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Temperature-dependent gaps in the half-filled Hubbard model on a triangular lattice
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The evolution of gaps in the one-electron density of states for the half-filled Hubbard model on a triangular
lattice is studied as a function of both the temperature and the coupling coftstdofitardU) using quantum
Monte Carlo. The formation of gap®r pseudogapsat finite temperature allows us to distinguish between
three regimes(1) A strong-coupling Mott-Hubbard regime, characterized by a gap, which persists even at high
temperatures(2) a weak-coupling paramagnetic regime, characterized by the absence of a pseudogap at any
finite temperature; an(B) an intermediate-coupling spin-density-wave regime, characterized by a pseudogap,
which appears whebl is increased beyond a criticékemperature-dependégntalue. The behavior of thg3
X /3 adlayer structures on fourth-group semiconductor surfaces is briefly commented upon in the light of the
above discussion.
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[. INTRODUCTION In this paper we carry out a model study of the triangular
lattice in order to explore some general questions any realis-
For many years the triangular lattice has been a subject dic theory should comply with. For instance, understanding
much interest due, mainly, to the frustrating effects its nonthe temperature behavior of the one-electron density of states
bipartite nature entails. These often lead to nontrivial(DOS) is essential to the development of a complete picture
ground-state degeneracies as in the antiferromag(&i¢  of these metal-insulator transitions. Hence we report the re-
spin one-half Ising modét? The classical Heisemberg sults of a quantum Monte Carl@@MC) simulation of the
model on the two-dimensiondRD) triangular lattice with  half-filled Hubbard model on such a triangular lattice in the
nearest-neighbor AF coupling and easy-axis exchange amgrand canonical ensemble. The one-electron Green’s func-
isotropy is another example where frustration leads to dion is studied as a function of both the temperature and the
novel ground-state degeneracy. This system has attractedupling constantHubbardU). As the temperature is low-
much attention especially since Anderdsnggested the pos- ered, a pseudogap develops in the one-electron DOS for in-
sibility of a resonating-valence-bond ground state for thetermediate values dfl. This pseudogap is accompanied by
spin one-half case. Simply, the quantum liquid of radomlytwo weak peaks in the spin structure factor which signal the
distributed spin-singlet pairs could be an efficient way toformation of a complex spin-density-way8DW) structure.
overcome the frustration of the Mlestate in the triangular For lower U, no gap at all is found even for low tempera-
antiferromagnet. One more important source of interest ifures, the system remaining always paramagnetic. For higher
these lattices is the well-known diversity and richness ofU, on the other hand, a well-developed gap appears at any
physical phenomena displayed by most transition-metalemperature, accompanied by a strong peak in the spin-
compound$. structure factor. The system is then brought into a state very
The recent experimental observation of low-temperaturesimilar to the ground state of the triangular antiferromagnet
insulating phases in som¢3-adlayer structures ofi1l) Si  (the three-sublattice modeMWe emphasize that these are not
and Ge surfaces has only fostered the interest in these 2@istinct phases, but only different regimes with smooth tran-
triangular lattices. Thus, whereas thad overlayers of Sn sitions among them, as characterized by the behavior of the
and Pb on G@11) are both metallic at a high temperature, one-electron DOS. Since the presence or absence of a gap or
their corresponding low-temperature counterparts are eithdiseudogap is of fundamental importance in determining the
metallic, as in the case of Si’ or weakly insulating as in  Properties of a system, we believe that this type of charac-
the case of PB71° This latter system seems to go throughterization is useful and can be of help in understanding the
some kind of reversible metallic-to-insulating transition €lectronic properties of the more complex adsorption sys-
whose precise nature is still controversial® A charge- tems referred to above.
density wave has been invoked in the case of il not in The paper is organized as follows: Section Il recalls some
the case of Snas the driving force for the destabilization of Of the basic properties of the triangular lattice as well as the
the high-temperature phase, a conjecture not universally adiubbard model in order to fix the notation. The resulting
cepted. Related isoelectronic systems, on the other han@ne-electron DOS and spin-structure factor are displayed and
such as the/3x /3 adlayer of Si on Si@001,**or of Kon  discussed in Sec. Ill and, finally, the paper closes with some
Si(111):B (Ref. 15 show a clear insulating behavior with a concluding remarks in Sec. IV
large gap and no phase transitions. These systems have been
studied theoretically both within the 'Iocall—denéif9’1'7 Il. THE MODEL
(LDA) and the Hartree-Fok!® approximations. Quite
recentl?° the LDA+ U approach has been used to include In the V3% \/3R30° adlayer structures of Sn or Pb on
strong on-site repulsions in Si@O0Y). Geg(11)) at one-third coverage, each adsorbate sits on top of
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FIG. 3. Same as Fig. 2, but along théV'K'T" contour of the
FIG. 1. Large(outer hexagonand smallinner hexagopsurface  small SBZ.
Brillouin zones(SB2) of the triangular lattice. Shown are the espe-
cial points I'M’,K,M, and K’ which delimit the contours

