maximum for multiple values apy/2. It is possible
On Fig. 5 are plotted the flux dependance of thet0 evaluate analytically this flux dependence of the diagonal

average square of the diagonal and nondiagonal matri;patrix elements from random r_n_a?rix theory, using the rela-
elements for a diffusive ring. It can be noted that they havdion betweenX,, and the sensitivity of the energies to an
opposite flux dependences, resulting from the fact thaglectric field X,,=(de,/dE)e—o. Since electric field pre-
Tr(X?) =3 X2 + Ea#ﬁxiﬁ is flux independent. The diago- Serves time-reversal symmetry, the typical value of the de-
nal elements decrease as a function of the flux, whereas thivative of the energy levels with respect to the electric field
nondiagonal elements increases. <|z?6a/(9E0|2> is proportional to 31B8. Consequently,

The time reversal property of the operatoimplies that  |X,,o|%(¢= ¢o/4)=3|X,..|*(¢=0). Figure 5 shows that
its diagonal matrix elements are real even function of fluxthis last result is qualitatively true. Note also that this flux
and can be developed in successive powers of ead(@,). dependence of the variance of the diagonal elements of the
dipolar operator was also found from numerical simulations
in the Anderson model by Uskit al1® Therefore, in absence
of the energy denominators &j—€,), the flux dependence
of the matrix elements would give rise to a positive magne-
topolarizability. As a result this flux dependence is opposite
to the contribution of the energy denominators. Moreover we
can see on Fig. 6 that these contributions almost exactly
cancel and there is no magnetopolarizability in this model. It
is also possible on Fig. 6 to check the validity of random
matrix theory by comparing the exact calulation of the aver-
age magnetopolarizability from expressit6) with the re-
sult obtained assuming independence between matrix ele-
ments and energy denominators. Our results confirm that
RMT provide a reasonably good description of a mesoscopic
system in the diffusive regime.

At this stage it is interesting to emphasize that the flux
dependence of the average square of Xheperator matrix
element is opposite to the same quantity related to the cur-
3/% rent operator which changes sign by time reversal symmetry.

0 So when computing the magnetic susceptibility the contribu-

FIG. 5. Flux dependence of the diagonal and nondiagonal malion of the matrix elements and energy denominators are of
trix elements in a ring of length.=60 andM =4 channels, for the same sign. This effect is related to the existence of a
w=2. The factor 2 at zero flux between the diagonal and nondifinite average current in the canonical ensemble for a diffu-
agonal matrix elements is due to the fact that only the states suchive ring.

that e,< €, are taken into account in the calculation of the non  Note that both persistent current and zero frequency po-
diagonal matrix elements. larizability can be expressed as a function of the free energy

Matrix elements of X
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gf the system = — 9F (E, ¢)/ d¢p and a= — 3°F (E, ¢)/ JE?. 22 (Bldre()]| @) BIE-T| )
o, a=—— .

23
EZ az B Ea_E,B ( )

2
da _9 Ipe’. (22)  Within this approximation the GE result for the polarizability
dp  gE? is modified by a factor 14ks)? and becomes identical to the

) classical result.
Let us emphasize that the absence of thermodynamic

magnetopolarizability is thus related to the insensitivity of
persistent currents to an electrostatic field and can be quali-
tatively understood using a semiclassical argument. The ef- As we have seen, the Thomas-Fermi approximation does
fect of the electrostatic potential slowly varying at the scalenot take into account contribution of the screening due to
of the Fermi wavelength can be included into the phase oglectronic interferences. They indeed give rise to a quantum
the electronic wave functions. Persistent currents can beorrection for the response functign and consequently to
computed from the integral of the classical action on a cirthe effective potentialp and the polarizabilitye:

cular orbit. The contribution of the static electrostatic poten-

B. Beyond the Thomas-Fermi approximation

tial on such an orbit €&%vs)fV(r)ds, where X=xtet X,
V(r)=Er cos(@) andds=rd 6 obviously cancels out. This

argument is helpful to understand why the polarizability is d= et 00,
independent of the flux in this very low frequency regime.

