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Incommensurate charge-density waves in the adiabatic Hubbard-Holstein model

Vieri Mastropietro
Universitàdi Tor Vergata, Roma, Italy

~Received 12 April 2001; revised manuscript received 27 July 2001; published 1 February 2002!

The adiabatic Holstein-Hubbard model describes electrons on a chain with stepa interacting with them-
selves~with couplingU! and with a classical phonon fieldwx ~with couplingl!. There is Peierls instability if
the electronic ground-state energyF(w) as a functional ofwx has a minimum which corresponds to a periodic
function with periodp/pF , wherepF is the Fermi momentum. We considerpF /pa irrational so that the
charge-density wave isincommensuratewith the chain. We prove in a rigorous way in the spinless case, when
l, U are small andU/l large, that~a! when the electronic interaction is attractiveU,0 there is no Peierls
instability and~b! when the interaction is repulsiveU.0 there is Peierls instability in the sense that our
convergent expansion forF(w), truncated at second order has a minimum which corresponds to an analytical
andp/pF periodicwx . Such a minimum is found solving an infinite set of coupled self-consistent equations,
one for each of the infinite Fourier modes ofwx .

DOI: 10.1103/PhysRevB.65.075113 PACS number~s!: 71.10.2w, 71.30.1h
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I. INTRODUCTION

In 1955 Peierls, in Ref. 1, suggested that in a o
dimensional metal it is energetically favorable to develop
periodic distortion of the linear lattice with periodpF /p
where pF is the Fermi momentum of the conduction ele
trons. The attempt of the conduction electrons to screen
periodic potential generated by the periodic lattice distort
creates acharge-density wave~CDW! in the conduction elec-
tron density. Ifa is the step of the undistorted lattice, the
depending whetherpFa/p is a rational number or not, th
CDW ~or the periodic lattice distortion! can be eithercom-
mensurateor incommensuratewith the nondistorted lattice
While a commensurate CDW has preferred positions in
lattice, an incommensurate CDW has not and so it can s
without any change of energy; this was considered
Frolich in Ref. 2 a possible mechanism for superconductiv
or a least for an enhancement of conductivity~see Ref. 3!.

Indeed starting from the 1970s both commensurate or
commensurate CDW with wave vector 2pF have indeed
been observed in a number of compounds~see, for instance
Refs. 4 and 5!. A new wind of interest followed recently th
discovery of high-Tc superconductors showing one
dimensional incommensurate CDW’s, see Refs. 6 and 7

From a theoretical point of view, Peierls instability can
studied in theHolstein-Hubbardmodel, which is the simples
model involving both an electron-phonon and an electr
electron interaction. The standard theory of CDW’s is u
ally developed within the adiabatic approximation, in whi
the phonon field is treated as a classical field and the m
becomes variational. We will consider the spinless case
that thespinless adiabatic Holstein-HubbardHamiltonian is
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whereL51,...,L21, tx,y5dx,y2 1
2 (dx,y111dx,y21), cx

6 are
fermionic creation or annihilation fields with periodic boun
ary conditions, andm is the chemical potentialm51
2cospF . In Eq. ~1!, H0 is the fermionic kinetic energy,Hp
is the phonon kinetic energy,lP is the electron-phonon in
teraction, andUV is the electron-electron interaction; to d
scribe the Coulomb repulsion one needsU.0, but it is not
unrealistic to consider alsoU,0 ~in this caseUV is an
effective interaction taking into account phonon-media
processes!. If U50, the above model is called theHolstein
model. pF is the Fermi momentum of the noninteractingU
50 model; the Fermi momentum in theUÞ0 case is in
general different, but we fix it topF by adding a termnN to
the Hamiltonian, whereN5(xPLcx

1cx
2 is the total particle

number operator andn is a suitable counterterm. The proo
of Peierls instability consists, within this model, in the pro
that the ground-state energyF(w)5(xPLwx

2/21E0(w) is
minimized by wx5w̄(2pFx) where w̄(t) is a 2p-periodic
function. The existence of a global minimum of the for
w̄(2pFx) was proved in the half-filled band casepF5p/2 in
the Holstein model and in the spinning Holstein-Hubba
model ~see Refs. 8 and 9!. Local minima of the form
w̄(2pFx), for any pF5pP/Q with P, Q relatively prime,
were found in Ref. 10, forulu<O@(ln Q)21#. We are inter-
ested here in theincommensuratecase in whichpF /p is an
irrational number. At finiteL, it is not possible to fixpF /p
directly to an irrational number, as in this wayw̄(2pFx)
cannot verify periodic boundary conditions. We look, ho
ever, to a sequence ofLi , ni such that limi→` Li5` and
lim i→` pF,i5pF and pF /p is irrational, where pF,i
52pni /Li . An incommensuratephonon field has the form

wx5 lim
i→`

(
n52@Li /2#

@~Li21!/2#

ŵnei2pF,i nx. ~2!

