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Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors
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The magnetic interaction of a pair of bound magnetic polarons in diluted magnetic semiconductors is
analyzed via a generalized Hubbard-type Hamiltonian for two carriers in the presence of effective magnetic
fields arising from the magnetic polarization of their respective polarons. For the case where the magnetic
fields at the two sites have equal magnitude but are allowed to have arbitrary directions, it is shown that the
energy of the two polarons is minimized forferromagneticconfiguration of the carrier spin@ contrast to
the case of hydrogenic centers in nonmagnetic semicondudtprdaron fields are strong enough. A modified
Heisenberg-type Hamiltonian is constructed to describe the low energy states of the resulting system.
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[. INTRODUCTION the carrier, thus becoming aligned and forming large-spin
polarons. The polarons align with an external magnetic field
Shallow impurities in doped semiconductbsin be de-  before the individual magnetic ions do, thus giving rise to the
scribed in terms of a hydrogenic Hamiltonian with an effec-two-step susceptibility curve. By analyzihie first steg(fit-
tive mass given by the band mass, and a Coulomb potentiging it to a Curie Weiss form the susceptibility of BMPs can
screened by the dielectric constant of the host semiconductdse deduced. It is found to exceed the susceptibility for non-
While the “effective mass” equation is slightly more com- interacting BMPs, implying a ferromagnetic interaction be-
plicated for donors in indirect band-gap semiconductors, an@veen the polarons. However, this result seems puzzling: in
for acceptors a matrix version of a generalized hydrogemonmagnetic semiconductors carrier virtual hopping invari-
problem is obtained, these differences change details, but ngply yields antiferromagnetisfiNevertheless, similar ferro-
the basic physics. Therefore, the hydrogenic model is a Usgnagnetic interaction has also been inferred in subsequent
ful guide for studying and understanding interactions be<york also in low doped, insulating sampfes.
tween impurities in doped semiconductérsAt low concen- The problem was ana’Iyzed by Durst, Bhatt, and WAt

: AR ) n their work they showed that a ferromagnetic interaction
mOdE|Ed.'n termsﬁc‘)f an e>'<changle Hamiltonian involving, %etween the polarons can be obtained if one considers the
tsr;%nd d?r%ng%ée;yé%iigﬁlsrﬁolg i{flinr?r%rk?léi;(ﬁgsen?hee cetz(r_re- overlap of two polarons formed around two dopants. The two
change interactions are known to be antiferromagnetic at a&irrnifrt;%mszrjegv;[ t;\z Srﬁgje:npt:;rg\é?:épﬂgg |:18d?rlggt

distance$. _ THE - .
In diluted magnetic semiconductaf®MS), a small frac-  CAfier-magnetic ion-carrier interaction becomes stronger

tion of the nonmagnetic ions that form the lattice are re-than the direct carrier exchange, and the polarons align re-
placed by magnetic ions such as Mn or Fe. Several featured/lting in ferromagnetism.

(such as variable band gaps, optical response, spin polarized The current work uses a different model to approach the
transport, as well as the unusual magnetic behavior analyzeéfoblem from another perspective. The polarons are consid-
in this paper have turned DMS into a topic of considerable €red nonoverlapping, and their effect on the dopant atom is
interest during recent years. In the low doping regitine., taken into account through a local magnetic field\ system
carrier density below the Mott transitinnthe susceptibility —of two such polarons is analyzed via a generalized Hubbard-
(i.e.,dM/dH) vs magnetic fieldH) curve of such a DMS type Hamiltonian, where hoppingmatrix elementt) and
displays a curious double-step feat(ro understand the Coulomb interactiorienergyU) are turned on. Several cases
properties of DMS with dopants, it is not only necessary toare considereddopants with a single bound state and with
understand the direct interactions between the dopants, baeveral bound excited stajeEerromagnetic behavior is seen
also the interactions with the magnetic ions which by them+to emerge when the carrier is allowed to hop between the
selves contain low lying degrees of freedom. When the magground state of one dopant atom and excited states of the
netic ions are dilute, their direct interactions are unimportantother dopant. This mechanism would be another contribution
Thus, for example, the problem of a single shallow impurityto ferromagnetism in DMS. Numerical work supports the
in a DMS is well described in terms of an exchange interacconclusion that such a ferromagnetic interaction is indeed
tion between the bound carriéelectron or holg and the possible in realistic conditions. We also discuss the applica-
magnetic ion, and is known from extensive studies to lead tdility of a Heisenberg-type model for two interacting po-
the formation of a bound magnetic polaréBMP).2 The larons. In the moderately high field domaith<U, an ef-
spins of the magnetic impurity ions within one effective fective Heisenberg Hamiltonian is found which contains a
Bohr radius of a dopant interact via a sizable exchange witlmixing of the magnetic fields at the two sites.
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Il. THE MODEL AND THE APPROACH

