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Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors
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The magnetic interaction of a pair of bound magnetic polarons in diluted magnetic semiconductors is
analyzed via a generalized Hubbard-type Hamiltonian for two carriers in the presence of effective magnetic
fields arising from the magnetic polarization of their respective polarons. For the case where the magnetic
fields at the two sites have equal magnitude but are allowed to have arbitrary directions, it is shown that the
energy of the two polarons is minimized for aferromagneticconfiguration of the carrier spins~in contrast to
the case of hydrogenic centers in nonmagnetic semiconductors! if polaron fields are strong enough. A modified
Heisenberg-type Hamiltonian is constructed to describe the low energy states of the resulting system.
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I. INTRODUCTION

Shallow impurities in doped semiconductors1 can be de-
scribed in terms of a hydrogenic Hamiltonian with an effe
tive mass given by the band mass, and a Coulomb pote
screened by the dielectric constant of the host semicondu
While the ‘‘effective mass’’ equation is slightly more com
plicated for donors in indirect band-gap semiconductors,
for acceptors a matrix version of a generalized hydrog
problem is obtained, these differences change details, bu
the basic physics. Therefore, the hydrogenic model is a
ful guide for studying and understanding interactions
tween impurities in doped semiconductors.2,3 At low concen-
trations the interactions between impurity centers can
modeled in terms of an exchange Hamiltonian involving,
the dominant term,4 pairwise Heisenberg exchange corr
sponding to the hydrogen molecule problem,5 where the ex-
change interactions are known to be antiferromagnetic a
distances.6

In diluted magnetic semiconductors~DMS!, a small frac-
tion of the nonmagnetic ions that form the lattice are
placed by magnetic ions such as Mn or Fe. Several feat
~such as variable band gaps, optical response, spin pola
transport, as well as the unusual magnetic behavior analy
in this paper! have turned DMS into a topic of considerab
interest during recent years. In the low doping regime~i.e.,
carrier density below the Mott transition!, the susceptibility
~i.e., dM/dH) vs magnetic field~H! curve of such a DMS
displays a curious double-step feature.7 To understand the
properties of DMS with dopants, it is not only necessary
understand the direct interactions between the dopants
also the interactions with the magnetic ions which by the
selves contain low lying degrees of freedom. When the m
netic ions are dilute, their direct interactions are unimporta
Thus, for example, the problem of a single shallow impur
in a DMS is well described in terms of an exchange inter
tion between the bound carrier~electron or hole! and the
magnetic ion, and is known from extensive studies to lead
the formation of a bound magnetic polaron~BMP!.8 The
spins of the magnetic impurity ions within one effectiv
Bohr radius of a dopant interact via a sizable exchange w
0163-1829/2002/65~7!/075211~8!/$20.00 65 0752
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the carrier, thus becoming aligned and forming large-s
polarons. The polarons align with an external magnetic fi
before the individual magnetic ions do, thus giving rise to t
two-step susceptibility curve. By analyzing7 the first step~fit-
ting it to a Curie Weiss form!, the susceptibility of BMPs can
be deduced. It is found to exceed the susceptibility for n
interacting BMPs, implying a ferromagnetic interaction b
tween the polarons. However, this result seems puzzling
nonmagnetic semiconductors carrier virtual hopping inva
ably yields antiferromagnetism.2 Nevertheless, similar ferro
magnetic interaction has also been inferred in subseq
work, also in low doped, insulating samples.9

The problem was analyzed by Durst, Bhatt, and Wolff.10,11

In their work they showed that a ferromagnetic interacti
between the polarons can be obtained if one considers
overlap of two polarons formed around two dopants. The t
carriers compete over the spins in the overlapping reg
For certain values of the model parameters the indir
carrier-magnetic ion-carrier interaction becomes stron
than the direct carrier exchange, and the polarons align
sulting in ferromagnetism.