- It is easy to see that, are justeE for k=(kyx2m/3k,).
I'KMT'and'M'K'T used in the text.

These bands cross at the poiMs andK'. The wave vector

a triangle of Ge atoms. With just one unpaired electron pef = (47/3,0) turns out to be a nesting vector with the band
olding around theM’=0.5 K point (M’ K—M'T", band

adsorbate, the overlayer is half filled and, therefore, metallié n ) - } - ' ]

in the absence of electron-electron interactions. This overék)- Likewise KM—T'M’ (band ¢, ,). Figure 3, finally,
layer can in turn be described as x 3 lattice of adsorbate Shows the resulting band along the small SBZ contour. No-
triangles (the three-sublattice modelith three unpaired fice that the(l)VI’K’ direction is obtained by folding thil K’
electrons per triangle and, therefore, again metallic in thdortion ofe.

absence of interaction. The corresponding surface Brillouin This is of no consequence for the interaction-free system
zones(SB2) are the large and small hexagons, respectivelyat half fiIIing,_since the Fermi surface is not anywhere cI(_)se
in Fig. 1. The adlayex/3x /3 lattice has just one band in the €nough to either the large or the small SBZ boundaries.
large zonee?, which folds onto three bands in the small When the interaction is turned on, however, the nesting sym-

zone. Figure 2 shows these three bam&,,s; ,ande metry may come into play, although weakly, at the polvits

unfolded in the extended zone scheme in order to see t dM’, closest to the Fermi surfa¢see Fig. 1 of Ref. 19

- . . . e shall see that, even at half filling, this is indeed the case
nesting properties. They are given [y-(hopping strengtf] for the spin-structur(\a/ factor whdlnlisglargle Ienlough

1 J3 In order to describe the interacting system, we adopt the
e0=2t coskx+ 4t cos; kxcos7 Ky, (1) Hubbard model, given by the standard Hamiltonian
.1, . 1 V3 H=t>, clcis—u>, nis+UY, (n-—l(n-—l)
€ =— Eskitﬁ sink,—2 smikxcos?ky .2 s s = s : YA YA

()

wheret is the hopping strength) the on-site repulsion, and
n the chemical potential. The single sums run over all the
NXN adlayer atoms and the symb@l means summation
over nearest neighbors. As usuaiL creates, whilec;s de-
stroys, an electron of spimat sitei with occupation number
nis=c;‘5cjs. We taket=0.055 eV so as to start with a nar-

~ row adlayer bandwidth W=9t) of around 0.5 eV atU
w =0. U is varied to cover different regimes of the triangular

lattice andu is adjusted so as to have always half filling.
Recall that, unlike the case of bipartite latticass U/2 does
not necessarily correspond to half filling since particle-hole
symmetry does not hold in a triangular lattice even at half