Our model consists of two identical atoms, with several H i%s 6|an|as+i<j,§sz,a U'Jn'asln'asz+hzcx YiiMiaiMia,
bound states, in arbitrary local magnetic fields. We allow for
hopping of the carriers between the two atoms. The local
magnetic fields represent the exchange fields due to the mag-  + 2 Na(Miai=Nia)+ 2 tig s,
netic ions at each site. As the number of magnetic ions e b
around each site is large, and the doping is considered uni- T T
form, we assume that the magnitudes of the magnetic fields X(Cibslciasz+ci352cib51)' )
at the two sites are equal. However, the directions of the two

fields are allowed to be arbitrary. Thus, the Hamiltonian we . o . .
study has the general form: We caution the reader that in this case the transition matrix

elementstislyjsz become dependent on the an@lebetween
the two magnetic fieldb, ,h,. We will discuss the relation-

H= _%(ViJFV%)_hh(rl)'Sl_hh(rz)'sz ship between Eq<g4), (3), (2), and Eq.(1) in more detail in
the concluding section.
111 LJF 1 ! Several models of increasing complexity were considered:
Frar Ta2 Thb: Tp2 T12 @ atoms with a single bound state and without magnetic fields

(Sec. Il A), atoms with a single bound state in arbitrary
magnetic fieldgSec. 11l B), atoms with several excited states
in arbitrary magnetic field¢Sec. IV A). The ground state of
the two-center system is shown to undergo a transition from

whereh is the magnitude of the fieldy(r) is the (arbitrary)
direction,a andb are the labels for the two hydrogenic cen-

ters and 1 an_d 2 are the Iabel_s for the two elect_rons. an antiferromagnetic stafsingle) to a fully ferromagnetic
If we consider a Hubbard-like approximatfowith one (triplet) configuration with the increase of the effective po-
energy level per impurity site and no magnetic fields, ;o0 magnetic fieldSec. IV B. The results for a regular
Hamiltonian becomegin second quantized form Heisenberg Hamiltonian where the two spins are in arbitrary
fixed fields are calculated as well and compared with those
derived from our mode(Sec. 11l O. Finally we find a modi-
H= >, (e(ng+n,)+Unyn,) fied Heisenberg-type Hamiltonian that agrees with our model
a=ab in the moderately high field regim&ec. .

+ 2l t(CheCost CheCas), 2

s=1,

Ill. REGULAR HUBBARD MODEL

) o ] A. Regular Hubbard model in zero field
wherea,b are labels for the two impurity sites,; is the

annihilation operator for the state on impuréyvith up-spin,
Na; is the occupation numbemaTzc;TcaT, etc.

If we also introduce arbitrary number of energy levels on
each impurity atom, the Hubbard Hamiltonian E&) turns
into:

The Hubbard model of the hydrogen moleculeee Eq.
(2)] consists of two hydrogenine-electroh centers, each
with one single electron bound state of eneegyElectrons
are allowed to hop between the two sites, subject to the re-
strictions imposed by the Pauli principle with a hopping ma-
trix elementt. Each center also has one two-electron state,
with energy 2+ U, whereU represents the interaction en-
ergy between two electrons on the same atom.