The current work uses a different model to approach
problem from another perspective. The polarons are con
ered nonoverlapping, and their effect on the dopant atom
taken into account through a local magnetic fieldh. A system
of two such polarons is analyzed via a generalized Hubba
type Hamiltonian, where hopping~matrix elementt) and
Coulomb interaction~energyU! are turned on. Several case
are considered~dopants with a single bound state and w
several bound excited states!. Ferromagnetic behavior is see
to emerge when the carrier is allowed to hop between
ground state of one dopant atom and excited states of
other dopant. This mechanism would be another contribu
to ferromagnetism in DMS. Numerical work supports t
conclusion that such a ferromagnetic interaction is inde
possible in realistic conditions. We also discuss the appl
bility of a Heisenberg-type model for two interacting p
larons. In the moderately high field domaint!h!U, an ef-
fective Heisenberg Hamiltonian is found which contains
mixing of the magnetic fields at the two sites.
©2002 The American Physical Society11-1
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II. THE MODEL AND THE APPROACH

Our model consists of two identical atoms, with seve
bound states, in arbitrary local magnetic fields. We allow
hopping of the carriers between the two atoms. The lo
magnetic fields represent the exchange fields due to the m
netic ions at each site. As the number of magnetic io
around each site is large, and the doping is considered
form, we assume that the magnitudes of the magnetic fi
at the two sites are equal. However, the directions of the
fields are allowed to be arbitrary. Thus, the Hamiltonian
study has the general form:

H52 1
2 ~¹1

21¹2
2!2hĥ~r 1!•S12hĥ~r 2!•S2

2
1

r a1
2

1

r a2
2

1

r b1
2

1

r b2
1

1

r 12
, ~1!

whereh is the magnitude of the field,ĥ(r ) is the ~arbitrary!
direction,a andb are the labels for the two hydrogenic ce
ters and 1 and 2 are the labels for the two electrons.

If we consider a Hubbard-like approximation5 with one
energy level per impurity site and no magnetic fields,
Hamiltonian becomes~in second quantized form!:

H5 (
a5a,b

~e~na↑1na↓!1Una↑na↓!

1 (
s5↑,↓

t~cas
† cbs1cbs

† cas!, ~2!

wherea,b are labels for the two impurity sites,ca↑ is the
annihilation operator for the state on impuritya with up-spin,
na↑ is the occupation number,na↑5ca↑

† ca↑ , etc.
If we also introduce arbitrary number of energy levels

each impurity atom, the Hubbard Hamiltonian Eq.~2! turns
into:

H5 (
i ,a,s

e ianias1 (
i , j ,s1 ,s2 ,a

Ui j nias1
nj as2

1(
i ,a

Uii nia↑nia↓1(
i , j ,s

t i , j~cjbs
† cias1cias

† cjbs!, ~3!

where aP$a,b% indexes the impurity sites;i , j the atomic
levels on each impurity;s1 ,s2P$↑,↓% the spin degree o
freedom;e i the energy of leveli; and Ui j the Coulomb in-
teraction energy of electrons in statesi and j on the same
impurity atom.

Finally, if at each site we consider the arbitrary magne
fields ha ,hb , and we quantize spin along the axes of t
local magnetic fields~i.e., cia↑

† creates an electron in thei th
state on impuritya with spin parallel toha), the Hubbard
Hamiltonian becomes
07521
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H5 (
i ,a,s

e ianias1 (
i , j ,s1 ,s2 ,a

Ui j nias1
nj as2

1(
i ,a

Uii nia↑nia↓

1(
i ,a

ha~nia↑2nia↓!1 (
i , j ,s1 ,s2

t is1 , j s2

3~cjbs1

† cias2
1cias2

† cjbs1
!. ~4!

We caution the reader that in this case the transition ma
elementst is1 , j s2

become dependent on the angleQ between

the two magnetic fieldsha ,hb . We will discuss the relation-
ship between Eqs.~4!, ~3!, ~2!, and Eq.~1! in more detail in
the concluding section.