We will see, however, in Sec. V that a nonzero magnetopo- a=aypt da,

larizability is found at finite frequency in the grand canonical
ensemble or at finite temperature in the canonical ensemb[[%
where the energy denominators contribution disappears.

here x is the response to the local field. Assuming that
ose corrections are small compared to the Thomas-Fermi
value, it is possible to show, in agreement with Eféfdgee
Appendix A for the detailed calculatipnthat Sa can be
simply expressed as a function of the mesoscopic correction
A. The Thomas-Fermi approximation to the one electron response functiég and the Thomas-

As mentioned above the mean field approximation re—Ferml potential

duces the complicated many body problem of interacting 1

electrons to a much simpler one, in which electrons move in Sa~ —Tr 5 24

an effective potentialp(r), resulting from the screening of a= 1 bre Xbre)- 24

the applied potential by other electrons. Therefore, it goes ] . .

beyond a simple electrostatic calculation by taking into acn the following we discuss the response to a time-dependent
count the kinetic energy of electrons as well as their fermi-electric field. We will see that dynamical polarizability can

IV. SCREENING

onic charactet’ be very different from the static one.
In the linear regime, i.e for a small external potential, the
induced charge density is simply proportional to the effective V. EXPRESSION OF THE POLARIZABILITY

potential*®1® , _
A. Response to time-dependent potential

Sp(r)=—e’n(E) ¢(r)=— egkle(r) The application of a time-dependent external potential
. _ ZIENT— V(t)=eE-r exp(wt) raises the problem of the relaxation of
at 3D withks= ye“n(Er)/ € and the system towards equilibrium. This process is made by
Sp(r)=—e2n(Ep) ()= — eokeb(r) 8(2) meIastlc.proce'sses qh_aracterlzed by a typical time scale, re-
_ _ lated to inelastic collisions.
for a conducting plane a=0 with ks=e’n(Eg)/e,. In the limit of a weak coupling, this process can be de-

The resolution of the self-consistent E@) within this  scribed by a master equation on the density matrix:
Thomas-Fermi approximation for a 3D sample in the pres-
ence of a uniform external applied field, gives rise to a __dp i
screened potential whose value is of the ordeE 4, which i —-=[Ho+tV(1),p]=i7(p—peg- (29
is confined to the border of the sample withig= 1/ . This
result is in principle not true any more in a 2D system whereThe parametery represents the typical broadening of the
classical screening already involves charge displacement ienergy levels and characterizes dissipation processes, allow-
the whole system. However, since the charge distribution isng the relaxation of the system towards equilibrium. The
always singular on the edge of the sample it is possible taensity matrix peq satisfies the condition[H,peq]=0,
approximate the screened potential for a disk of rafiuyy  H=Hg+eE-r expwt)+ ¢q(r,v,t) being the Hamiltonian
O(r,0)=(E/k)F(R—r)cos@) whereF is a peaked func- of the system in the mean field approximation, in an ac elec-
tion centered on zero of widthKy. When screening is taken tric field at frequencyw. Two limits are to be considered.
into account the expression of the quantum polarizability atWhen the frequency of the time-dependent potential is small
T=0 reads compared toy; the system follows the potential and stays at
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every moment at equilibrium. On the contrary, at high fre-
guency compared tg, the system is always out of equilib-
rium.

In addition, we assume that the effective potential is al-
ways in phase with the external one. This is justified if the
dissipative part of the polarizability is very small compared
to the nondissipative pari’<a').?!

The expression of the density matrix is then obtained by
solving the master equation. From it, we deduce the response

function and later on the polarizability and its quantum cor-
rection 6,a, which can be expressed as a function of the
eigenstates and eigenvalues of the Hamiltorign

282 f —f €. —€ _,y
=-—R @« B _Ca B
“ =3 e<c;5 €, €g ea—eﬁ+w_i,y<ﬁ|¢TF|a>
y Jf
KBIE et za: ge, (el grela)alE-rla) ],
(26)
2¢?
doa=""z %
f _f €. —E€ _|,y
@ B a B )
>< .
RE< L;B €, € Ea_EB+w—|y|<’3|¢TF|a>|
4 of, ,
o tie 2 ge Kealdrdl?]. (27

B. Quantum correction to the polarizability in the diffusive
regime for the different statistical ensembles

In this section, we examine the differences between the

canonical and grand canonical ensembles. The canonical e

semble CE corresponds to the situation for which the numbe

of electrons in the system is fixed. It is in particular the
case for electrically isolated systems. The chemica
potential is determined self-consistently by the condition
N=2fo(€;— u), and therefore depends on the flux through

the energy levels. On the other hand, in the grand canonical
ensemble GCE, the system can exchange electrons with the
thermodynamic reservoir, which imposes the value of the
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GCE