HZiES eianias+i<_z UijNias,Njas, In this case we can decouple the spin-1 and spin-0 sub-
@, 51,80 spacegsince there is no connection between states of differ-
ent spin. It turns out that the spectrum of eigenvalues é 2
+2 U“niaTnmﬁz ti,j(c;rbscias+ CiTastbs)a (3) (triple degegerabefor spin-1 and 2—(4t?/U), 2e+U and
ha .S 2e+ U+ (4t/U) for spin-0. The ground state therefore has
spin O (i.e., the interaction between the electrons can be

where @ € {a,b} indexes the impurity sites;j the atomic thought of as antiferromagnelic
levels on each impuritys;,s,e{1,|} the spin degree of
freedom;¢; the energy of level; and U;; the Coulomb in-
teraction energy of electrons in stateandj on the same
impurity atom. If two arbitrary fixed fields(of strengthsh, and h, and

Finally, if at each site we consider the arbitrary magneticmaking an angl®) are applied at the two sites, the analysis
fields h, ,h,, and we quantize spin along the axes of thebecomes more complicatddee Eq.(4), and consider that
local magnetic fieldsi.e., ciTaT creates an electron in théh  there is a single level=1, on each impurity We can quan-
state on impuritya with spin parallel toh,), the Hubbard tize the spins along the axes of the fields, and we can pick as
Hamiltonian becomes a basis:

B. Regular Hubbard model with arbitrary fields
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{atal,afbT,alb|,albT,alb|,bTb]}. This basis obviously is not formed of eigen-
. . . . states of the total spin, but only of ttrecomponent of the
Each element in the basis is antisymmetrized, for example,Spin
1 . I L :
atbl=— X X _ X X _ The new Hamiltonian matrixignoring g, the Bohr
Tb] \/§(|¢a( DD ¥p(X2) 1) = [4(x0) | )| #ha(X2) 1)) magneton, for simplicityis shown in Eq.5) below:

2e¢+U itsin9 tcos(2 —tco —itsin9 0
2 2 2 2
—itsin% 2e+ ha;hb 0 0 0 —itsi
teo 0 perla Mo g 0 t cos
2 2 2
" —tcosG—) 0 0 26— Na” 0 —tco ©
2 2 2
itsin% 0 0 0 2e— hazhb it sing
0 itsin9 tcos@—) —tco —itsin9 2e+U
2 2 2 2

We next make the simplifying assumption that=h, removes the degeneracy and we can obtain the eigenvalues
=h. For the case of DMS, since the magnetic ion distribu-to second order by regular PT. Thus we obtain for the lowest
tion is random, this can be justified if each polaron has seveigenvalues
eral (N) magnetic ions producing the exchange field on the
carrier, solh,—hy|=h/\/N<h. In this case we obtain two .0 6)
pairs of degenerate statgsa|,bTb|} and{alb],a|bT}. 2t23|r12? 4t2c052§
By making a 45 degree rotation within each of the degener- 2eth— ————, 2¢,26— ——7+7—,
ate subspaces, and by multiplying some of the basis vectors U-h U
by i when necessary, we single out two of the eigenvalues
(2€ and 2+ U), the rest of the matrix having the simpler -

2t smzi

form in Eq. (6) below:

26_h_W . (7)

(€]
i .
2eth 0 0 \/Et smf C. Heisenberg Hamiltonian with arbitrary fields

By solving the same problefitwo atoms in fixed external
0 2e 0 —2t cosy fields) using a Heisenberg Hamiltonian, and comparing the
H,— . eignevalues with the results obtained above in &g. one
0 0 2¢—h 2t sing can see how the effective exchange parameter in the Heisen-
2 berg Hamiltonian is affected by external magnetic fields. We
0 0 start witht2

®
\/Etsin§ ~2tcos; \/Etsini 2e+U

6) Hii=ha St hp 54380 8. ®)

We can again quantize the spins along the axes of the two

This Hamiltonian can be solved by perturbation theoryfields, and work in the basis
(PT). In the limith—0 the upper three states become degen-
erate and the problem needs to be handled by degenerate {albT,albl,albT,alb|}
perturbation theory. We will not investigate this limit any
further. In the high field limit however, the magnetic field which yields the Hamiltonian matrix:
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J J . J . J
—h+ Zcos@ —Zsm® Zsm@) —Z(l—cos®)
) J J J .
- Zsm@ — Zcos@ Z(1+cos®) - Zsm@)
Hyr= _ 3 3 3 ©)
Zsm Z(1+cos®) - Zcos Zsm@
J J . J . J
—Z(l—cos@)) —Zsm® Zsm h+ Zcos@