Several models of increasing complexity were consider
atoms with a single bound state and without magnetic fie
~Sec. III A!, atoms with a single bound state in arbitra
magnetic fields~Sec. III B!, atoms with several excited state
in arbitrary magnetic fields~Sec. IV A!. The ground state of
the two-center system is shown to undergo a transition fr
an antiferromagnetic state~singlet! to a fully ferromagnetic
~triplet! configuration with the increase of the effective p
laron magnetic field~Sec. IV B!. The results for a regula
Heisenberg Hamiltonian where the two spins are in arbitr
fixed fields are calculated as well and compared with th
derived from our model~Sec. III C!. Finally we find a modi-
fied Heisenberg-type Hamiltonian that agrees with our mo
in the moderately high field regime~Sec. V!.

III. REGULAR HUBBARD MODEL

A. Regular Hubbard model in zero field

The Hubbard model of the hydrogen molecule5 @see Eq.
~2!# consists of two hydrogenic~one-electron! centers, each
with one single electron bound state of energye. Electrons
are allowed to hop between the two sites, subject to the
strictions imposed by the Pauli principle with a hopping m
trix elementt. Each center also has one two-electron sta
with energy 2e1U, whereU represents the interaction en
ergy between two electrons on the same atom.

In this case we can decouple the spin-1 and spin-0 s
spaces~since there is no connection between states of dif
ent spin!. It turns out that the spectrum of eigenvalues ise
~triple degenerate! for spin-1 and 2e2(4t2/U), 2e1U and
2e1U1(4t2/U) for spin-0. The ground state therefore h
spin 0 ~i.e., the interaction between the electrons can
thought of as antiferromagnetic!.

B. Regular Hubbard model with arbitrary fields

If two arbitrary fixed fields~of strengthsha and hb and
making an angleQ) are applied at the two sites, the analys
becomes more complicated@see Eq.~4!, and consider that
there is a single level,i 51, on each impurity#. We can quan-
tize the spins along the axes of the fields, and we can pic
a basis:
1-2



le

-

EFFECTIVE INTERACTION HAMILTONIAN OF . . . PHYSICAL REVIEW B 65 075211
$a↑a↓,a↑b↑,a↑b↓,a↓b↑,a↓b↓,b↑b↓%.

Each element in the basis is antisymmetrized, for examp

a↑b↓[
1

A2
~ uca~x1!↑&ucb~x2!↓&2ucb~x1!↓&uca~x2!↑&).
u
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This basis obviously is not formed of eigen
states of the total spin, but only of thez component of the
spin.

The new Hamiltonian matrix~ignoring mB , the Bohr
magneton, for simplicity! is shown in Eq.~5! below:
H15

¨

2e1U it sin
Q

2
t cos

Q

2
2t cos

Q

2
2 i t sin

Q

2
0

2 i t sin
Q

2
2e1

ha1hb

2
0 0 0 2 i t sin

Q

2

t cos
Q

2
0 2e1

ha2hb

2
0 0 t cos

Q

2

2t cos
Q

2
0 0 2e2

ha2hb

2
0 2t cos

Q

2

i t sin
Q

2
0 0 0 2e2

ha1hb

2
i t sin

Q

2

0 i t sin
Q

2
t cos

Q

2
2t cos

Q

2
2 i t sin

Q

2
2e1U
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We next make the simplifying assumption thatha5hb
5h. For the case of DMS, since the magnetic ion distrib
tion is random, this can be justified if each polaron has s
eral ~N! magnetic ions producing the exchange field on
carrier, souha2hbu5h/AN!h. In this case we obtain two
pairs of degenerate states$a↑a↓,b↑b↓% and$a↑b↓,a↓b↑%.
By making a 45 degree rotation within each of the degen
ate subspaces, and by multiplying some of the basis vec
by i when necessary, we single out two of the eigenval
(2e and 2e1U), the rest of the matrix having the simple
form in Eq. ~6! below:

H1→S 2e1h 0 0 A2t sin
Q

2

0 2e 0 22t cos
Q

2

0 0 2e2h A2t sin
Q

2

A2t sin
Q

2
22t cos

Q

2
A2t sin

Q

2
2e1U

D .

