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Orthogonal basis for the energy eigenfunctions of the Chern-Simons matrix model
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We study the spectrum of the Chern-Simons matrix model and identify an orthogonal set of states. The
connection to the spectrum of the Calogero model is discussed.
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I. INTRODUCTION

Recently, Susskind1 proposed a description of quantu
Hall effect in terms of a noncommutativeU(1) Chern-
Simons theory. The fields of this theory are infinite matric
corresponding to an infinite number of electrons confined
the lowest Landau level. Polychronakos, later, proposed2 a
finite matrix model as a regularized version of the nonco
mutative Chern-Simons theory in order to describe syste
of finite many electrons. Although the proposed mat
model seems to reproduce the basic features of the qua
Hall droplets, a precise relation between the matrix mo
spectrum and the QHE as described by Laughlin wave fu
tions is lacking.

A formal mapping between the states of the matrix mo
and Laughlin states as presented in Ref. 3 seems to
nonunitary,4 while coherent state representations of the m
trix model states produce wave functions with a short d
tance behavior which does not agree with that of Laughl5

On the other hand, the same matrix model was introdu
by Polychronakos6 as being equivalent to the Caloge
model,7 a one-dimensional system of particles in an exter
harmonic oscillator potential with mutual inverse-square
teractions.

In this paper we analyze the spectrum of the matrix mo
and present a relatively simple way to identify an orthogo
basis of states. In doing so we make use of known prope
of the energy eigenfunctions of the Calogero model. T
paper is organized as follows. In Sec. II we briefly review t
Chern-Simons finite matrix model and its spectrum. In S
III we analyze the eigenvalue problem and identify an
thogonal basis for the energy eigenstates. The relation to
equivalent eigenvalue problem of the Calogero model is
cussed in Sec. IV and the Appendix.

II. CHERN-SIMONS MATRIX MODEL

The action describing the Chern-Simons matrix mo
~for clarification we would like to mention that Smolin ha
introduced a matrix model, also called matrix Chern-Simo
theory.8 Although there are some common features, the t
models are different.! is given by2

S5E dt
B

2
Tr$eab~Ẋa1 i @A0 ,Xa# !Xb12uA02vXa

2%

1C†~ i Ċ2A0C!, ~1!
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whereXa , a51,2 areN3N matrices andC is a complex
N-vector that transforms in the fundamental of the gau
groupU(N),

Xa→UXaU21, C→UC. ~2!

The A0 equation of motion implies the constraint

G[2 iB@X1 ,X2#1CC†2Bu50. ~3!

The trace of this equation gives

C†C5NBu. ~4!

Upon quantization the matrix elements ofXa and the com-
ponents ofC become operators, obeying the following com
mutation relations

@C i ,C j
†#5d i j ,

@~X1! i j ,~X2!kl#5
i

B
d i l d jk . ~5!

The Hamiltonian is

H5vS N2

2
1( Ai j

† Aji D , ~6!

where A5A(B/2)(X11 iX2). The system containsN(N
11) oscillators coupled by the constraint Eq.~3!. As ex-
plained in Ref. 2 upon quantization, the operatorG becomes
the generator of unitary rotations of bothXa and C. The
trace part Eq.~4! demands thatNBu, being the number op-
erator forC ’s, is quantized to an integer. The traceless p
of the constraint demands the physical states to be single
SU(N).

Since theAi j
† transform in the adjoint and theC i

† trans-
form in the fundamental representation ofSU(N), a purely
group theoretical argument, implies that a physical state
ing a singlet has to containNl C†’s, where l is an integer.
This leads to the quantization ofBu5 l .

Explicit expressions for the states were written down
Ref. 3. The ground state being anSU(N) singlet with the
lowest number ofA†’s is of the form

uCgr&5@e i 1 . . . i NC i 1
† ~C†A†! i 2

. . . ~C†A†N21! i N
# l u0&,

~7!
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where u0& is annihilated byA’s and C ’s, while the excited
states can be written as

uCexc&5)
i 51

N

~Tr A†i !ci@e i 1 . . . i NC i 1
† ~C†A†! i 2

. . .