-4 - - filling.
: M K MoK 3 This Hubbard model is now simulated by the QMC ap-
FIG. 2. Band structure of the triangular lattice =0 in the ~ proach in the grand canonical ensemble as initially devel-
three-sublattice model. The three bandg,(main band ande,  oped by Blankenbeckest al** and supplemented by a dis-
are displayed along tHeKMT contour of the large SBZ in orderto  crete lattice version of the Hubbard-Stratonovi¢HS)
show the band crossings and nesting symmetry. transformation by Hirsck? The whole approach has been
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explained at length by Hirséh and Whiteet al?* For an
excellent review see Loh and GubernafisThe lack of
particle-hole symmetry alluded to above entails that the
minus-sign problem of the Fermion determinant appears,
even at half filling, in the triangular lattice for some Ising
configurations of the HS field. These configurations usually
give unphysical values for some physical quantities.,
level occupancies outside th®,1) intervall. This was al-
ready noticed by Blankenbecket al?* We have, therefore,
opted for ignoring them altogether in the simulation rather
than admitting them with positive weight. Although the situ-
ation is not entirely clear, especially for calculations in the
grand canonical ensemble, it seems reasonable to exclude

unphysical paths. See in this context Lehal2®
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IIl. INTERPOLATING BETWEEN THE WEAK- AND THE
STRONG-COUPLING REGIME

According to the Mermin-Wagner theoreth,infinite-
range magnetic order is forbidden in two dimensions at any?t=>5, 10, 15, and 20.
T+#0. This is so because the Goldstone modes strongly dis-

order the system giving rise to a spin-spin correlation lengthj e., just the Schmidt-Hilbert transform #f(¢) whose ana-
lytic continuation along the real axis yields the retarded/

FIG. 4. One-electron density of statd809) of the triangular
lattice for U/t=5 (weak coupling and decreasing temperature,

which decays with the temperature @§T)~exp@/T),
whereA is a constant. Thus no phase transitions of magnetiadvanced Green’s functioB,(w+i 7).

origin can take place in an infinite system except, perhaps, at Despite its apparent simplicity, the numerical implemen-
T=0. Other kinds of phase transitions are outside the scopgition of analytic continuations of this kind is, as a rule,
of this theorem. Such is the case, e.g., of (M®tt) para-  difficult. One must invert either Eq6) or Eq.(7) in order to

magnetic metal—paramagnetic insulator transition. We nowind A,(¢), an extremely ill-posed problem due to the statis-

study the one-electron DOS and the spin-structure factor fofical error in the QMC data fo6,(7). Even small errors in
Gy(7) may be reflected in large changesAp(e). Any prior

knowledge one may have abow, (e.g., sum rules,
asymptotic behavior, etfchelps somewhat to alleviate the
situation and should be incorporated into a tégle), the
default model, which ought to be as general as possible so as
not to condition the final output very strongly. One must also
ensure that the QMC data are as Gaussian distributed as pos-
sible. Finally Bayesian inference methods, such as the
maximum-entropy principle must be applied in order to re-
ject structure inA,(g) not warranted by the data. In what
ollows, we use the annealing method described by Jarrel
and Gubernati&®
Going back to the triangular lattice, mean-field studies at
T=0 (Ref. 30 have shown that the half-filled triangular lat-
tice is a paramagnetic metal in the weak-coupling regime, in
contrast with the SDW insulating character of the square
lattice for smallU/t. No gap in the one-electron DOS is,

where the brackets mean a grand canonical average, is an T )
S . _ erefore, expected at any temperature forrafinite trian-
periodic in 0< 7<<B with B=1/T. It can, therefore, be recast . .
! X . gular lattice. It has been shown, however, that size effects are
in Fourier series forAt s . )
very strong in this regim&: A gap in the one-electron DOS
develops as soon as the spin-spin correlations extend over

the whole system. Thus, for lattices of increasing dite

the case of the triangular lattice.