~6!

This Hamiltonian can be solved by perturbation theo
~PT!. In the limit h→0 the upper three states become deg
erate and the problem needs to be handled by degen
perturbation theory. We will not investigate this limit an
further. In the high field limit however, the magnetic fie
-
v-
e

r-
rs
s

-
ate

removes the degeneracy and we can obtain the eigenva
to second order by regular PT. Thus we obtain for the low
eigenvalues

S 2e1h2

2t2sin2
Q

2

U2h
, 2e,2e2

4t2cos2
Q

2

U
,

2e2h2

2t2sin2
Q

2

U1h
D . ~7!

C. Heisenberg Hamiltonian with arbitrary fields

By solving the same problem~two atoms in fixed externa
fields! using a Heisenberg Hamiltonian, and comparing
eignevalues with the results obtained above in Eq.~7!, one
can see how the effective exchange parameter in the Hei
berg Hamiltonian is affected by external magnetic fields.
start with12

HH15ha•sa1hb•sb1Jsa•sb . ~8!

We can again quantize the spins along the axes of the
fields, and work in the basis

$a↑b↑,a↑b↓,a↓b↑,a↓b↓%

which yields the Hamiltonian matrix:
1-3
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HH15S 2h1
J

4
cosQ 2

J

4
sinQ

J

4
sinQ 2

J

4
~12cosQ!

2
J

4
sinQ 2

J

4
cosQ

J

4
~11cosQ! 2

J

4
sinQ

J

4
sinQ

J

4
~11cosQ! 2

J

4
cosQ

J

4
sinQ

2
J

4
~12cosQ! 2

J

4
sinQ

J

4
sinQ h1

J

4
cosQ

D . ~9!
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After we do a rotation by 45 degrees in the$a↑b↓,a↓b↑%
subspace we can apply perturbation theory~consideringJ as
a small parameter!, which yields ~after subtractingJ) the
eigenvalues:

S h2
J

2
sin2

Q

2
,0,2J cos2

Q

2
,2h2

J

2
sin2

Q

2 D . ~10!

By matching the results in Eq.~7! to those in Eq.~10! in
the h!U limit @ignoring O(t2h/U2)# we can make the
identification

J5
4t2

U
. ~11!

However, when the field is increased, the matching is
perfect anymore, and the effective exchange paramete
the ground state is reduced to

J5
4t2

U1h
. ~12!

Thus the appearance of polarons decreases the effective
ferromagnetic exchange between the carriers.
07521
t
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IV. GENERALIZED HUBBARD MODEL

A. Two-level Hubbard model with random fields

One can improve this analysis by considering a more
alistic model. The next simplest case is to consider two
ergy levels 1 and 2~energiese1 ande2) on each atom, and to
allow hopping 1↔1, 1↔2 and 2↔2 between sites. Again
we consider arbitrary fieldsha and hb . The Hamiltonian is
still given by Eq.~4! with the summation fori going over 1,
2. The number of states increases dramatically: we are d
ing now with a 28328 matrix@28563(311)1431 since
there are 6 pairs of different spatial states which each
have spin 0 or 1, and 4 pairs of identical states which c
only have spin 0#. We need to concentrate on the lowe
energy states only, treating the rest perturbatively. We ign
the 2↔2 hopping, since it affects the lowest eigenvalu
only to higher order in PT. We are using again the simpli
ing assumptionha5hb5h.