~C†A†N21! i N
# l u0&. ~8!

The states in Eq.~8! have energy v„(N2/2)1 l @N(N
21)/2#1e…, wheree5( i ic i . They are degenerate and th
degeneracy is given by the number of partitions ofe.

The main purpose of this paper is to identify an orthog
nal basis for the states in Eq.~8!.

III. ENERGY EIGENFUNCTIONS, ORTHOGONAL BASIS

As we shall see later, it is convenient to work in th
X-representation. We define the stateuX,f& such that

X̂1uX,f&5XuX,f&, CuX,f&5fuX,f&. ~9!

We normalize the state such that the completeness relati
given by

E uX,f&e2f̄fdf df̄)
i j

dXi j ^X,fu51. ~10!

In theX-representation the wave function corresponding t
particular state of the theory isF(X,f̄)5^X,fustate&. In
particular the wave function corresponding to the grou
state Eq.~7! is of the form5

Fgr~X,f̄ !5@e i 1 . . . i Nf̄ i 1
~f̄A†! i 2

. . . ~f̄A†N21! i N
# l

3e2~B/2!Tr X2
, ~11!

where

Ai j
† 5AB

2S Xi j 2
1

B

]

]Xji
D . ~12!

Since Eq.~11! is completely antisymmetric in thei n-indices,
the differential operator (]/]Xji ) produces a nonzero contr
bution only if it acts on thee2(B/2)TrX2

factor. We then have
that

Fgr~X,f̄ !5~A2B! lN(N21)/2@e i 1 . . . i Nf̄ i 1
~f̄X! i 2

. . .

~f̄XN21! i N
# le2(B/2)Tr X2

. ~13!

The wave function corresponding to the excited state Eq.~8!
can be written as a linear combination of wave functions
the form (A2B)( ini) i 51

N (Tr Xi)niFgr(X,f̄).
Given the constraintG, any physical wave function has t

be a function ofSU(N) singlets made out of the Hermitia
matrix X and the vectorf̄. There are two types of suc
invariants one can construct:
07530
-

is

a

d

f

Sn~A2BX!5~A2B!nTr Xn, n51, . . . ,N,
~14!

J~A2BX,f̄ !

5~A2B!N(N21)/2e i 1 . . . i Nf̄ i 1
~f̄X! i 2

. . . ~f̄XN21! i N
.

These can be thought of asN11 independent collective vari
ables.~For anN 3 N matrix X, the Cayley-Hamilton theorem
expressexXN as a linear function ofXn, n51, . . . ,N21
with coefficients which are symmetric functions of the eige
values ofX. Therefore all other invariants which involvef̄ ’s
are reduced toJ l times a function ofSn.)

Any physical wave function has the general form

F5 f ~Sn!J le2(B/2)Tr X2
. ~15!

In the X-representation the Hamiltonian can be written as

H5
v

2 F2
1

B

]2

]Xi j ]Xji
1B Tr X2G . ~16!

We want to solve the eigenvalue problem

HF5EF, ~17!

whereH is given by Eq.~16! andF is as in Eq.~15!. Doing
a simple similarity transformation we get

H̃ f ~Sn! J l5E f~Sn! J l , ~18!

where

H̃5e(B/2)Tr X2
He2(B/2)Tr X2

5v(
i j

Xi j

]

]Xi j
1

v

2
N2 2

v

2B (
i j

]2

]Xi j ]Xji
. ~19!

The HamiltonianH̃ can be written as a sum of two terms

H̃5H̃01H̃22 , ~20!

where

H̃05v(
i j

Xi j

]

]Xi j
1

v

2
N2,

H̃2252
v

2B (
i j

]2

]Xi j ]Xji
. ~21!

Since the operatorH̃0 essentially counts the number ofX’s,
one can easily check that

@H̃0 ,H̃22#522H̃22 . ~22!

