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Magnetopolarizability of mesoscopic systems

Y. Noat,1,2 R. Deblock,1 B. Reulet,1 and H. Bouchiat1
1Laboratoire de Physique des Solides, Associe´ au CNRS, Baˆt 510, Universite´ Paris–Sud, 91405, Orsay, France

2Kamerlingh Onnes Laboratory, Niels Bohrweg 5, Leiden, Netherland
~Received 18 July 2001; published 17 January 2002!

In order to understand how screening is modified by electronic interferences in a mesoscopic isolated
system, we have computed both analytically and numerically the average thermodynamic and time-dependent
polarizabilities of two-dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux. Two
geometries have been considered: rings and squares. Mesoscopic correction to screening are taken into account
in a self consistent way, using the response function formalism. The role of the statistical ensemble~canonical
and grand canonical!, disorder and frequency have been investigated. We have also computed first order
corrections to the polarizability due to electron-electron interactions. Our main results concern the diffusive
regime. In the canonical ensemble, there is no flux dependence in the polarizability when the frequency is
much smaller than the level spacing. On the other hand, in the grand canonical ensemble for frequencies larger
than the mean broadening of the energy levels~but still small compared to the level spacing!, the polarizability
oscillates with flux, with the periodicityh/2e. The order of magnitude of the effect is given by
da/a}(ls /Wg), wherel is the Thomas-Fermi screening length,W the width of the rings or the size of the
squares, andg their average dimensionless conductance. This magnetopolarizability of Aharonov-Bohm rings
has been recently measured experimentally@R. Deblock, Y. Noat, H. Bouchiat, B. Reulet and D. Mailly, Phys.
Rev. Lett.84, 3579~2000!# and is in good agreement with our grand canonical result.
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I. INTRODUCTION

A. Motivation of the paper

Transport and thermodynamic properties of mesosco
metallic samples have been known for a long time to be q
sensitive to the quantum phase coherence of the electr
wave functions at low temperature.1 In particular, it was
shown that a mesoscopic ring threaded by a magnetic
exhibits a persistent current periodic with the flux and with
period of one flux quantumf05h/e. This current was mea
sured in several experiments,2–4 corresponding to differen
situations and materials. More recently, the response o
mesoscopic system to a time-dependent magnetic field
studied both theoretically and experimentally.5,6

The purpose of the present paper is to investigate h
screening is influenced by electronic interferences in a ph
coherent sample. In this spirit, we discuss how the electr
polarizability a, which is the response of a metallic samp
to a small electrostatic field and is directly related to scre
ing, is also sensitive to mesoscopic effects.a can be experi-
mentally measured by coupling the mesoscopic samples
capacitor. For small voltages, corresponding to the linear
gime, the change in the capacitance is directly proportio
to the average polarizabilitŷa& of the particles.

When the typical sizeL of the particle is much larger tha
the Thomas-Fermi screening lengthls ,a is mostly deter-
mined by the geometrical shape of the particle. For a sph
cal particle, it is proportional to the volumeV of the particle,
with a small correction of the order ofls /L.

Now, what happens in the case of a quantum cohe
sample, i.e., whenL is the order of the phase coheren
length? Is there a mesoscopic correction to the polarizab
due to contribution from electronic interferences?
0163-1829/2002/65~7!/075305~12!/$20.00 65 0753
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In order to answer this question, we have calculated
flux dependent correction to the average polarizability, wh
we call ‘‘mesoscopic correction,’’ for two-dimensional mes
scopic samples in the presence of an Aharonov-Bohm fl
Two different geometries have been considered, namel
two-dimensional ring or square in an in-plane electric fie
The role of statistical ensemble, disorder, and finite f
quency have been investigated. In the case of a tim
dependent electric field, we distinguish two different limi
whether the frequency is smaller or larger than the inve
relaxation time, or mean level broadeningg. The case
v!g corresponds to the thermodynamic limit whereasv
@g corresponds to the finite frequency limit. A prelimina
account of this work is already published.7

B. Scope of the paper

This paper is organized as follows. The definition of t
electrical polarizability and the classical result for a mac
scopic sample are given in Sec. II.

In Sec. III, we derive the expression of the electrical p
larizability of a system of non-interacting electrons, in t
spirit of the early work of Gorkov and Eliashberg~GE!.8 A
giant unphysical polarizability is obtained. However, it
possible to discuss in this very simple model the flux dep
dence of two quantities which contribute to the polarizabili
namely, the matrix element of the position~or screened po-
tential! operator and the contribution of energy levels. The
we examine in Sec. IV how screening can be taken i
account. In particular, we show how to incorporate contrib
tions of electronic interferences. Using those results, a g
eral expression for the polarizability and its mesoscopic c
rection for a time varying electric field are derived in Sec.
©2002 The American Physical Society05-1
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We then study separately the case of the grand canon
and canonical statistical ensemble. The grand canonica
erage polarizability is found to depend only on the flu
dependent matrix elements of the screened potential whe
the canonical average depends also on the energy level
a result when the frequency is smaller than the level spa
the magnetopolarizability is found much smaller in the c
nonical ensemble compared to the grand canonical case
nally, we present results on the Hartree-Fock correction
the zero frequency polarizability. Section VI is devoted to
comparison of these results with recent experiments.