A. The one-electron DOS

The one-electron DOS is given by

1
N(w)= 5 2 Alko), (4)

where N is the number of lattice sites andl(k,w), the
spectral-weight function, is the imaginary part of the retarde
one-electron Green'’s functioA(kw) is to be obtained from
the QMC data for the Matsubara Green'’s functi®p(7) in
the imaginary-time domais,(7), given by

Gy(7)=—{c(7)cl(0)), (5)

1 . A(e)
G =— e '"YTG,(i =—Jd—‘” N
«(7) B ; dien) 81+e*ﬁs XN, the system evolves from a situation where the correla-
(6)  tion length &(T)>N, (with a gap to one wheref(T)<N

(without a gap. One should be careful when drawing con-

clusions about the existence of gaps from small lattices.

with w,=(2n+1)(7/B),n being any integer. The Fourier
Figure 4 shows the one-electron DOS of a half-filled 4

coefficientsG,(iw,) are easily shown to be

Al(e)

Gulion)= [ de ", @

X4 triangular lattice with periodic boundary conditions. We
have takenJ/t=5 (~ half the bandwidth, §, which is a
weak-to-moderate value, and several values @fBt
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FIG. 5. Same as Fig. 4, but f&#/t= 20 (strong coupling . . .
FIG. 6. Same as Figs. 4 and 5, but 1d/t=10 (intermediate

coupling.

=5,10,15, and 20. Even fgBt as high as 20, the system is
far from having a fully developed gap. Since for the bigger $;=( 012N T(0)) -0+ (8)
lattices one expects weaker pseudogaps, it may be safely
concluded that in the weak-coupling regime a triangular latin the imaginary-time domain, whetg,=n;;—n;, . No ana-
tice has no gaps at any temperature, in accordance with thetic continuation is, therefore, required for the calculation of
Mermin-Wagner theorem. this quantity, since the dynamics has been integrated out

In the strong-coupling regime af=0 the system is when projecting onto zerGmaginary or realtime. The ana-
brought into a commensurate, three sublattice, 120° twislytic continuation would be unavoidable, on the other hand,
SDW state(similar to the ground state of the classical anti- for extracting the dynamiéreal frequency spin susceptibil-
ferromagne}, which is insulating and stable for increasidg ity from QMC data fora; (7). The peaks o§(k) and corre-
Quantum fluctuations about the classical antiferromagnetigponding widths irk space convey useful information about
solution lead to the essential qualitative physics of the Mottthe spin ordering of the system and corresponding correla-
Hubbard insulator at finite temperatures with a charge gap dfon length. Thus a sharp peak sfk) at k=(m,7) on a
order U in the spectral-weight function. Figure 5 bears thesquare lattice indicates a long-range AF spin order, whereas a
same information as Fig. 4, but with/t=20, which is deep broad peak would indicate short-range order with the corre-
inside the strong-coupling regime. Since size effects are verjation length inversely proportional to the width s, 7) .23
small in this regimé? it is fairly clear that a fully developed Figure 8 shows(k) for U/t=5,10, and 20, representative
gap is present at any temperature. values of the three coupling regimes, #tt= 20, the lowest

We thus see that, for a given temperature, the systememperature we have considered in the present study. This
evolves from a gapless situation at smalto a fully devel-  figure should be taken in conjunction with Figs. 4—6 of the
oped gap at largeU. As U increases through the
intermediate-coupling regime, one should find a critical 1,0
value U,(T) for which the gap first appears. Figure 6 dis-

: ) .. U=5
plays, as Figs. 4 and 5, the one-electron DOS for an inter- e U=10
mediate value ofJ/t=10 (~ the bandwidth As the tem- 0.8+ - U=15
perature is lowered from8t=5 down toBt=20, an incipient _ U=20

pseudogap gradually evolves into a fully developed gap. This
value ofU is clearly below the critical for all Bt<20, i.e.,
U.=10 for gt=20. The complementary view is given in
Fig. 7, which shows the one-electron DOS f8t=5 and
U/t=5,10,15, and 20. We see the system evolving from a
gapless regime to a pseudogap, a deep pseudogap and finally
a fully developed gap. Thud .= 20t for Bt=5. In this way 0.2+
one generates a temperature-dependent critical value of the ]
coupling constant(T).

