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Orthogonal basis for the energy eigenfunctions of the Chern-Simons matrix model
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We study the spectrum of the Chern-Simons matrix model and identify an orthogonal set of states. The
connection to the spectrum of the Calogero model is discussed.
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I. INTRODUCTION whereX,, a=1,2 areNXN matrices and¥ is a complex
N-vector that transforms in the fundamental of the gauge
Recently, Susskiridproposed a description of quantum groupU(N),

Hall effect in terms of a noncommutatived(1) Chern-
Simons theory. The fields of this theory are infinite matrices X,—UX U™l v-Uuw, 2
corresponding to an infinite number of electrons confined i
the lowest Landau level. Polychronakos, later, propdsed
finite matrix model as a regularized version of the noncom- .
mutative Chern-Simons thgory in order to describe systems =~ iB[Xy X, ]+ W'~ B6=0. ©)
of finite many electrons. Although the proposed matrixThe trace of this equation gives
model seems to reproduce the basic features of the quantum
Hall droplets, a precise relation between the matrix model Vi =NB6. (4)

spectrum and the QHE as described by Laughlin wave func- o _
tions is lacking. Upon quantization the matrix elements ¥f and the com-

A formal mapping between the states of the matrix modePonents o’ become operators, obeying the following com-

and Laughlin states as presented in Ref. 3 seems to HButation relations
nonunitary’ while coherent state representations of the ma-

trix model states produce wave functions with a short dis-

tance behavior which does not agree with that of Laughlin. .

On the other hand, the same matrix model was introduced [(X)ii (Xa) ] = '_5_ S (5)
by Polychronakds as being equivalent to the Calogero Vi Azl g Al k-
model! a one-dimensional system of particles in an external
harmonic oscillator potential with mutual inverse-square in- The Hamiltonian is
teractions.

In this paper we analyze the spectrum of the matrix model
and present a relatively simple way to identify an orthogonal
basis of states. In doing so we make use of known properties
of the energy eigenfunctions of the Calogero model. Thavhere A=(B/2)(X;+iX;). The system containsN(N
paper is organized as follows. In Sec. Il we briefly review the+ 1) oscillators coupled by the constraint E@). As ex-
Chern-Simons finite matrix model and its spectrum. In Secplained in Ref. 2 upon quantization, the operaBobecomes
Il we analyze the eigenvalue problem and identify an or-the generator of unitary rotations of boky and . The
thogonal basis for the energy eigenstates. The relation to tHéace part Eq(4) demands thalBé, being the number op-
equivalent eigenvalue problem of the Calogero model is diserator for¥'’s, is quantized to an integer. The traceless part

nThe Ag equation of motion implies the constraint

[V aq’jT]: 5ij )

N2
H=w 7+2 A?jAji), (6)

cussed in Sec. IV and the Appendix. of the constraint demands the physical states to be singlets of
SU(N).
Il. CHERN-SIMONS MATRIX MODEL Since theA], transform in the adjoint and thé] trans-

The action describing the Chern-Simons matrix modelforrn in the fu_ndamental representation BU(N), a purely
(for clarification we would like to mention that Smolin has group theoretical argument, implies that a physical state be-

. . T' . .
introduced a matrix model, also called matrix Chern-Simon ng a singlet has to contaiNl W''s, wherel is an integer.

theory® Although there are some common features, the two h'é leﬁqf to the q_uantlfzant%n Bffj" itten d .
models are differentis given by xplicit expressions for the states were written down in

Ref. 3. The ground state being &U(N) singlet with the

B . ) lowest number oA™’s is of the form
Szf dt5Tr{€an(Xat+i[Ao Xal) Xp+20A0— wX}