After we do a rotation by 45 degrees in thelb|,a| b1}
subspace we can apply perturbation the@gnsidering] as
a small parametgr which yields (after subtractingd) the
eigenvalues:

J .0 Q) J
h—ismz?o,—‘] coszi,—h—zsmzf . (10

By matching the results in Ed7) to those in Eq(10) in
the h<U limit [ignoring O(t?h/U?)] we can make the
identification

4t2

R (12)

However, when the field is increased, the matching is nog
perfect anymore, and the effective exchange parameter f(%

the ground state is reduced to

4t

IV. GENERALIZED HUBBARD MODEL

A. Two-level Hubbard model with random fields

One can improve this analysis by considering a more re-
alistic model. The next simplest case is to consider two en-
ergy levels 1 and Penergies; ande,) on each atom, and to
allow hopping -1, 12 and 2-2 between sites. Again
we consider arbitrary fielde, andh,. The Hamiltonian is
still given by Eq.(4) with the summation for going over 1,

2. The number of states increases dramatically: we are deal-
ing now with a 2828 matrix[28=6X (3+1)+4X1 since
there are 6 pairs of different spatial states which each can
have spin 0 or 1, and 4 pairs of identical states which can
nly have spin i We need to concentrate on the lowest
nergy states only, treating the rest perturbatively. We ignore
he 252 hopping, since it affects the lowest eigenvalues
only to higher order in PT. We are using again the simplify-
ing assumptiorh,=h,=h.

The lowest energy subspace can be identified as being
spanned by{aliblf,al1bl|,al|b17,al|b1|}. By ap-

Thus the appearance of polarons decreases the effective arlying second order degenerate PT in this subspace, we ob-

ferromagnetic exchange between the carriers.

tain the following expressions for the eigenvalues

C) (G} (G}
2tizco§§ 2tfzsin2§ 2tilsin25
+h— — —
261 h 62_61+U12 62_61+U12_h Ull_h
(C) (C)
2t§2C0525 tizslnzg tfzsmzf
261_

€r— 61+U12_ €r— 61+U12_h B €r— El+ U12+ h

(13
tfzsin2

(C] (C]
4tilcos?§ 2t§2co§5 tizsinZE
261_ Ula B 62_61+U12_ 62_61+U12_h_ 62_61+U12+h
(C) (C) (C)
2t7,c08 — 2t2.sirf — 2t2,sirf —
2 2 2
261_ h_

62_61+U12_62_61+U12+h— Ull+h
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TABLE I. The couplings of the ground state of the many-level Hubbard model to various excited states.

State Coupling Energy diff.
a(b) ol a(b) ol +itg sin(3) Ugoth
a(b) gi1a(b) ol ,a(b) gL a(b) ol +ity sin(@) €i—eotUgith
a(b) ¢l a(b) ol ,a(b) ¢ Ta(b) ol + 1 COS(2) &~ €o+ Ug

One can see that in the limi{,—~0 we obtain the same ration happens then as a consequence of the local magnetic
results as in the one-level Hubbard model analyzed in thé&elds and of the hopping to excited states. As a side remark

beginning. This is a good consistency check. we observe that whilg3 depends entirely on the type of
dopant usedq depends both on the type of dopaartd on
B. Magnetic properties of the ground state the dopant densitysince all the transition probabilities de-

By applying second order perturbation theory to the two—pend on the separation of the atgmishus we may have a

o transition from a polaron ferromagnetic to an anti-
2 - - . . - .
level Hupbard mode(.and conS|d(_ar|ng1>t /U), we there ferromagnetic ground state configuration as the density is
fore obtain the following expression for the ground-state en

) varied. It turns out that for the two-levéhydrogenic ground
ergy-: state and any excited statgpproximationa can take virtu-
o o ally any value froma=0 for O separation, tax—o when

2tfzco§5 2tfzsin2§ the separation becomes infinite.