0,64

0,4

Density of States

0,0

w(eV)

B. The spin-structure factor

The spin-structure factos(k) is given by thek-Fourier
transform of the static spin-spin correlation function

FIG. 7. One-electron DOS of the triangular lattice for increasing
U/t=5,10,15, and 20 at a fixed temperatyte="5.
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4 Beyond a criticalU,(T) both spin orders collapse and the
. U=5 whole system becomes ordered, albeit in two domains. The
one-electron DOS, as Fig. 6 shows {8t=20, develops a

gap.

IV. CONCLUDING REMARKS

The variation of the one-electron DOS with both the tem-
perature and the coupling constant seems a useful tool for the

— purpose of identifying the different regimes of a given sys-
é tem. For the special case of the half-filled repulsive Hubbard
w 2

model on a triangular lattice, a good example of a frustrated
2D system, we have identified an intermediate, temperature-
dependent coupling regime, characterized by a two-domain
SDW structure, which interpolates smoothly between the
weak-couplingparamagnetic metahnd the strong-coupling
(Mott-Hubbard insulator regimes. As the temperature is
lowered in this intermediate-coupling regime, the system
evolves from metallic to insulating. Alternatively, a critical
U.(T) exists beyond which this frustrated 2D system devel-
ops a gap. The same situatidre., a criticalU) has been
shown to apply for a frustrated half-filled Hubbard model in
W K MK I one dimensiori? Since there is also a critical for the frus-
trated infinite-dimensional half-filled Hubbard modeljt

FIG. 8. Low-temperature@t=20) spin-structure facts(k) of =~ seems reasonable to assume that there is a crifidat the
the triangular lattice in the weakU(t=5), intermediate /t frustrated half-filled Hubbard model in any dimension.
=10) and strong ¢/t=20) coupling regimes. We conclude with a comment on th¢3x 3 adlayer

structures on group-fourth semiconductor surfaces. Although
Sec. Il A, which display the behavior of the one-electrona close connection with the above model study is not
DOS. Thus the gapsless DOS of Fig(weak coupling for  claimed, these structures may constitute a physical realiza-
Bt=20 is accompanied by an almost featurelegk) for  tion of the three coupling regimes just described, Sn/Ge, Pb/
U/t=5 on Fig. 8, indicating the lack of any spin order. We Ge, and SiC being examples of the weak-, intermediate-, and
speak then of a spin-disordered gapless sysgemaramag- strong-coupling regimes, respectively. Despite the added
netic metal. In the opposite, strong-coupling limit, one seescomplexity due to electron-phonon interactions and atomic
a fully developed gap in Fig. 5 in conjunction with a strong, relaxation of both adsorbate and substrate atoms, the model
sharp peak at the poirl’=(27/3,0) of the small SBZ, study carried out here provides a general framework for the
which is both very close to the Fermi surface at half filling, study of those systems. Let us stress, finally, that our main
and a crossing point of the band structure associated with thesult in this paper, i.e., the existence of a criticafor the
three-sublattice modefbandse and ¢} of Fig. 2. The frustrated half-filled Hubbard model in two dimensions may
spins, therefore, order into three sublattices with a twiste of relevance, not only for the above semiconducting in-
angle of 120°, just the situation found in the strong-couplingterfaces, but also in the context of theories of high-
regime of Sec. lll A. As explained there, one then speaks ofemperature superconductivity as well as in the study of cer-
a Mott-Hubbard insulator. tain 2D polymers.

The intermediate-coupling regime is somewhat more
complex, as usual. Figure 8 shows two rather broad maxima
centered abouM’ (small SBZ and M (large SBZ, both
close to the Fermi surface. The spins are trying to arrange This work was supported by the DGICY(Bpain Project
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