II. BASIC CONCEPTS

A. Screening and polarizability

When an external fieldEext52grad(fext) is applied on a
conductor, the charge density adjusts in such a way that
effective field inside the conductor cancels. This pheno
enon is called screening. In principle the computation of
potential inside the sample requires to solve a comp
N-body Hamiltonian taking into account the long-range Co
lomb interaction between electrons. However, it is poss
in general to treat the interactions in a mean field appro
mation. The screened potential inside the conductor is t
given by

f~r1!5fext~r1!1E dr~r2!U~r1 ,r2!dr2 , ~1!

wheredr(r2) is the charge density induced at the pointr2
and U(r1 ,r2) is the Coulomb interaction potential. In th
linear response limit,dr(r2) can be described by the electr
response functionx(r1 ,r2), which relates the variation o
charge in the system atr2 to a local perturbation atr1 ,d(r1):

dr~r2!5E x~r1 ,r2!f~r1!dr1 . ~2!

Relation ~1! can then be written more conveniently in
matrix form

f5~12Ux!21fext. ~3!

In a clean infinite system, the induced charge density is s
ply related to the screened potentialf in Fourier space
dr(q)5x(q)f(q), wheref(q)5*eiq•rf(r )dr. The prob-
lem is more complex in a disordered system, which does
have the translational invariance. In any case for a fin
system, it is possible to compute the response function f
the eigenstatesua& of the system in the absence of the ext
nal field, associated to the eigenvaluesea :

x~r1 ,r2!5 (
a51

N

(
b,a

ca* ~r1!cb~r2!ca~r1!cb* ~r2!

eb2ea
1c.c.

~4!

In most cases we will identify these eigenstates as the s
tion of the hamiltonian of the system without electron inte
actions which will be taken into account only by consideri
the screening on the applied field. The effect of interactio
07530
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on the eigenstates will be however discussed in Sec.
within the Hartree-Fock approximation.

The application of an electric field on a finite metall
system, results in an induced dipolar momentP which, is
proportional to the applied field when it is sufficiently sma
The range of validity of linear response is discussed in A
pendix B:

P5E r~r !rdr5aE, ~5!

wherea is by definition the polarizability of the conducto
which can be expressed as a function of the response f
tion

a5
1

E2E x~r1 ,r2!E•r2f~r1!dr1dr2 . ~6!

B. Classical polarizability

1. Plate with perpendicular electric field

The polarizability of a macroscopic piece of metal is d
scribed by classical electrostatics. In this approximation,
dipolar moment can be calculated by solving Poisson eq
tion DV1r/e050, in all space and imposing as well that th
conductor is at a constant potential. The problem is solva
analytically for a sphere of volumeV:a5e0(4p/3)V. It is
also possible to estimate the polarizability of a metallic pl
of thicknessa in a constant electric field perpendicular to th
plate. The induced charge density is such that the elec
field cancels inside the plate. Neglecting border effects,
have

r~r !5
Ee0

2 FdS x2
a

2D2dS x1
a

2D G . ~7!

Integrating Eq.~5!, one finds the classical polarizability

a5e0a35e0V. ~8!

2. Two-dimentional„2D… and 1D systems in longitudinal
electric fields

We now examine the case of 2D conductors, and m
specifically a strip of lengthL and widthW, with L@W, in
an in-plane electric field perpendicular to its long axis.
order to determine the induced charge density, the effec
electric field inside the strip is imposed to be zero. In t
limit of an infinite strip, this condition leads to the followin
equation:

E 1

2pe0

r~x8!

x2x8
dx82E50. ~9!

We have calculated numerically the solution
Eq. ~9! in the case of an infinite strip~Fig. 1!. In
contrast with the three-dimensional case, the cha
distribution spreads over the full width of the strip in ord
to cancel the external field. The numerical solution is ve
close to a logarithm. Assuming that the density is of the fo
5-2
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MAGNETOPOLARIZABILITY OF MESOSCOPIC SYSTEMS PHYSICAL REVIEW B65 075305
r(x)'EW ln(W/22x)/ ln(W/21x), the integral ~5! of the
previous function givesa'e0W2L.

This result extrapolates to a two-dimensional sample
typical sizeW, for which the in-plane polarizability scales a
a;e0W3. For instance the polarizability of a disk of radiu
R is9 a5e016R3/3 .

In the case of a one-dimensional wire, whose lengthL is
much longer than its diameterD, in an electric field along its
axis, the polarizability has been shown9 to be e0L3ln(D/L).
Similarly as in the 2D case, the charge density has to sp
over the entire wire in order to screen the external poten

The case of a 1D ring is also exactly solvable. In ord
to take screening into account, we first assume that the
duced charge density in the ring is of the for
r(u)5l cos(u)d(z)d(r2R), from which we deduce the in
duced potential in the ring

f ind~u!5E
0

2p 1

8pe0

r~u8!

UsinS u2u8

2 D U du8. ~10!

The integral is logarithmically diverging and it is necessa
to introduce a cutoffuc5W/R, related to the finite widthW
of the ringf ind(u)'2l cos(u)ln(uc)/4pe0.

The screened potential readsf(u)5cos(u)(E1lJ), with
J5 ln(1/uc)/4pe0. The polarizability is obtained either from
the potential calculated above, either from the expressio
the charge. This self-consistent relation sets the value of
parameterl, from which we deduce the polarizability of th
ring:

FIG. 1. Induced charge density of a conducting strip in an
plane uniform electric field: the function diverges logarithmically
a function of the cutoffl/a.
07530
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wherea05e0p2R3 which reads in the limitJ@1:

a'
e0p2R3

lnS R

WD . ~12!