EGS: 261_ h_

e—€1+Upp €—e+Uppt+h

2 12 2 12 C. Many-level Hubbard model

2t"{15in29 One can generalize the results presented above about the
2 (14) ground state of a two-level Hubbard model to the case where
any number of bound excited states exists. Consjiger)

i _and |;|) (with energiese;) to be the one-electron states,

The angle® between the two fields was regarded up to this; dexed by the subscrip’tl(i —0 for the ground staje We

point as an external parameter. All the calculatpns_ SO fagynsider the ground state to be nondegenerate, however, al-

were done under the assumption that the magnetic field wag,\ing aritrary degeneracies for all the other states. The

;'Xed hextirn?.”){. We must take, hrcl)wever, Imtol account t?] round state of the two-electron system in a magnetic field is

act that the field is generated by the actual polaron, and t en:a,| b, with energy(in the zeroth order2e,— h.

Se allow the hopping of an electron from the ground state of

one atom to any state of the other atom, the coupling con-

Stants betweeny, andby; being given byty; . Expression

(4) gives the right Hamiltonian with the summation far

~ Up+h

polaron, the direction is free to change. Therefore, wien
— 0K, O takes the value that minimizes the energy. Sinc
Egq(®)=const+ A(h)sir?(0/2), with

2 2 2 being overa,b, corresponding to only two interacting po-
2t 2t 2t
A(h)= z___ L2 E— larons.
e2—€+tUp e—e+Upth Upth The couplings of the groundstatey,|by,| to various

the two values that minimize the value of the energy @re other states are given in.TabIe I. Applying second order non-
=0 and® = 1, depending on the sign of the facta¢h). We degenerate PT, we obtain for the ground-state energy:

can regardd, which represents the energy difference between

the ferromagnetic and the antiferromagnetic configurations, ,
as an effective exchange constant. For small values of the 2too S'nzg

2

polaron field it is the antiferromagnetic state that dominates, Egs=2ep—h— ————— ( > # cos29
whereas if we increase the polaron field the ground state of Ugoth T €~ €0t Uoi 2
the system becomes ferromagnetic. 22 0

In order to get an idea of what parameters are essential for - o si? — . (16)
the transition, let us solva(h) =0, which is just a quadratic T €€t Ugth 2
equation. The critical field is given by the only acceptable
(positive root: We can apply the same kind of analysis as for the two-level

case above, howevei(h), the effective exchange constant
—1+aB+J1-2aB+ a?B%+4ap? whose sign dictates the magnetic configuration now becomes
hcz U 11 2 ’ (15)
2 2 2

where we have definedv=(t;;/t;5)? and B=(Uip+ e, A(h)=2 215, 215 250
—€,/U49). In the one-level limit, thus, the transition disap- T —€yt Uy G €—€gtUpgth Ugth’
pears(we havea—«=h—~). The ferromagnetic configu- (17)
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FIG. 1. The effective exchangk as a function of the dopant FIG. 2. The critical fieldh; (in Ry) vs the dopant separatiah
separatiord. The polaron field was taken &s=0.3 Ry. (in ag). The log-linear plot reveals the exponential behavior of the
critical field on the dopant separation.

The value of the critical field above which the ferromagnetic.

configuration becomes energetically favorable is again giverl{“eraction becomes reasonalgé few tenth of a Rygjbebg
by the equationA(h,)=0, however, this cannot be solved and therefore we can conclude that our model predicts ferro-
C ’ ’

: magnetic interractions between polarons in DMS.
analytically anymore.

V. SPIN HAMILTONIAN FOR MODERATE FIELDS

D. Application to hydrogenic centers . . L
PP yered Coming back to our fixed magnetic field model, we note

We can understand the details of this change of magnetithat both the one- and two-level Hubbard models agree with
configuration better if we derive the actual couplings andthe Hamiltonian of Eq(8), containing the standard Heisen-
Coulomb terms from a simplified model of the dopant. Asberg exchange and Zeeman terms when contributions of or-
discussed in the Introduction, one can use simple hydrogenider O(t?h/U?) are ignored. However, when those contribu-
models: two H atoms separated by a distapda magnetic  tions are taken into account, E(B) does not provide the
fields h,,h,. We obtained the two-center overlap integralsright solutions anymore. The question to be asked is whether
(to1) by using explicit machine-readable formulas that havelt is possible to modify the Hamiltonian so as to have agree-
been constructed by applying symbolic calculation to thement up toO(t?h/U?). It turns out that this is indeed pos-
¢-function method of Barnett and Coulson. The mathematiSiPle. _ _ _
cal formalism has been described originally hEf&he sym- If we expand the terms in Eq7) we obtain the energies
bolic calculations are described h&¥& and the work cited
therein. The evaluation of one-center Coulomb integrals
gggo\évsssmdone following an approach described in some 2tzsin2% 2t2h sinzg 4tzco§g