&p
0.04

Wd =2

3
N

& 0.02
“©Q

|
0.3

O.I 2
&/ %,

0.1

FIG. 7. Dynamical > y) and thermodynamicak{< y) polar-
izability in the grand canonical ensemble of a disordered ring
80% 8, calculated with the Anderson model far=1 andw=2.
((fa=Tg)/(ea—€g))=—1dp, where ()=(1Au) 1T 35
Considering only regimes wher@<A and y<A formula
(27) greatly simplifies:

2e? 5
dpa= =80 2 |(Bldrela)l
F aF B

Y

+ -
YtHlw

; Seq—w)l{alprela)?|. (28)

wo frequency regimes can be distinguished, depending
wether the frequency is smaller or larger than the relaxation
pnergyy. In the limit w<<vy, which corresponds to a static
electric field, the polarizability is simply equal to the flux
dependence of the trace of the screened potential

2e?
8y aSCE e SoTr(P2e). (29)

chemical potential. A physical realization consists in con-gjnce the trace is independent of the basis which is consid-
necting the ring to a large metallic pad. At finite temperaturegred * this quantity is independent of the magnetic flux.
the occupation of the energy levels is spread over an energyherefore, at low frequency, there is no mesoscopic correc-
interval of the order of the temperature. As a result, the senggn, 1o the polarizability in the GCE as shown on Fig. 7.

sitivity to the flux dependence of the chemical potential is
suppressed when>A, whereA is the mean level spacing.

Therefore the differences between CE and GCE are expecteg,

We now turn to the dynamical limit, i.e., fas> y. As for
the canonical ensemble, we consider a diffusive ring of ra-
s R and widthW. The relaxation term cancels and only

to disappear with increasing temperature and frequency. Wgmains the term
first discuss the polarizability in the GCE.

GCE

D = (30

2e? X
1. Grand canonical ensemble opap =—=0¢ > [(B| prel@)|?].
Er a>p

Due to the ergodicity property in the diffusive regime, the
disorder average is equivalent to the average over the nuni-herefore, one needs to evaluate the matrix elemﬁﬁfﬁﬁ
ber of electrons. This property simplifies the calculation. Bylt is then possible to use the semiclassical calculation of
averaging over the whole spectrum, one can show tha¥icMillan®® which yields to a general expression of the av-
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erage squares the matrix elements of the opeifor in a ' ' ' ' ' '
diffusive system which generalizes semi-classical expres- N TSR
sions of the matrix elements of relevant to the unscreened
case discussed above:

_ A Dq?
(ale'@T] B)[2=— a @
mh D29+ (€,— €p)/h?

In order to determine the relevant spacial frequencies of {
the screened potential, this latter is then decomposed in Fou- B
rier series Gre(r)=3SM2 A% T+ei% T where

ar' =(nm/W)u, = (27/L)u,. At low energy, the main

contribution to the matrix elements of the screened potential

is dominated by the terms with the smallest wavevector cor-
responding t;m=0, q,,;,=27/L for which

\\\\\\

Wd =1

oo L A 8R)\S)2 @)
“% Da&y, TEc| 372w/ 6T o3 03 o0z 05
where\; is the screening lengtl.=hD/27R is the Thou- /%o

less energy, and the mean level spacing between energy FIG. 8. Dynamical polarizability ¢> vy) in the grand canonical

levels. . .ensemble in a disordered ring 8@, calculated with the Anderson
We can then estimate the flux dependence of the matrix, qel for several values of the disorder=1, 1.5, 2, 3, 4.

elements ¢aﬂ|2 as was done in Sec. Il for the unscreened

potential The ring geometry is particularly favorable to
observe this effect. The extrapolation of E(R4) leads
Sy <|¢aﬁ|>2:_5¢<|¢w|>2 to Sala~(AI2E.)(Ns/a) for a two-dimensional sample
B#a such as a disk or a square of typical size and
_ 2 2 Sal a=(AI2E.)(\4/R)? for a sphere. In a ring etched in a
_<|¢aa| >GUE_<|¢aa| >GOE

semiconductor heterojunction GaAs/GaAlAs with the

1 ) following parameters:L=8 um, A,=400 A, M=10,
=5 bapl)coE- (33  E,=7A, we obtainda/a~3x10"3.
Thus, the mesoscopic correction to the polarizability reads 2. Canonical ensemble
From relation(27), we deduce that at zero temperature
SaSE [ 8 | 1 and zero frequency the quantum correction to the polarizabil-
@ - 373 Wg’ (34 ity reads in the canonical ensemble
wherea is the classical value of the polarizability. We took 2e? NN algre(n)] B
- - , - Spa=—5 R )
the 2D limit corresponding to a disk for whialy= €, 2 R>. 00T 2 %0\ & s €5 €a ,