As a result both longitudinal polarizabilities of a ring and
disk scale like the cube of their radius, just as in the po
izability of a sphere.

C. A mesoscopic correction to the polarizability?

In the following, we define the quantity we wish to ca
culate. As we have just seen, the classical polarizability o
metallic sample is determined by geometrical factors. Ho
ever, due to the Pauli principle, charges cannot strictly ac
mulate on the border of the sample, but the charge den
distribution rather extends on the screening lengthls . This
effect reduces the polarizability compared to its classi
value by a quantitydaTF of the order ofls /L, whereL is the
typical size of the conductor along the electric field. In
coherent sample, electronic interferences might also give
to a contributiondaQ to the polarizability. The total polariz-
ability can thus be writtena5acl1daTF1daQ . In order to
show evidence of this correction, a magnetic fluxF can be
applied through the sample in order to modify the pha
difference of electronic trajectories. We will call ‘‘mesos
copic correction’’ the flux-dependent part of the polarizab
ity da(F). We will focus on the ensemble average of th
quantitydā(F), which isF0/2 periodic.We will characterize
the flux dependence ofdā by dF(a)5dā(F0/4)2dā(0).

D. Model used for the numerical simulations

Part of the analysis we have done rely on computer sim
lations. The two-dimensional rings or squares are mode
by the Anderson model. Each atomic site is coupled to
nearest neighbor by a hopping termt. Disorder is introduced
by on-site energies randomly distributed in the interv
@2w,w#. The Anderson Hamiltonian can be written in se
ond quantization

H5(
k

ekck
†ck1teifkck

†ck111te2 ifkck11
† ck , ~13!

where ck
† is the creation operator associated with s

k. The magnetic flux is introduced in this Hamiltonia
through the phase factor of the hoping element w
fk52pF/F0(xk2xk11)/L for a ring of sizeL. In the case
of squares we have taken into account the penetration of
magnetic field in the sample: the phase factor appearin
the hopping matrix elements is computed from the integra
the potential vector between concerned neighbors. In
dimensions, an estimation of the elastic mean free pat
given by5

-

5-3
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l e'30S t

wD 2

~14!

allowing us to choose values oft/w so that the system is in
the diffusive regime. Averages are always performed over
number of electrons in the system between one quarter
three quarter filling. It has been checked that expression~14!
remains valid in this energy range. On the other hand,
have not done disorder averaging which needs much lon
computation time. For this reason we have restricted
analysis to a moderate range of disorder, correspondin
the diffusive ergodic regime where disorder and energy
erages give identical results.

III. QUANTUM POLARIZABILITY OF A SYSTEM OF
NONINTERACTING ELECTRONS

We now examine the electrical response of a quan
system of noninteracting electrons, which was first cal
lated by GE~Ref. 8! for a metallic grain both in the diffusive
and ballistic limit. Their conclusion is quite surprising: in th
diffusive regime,a is bigger than the classical polarizabilit
by a factor (a/a0)2, wherea is the typical size of the grain
and a05h2/(me2) is the Bohr radius. Later on, Rice10

stressed the lack of screening in the calculation of GE
showed that when screening is taken into account, one re
ers the classical polarizability. We will see in the followin
that it is useful to consider the flux dependence of the po
izability within this crude approximation, since many resu
remain qualitatively true in the presence of screening.

A. Position of the problem

The polarizability of a system of a numberN of noninter-
acting electrons can be understood as the sensitivity of
energy spectrum to an external electric field, very similar
persistent currents measure the sensitivity of the spectru
an Aharonov-Bohm flux. As a matter of fact, the eigensta
ua& of the system and the eigenvaluesea , are modified by an
external electric fieldE:

ea85ea2^aueE•rua&1 (
bÞa

u^aueE•r ub&u2

eb2ea
1•••,

ua&8'ua&1 (
bÞa

^bueE•r ua&
eb2ea

ub&1•••. ~15!

Consequently, it exists an induced charge den
dr(r )5e(a51

N uca8 (r )u22uca(r )u2, associated with the
asymmetry of each wave function generated byE. Using the
definition ~5! of a, the expression of the polarizability in th
absence of screening at zero temperature can be found:

a5
2e2

E2 (
a51

N

(
bÞa

u^auE•r ub&u2

eb2ea
. ~16!

This expression depends on the eigenenergies of the un
turbed system and its eigen-functions through the matrix
ements of the position operator. Due to the energy deno
07530
e
nd

e
er
r
to
-

m
-

d
v-

r-

e
o
to
s

y

er-
l-
i-

nator, the polarizability will in particular be very sensitive
the electric field induced coupling between the last occup
levels and the first non occupied ones. Note also that
expression of the polarizability is also from Eq.~15! identi-
cal to the second derivative of the total energy of the sys
with respect to electric field:

a52 (
a51

N
]2ea

]E2
.

These results present strong similarities with the param
netic contribution of orbital susceptibility of a mesoscop
ring pierced by a flux line which is identical to expressio
~16! where theE•r is replaced byeA•p, where A is the
potential vector andP is the kinetic momentum operator. Th
total magnetic susceptibility contains also a constant diam
netic term 2Ne2/m which does not exist in the electri
response.5,11

B. One-dimensional Aharonov-Bohm ring

Using expression~16! it is possible to calculate exactl
the induced dipolar moment in a 1D nondisordered ring in
in plane electric field. Wave functions only depend on t
angleu, indicating the position in the ring, and satisfy the 1
Shrödinger equation 2(\2/2mL2)(]2/]u2)c(u)5Ec(u).
Furthermore, the magnetic flux, associated with the peri
icity in the ring, imposes the boundary conditio
c(u12p)5ei2p(f/f0)c(u). This equation can be solved
Using the parity and periodicity of the spectrum, we th
order the eigenvalues and the corresponding wavefunct
in ascending order in the interval@2f0/2,f0/2#:

e2p5
\2

2mL2 S p1
f

f0
D 2

c2p~u!5
1

AL
eiu(p1

f
f0

),

~17!

e2p115
\2

2mL2 S p2
f

f0
D 2

c2p11~u!5
1

AL
eiu(2p1

f
f0

).