. |“Pgr>:[5i1”'iN\I,iTl(\I,TAT)iZ . '(\PTATNfl)iN]I|0>’
+UTiv—-AW), (1) (7)
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where|0) is annihilated byA’s and ¥’s, while the excited S,(V2BX)=(2B)"TrX", n=1,...N,
states can be written as (14)
N E(V2BX, )
_ tiver gig---ing T (AT, B = —
|\Pex(‘>—i1;[1(TI’A Nei[ €' IN\Ifll(\If A )'2"' :(\/E)N(N l)lzéll"'lN¢i1(¢X)i2...(¢XN l)iN'
(PTATN-D), ]'|o>_ (8) These can be thought of &kt 1 independent collective vari-
N ables.(For anN X N matrix X, the Cayley-Hamilton theorem
The states in EQ.(8) have energy w((N%/2)+I[N(N expressexXN as a linear function oX", n=1, ... N—1
—1)/2]+¢€), wheree=3ic;. They are degenerate and the with coefficients which are symmetric functions of the eigen-
degeneracy is given by the number of partitionseof values ofX. Therefore all other invariants which involvgs
The main purpose of this paper is to identify an orthogo-are reduced t&' times a function ofS,,.)
nal basis for the states in E(B). Any physical wave function has the general form
b= f(Sn)Elef(BIZ)TrXZ. (15)

IIl. ENERGY EIGENFUNCTIONS, ORTHOGONAL BASIS

As we shall see later, it is convenient to work in the In the X-representation the Hamiltonian can be written as

X-representation. We define the stf¥e¢) such that ol 1 32

=-|-c——+ 2|,
2| B ax, TBTX (16)

XX, 0)=X[X, ), W|X,$)=¢|X,$). (9 ,
We want to solve the eigenvalue problem

We normalize the state such that the completeness relation is
given by HO=ED, (17)

-~ whereH is given by Eq.(16) and® is as in Eq.(15). Doing
f |X,¢)e‘¢¢d¢> dm dXij(X,¢>| =1. (10) a simple similarity transformation we get
ij

: : _ Hf E'=Ef =A 18
In the X-representation the wave function corresponding to a (Sn) (Sn) (18
particular state of the theory i®(X,$)=(X,¢|staté. In  Where
particular the wave function corresponding to the ground - 5 5
state Eq(7) is of the forn? H=elB2T X g (BI2)TrX

2

_ - — J w w J
PN ey y. N-1y 1l - T N S
Dy(X, ) =[Ny ($AT), ... (GAT™ND), | 02 Xyt N ag 2 axoax, s (19
—(B/2)Tr X2 . L~ .
xe o (1) The Hamiltonianf can be written as a sum of two terms
h - o~ -
where A=Fy+H_,, (20)
AT \/ﬁ( X 1 9 ) 12 where
! 217 B oX;)” B o
Since Eq.(11) is completely antisymmetric in thg-indices, HO:wizj: X EJFEN ’
the differential operatord/JX;;) produces a nonzero contri-
bution only if it acts on the~ ®2T factor. We then have o o__ o » &2 21
that -2 2B i 0"X|](?XJ| ’
(Dgr(x,a)=(~/28)”\‘('\"1)’2[ e --iNal(EX)iz o Since the op_eratdFIo essentially counts the number Xfs,
one can easily check that
— _ _ 2
(¢XN l)iN]Ie (B/2)TrX ] (13)

[Ho,Hfz]:_ZHfz. (22)

The wave function corresponding to the excited state(8q. |, other words,

can be written as a linear combination of wave functions of

the form (V2B)*™MITIL, (Tr X))y (X, ¢). A=e-220)f o= (R2/20), 23
Given the constrain®, any physical wave function has to

be a function ofSU(N) singlets made out of the Hermitian This implies that if P, is an eigenfunction ofH,, then

matrix X and the vector¢. There are two types of such eF'*Z’Z“’Pk is an eigenstate of the Hamiltonidth. One can
invariants one can construct: easily see that
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~ N2 One can show that the Laplacian of the matrix model can
HoPy=| k+ w7) Py, be written as
o N d ﬁ_lzﬁzA NAVIL a1
Fle(f-2/20)p = kt o ei2/20)p, | (24) = X, X, B2 adt T B (e x)? (31

Using Egs(18) and(21), we see that in our cag®, is of the ~ whereA is the Vandermonde determinant defined by
form

_ _ —jy 0 -1_
P=Jpy(VZBX)E'(V2BX, ), (25 A=det )= o= 1T ),
where Jy,, is @ homogeneous polynomial of the for(the (32

notation will be justified later andJ is an operator with the following action du