We considered hydrogenic centers, and included transit 2€Th——5—~ vz 26,26~ —(5
tions and Coulomb interaction energies between the ground-
state k and the statesdl 2s, 2p,, 3s, 3p,, and 3. Figure
1 plots the effective exchangeas a function of separatiah . 50 _
between the two centers, for a fixed value of the polaron 2t 5'”25 2t hs'”zj
effective field,h=0.3 Ry, which is still small compared to 2e—h— 0 + 5 . (18
the Rydberd A(d) obtained from Eq(17), with tq;(d) cal- U
culated from the integrals given in Refs. 13]1# can be
seen that the effective exchangebecomes positive at a  We need to add some small correction to ER). that is
certain dopant separatiah, and thus the favorable configu- linear in the fields and rgprodyces the. above strgcture. There
ration becomes ferromagnetic. The existence of the transitiofi’® Several ways of doing this, the simplest being to add a
from antiferromagnetic to ferromagnetic behavior is inde-trm Of the formh,- S, +y-s; Or h-$,Xs, or ha- ST hy- S
pendent on the choice &f the polaron field. Also, the criti- (or any I_mear combination thergofit turns out that the
cal separatiort, is quite insensitive to the choice bf (the Hamiltonian
only parameter of the model As an example, forh
=0.1 Ry,d.=3.91ag; for h=0.3 Ry, d.=3.20g and for Huo=(1—a)(hy sty s) +3s: s+ a(hy 5+ hy- s0)
h=1 Ry,d.=2.485. All of these figures are within typical
experimental range. Figure 2 plots the critical fibldas a (19
function of the dopant separatiah For d>4ag, which is
true for typical experimental doping densities, the minimalreproduces the right structure. In the basis
value of the polaron field that will provide a ferromagnetic{atbt,atb|,a/bf,a/b|} it becomes
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J J ah) | J ah) | J

—(1—a)h+ Z—ah)cosﬁ) —(2—7)sm® (2—7)sm® —Z(l—cosG))

J ah) | J J J ah) |
—(1—7 sin® —ZcosG) Z(1+cos®) _(Z+7 sin®

J ah) | J J J ah) |
(2—7)sm Z(1+cos®) —Zcos(@ (Z+7 sin®

J J ah) | J ah) | J
—Z(l_COSG)) - Z+7 sin® (Z+7 sin® (1-a)h+ Z—i—ah cos®

After doing the necessary 45 degree rotation in thea “transfer” of the field from one site to the other by the
{aTb],al b7} subspace the matrix becomes suitable for PThopping electron. In the high field domaih<U), this cor-
and it yields the eigenvaludso first order inJ and @ and  rection is not valid anymore and the correct model is a
after subtracting a commaj): Heisenberg Hamiltonian with a field-dependent exchange
constant.

We will return now to Conclusioifl) with a few remarks.
The change from antiferromagnetic to ferromagnetic effec-
tive coupling in the presence of strong local fields in the
generalized Hubbard model naturally leads one to the ques-
tion whether this would actually occur in an exact calcula-
tion. We believe it does, though the parameter values for the
By matching the results in E420) to Eq.(18) we obtain  change are likely to be different. To explain our “belief,” we