As a consequence of the particular geometry of the s
tem, the electric field only couples certain states. In parti
lar, the matrix element between adjacent states cancels u
the quantum numbersp et q are such thatp2q562, in this
casê puXuq&5R/4p. The polarizability depends on the pa
ity of the number of electronsN and reads

aN~F!5
e2R2

8p2 S 1

eN12~F!2eN~F!

2
1

eN11~F!2eN21~F! D . ~18!

At zero flux and forN@1: aN5L4/8p4a0N. It is possible to
evaluatedFa by computing (aN112aN)/2. As a result,

dFa

a
'2

1

N2
. ~19!
5-4
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MAGNETOPOLARIZABILITY OF MESOSCOPIC SYSTEMS PHYSICAL REVIEW B65 075305
It is a very small effect, since it decreases rapidly with t
number of electrons in the ring. This result remains true fo
multichannel ring. We attribute this effect to selection ru
inherent to the square lattice which are responsible for
cancellation of the matrix elements of operatorX between
eigenstates close to a level crossing. In particular it has b
shown12 that these selection rules do not exist in the hexa
nal lattice where giant magnetopolarizability is expected
particular values of flux at the same level of approximatio

In order to investigate the effect of disorder we have p
formed numerical simulations using the Anderson model.
Fig. 2 is plotted the magnetopolarizability for a ring of leng
L5100 and several values of the disorderw. In absence of
disorder, the results are in qualitative agreement with
mula ~19!. The effect then decreases when the disorde
increased, with a law close to 1/w2. One is tempted to at
tribute this result to occurrence of localization in the 1D rin
However we will see in the following that this cancellatio
of the flux-dependent polarizability is also observed in
multichannel ring or disk in the diffusive regime.

C. Diffusive system

In the following we discuss a diffusive system in dime
sion d, characterized by a diffusion coefficie
D5(1/d)vFl e wherel e is the elastic mean free path which
assumed to be shorter than the system sizea along the elec-
tric field. It has been shown8,13,14 using semiclassical argu
ments that the average square matrix elementu^auXub&u2

depends mainly on the energy differencee5ueb2eau and
the Thouless energyEc5hD/L2. For e,Ec it is of the order
of a/g where g5Ec /D is the ratio between the Thoules
energy and the mean level spacingD. At higher energy it
decreases as 1/e2. This behavior is illustrated in Fig. 3 show
ing numerical results on a sample for different values
disorder where these two regimes can be clearly dis
guished.

It is then easy to deduce the order of magnitude of
polarizability noting that the summation in expression~16!
can be restricted toua2bu,g as a result:

a;e2a2/D. ~20!

FIG. 2. Magnetopolarizability of a 1D ring, of lengthL5100,
calculated with the Anderson model, for several values of the
order:w51024, 0.1, 0.4, 0.7, 1.4.
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The GE result is then recovered assuming that the Fe
wave length is of the order of the Bohr radius. We will see
the next section that this result is modified by screening. It
however, worth continuing this analysis in this oversimp
fied picture of noninteracting electrons in the case of
Aharonov-Bohm ring. From expression~16! the polarizabil-
ity is expected to exhibit flux dependence both from the m
trix elements and energy denominators. We discuss in
following separately these two contributions which is jus
fied in the context of random matrix theory where eigenfun
tions and eigenenergies constitute two sets of indepen
random variables.15

1. Energy denominator

We focus on the flux dependence of the quant
K5^(a,b@1/(eb2ea)#&. This quantity depends only on th
energy differences (ea2eb), and can be expressed as a fun
tion of R(e), the two levels correlation function :

K5E
0

Emax
deE

0

e

du
R~u!

u
. ~21!

In the diffusive regime,R(s) is well described by random
matrix theory15 and the average probability to find two de
generate adjacent levels is zero. This property is charact
tic of level repulsion in the spectrum of a random matr
which is stronger in a system where reversal symmetry
broken compared to a system where it is not. As a con
quence,K decreases as a function of the flux at low magne
flux and increases back in the vicinity off0/2 where time
reversal symmetry is recovered.

We have calculated numericallyK in a disordered ring of
lengthL580 and widtha58 for several value of the on-sit
disorderw corresponding to the diffusive regime. Figure

-

FIG. 3. Energy dependence of the nondiagonal matrix elem
in a ring of lengthL560 with M54 channels, and several value
of the disorder:w50.9, 1.2, 1.4, 1.7. Note the additional step o
served fore'5D, which corresponds to the Thouless energy
the transverse direction of the ringhD/W2, whereW is the width
of the ring.
5-5
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Y. NOAT, R. DEBLOCK, B. REULET, AND H. BOUCHIAT PHYSICAL REVIEW B65 075305
illustrate the effect described above. In the absence of o
contributions, this term would give rise to a negative ma
netopolarizability.