Ip(V2BX)=2 a(np 1l (r(v2BX))", (26 [,U;1=Uws;, [3, U =-Ujts.. (33
such thatsin;+I[N(N—1)/2]=k. For completeness we show the detailed derivation of Eq.
Going back to the original eigenvalue problem, the energyt31) in the Appendix. .
eigenfunctions are of the form In writing down the eigenvalue equation fbir expressed
in terms of the eigenvalues and the angular variabldd,
q):ef(B/Z)Trxze(Fi72/2w)(3mgl)_ (277 We notice that the tern, . [J*3"/(x,—x)?] acts only on
the E dependence of the wave functidnin Eq. (15). Using
Since the particular parametrization E(B0), the invariants in Eq.
(14) can be written as
e—(Blz)Trxze(ﬁ,z/zw)xij e—(ﬁ,z/zw)e(s/z)nxzzxij _% &% "
1
(28 $H(\2BX)=(12B)" 2, T,
® can be written as
\/g 1 3 E(V2BX,¢)=(+2B)NN Ve Ing (4X);,
o] V- E o] R
WLV 2l™ B ax; X(6X2),, (XN,
- B 1 9\ - _eymx PBYNIN=1)12i1 . ..iNg (Bl -1
X5 > Xij—gm ,ble =(2B) 61"'N¢)i1(¢UXU )iz
It
:J{)\}(AT)EI(ATlg)e—(B/Z)Trxzy 29) X(pUXPU™Y); . (pUXNTIUTY,
whereA' is given in Eq.(12). =(\/ZB)"‘(’\"l)’zde(U’1)6"1'""N(EU)k1
There are several basis sets for the polynomi|s. . o
There is a particular one which is orthogonal. This corre- X (AU Xk, - - - (U)Xt
. . 11 k2 kZ kN I(N
sponds to choosindy,,’s to be the Jack polynomiars: N
Although, in principle, this can be proven purely within the —
context of the matrix model itself, an easier proof can be =(V2B)NN D[] (Xi_xj)Hl (V).
given indirectly by first relating the energy eigenfunctions of = -
the matrix model to the energy eigenfunctions of the Calog- (34)

ero model and then using well known properties of the
Calogero eigenfunction$™1" This is shown in the following  This implies
section.

N
kmmk =l_ | IN(N=1)/2A | 7kmmk !
IV. RELATION TO CALOGERO MODEL I 5 =(V2B) AT iljl ((’bu)'

X being a Hermitian matrix, it can be diagonalized by a

unitary transformation Z(VZB)'N(Nfl)IZA'ka,Q (GU)II(pU) !
I ,m
_ 1 =y S —
X=UxU"",  Xjj=Xd . (30 X (FUL =11+ 1)E". (35

The relation between the matrix model and the Calogero
model is achieved by identifying the eigenvalugewith the The Hamiltonian acting on the space of physical wave
one-dimensional particle coordinates of the Calogero systenfunctions Eq.(15) can therefore be written as
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|(|+1) Jiop=1, Jy=mpy,
—z +B2D) x?|.
2 % E' I} 2(1+1)
(36) _
J2y=My+ =5 My

The expressionAHA ! coincides with the Hamiltonian
of the Calogero model. This actually implies that

& . Jiia, . 3=Mag gy
Ae~ (B2TXg(H 12933, (V2BX)E'(V2BX, $) are energy

eigenfunctions of the Calogero model. 6(1+1)
Using Egs.(31), (34), (35 one can show that J2y=Mpyt = T3 Mg,
Ae BTN 2203 |\ (\2BX)E!(\2BX, $) 3(1+1) 6(1+1)
I+1n—(B/2)Tr X2~ (O /4B AR =M T Myt T 2)i+3) My
~ At 1= (BI2)TrX“a—(OL )J{)\}( 2BX), (37 42)
where Using these one can explicitly check that the corresponding

Hi-Jack polynomialse™ (°./#B)J,,, are orthogonal with the

9 9 integration measure E@39).
W - ﬁ)- (38) SincelJy,,’s are symme_tric, they can also be expressed in

' Y terms ofIT;(S;)" =1II;(Tr X")" whereX;in;=\. It is this de-
pendence which is implied m{x}(\/_X) in Eq. (26) and in
Jpy(AT) in Eq. (29).