J .0 .0 ®
h—ism2§—2ah3|n2§, 0, —J co§§,

J .0 9
—h—ism2§+2ah smzz . (20

for the parameters of the modified Hamiltonian consider the case of the hydrogen molecule problem in zero
field, where the issue of the effective Heisenberg Hamil-
At P tonian has been thoroughly discussédf®19
U 4T E (21) In Fig. 3 we plot the effective exchange parameter as a
function of d=(r/ag) in the range 1-8, as calculated
One can also expand the result for the two-level Hubbargh four different  ways. The solid line
model to get a better estimate for the parameters. In that casepresents the Herring—Flicker (HF) result, Jue(r)
one obtains =1.636(/ag)>%exp(—2r/ag) Ry, which is asymptotically
) 5 ) exact[in the sense thalyg(r)/Jeyac{r)—1 asr/ag— ],
Aty . t1 N t1, 22 while the dots are the numerically converged results of Kolos

and WolniewicZ® (KW). Both show thatJ(r) is positive
(antiferromagneticfor all r. The dashed line is the result of
the Heitler—Londotf (HL) approximation, which, though
VI. CONCLUSION clearly not exact, works reasonably well on this logarithmic

The calculations presented above lead us to two conclplot for the range shown. It should be noted, however, that
sions:

_U_ll' U_il (62_61+U12)2.

(I) They confirm once more the fact that the polarons T
formed in dilute magnetic semiconductors can interact ferro- 10}
magnetically for certain dopant densities and types. This ex- \ -
tends the results obtained by Refs. 10,11 in the limit that the F

polarons have an important overlap to the situation where the
two polarons do not overlap at all. Thus, the two qualita-
tively distinct effects combine in order to generate an effec- X
tive ferromagnetic interaction of the bound magnetic po-
larons in a DMS.

(Il For the case where two one-electron atoms are place«
in fixed, but nonparallel external magnetic fields, the stan-
dard model with Heisenberg exchange and Zeeman terms io.oooo1 L. . . . L 3
not a suitable approximation. Instead, the calculations above 0 z N & 8
give a correction, with which we are able to reproduce the F|G. 3. The effective exchange parameter as a function of re-
correct spectrum in the moderately high field doméill  duced distance r(ag) for Herring—Flicker (solid), Kolos—
<U). The correction represents an effective mixing of thewolniewicz (dotg, Heitler—London(dasheg, and Hubbard model
fields at the two sites, which can be intuitively understood agdot—dashed

Q.0Q1
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while the HL result has the right sign d{r) for the range of by the extended Hubbard model. Therefore inclusion of such
r/ag shown, it incorrectly predicts a negativér) at large fields in a more accurate model will also result in a move-
r/ag because it does not take into account polarization corment of the kinetic exchange towards ferromagnetism; con-
rections to the ground state hydrogenic wave functionsequently, the overall exchange will change over to ferro-
Finally, as the dot-dashed curve, is the standardnagnetic at some value ofi. If we just add a field
Hubbard model result, J(r)=4t?(r)/U, with t(r) independentferromagnetit Coulomb term to the kinetic ex-
=2(1+r/ag)exp(-rlag) Ry and U=5/4 Ry, calculated change of the generalized Hubbard model, the change from
within the ground-state approximation for the hydrogenantiferromagnetism to ferromagnetism would be expected at
wave functions(the generalized Hubbard model would give lower values ofh than we have calculated, and make the
the same result in this case without external fields, as addingffect we consider more relevant for DMS systems.
excited states does not alter the second order splitting be- We caution, though, that for the purely hydrogenic prob-
tween the lowest singlet and triplet states lem with local fields, one must take into account the effect of

As can be clearly seen, the Hubbard approximation overthe magnetic field on the orbital wave function as well, and
estimatesl(r) by a large factofthis qualitative fact does not that will certainly affect the results, at least quantitatively. In
change with more refined estimates fgr) and U]. The the case of DMS, the local fields represent exchange fields
reason for the larger exchange is that Hubbard, and Hubbarglue to interaction of hydrogenic states with local atomic
like approximations, consider only the kinetic exchatdige  States of the magnetic iofMn), and therefore their orbital
to the hopping procegswhich is antiferromagnetic, and ne- effect is not the same as that of external magnetic fields in
glect Coulomb exchange which tends to favor ferromagthe H, problem. Nevertheless, we expect these to have some
netism.(Such a split is often used in literatGte The latter ~ effect on the orbital part of the wave function of the hydro-
is included in the “exact” HF/KW treatment, as well as the genic impurity?> which would have at least a quantitative
HL approximation, resulting in a much lower value rfeh-  effect on our results.
tiferromagneti¢ exchange.

We expegt that |ncIL_JS|on of local magnetic fields of _ ACKNOWLEDGMENTS
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