2. Matrix element

On Fig. 5 are plotted the flux dependance of t
average square of the diagonal and nondiagonal ma
elements for a diffusive ring. It can be noted that they ha
opposite flux dependences, resulting from the fact t
Tr(X2)5(aXaa

2 1(aÞbXab
2 is flux independent. The diago

nal elements decrease as a function of the flux, whereas
nondiagonal elements increases.

The time reversal property of the operatorX implies that
its diagonal matrix elements are real even function of fl
and can be developed in successive powers of cos(2pf/f0).

FIG. 4. K calculated numerically in a ring 8038, for different
values of the disorderw51, 1.5, 3, 4.

FIG. 5. Flux dependence of the diagonal and nondiagonal
trix elements in a ring of lengthL560 andM54 channels, for
w52. The factor 2 at zero flux between the diagonal and non
agonal matrix elements is due to the fact that only the states
that ea,eb are taken into account in the calculation of the n
diagonal matrix elements.
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2 & is maximum for multiple values off0/2. It is possible

to evaluate analytically this flux dependence of the diago
matrix elements from random matrix theory, using the re
tion betweenXaa and the sensitivity of the energies to a
electric field Xaa5(]ea /]E)E50. Since electric field pre-
serves time-reversal symmetry, the typical value of the
rivative of the energy levels with respect to the electric fie
^u]ea /]E0u2& is proportional to 1/b. Consequently,
uXa,au2(f5f0/4)5 1

2 uXa,au2(f50). Figure 5 shows tha
this last result is qualitatively true. Note also that this fl
dependence of the variance of the diagonal elements of
dipolar operator was also found from numerical simulatio
in the Anderson model by Uskiet al.16 Therefore, in absence
of the energy denominators 1/(eb2ea), the flux dependence
of the matrix elements would give rise to a positive magn
topolarizability. As a result this flux dependence is oppos
to the contribution of the energy denominators. Moreover
can see on Fig. 6 that these contributions almost exa
cancel and there is no magnetopolarizability in this mode
is also possible on Fig. 6 to check the validity of rando
matrix theory by comparing the exact calulation of the av
age magnetopolarizability from expression~16! with the re-
sult obtained assuming independence between matrix
ments and energy denominators. Our results confirm
RMT provide a reasonably good description of a mesosco
system in the diffusive regime.

At this stage it is interesting to emphasize that the fl
dependence of the average square of theX operator matrix
element is opposite to the same quantity related to the
rent operator which changes sign by time reversal symme
So when computing the magnetic susceptibility the contri
tion of the matrix elements and energy denominators are
the same sign. This effect is related to the existence o
finite average current in the canonical ensemble for a di
sive ring.

Note that both persistent current and zero frequency
larizability can be expressed as a function of the free ene

a-

i-
ch

FIG. 6. Flux dependence of the matrix element and energy
nominators contributions to the average unscreened polarizabilit
a disordered square 30330, calculated with the Anderson model fo
w53. These two contributions nearly compensate yielding to
absence of magnetopolarizability. Full line: sum of the flux dep
dences of energy denominator and average square matrix elem
Squares: exact calculation.
5-6
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of the systemI 52]F(E,f)/]f anda52]2F(E,f)/]E2.
So,

]a

]f
5

]2I per

]E2
. ~22!

Let us emphasize that the absence of thermodyna
magnetopolarizability is thus related to the insensitivity
persistent currents to an electrostatic field and can be q
tatively understood using a semiclassical argument. The
fect of the electrostatic potential slowly varying at the sc
of the Fermi wavelength can be included into the phase
the electronic wave functions. Persistent currents can
computed from the integral of the classical action on a
cular orbit. The contribution of the static electrostatic pote
tial on such an orbit (e/\v f)*V(r )ds, where
V(r )5Er cos(u) and ds5rdu obviously cancels out. This
argument is helpful to understand why the polarizability
independent of the flux in this very low frequency regim
We will see, however, in Sec. V that a nonzero magneto
larizability is found at finite frequency in the grand canonic
ensemble or at finite temperature in the canonical ensem
where the energy denominators contribution disappears.

IV. SCREENING

A. The Thomas-Fermi approximation

As mentioned above the mean field approximation
duces the complicated many body problem of interact
electrons to a much simpler one, in which electrons move
an effective potentialf(r ), resulting from the screening o
the applied potential by other electrons. Therefore, it g
beyond a simple electrostatic calculation by taking into
count the kinetic energy of electrons as well as their fer
onic character.17

In the linear regime, i.e for a small external potential, t
induced charge density is simply proportional to the effect
potential:18,19

dr~r !52e2n~EF!f~r !52e0ks
2f~r !

at 3D with ks5Ae2n(EF)/e0 and

dr~r !52e2n~EF!f~r !52e0ksf~r !d~z!

for a conducting plane atz50 with ks5e2n(EF)/e0.
The resolution of the self-consistent Eq.~1! within this

Thomas-Fermi approximation for a 3D sample in the pr
ence of a uniform external applied field, gives rise to
screened potential whose value is of the order ofE/ks which
is confined to the border of the sample withinls51/ks . This
result is in principle not true any more in a 2D system wh
classical screening already involves charge displacemen
the whole system. However, since the charge distributio
always singular on the edge of the sample it is possible
approximate the screened potential for a disk of radiusR by
F(r ,u)5(E/ks)F(R2r )cos(u) where F is a peaked func-
tion centered on zero of width 1/ks . When screening is take
into account the expression of the quantum polarizability
T50 reads
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a5
2e2

E2 (
aÞb

^bufTF~r !ua&^buE•r ua&
ea2eb

. ~23!