The lowest energy subspace can be identified as b
spanned by$a1↑b1↑,a1↑b1↓,a1↓b1↑,a1↓b1↓%. By ap-
plying second order degenerate PT in this subspace, we
tain the following expressions for the eigenvalues
¨

2e11h2

2t12
2 cos2

Q

2

e22e11U12
2

2t12
2 sin2

Q

2

e22e11U122h
2

2t11
2 sin2

Q

2

U112h

2e12

2t12
2 cos2

Q

2

e22e11U12
2

t12
2 sin2

Q

2

e22e11U122h
2

t12
2 sin2

Q

2

e22e11U121h

2e12

4t11
2 cos2

Q

2

U1a
2

2t12
2 cos2

Q

2

e22e11U12
2

t12
2 sin2

Q

2

e22e11U122h
2

t12
2 sin2

Q

2

e22e11U121h

2e12h2

2t12
2 cos2

Q

2

e22e11U12
2

2t12
2 sin2

Q

2

e22e11U121h
2

2t11
2 sin2

Q

2

U111h

©
. ~13!
1-4



tes.

EFFECTIVE INTERACTION HAMILTONIAN OF . . . PHYSICAL REVIEW B 65 075211
TABLE I. The couplings of the ground state of the many-level Hubbard model to various excited sta

State Coupling Energy diff.

a(b)c0↓a(b)c0↑ 6 i t 00 sin(Q
2) U001h

a(b)c i↑a(b)c0↓,a(b)c i↓a(b)c0↑ 6 i t 0i sin(Q
2) e i2e01U0i1h

a(b)c i↓a(b)c0↓,a(b)c i↑a(b)c0↑ 6t0i cos(Q2) e i2e01U0i
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One can see that in the limitt12→0 we obtain the same
results as in the one-level Hubbard model analyzed in
beginning. This is a good consistency check.

B. Magnetic properties of the ground state

By applying second order perturbation theory to the tw
level Hubbard model~and consideringh@t2/U), we there-
fore obtain the following expression for the ground-state
ergy:

EGS52e12h2

2t12
2 cos2

Q

2

e22e11U12
2

2t12
2 sin2

Q

2

e22e11U121h

2

2t11
2 sin2

Q

2

U111h
. ~14!

The angleQ between the two fields was regarded up to t
point as an external parameter. All the calculations so
were done under the assumption that the magnetic field
fixed externally. We must take, however, into account
fact that the field is generated by the actual polaron, and
although the magnitude of the field is fixed by the size of
polaron, the direction is free to change. Therefore, wheT
→0K, Q takes the value that minimizes the energy. Sin
EGS(Q)5const.1A(h)sin2(Q/2), with

A~h!5
2t12

2

e22e11U12
2

2t12
2

e22e11U121h
2

2t11
2

U111h

the two values that minimize the value of the energy areQ
50 andQ5p, depending on the sign of the factorA(h). We
can regardA, which represents the energy difference betwe
the ferromagnetic and the antiferromagnetic configuratio
as an effective exchange constant. For small values of
polaron field it is the antiferromagnetic state that domina
whereas if we increase the polaron field the ground stat
the system becomes ferromagnetic.

In order to get an idea of what parameters are essentia
the transition, let us solveA(h)50, which is just a quadratic
equation. The critical field is given by the only acceptab
~positive! root:

hc5U11

211ab1A122ab1a2b214ab2

2
, ~15!

where we have defineda5(t11/t12)
2 and b5(U121e2

2e1 /U11). In the one-level limit, thus, the transition disa
pears~we havea→`⇒h→`). The ferromagnetic configu
07521
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ration happens then as a consequence of the local mag
fields and of the hopping to excited states. As a side rema
we observe that whileb depends entirely on the type o
dopant used,a depends both on the type of dopantand on
the dopant density~since all the transition probabilities de
pend on the separation of the atoms!. Thus we may have a
transition from a polaron ferromagnetic to an an
ferromagnetic ground state configuration as the density
varied. It turns out that for the two-level~hydrogenic ground
state and any excited state! approximation,a can take virtu-
ally any value froma50 for 0 separation, toa→` when
the separation becomes infinite.