In other words,

H̃5e(H̃22/2v)H̃0e2(H̃22 /2v). ~23!

This implies that if Pk is an eigenfunction ofH̃0, then
eH̃22/2vPk is an eigenstate of the HamiltonianH̃. One can
easily see that
4-2
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H̃0Pk5S k1v
N2

2 D Pk ,

H̃e(H̃22 /2v)Pk5S k1v
N2

2 De(H̃22 /2v)Pk . ~24!

Using Eqs.~18! and~21!, we see that in our casePk is of the
form

Pk5J$l%~A2BX!J l~A2BX,f̄ !, ~25!

where J$l% is a homogeneous polynomial of the form~the
notation will be justified later!

J$l%~A2BX!5(
$ni %

a~$ni%!)
i

„Tr~A2BX! i
…

ni, ~26!

such that( i in i1 l @N(N21)/2#5k.
Going back to the original eigenvalue problem, the ene

eigenfunctions are of the form

F5e2(B/2)Tr X2
e(H̃22 /2v)~J$l%J

l !. ~27!

Since

e2(B/2)Tr X2
e(H̃22 /2v)Xi j e

2(H̃22/2v)e(B/2)Tr X2
5Xi j 2

1

B

]

]Xji
,

~28!

F can be written as

F5J$l%FAB

2S Xi j 2
1

B

]

]Xji
D G

3J l FAB

2S Xi j 2
1

B

]

]Xji
D ,f̄Ge2(B/2)Tr X2

5J$l%~A†!J l~A†,f̄ !e2(B/2)Tr X2
, ~29!

whereA† is given in Eq.~12!.
There are several basis sets for the polynomialsJ$l% .

There is a particular one which is orthogonal. This cor
sponds to choosingJ$l%’s to be the Jack polynomials.9–11

Although, in principle, this can be proven purely within th
context of the matrix model itself, an easier proof can
given indirectly by first relating the energy eigenfunctions
the matrix model to the energy eigenfunctions of the Cal
ero model and then using well known properties of t
Calogero eigenfunctions.13–17This is shown in the following
section.

IV. RELATION TO CALOGERO MODEL

X being a Hermitian matrix, it can be diagonalized by
unitary transformation

X5UxU21, xi j 5xid i j . ~30!

The relation between the matrix model and the Calog
model is achieved by identifying the eigenvaluesxi with the
one-dimensional particle coordinates of the Calogero syst
07530
y
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e
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One can show that the Laplacian of the matrix model c
be written as

(
i j

]

]Xi j

]

]Xji
5

1

D (
k

]2

]xk
2 D2(

kÞ l

JklJlk

~xk2xl !
2 , ~31!

whereD is the Vandermonde determinant defined by

D[det~xi
N2 j !5ek1k2•••kNxk1

0 xk2

1
•••xkN

N215)
k, l

~xk2xl !,

~32!

andJi j is an operator with the following action onU

@Jkl,Ui j #5Uikd l j , @Jkl, Ui j
21#52Ul j

21d ik . ~33!

For completeness we show the detailed derivation of
~31! in the Appendix.

In writing down the eigenvalue equation forH expressed
in terms of the eigenvaluesxi and the angular variablesU,
we notice that the term(kÞ l@JklJlk/(xk2xl)

2# acts only on
theJ dependence of the wave functionF in Eq. ~15!. Using
the particular parametrization Eq.~30!, the invariants in Eq.
~14! can be written as

Sn~A2BX!5~A2B!n(
i 51

N

xi
n ,

J~A2BX,f̄ !5~A2B!N(N21)/2e i 1 . . . i Nf̄ i 1
~f̄X! i 2

3~f̄X2! i 3
. . . ~f̄XN21! i N

5~A2B!N(N21)/2e i 1 . . . i Nf̄ i 1
~f̄UxU21! i 2

3~f̄Ux2U21! i 3
. . . ~f̄UxN21U21! i N

5~A2B!N(N21)/2det~U21!ek1 . . . kN~f̄U !k1

3~f̄U !k2
xk2

. . . ~f̄U !kN
xkN

N21

5~A2B!N(N21)/2)
i , j

~xi2xj !)
i 51

N

~f̄U ! i .