Within this approximation the GE result for the polarizabili
is modified by a factor 1/(aks)

2 and becomes identical to th
classical result.

B. Beyond the Thomas-Fermi approximation

As we have seen, the Thomas-Fermi approximation d
not take into account contribution of the screening due
electronic interferences. They indeed give rise to a quan
correction for the response functionx, and consequently to
the effective potentialf and the polarizabilitya:

x5xTF1dx,

f5fTF1df,

a5aTF1da,

where x is the response to the local field. Assuming th
those corrections are small compared to the Thomas-Fe
value, it is possible to show, in agreement with Efetov20 ~see
Appendix A for the detailed calculation!, that da can be
simply expressed as a function of the mesoscopic correc
to the one electron response functiondx and the Thomas-
Fermi potential

da'
1

E2
Tr~fTFdxfTF!. ~24!

In the following we discuss the response to a time-depend
electric field. We will see that dynamical polarizability ca
be very different from the static one.

V. EXPRESSION OF THE POLARIZABILITY

A. Response to time-dependent potential

The application of a time-dependent external poten
V(t)5eE•r exp(ivt) raises the problem of the relaxation o
the system towards equilibrium. This process is made
inelastic processes characterized by a typical time scale
lated to inelastic collisions.

In the limit of a weak coupling, this process can be d
scribed by a master equation on the density matrix:11

i\
]r

]t
5@H01V~ t !,r#2 ig~r2req!. ~25!

The parameterg represents the typical broadening of th
energy levels and characterizes dissipation processes, a
ing the relaxation of the system towards equilibrium. T
density matrix req satisfies the condition@H,req#50,
H5H01eE•r exp(ivt)1find(r ,g,t) being the Hamiltonian
of the system in the mean field approximation, in an ac el
tric field at frequencyv. Two limits are to be considered
When the frequency of the time-dependent potential is sm
compared tog; the system follows the potential and stays
5-7
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every moment at equilibrium. On the contrary, at high f
quency compared tog, the system is always out of equilib
rium.

In addition, we assume that the effective potential is
ways in phase with the external one. This is justified if t
dissipative part of the polarizability is very small compar
to the nondissipative part (a9!a8).21

The expression of the density matrix is then obtained
solving the master equation. From it, we deduce the respo
function and later on the polarizability and its quantum c
rection dfa, which can be expressed as a function of t
eigenstates and eigenvalues of the HamiltonianH0.

a52
2e2

E2
ReS (

aÞb

f a2 f b

ea2eb

ea2eb2 ig

ea2eb1v2 ig
^bufTFua&

3^buE•r ua&1
g

g1 iv (
a

] f a

]ea
^aufTFua&^auE•r ua& D ,

~26!

dFa52
2e2

E2
dF

3ReS (
aÞb

f a2 f b

ea2eb

ea2eb2 ig

ea2eb1v2 ig
u^bufTFua&u2

1
g

g1 iv (
a

] f a

]ea
u^aufTFua&u2D . ~27!

B. Quantum correction to the polarizability in the diffusive
regime for the different statistical ensembles

In this section, we examine the differences between
canonical and grand canonical ensembles. The canonica
semble CE corresponds to the situation for which the num
of electrons in the system is fixed. It is in particular t
case for electrically isolated systems. The chemi
potential is determined self-consistently by the condit
N5( i f 0(e i2m), and therefore depends on the flux throu
the energy levels. On the other hand, in the grand canon
ensemble GCE, the system can exchange electrons with
thermodynamic reservoir, which imposes the value of
chemical potential. A physical realization consists in co
necting the ring to a large metallic pad. At finite temperatu
the occupation of the energy levels is spread over an en
interval of the order of the temperature. As a result, the s
sitivity to the flux dependence of the chemical potential
suppressed whenT@D, whereD is the mean level spacing
Therefore the differences between CE and GCE are expe
to disappear with increasing temperature and frequency.
first discuss the polarizability in the GCE.

1. Grand canonical ensemble

Due to the ergodicity property in the diffusive regime, t
disorder average is equivalent to the average over the n
ber of electrons. This property simplifies the calculation.
averaging over the whole spectrum, one can show
07530
-

l-

y
se
-
e

e
n-

er

l

al
the
e
-
,
gy
n-

ted
e

m-

at

^( f a2 f b)/(ea2eb)&521/dm, where ^&[(1/Dm)*m2dm/2
m1dm/2 .

Considering only regimes wherev!D and g!D formula
~27! greatly simplifies:

dFa5
2e2

EF
dFS (

aÞb
u^bufTFua&u2

1
g

g1 iv (
a

d~ea2m!u^aufTFua&u2D . ~28!

Two frequency regimes can be distinguished, depend
wether the frequency is smaller or larger than the relaxa
energyg. In the limit v!g, which corresponds to a stati
electric field, the polarizability is simply equal to the flu
dependence of the trace of the screened potential

dFas
GCE5

2e2

EF
dFTr~fTF

2 !. ~29!

Since the trace is independent of the basis which is con
ered, this quantity is independent of the magnetic fl
Therefore, at low frequency, there is no mesoscopic cor
tion to the polarizability in the GCE as shown on Fig. 7.

We now turn to the dynamical limit, i.e., forv@g. As for
the canonical ensemble, we consider a diffusive ring of
dius R and widthW. The relaxation term cancels and on
remains the term

dFaD
GCE5

2e2

EF
dFS (

a.b
u^bufTFua&u2D . ~30!