C. Many-level Hubbard model

One can generalize the results presented above abou
ground state of a two-level Hubbard model to the case wh
any number of bound excited states exists. Consideruc i↑&
and uc i↓& ~with energiese i) to be the one-electron state
indexed by the subscripti ( i 50 for the ground state!. We
consider the ground state to be nondegenerate, howeve
lowing arbitrary degeneracies for all the other states. T
ground state of the two-electron system in a magnetic fiel
then:ac0↓bc0↓, with energy~in the zeroth order! 2e02h.
We allow the hopping of an electron from the ground state
one atom to any state of the other atom, the coupling c
stants betweenac0 andbc i being given byt0i . Expression
~4! gives the right Hamiltonian with the summation fora
being overa,b, corresponding to only two interacting po
larons.

The couplings of the groundstateac0↓bc0↓ to various
other states are given in Table I. Applying second order n
degenerate PT, we obtain for the ground-state energy:

EGS52e02h2

2t00
2 sin2

Q

2

U001h
2S (

i

2t0i
2

e i2e01U0i
D cos2

Q

2

2S (
i

2t0i
2

e i2e01U0i1hD sin2
Q

2
. ~16!

We can apply the same kind of analysis as for the two-le
case above, however,A(h), the effective exchange consta
whose sign dictates the magnetic configuration now beco

A~h!5(
i

2t0i
2

e i2e01U0i
2(

i

2t0i
2

e i2e01U0i1h
2

2t00
2

U001h
.

~17!
1-5
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The value of the critical field above which the ferromagne
configuration becomes energetically favorable is again gi
by the equationA(hc)50, however, this cannot be solve
analytically anymore.

D. Application to hydrogenic centers

We can understand the details of this change of magn
configuration better if we derive the actual couplings a
Coulomb terms from a simplified model of the dopant.
discussed in the Introduction, one can use simple hydrog
models: two H atoms separated by a distancer in magnetic
fields ha ,hb . We obtained the two-center overlap integra
(t0i) by using explicit machine-readable formulas that ha
been constructed by applying symbolic calculation to
z-function method of Barnett and Coulson. The mathem
cal formalism has been described originally here.13 The sym-
bolic calculations are described here14,15 and the work cited
therein. The evaluation of one-center Coulomb integr
(U0i) was done following an approach described in so
textbooks.16

We considered hydrogenic centers, and included tra
tions and Coulomb interaction energies between the grou
state 1s and the states 1s, 2s, 2pz , 3s, 3pz , and 3d. Figure
1 plots the effective exchangeA as a function of separationd
between the two centers, for a fixed value of the pola
effective field,h50.3 Ry, which is still small compared t
the Rydberg@A(d) obtained from Eq.~17!, with t0i(d) cal-
culated from the integrals given in Refs. 13,14#. It can be
seen that the effective exchangeA becomes positive at a
certain dopant separationdc and thus the favorable configu
ration becomes ferromagnetic. The existence of the trans
from antiferromagnetic to ferromagnetic behavior is ind
pendent on the choice ofh, the polaron field. Also, the criti-
cal separationdc is quite insensitive to the choice ofh ~the
only parameter of the model!. As an example, forh
50.1 Ry, dc53.91aB ; for h50.3 Ry, dc53.20aB and for
h51 Ry, dc52.48aB . All of these figures are within typica
experimental range. Figure 2 plots the critical fieldhc as a
function of the dopant separationd. For d.4aB , which is
true for typical experimental doping densities, the minim
value of the polaron field that will provide a ferromagne

FIG. 1. The effective exchangeA as a function of the dopan
separationd. The polaron field was taken ash50.3 Ry.
07521
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interaction becomes reasonable~a few tenth of a Rydberg!
and therefore we can conclude that our model predicts fe
magnetic interractions between polarons in DMS.