~34!

This implies

JkmJmk J l5~A2B! lN(N21)/2D lJkmJmk)
i 51

N

~f̄U ! i
l

5~A2B! lN(N21)/2D lJkm )
iÞk,m

~f̄U ! i
l l ~f̄U !k

l 21

3~f̄U !m
l 115 l ~ l 11!J l . ~35!

The Hamiltonian acting on the space of physical wa
functions Eq.~15! can therefore be written as
4-3
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H5
v

2B F2
1

D (
i

]2

]xi
2 D1(

iÞ j

l ~ l 11!

~xi2xj !
2 1B2(

i
xi

2G .
~36!

The expressionDHD21 coincides with the Hamiltonian
of the Calogero model. This actually implies th
De2(B/2)Tr X2

e(H̃22 /2v)J$l%(A2BX)J l(A2BX,f̄) are energy
eigenfunctions of the Calogero model.

Using Eqs.~31!, ~34!, ~35! one can show that

De2(B/2)Tr X2
e(H̃22/2v)J$l%~A2BX!J l~A2BX,f!

;D l 11e2(B/2)Tr X2
e2(ÔL /4B)J$l%~A2Bxi !, ~37!

where

ÔL5(
i

]2

]xi
2 1~ l 11!(

iÞ j

1

xi2xj
S ]

]xi
2

]

]xj
D . ~38!

Comparing Eq.~37! to the orthogonal basis of the energ
eigenfunctions of the Calogero model,12–17 we conclude
that the polynomialsJ$l% ought to be the symmetric Jac
polynomials. The inhomogeneous polynomia
e2(ÔL /4B)J$l%(A2Bxi) are the symmetric Hi-Jack
polynomials14–17 which provide an orthogonal basis for th
Calogero model with the integration measure15,16

D2l 12e2B(xi
2

)
i

dxi . ~39!

The symmetric Jack polynomialsJ$l% of degree l are
defined9–11 in terms of the monomial functions) ixi

l i , where
l5( il i . Let $l% indicate the partitions$l1 , . . . ,lN%. To a
partition $l% we associate the symmetric monomial functi
m$l%5(P) ixi

l i , where the sum is over all distinct permut
tions P. For example m$2,1%5( i , j xi

2xj for iÞ j .
m$l%(x1 ,x2 , . . . ,xN)50 if N is smaller than the number o
parts of the partition$l%. The symmetric Jack polynomial
have the following expansion in terms ofm$l%’s:

J$l%~xi !5m$l%~xi !1 (
$m%,$l%

v $ml%m$m%~xi !. ~40!

v $ml% are some coefficients which depend onl and $m%
,$l% defines a partial ordering such that

$m%,$l%↔m5l and (
i 51

j

m i,(
i 51

j

l i

for all j 51,2, . . . ,N. ~41!

Since there is no generic formula, we write down the fi
few symmetric Jack polynomials, relevant for the constr
tion of the first, second, and third excited states.
07530
t
-

J$0%51, J$1%5m$1% ,

J$2%5m$2%1
2~ l 11!

l 12
m$1,1% ,

J$1,1, . . . ,1%5m$1,1, . . . ,1% ,

J$2,1%5m$2,1%1
6~ l 11!

2l 13
m$1,1,1% ,

J$3%5m$3%1
3~ l 11!

l 13
m$2,1%1

6~ l 11!2

~ l 12!~ l 13!
m$1,1,1% .

~42!

Using these one can explicitly check that the correspond
Hi-Jack polynomialse2(ÔL /4B)J$l% are orthogonal with the
integration measure Eq.~39!.