Therefore, one needs to evaluate the matrix elementufa,b
TF u2.

It is then possible to use the semiclassical calculation
McMillan22 which yields to a general expression of the a

FIG. 7. Dynamical (v@g) and thermodynamical (v!g) polar-
izability in the grand canonical ensemble of a disordered r
8038, calculated with the Anderson model forw51 andw52.
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erage squares the matrix elements of the operatoreiq•r in a
diffusive system which generalizes semi-classical exp
sions of the matrix elements ofX relevant to the unscreene
case discussed above:

u^aueiq•rub&u25
D

p\

Dq2

D2q41~ea2eb!/\2
. ~31!

In order to determine the relevant spacial frequencies
the screened potential, this latter is then decomposed in F

rier series fTF(r )5(n52M /2
M /2 Ane

iqn
1
•r1eiqn

2
•r, where

qn
1,25(np/W)ur6(2p/L)uu . At low energy, the main

contribution to the matrix elements of the screened poten
is dominated by the terms with the smallest wavevector c
responding ton50, qmin52p/L for which

fa,b
2 '

1

Dqmin
2

5
D

pEc
S 8Rls

3p2W
D 2

, ~32!

wherels is the screening length,Ec5hD/2pR is the Thou-
less energy, andD the mean level spacing between ener
levels.

We can then estimate the flux dependence of the ma
elementsufabu2 as was done in Sec. III for the unscreen
potential

df (
bÞa

^ufabu&252df^ufaau&2

5^ufaau2&GUE2^ufaau2&GOE

5
1

2
^ufabu2&GOE. ~33!

Thus, the mesoscopic correction to the polarizability re

daD
GCE

a0
5S 8

3p3D ls

W

1

g
, ~34!

wherea0 is the classical value of the polarizability. We too

the 2D limit corresponding to a disk for whicha05e0
16
3 R3.

For a quasi-1D ring,a05@e0p2R3/ln(R/W)# ~see Sec. II B!.
Only the numerical factor in formula~34! is modified if one
considers this last value. This result is in good agreem
with the calculation of Blanter and Mirlin23 using supersym-
metry techiques.

The magnetopolarizability increases when a magnetic
is applied, corresponding to apositivemagnetopolarizability.
A noticeable result is that this effect is inversely proportion
to the conductance and thus increases with the disorder in
diffusive regime. It is expected, however, to decrease ag
with disorder in the localized regime when wave functio
and eigenenergies become insensitive to the Aharonov-B
flux.

This disorder dependence ofda/a is illustrated on Fig. 8.
On the other hand, the magnetopolarizability decreases
the electron densityne , since the conductance increases a
the screening length decreases withne .
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The ring geometry is particularly favorable t
observe this effect. The extrapolation of Eq.~34! leads
to da/a;(D/2Ec)(ls /a) for a two-dimensional sample
such as a disk or a square of typical sizea and
da/a5(D/2Ec)(ls /R)2 for a sphere. In a ring etched in
semiconductor heterojunction GaAs/GaAlAs with th
following parameters:L58 mm, ls5400 Å, M510,
Ec57D, we obtainda/a;331023.

2. Canonical ensemble

From relation~27!, we deduce that at zero temperatu
and zero frequency the quantum correction to the polariza
ity reads in the canonical ensemble

dfa5
2e2

E2
dfS (

a51

N

(
b5N11

Nt u^aufTF~r !ub&u2

eb2ea
D , ~35!

whereNt is the total number of states. Note that this expr
sion is very similar to the Gorkov Eliashberg one where m
trix elements of theX operator are replaced by the matr
elements of the screened potential. Just as previously
cussed in the absence of screening, the flux dependenc
the energy denominators compensates exactly the one o
matrix element. It is important to note that this compensat
is now also found by Blanter and Mirlin in supersymmet
calculations at zero frequency24 contrary to what was state
previously23 when the contribution of three levels correlatio
function was not correctly taken into account. We belie
that the symmetry argument given in the preceding sec
still hold for a screened potential. However, it is also point
out in this recent Ref. 24 that a finite magnetopolarizabil
can be expected in the canonical ensemble as soon a
frequency is not negligible compared to the level spacing

FIG. 8. Dynamical polarizability (v@g) in the grand canonica
ensemble in a disordered ring 8038, calculated with the Anderson
model for several values of the disorder.w51, 1.5, 2, 3, 4.
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to the decrease of the contribution coming from the ene
denominators. A similar effect is obtained when increas
the temperature as shown precisely in Ref. 5. The sa
authors24 also emphasize that the magnetopolarizability
cillates with frequency on the average level spacing sc
such as the level spacing distribution.

C. Effect of interactions in the canonical ensemble

We have shown that in the canonical ensemble in
diffusive regime, there is no mesoscopic correction to
polarizability. However, we have neglected in this calcu
tion electron-electron interactions.

In order to investigate a possible effect of electro
electron interaction a first and simple approach consist
taking the interaction potential as a perturbation. Rather t
a Coulomb potential, we use an on-site interact
Ud(r2r 8). This approximation is justified for high elec
tronic density, since the interaction between two electron
then strongly screened by other electrons. In first order inU,
the variation in total energy can be expressed in terms of
local electronic density25 n(r )5(a51

N u^aur &u2:

dEtot5UE n~r !2dr. ~36!

The correction to the canonical polarizability is obtain
then by the formula

da int52
]2~dEtot!