V. SPIN HAMILTONIAN FOR MODERATE FIELDS

Coming back to our fixed magnetic field model, we no
that both the one- and two-level Hubbard models agree w
the Hamiltonian of Eq.~8!, containing the standard Heisen
berg exchange and Zeeman terms when contributions o
der O(t2h/U2) are ignored. However, when those contrib
tions are taken into account, Eq.~8! does not provide the
right solutions anymore. The question to be asked is whe
it is possible to modify the Hamiltonian so as to have agr
ment up toO(t2h/U2). It turns out that this is indeed pos
sible.

If we expand the terms in Eq.~7! we obtain the energies

S 2e1h2

2t2sin2
Q

2

U
2

2t2h sin2
Q

2

U2
, 2e, 2e2

4t2cos2
Q

2

U
,

2e2h2

2t2sin2
Q

2

U
1

2t2h sin2
Q

2

U2
D . ~18!

We need to add some small correction to Eq.~8! that is
linear in the fields and reproduces the above structure. Th
are several ways of doing this, the simplest being to ad
term of the formha•sb1hb•sa or h•sa3sb or ha•sa1hb•sb
~or any linear combination thereof!. It turns out that the
Hamiltonian

HH25~12a!~ha•sa1hb•sb!1Jsa•sb1a~ha•sb1hb•sa!

~19!

reproduces the right structure. In the bas
$a↑b↑,a↑b↓,a↓b↑,a↓b↓% it becomes

FIG. 2. The critical fieldhc ~in Ry! vs the dopant separationd
~in aB). The log-linear plot reveals the exponential behavior of t
critical field on the dopant separation.
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2 D sinQ 2
J

4
~12cosQ!
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J
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2
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4
~12cosQ! 2S J

4
1

ah

2 D sinQ S J
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1

ah
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4
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After doing the necessary 45 degree rotation in
$a↑b↓,a↓b↑% subspace the matrix becomes suitable for
and it yields the eigenvalues~to first order inJ and a and
after subtracting a commonJ):

S h2
J

2
sin2

Q

2
22ah sin2

u

2
, 0, 2J cos2

Q

2
,

2h2
J

2
sin2

Q

2
12ah sin2

u

2D . ~20!

By matching the results in Eq.~20! to Eq. ~18! we obtain
for the parameters of the modified Hamiltonian

J5
4t2

U
, a5

t2

U2
. ~21!

One can also expand the result for the two-level Hubb
model to get a better estimate for the parameters. In that
one obtains

J5
4t11

2

U11
, a5

t11
2

U11
2

1
t12
2

~e22e11U12!
2

. ~22!

VI. CONCLUSION

The calculations presented above lead us to two con
sions:

~I! They confirm once more the fact that the polaro
formed in dilute magnetic semiconductors can interact fe
magnetically for certain dopant densities and types. This
tends the results obtained by Refs. 10,11 in the limit that
polarons have an important overlap to the situation where
two polarons do not overlap at all. Thus, the two quali
tively distinct effects combine in order to generate an eff
tive ferromagnetic interaction of the bound magnetic p
larons in a DMS.

~II ! For the case where two one-electron atoms are pla
in fixed, but nonparallel external magnetic fields, the st
dard model with Heisenberg exchange and Zeeman term
not a suitable approximation. Instead, the calculations ab
give a correction, with which we are able to reproduce
correct spectrum in the moderately high field domain (t!h
!U). The correction represents an effective mixing of t
fields at the two sites, which can be intuitively understood
07521
e
T

d
se

u-

s
-

x-
e
e

-
-
-

ed
-
is

ve
e

s

a ‘‘transfer’’ of the field from one site to the other by th
hopping electron. In the high field domain (h,U), this cor-
rection is not valid anymore and the correct model is
Heisenberg Hamiltonian with a field-dependent exchan
constant.