For a quasi-1D ringeo=[ eom?R3/In(RW)] (see Sec. Il B
Only the numerical factor in formuléB4) is modified if one  whereN; is the total number of states. Note that this expres-
considers this last value. This result is in good agreemengion is very similar to the Gorkov Eliashberg one where ma-
with the calculation of Blanter and Mirlfi using supersym-  trix elements of thex operator are replaced by the matrix
metry techiques. elements of the screened potential. Just as previously dis-
The magnetopolarizability increases when a magnetic fluxussed in the absence of screening, the flux dependence of
is applied, corresponding topsitivemagnetopolarizability. the energy denominators compensates exactly the one of the
A noticeable result is that this effect is inversely proportionalmatrix element. It is important to note that this compensation
to the conductance and thus increases with the disorder in thie now also found by Blanter and Mirlin in supersymmetry
diffusive regime. It is expected, however, to decrease agaibalculations at zero frequerféycontrary to what was stated
with disorder in the localized regime when wave functionspreviously® when the contribution of three levels correlation
and eigenenergies become insensitive to the Aharonov-Bohffanction was not correctly taken into account. We believe
flux. that the symmetry argument given in the preceding section
This disorder dependence 6&/ « is illustrated on Fig. 8.  still hold for a screened potential. However, it is also pointed
On the other hand, the magnetopolarizability decreases witbut in this recent Ref. 24 that a finite magnetopolarizability
the electron density,, since the conductance increases anccan be expected in the canonical ensemble as soon as the
the screening length decreases with frequency is not negligible compared to the level spacing due
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actions. Nevertheless, the order of magnitude of this effect

_ remains small compared to the dynamical polarizability.
®.
\ . VI. CONCLUSION: COMPARISON WITH RECENT
\ e / EXPERIMENTS

0.0

ANANY

— oo
A\l /l/’ v
Ta—F / We have calculated the average polarizability of mesos-
v copic rings and squares. In the grand canonical ensemble, we
\/v/ found that there exists a positive magnetopolarizability for
1.0x107 frequencies larger than the typical broadening of the energy
. levels y. The relative effecbal/« scales as @y, whereg is
the dimensionless conductance. In the canonical ensemble at
\ = zero frequency and zero temperature, the magnetopolariz-
¢ ability cancels in the diffusive regime, whereas in the ballis-
00 o4 o2 o3 o4 tic regime a small negative effect is found. Differences be-
O/ tween canonical and grand canonical ensemble disappear at
0 frequencies or temperatures larger than the level spacing. In
FIG. 9. Correction to the canonical polarizability by interactions the fOI_IOWIng taple_, are su_mm:;nzed t.he results Obtame.d for
in a ring of lengthL =60 andM =4 channel, for several values of dal a in the ballistic and diffusive regime, for the canonical

the disordew=0.9. 1.2 1.4. 1.7. and grand canonical ensemble.

-5.0x10°

do/a

0\0

-1.5x10™

to the decrease of the contribution coming from the energy Ballistic regime

denominators. A similar effect is obtained when increasing w<y A>w>y
the temperature as shown precisely in Ref. 5. The samg -1 -1
authoré* also emphasize that the magnetopolarizability os- W W
cillates with frequency on the average level spacing scale,
such as the level spacing distribution. GC 0 0
Diffusive regime
C. Effect of interactions in the canonical ensemble 0<vy A>w>y
We have shown that in the canonical ensemble in th& 0 0
diffusive regime, there is no mesoscopic correction to the 8 |\l
polarizability. However, we have neglected in this calcula-GC 0 37 Wg

tion electron-electron interactions.