]2E
. ~37!

On Fig. 9 numerical calculations of this quantityda int /a are
shown for a ring for various values of disorder.

Interactions give rise to a negative magnetopolarizabi
The effect is more important in the ballistic regime than
the diffusive regime, in which it does not seem to depend
disorder. It gives rise to a magnetopolarizability which
quite enhanced compared to its value in the absence of in

FIG. 9. Correction to the canonical polarizability by interactio
in a ring of lengthL560 andM54 channel, for several values o
the disorderw50.9, 1.2, 1.4, 1.7.
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actions. Nevertheless, the order of magnitude of this ef
remains small compared to the dynamical polarizability.

VI. CONCLUSION: COMPARISON WITH RECENT
EXPERIMENTS

We have calculated the average polarizability of mes
copic rings and squares. In the grand canonical ensemble
found that there exists a positive magnetopolarizability
frequencies larger than the typical broadening of the ene
levelsg. The relative effectda/a scales as 1/g, whereg is
the dimensionless conductance. In the canonical ensemb
zero frequency and zero temperature, the magnetopola
ability cancels in the diffusive regime, whereas in the ball
tic regime a small negative effect is found. Differences b
tween canonical and grand canonical ensemble disappe
frequencies or temperatures larger than the level spacing
the following table, are summarized the results obtained
da/a in the ballistic and diffusive regime, for the canonic
and grand canonical ensemble.

Ballistic regime
v!g D@v@g

C 21

4N2

21

4N2

GC 0 0
Diffusive regime

v!g D@v@g
C 0 0

GC 0 S 8

3p3D lF

W

1

g

These results are in good agreement with recent experim
where the magnetopolarizability of two-dimensional rin
has been recently measured by Deblock and co-workers26,27

The sample investigated was an array of rings fabricated
electronic lithography in an heterojunction GaAs/GaAlAs.
resonant technique was used in which the rings are cou
to the capacitive part of a high frequency superconduct
resonator.

The polarizability exhibits oscillations as a function of th
flux, with a periodicity corresponding tof0/2 through a ring.
The order of magnitude as well as the sign of the effect is
good agreement with our grand canonical results. In ad
tion, it decreases as a function of electronic density, acco
ing to the 1/g de pendence of formula~34!.

Taking into account the fact that these experiments wh
done at a frequency which is of the order of 1/3 of the le
spacing, where differences between canonical and grand
nonical results are strongly reduced, it can be shown that
result is in good agreement with theoretical predictions.24,27

A complete check of the theory would imply to perform ne
experiments at other values of frequency.

APPENDIX A: DETAILS ON THE CALCULATION
OF THE MESOSCOPIC CORRECTION

TO THE POLARIZABILITY

In this appendix, we derive in more details the express
of the mesoscopic correction to the polarizability. In the fo
5-10



d

to

n
i-

n

n

e

ty

w
th

o-
in

is

lds.
uc-

that

MAGNETOPOLARIZABILITY OF MESOSCOPIC SYSTEMS PHYSICAL REVIEW B65 075305
lowing, we will note J5JTF1dJ and j5jTF1dj, the
response to the external and internal field respectively,
fined in the matrix form as

dr5xf5Jfext. ~A1!

The relation~1! which relates the induced charge density
the response function can be written in the matrix form

dr5x~12Ux!21fext. ~A2!

The effective potential is also related to the response fu
tion by 3. The polarizability in the Thomas-Fermi approx
mation reads

aTF5
1

E
Tr~xxTFf!5

1

E
Tr@xTF~12UxTF!21fext#

5
1

E
Tr~xJclfext!. ~A3!

with Jcl5xTF(12UxTF)21. The next step is to find the
quantum correctiondJ to the screened response functio
We set by definition

J5x~12Ux!215Jcl1dJ. ~A4!

Assuming that quantum corrections are small compared
the Thomas-Fermi value, second order terms can be
glected:

~12UxTF!J2UdxJcl5xTF1dx,

dJ5dx~12Ux!21~11UJcl!.

Using the fact that 11UJcl5xTF
21Jcl , we show that the

quantum correction to the response function can be
pressed:

dJ5JclxTF
21dxxTF

21Jcl . ~A5!

The quantum correction to the polarizabili
da5Tr(xdJfext) can then be written

da5Tr~fTFdxfTF!,

where we have used thatxTF
21Jclfext5fTF .

APPENDIX B: DISCUSSION OF THE LINEAR RESPONSE
APPROXIMATION

In order to estimate the validity of the linear response,
have calculated the total energy of a ring as a function of
v
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electric field ~screening is not here considered!. It can be
expanded as

U~E!5U02d0E2aE21•••.

The coefficientd0 correspond to the spontaneous dipolar m
ment of the ring, resulting from fluctuations of the charge
the presence of disorder. The ensemble average ofd0 is zero.
The energy average varies likeE2 at small field. As it is
shown on Fig. 10, a deviation from the linear behavior
hardly observed before a critical fieldEmax such that

eEmaxR;EF , ~B1!

whereR is the radius of the ring.
This critical value is less restrictive than the criteria8 and

justifies the use of the linear response up to very high fie
For instance, in a 2D electron gas, obtained in a semicond
tor heterojunction GaAs/GaAlAs for whichEF;30 K, our
criteria allows to use linear response up to fields such
ER;2 mV.

FIG. 10. Total energy versus electric field in units oft/eR cal-
culated in the Anderson model in a ring 4035, and for a disorder
w52.
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