We will return now to Conclusion~I! with a few remarks.
The change from antiferromagnetic to ferromagnetic eff
tive coupling in the presence of strong local fields in t
generalized Hubbard model naturally leads one to the qu
tion whether this would actually occur in an exact calcu
tion. We believe it does, though the parameter values for
change are likely to be different. To explain our ‘‘belief,’’ w
consider the case of the hydrogen molecule problem in z
field, where the issue of the effective Heisenberg Ham
tonian has been thoroughly discussed.17,18,6,19

In Fig. 3 we plot the effective exchange parameter a
function of d5(r /aB) in the range 1–8, as calculate
in four different ways. The solid line
represents the Herring–Flicker6 ~HF! result, JHF(r )
51.636(r /aB)5/2exp(22r/aB) Ry, which is asymptotically
exact @in the sense thatJHF(r )/Jexact(r )→1 as r /aB→`#,
while the dots are the numerically converged results of Ko
and Wolniewicz20 ~KW!. Both show thatJ(r ) is positive
~antiferromagnetic! for all r. The dashed line is the result o
the Heitler–London18 ~HL! approximation, which, though
clearly not exact, works reasonably well on this logarithm
plot for the range shown. It should be noted, however, t

FIG. 3. The effective exchange parameter as a function of
duced distance (r /aB) for Herring–Flicker ~solid!, Kolos–
Wolniewicz ~dots!, Heitler–London~dashed!, and Hubbard model
~dot–dashed!.
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while the HL result has the right sign ofJ(r ) for the range of
r /aB shown, it incorrectly predicts a negativeJ(r ) at large
r /aB because it does not take into account polarization c
rections to the ground state hydrogenic wave functi
Finally, as the dot-dashed curve, is the stand
Hubbard model result, J(r )54t2(r )/U, with t(r )
52(11r /aB)exp(2r/aB) Ry and U55/4 Ry, calculated
within the ground-state approximation for the hydrog
wave functions~the generalized Hubbard model would giv
the same result in this case without external fields, as ad
excited states does not alter the second order splitting
tween the lowest singlet and triplet states!.

As can be clearly seen, the Hubbard approximation ov
estimatesJ(r ) by a large factor@this qualitative fact does no
change with more refined estimates fort(r ) and U#. The
reason for the larger exchange is that Hubbard, and Hubb
like approximations, consider only the kinetic exchange~due
to the hopping process!, which is antiferromagnetic, and ne
glect Coulomb exchange which tends to favor ferrom
netism.~Such a split is often used in literature21!. The latter
is included in the ‘‘exact’’ HF/KW treatment, as well as th
HL approximation, resulting in a much lower value net~an-
tiferromagnetic! exchange.

We expect that inclusion of local magnetic fieldshi of
equal magnitude (h), which couple only to the electron spi
is properly captured on a qualitative/semiquantitative le
.

N
lff,

.
i

t.

-
s,’

07521
r-
.
d

ng
e-

r-

rd-

-

l

by the extended Hubbard model. Therefore inclusion of s
fields in a more accurate model will also result in a mov
ment of the kinetic exchange towards ferromagnetism; c
sequently, the overall exchange will change over to fer
magnetic at some value ofh. If we just add a field
independent~ferromagnetic! Coulomb term to the kinetic ex
change of the generalized Hubbard model, the change f
antiferromagnetism to ferromagnetism would be expecte
lower values ofh than we have calculated, and make t
effect we consider more relevant for DMS systems.

We caution, though, that for the purely hydrogenic pro
lem with local fields, one must take into account the effect
the magnetic field on the orbital wave function as well, a
that will certainly affect the results, at least quantitatively.
the case of DMS, the local fields represent exchange fie
due to interaction of hydrogenic states with local atom
states of the magnetic ion~Mn!, and therefore their orbita
effect is not the same as that of external magnetic fields
the H2 problem. Nevertheless, we expect these to have s
effect on the orbital part of the wave function of the hydr
genic impurity,22 which would have at least a quantitativ
effect on our results.
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