In order to investigate a possible effect of electron-These results are in good agreement with recent experiments
electron interaction a first and simple approach consists iyhere the magnetopolarizability of two-dimensional rings
taking the interaction potential as a perturbation. Rather thaRas been recently measured by Deblock and co-wofRéfs.

a Coulomb potential, we use an on-site interactionThe sample investigated was an array of rings fabricated by
Ud(r—r’). This approximation is justified for high elec- electronic lithography in an heterojunction GaAs/GaAlAs. A
tronic density, since the interaction between two electrons isesonant technique was used in which the rings are coupled
then strongly screened by other electrons. In first ordét,in  to the capacitive part of a high frequency superconducting
the variation in total energy can be expressed in terms of theesonator.
local electronic densify n(r) =E(';':1|(a|r>|2: The polarizability exhibits oscillations as a function of the
flux, with a periodicity corresponding t¢,/2 through a ring.
The order of magnitude as well as the sign of the effect is in
5Et0t=UJ n(r)2dr. (36) good agreement with our grand canonical results. In addi-
tion, it decreases as a function of electronic density, accord-
ing to the 1¢ de pendence of formulés4).

Taking into account the fact that these experiments where
done at a frequency which is of the order of 1/3 of the level
spacing, where differences between canonical and grand ca-

(6B nonical results are strongly reduced, it can be shown that this
int— PE (37) result is in good agreement with theoretical predictiths.
A complete check of the theory would imply to perform new
On Fig. 9 numerical calculations of this quantiy;,/« are ~ €Xperiments at other values of frequency.
shown for a ring for various values of disorder.

Interactions give rise to a negative magnetopolarizability.
The effect is more important in the ballistic regime than in
the diffusive regime, in which it does not seem to depend on
disorder. It gives rise to a magnetopolarizability which is In this appendix, we derive in more detalils the expression
quite enhanced compared to its value in the absence of inteof the mesoscopic correction to the polarizability. In the fol-

The correction to the canonical polarizability is obtained
then by the formula

APPENDIX A: DETAILS ON THE CALCULATION
OF THE MESOSCOPIC CORRECTION
TO THE POLARIZABILITY
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lowing, we will note E=E g+ 62 and é=é&rp+ 8¢, the 51 7
response to the external and internal field respectively, de- 2l
fined in the matrix form as 10°L 4
_ sE E
Op=XP=E Pex:- (A1) [
2 -
The relation(1) which relates the induced charge density to § 101k i
the response function can be written in the matrix form R 3 E
8 ; ]
Sp=x(1-Ux)  pex- (A2) 3
_2_ .
The effective potential is also related to the response func- © 10 . ]
tion by 3. The polarizability in the Thomas-Fermi approxi- °F ]
mation reads 25
107% =
1 1 . sE 3
aTF:ETr(XXTF¢): ETr[XTF(l_UXTF) Dexd LT el e
10—3 2 5 10—2 2 5 10—1

E

1
= =Tr(xE clPexd)- (A3)
E FIG. 10. Total energy versus electric field in unitsttéR cal-

with = |:XTF(1_UXTF)71 The next step is to find the culated in the Anderson model in a ring 46, and for a disorder
—C .

quantum corrections=Z to the screened response function. W™
We set by definition

E=x(1-Ux) '=Ey+6E. (Ad)  electric field (screening is not here considefedt can be

Assuming that quantum corrections are small compared t§xpanded as
the Thomas-Fermi value, second order terms can be ne-

glected:
U(E)=Uy—dgE— aE%+ - - .

(1-Ux7p)E—USxE = x1rt X,

SE=6x(1-Ux) {1+UE,). The coefficiend, correspond to the spontaneous dipolar mo-
ment of the ring, resulting from fluctuations of the charge in
the presence of disorder. The ensemble averagyg if zero.

XThe energy average varies lik&? at small field. As it is
shown on Fig. 10, a deviation from the linear behavior is
hardly observed before a critical fielg,,, such that

Using the fact that 3+ UZ = x7£E, we show that the
guantum correction to the response function can be e
pressed:

SE=EcixtESxxTFEal - (A5)

The quantum  correction to the  polarizability
Sa=Tr(X6E ¢ey) can then be written eEnaR~Er, (B1)

Sa=Tr(¢preox dre),

This critical value is less restrictive than the critérind
justifies the use of the linear response up to very high fields.
For instance, in a 2D electron gas, obtained in a semiconduc-
tor heterojunction GaAs/GaAlAs for whicBz~30 K, our

In order to estimate the validity of the linear response, wecriteria allows to use linear response up to fields such that
have calculated the total energy of a ring as a function of th&€R~2 mV.

APPENDIX B: DISCUSSION OF THE LINEAR RESPONSE
APPROXIMATION
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