Going back to the matrix model eigenfunctions E@®€)
and recalling thafl;; d[X;;]=A?dU]II; dx;, we conclude
that the states

o= 2+<|+1>E

T OX i) Xi—

Comparing Eq.(37) to the orthogonal basis of the energy
eigenfunctions of the Calogero modéf!’ we conclude
that the polynomialsl;,, ought to be the symmetric Jack
polynomials. The inhomogeneous polynomials
(OL"‘B)J §4( \{7_x, are the symmetric Hi-Jack
oI nomial which provide an orthogonal basis for the _ =l —(BI2)TrX?
pCaI%gero model with thpe integration me%@ﬁrjé Py =Ipy(ADE(AT, g)e” BT, 43
whereJ;,,’s are the symmetric Jack polynomials, provide an

orthogonal basis for the matrix energy eigenfunctions
AZHZe*BZXiZH dx . (39)

f (I)?)\}(I){)\,}H dX”dd> dae_‘f"’s:O for {)\}7&{)\,}
The symmetric Jack polynomiald;,, of degree \ are 1 ”
defined~**in terms of the monomial functioris;x; N where (44)

AN=3;\;. Let{A} indicate the partitiong\, . . N} Toa Using now Eq.(10), we can write an orthogonality relation
partition{)\} we associate the symmetric monomial functionfor the states of the matrix model independent of representa-

m{)\}=EpHixf‘i , where the sum is over all distinct permuta- tion, namely
tions P. For example m{zyl}:Ei'jxizxj for i#j.

My (X1.X2, - - . XN) =0 if N is smaller than the number of (W) =0 for Pj#{N"}, (49
parts of the partitio{\}. The symmetric Jack polynomials \here
have the following expansion in terms of;,’s:
W)
J{)\}(Xi):m{)\}(xi)"'{#;{)\} VM (%), (40) =JN(A*)[ei1---imlfifl(\IrTAT)i2 L (WTATNY, 110).

o _ The use of theX representation and the resulting connection

v are some coefficients which depend brand {1} (o the Calogero model was very helpful in identifying the
<{\} defines a partial ordering such that Jack polynomial dependence of an orthogonal basis for the

_ _ excited states, but the final result E¢5) is independent of

j j :

representation.
{ut<{A}eu=\ and 21 Mi<i21 i
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APPENDIX
Using the “polar” decomposition Eq.30) for X we find
dX=U(dx+[U1dU,x])u 1,

dXi;= UikUIZjlka_ UikUHl(Xk—XO(U_ldU)kI

(A1)
Using the parametrizatiobl = e'*«!«’« we get
-1 1 - ou @
(U " dU)=| U~ 0. d 0,=eq(0)do,. (A2
Thus
dx = (U™ tdXU)y;
1 (U™ tdXU)y
(U tdU)g=— ———X for k=1.  (A3)
X=X
Using this we find
a ] Ug'U;
— =2 U'Up——-2 —=¢ (A4
IXij ; KR % i (e x0) (A4)
where
kl _
J E ekl — 30, (A5)
ande is the inverse og{,, such that
> e (Defi(0)=0,p.
kl
Ep ezl(ﬁ)es,|,(0)=5kkr5”, . (AG)
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Expression(A5) implies that the action o' on U is as
follows:

[J,U;;1=Ui3; . (A7)
Further
[J4,3m7) =348 — 3™ Sy (A8)
The matrix Laplacian can now be rewritten as
] Ly, 9
Uy, U Uik
= (?XI] (?le ; 2 k| ]k Xy 2 ik
-1
2 1 c? Uk/'U” krlr
2 Ut X
ki1 (Xe=x()
Ug'U; a
——L gy U tu o7
iz (Xe=X)) 2 ki =ik
U I kI E I|’ k'’ .
1 (Xg— x|) oY (xk x|)
(A9)

The first term isEk(azlaXﬁ), the second term is zero, the
third is =y [ 1/(x—x) [ (9! 9% ) — (3] 9%,) ], and the last is
— e[ IKI*/ (x—%))2]. Thus we obtain

J J 1 (92 k|J|k

= > A= ———— (A10
axXij aX;; A ; oxe & (Xe—x)? (A10)
where we used
3 1 J d 1 3
S TS a2 3 Toa
K OXg k7l (Xe—=x) \axe  ax) AT axg
(A11)

andA:Hk<|(Xk_X|).
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