SinceJ$l%’s are symmetric, they can also be expressed
terms of) i(Si)

ni5) i(Tr Xi)ni where( i in i5l. It is this de-
pendence which is implied inJ$l%(A2BX) in Eq. ~26! and in
J$l%(A

†) in Eq. ~29!.
Going back to the matrix model eigenfunctions Eqs.~29!

and recalling that) i j d@Xi j #5D2@dU#) i dxi , we conclude
that the states

F$l%5J$l%~A†!J l~A†,f!e2(B/2)Tr X2
, ~43!

whereJ$l%’s are the symmetric Jack polynomials, provide
orthogonal basis for the matrix energy eigenfunctions

E F$l%* F$l8%)
i j

dXi j df df̄ e2ff̄50 for $l%Þ$l8%.

~44!

Using now Eq.~10!, we can write an orthogonality relatio
for the states of the matrix model independent of represe
tion, namely

^C$l%uC$l8%&50 for $l%Þ$l8%, ~45!

where

uC$l%&

5J$l%~A†!@e i 1 . . . i NC i 1
† ~C†A†! i 2

. . . ~C†A†N21! i N
# l u0&.

The use of theX representation and the resulting connecti
to the Calogero model was very helpful in identifying th
Jack polynomial dependence of an orthogonal basis for
excited states, but the final result Eq.~45! is independent of
representation.
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APPENDIX

Using the ‘‘polar’’ decomposition Eq.~30! for X we find

dX5U~dx1@U21dU,x# !U21,

dXi j 5UikUk j
21dxk2UikUl j

21~xk2xl !~U21dU!kl .
~A1!

Using the parametrizationU5ei (ataua we get

~U21dU!kl5S U21
]U

]ua
D

kl

dua[ekl
a ~u!dua . ~A2!

Thus

dxk5~U21dXU!kk ;

~U21dU!kl52
~U21dXU!kl

xk2xl
for kÞ l . ~A3!

Using this we find

]

]Xi j
5(

k
Uki

21U jk

]

]xk
2(

kÞ l

Uki
21U jl

~xk2xl !
Jkl, ~A4!

where

Jkl5(
a

ea
kl ]

]ua
, ~A5!

andea
kl is the inverse ofekl

a , such that

(
kl

ea
kl~u!ekl

b ~u!5dab ,

(
p

ea
kl~u!ek8 l 8

a
~u!5dkk8d l l 8 . ~A6!
e

07530
Expression~A5! implies that the action ofJkl on U is as
follows:

@Jkl,Ui j #5Uikd l j . ~A7!

Further

@Jkl,Jmn#5Jknd lm2Jmldkn . ~A8!

The matrix Laplacian can now be rewritten as

(
i j

]

]Xi j

]

]Xji
5(

i j
F(

k
Uki

21U jk

]

]xk
(
k8

Uk8 j
21Uik8

]

]xk8

2(
k

Uki
21U jk

]

]xk
(

k8Þ l 8

Uk8 j
21Uil 8

~xk82xl8!
Jk8 l 8

2(
kÞ l

Uki
21U jl

~xk2xl !
Jkl(

k8
Uk8 j

21Uik8

]

]xk8

1(
kÞ l

Uki
21U jl

~xk2xl !
Jkl (

k8Þ l 8

Uk8 j
21Uil 8

~xk82xl8!
Jk8 l 8G .

~A9!

The first term is(k(]
2/]xk

2), the second term is zero, th
third is (kÞ l@1/(xk2xl)#@(]/]xk)2(]/]xl)#, and the last is
2(kÞ l@JklJlk/(xk2xl)

2#. Thus we obtain

(
i j

]

]Xi j

]

]Xji
5

1

D (
k

]2

]xk
2 D2(

kÞ l

JklJlk

~xk2xl !
2 , ~A10!

where we used

(
k

]2

]xk
2 1(

kÞ l

1

~xk2xl !
S ]

]xk
2

]

]xl
D5

1

D (
k

]2

]xk
2 D

~A11!

andD5)k, l(xk2xl).
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