We require moreover that

i2npF,i iT1>C0unu2t, 0ÞnPZ, unu<
Li

2
, ~3!
©2002 The American Physical Society13-1
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VIERI MASTROPIETRO PHYSICAL REVIEW B65 075113
where ikiT15minnPZ uk22pnu. Equation ~3! means that
pF /p is a Diophantine number~see, for instance, Ref. 31!
and the proof of the existence ofpF,i verifying ~3! can be
found in Ref. 11. Such an assumption is not really restricti
as if t.1, the complementary set of such points, has m
sure 0. A Diophantine condition like Eq.~3! ~in the infinite-
volume limit! appears in classical mechanics, for instance
the Kolmogorov-Arnold-Moser~KAM ! theorem~see Refs.
12 and 13!, and it is useful for handling with the so-calle
small divisor problem; a similar problem appears also her
That a sort of extension of KAM techniques to quantu
systems is necessary to prove Peierls instability in the inc
mensurate case was pointed out by Aubryet al. in Ref. 14 by
analogy with theFrenkel-Kontorovamodels~see also Ref.
15!. We have to specify the space of functions on wh
F(w) is defined as a variational form. We say thatF(w) is a
functionalF:V→R whereV is the set of functionswx of the
form (2) with zero averageŵ050 and ŵn5ŵ2n5ŵn* .
Moreover, ifk, F0 , F1.0 are constants ands5lŵ1 , then
usu<F0 and, for unu.1,

ulŵnu<F1usue2kunu. ~4!

The condition~4! ensures also that the 2pF harmonic is
present~if ŵ150, thenwx is a constant!. If w is an extremal
point of F(w), it must satisfy the conditionŵ05lr wherer
is the fermionic density. On the other hand, we can alw
include ŵ0 in the chemical potentialm and then we can re
strict our search of local minima of the ground state ene
F(w) to fields w with zero mean. Note thatF:V→R is in-
deed a function of the Fourier coefficientsŵn ; this means
that, at finiteL, it can be considered not a functional but
L-dimensional function and only at the end will we take t
L→` limit.

We say thatthere is Peierls instability if the variationa
form F:V→R has a minimumwxPV. We will show in Sec.
III that if wxPV is a local minimum, then

ŵn5lr̂n~w!, nÞ0, n52@L/2#,...,@~L21!/2#, ~5!

and Mnm5dnm2l(]/]ŵn) r̂m(w) positive definite, where
r̂n(w)5]E0(w)/]ŵn . Peierls instability can be proved b
solving the infinite~as L→`! set of coupled equations~5!.
There are then two main steps to be performed; the first i
computer̂n by an expansion, as there is no hope to comp
it in a simple exact form, and the second is to solve
systemŵn5lr̂n(w). In Sec. II an expansion forr̂n(w) is
found, which isconvergentfor any wPV, for l, U small
enough. The proof of convergence is based on a sort of g
eralization of the KAM theorem to quantum systems; in S
II we review the main ideas referring to Ref. 16 for th
mathematical proofs. The result is that we can writer̂n

5(k50
` r̂n

(k) and, if pF,i verifies Eq. (3) andwxPV, then for
ulu,uUu<« one hasur̂n

(k)u< f (n,l,U)Ck«k, where C is a
constant and f(n,l,U) is a proper function. Of course the
exact form off (n,l,U) is important, and it will be specified
in Sec. II E. The proof of the convergence~for « small
enough! of the expansion for the density is based on ren
malization group~RG! methods; it is important, however, t
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stress that, while the usual RG methods are only approxi
tive, our results aremathematically exact; we refer for an
introduction to rigorous RG for fermions to Ref. 17.

The second step~see Sec. III! consists in solving Eq.~5!.
This is quite a difficult task, and we consider the simp
problem obtained by keeping only the first two terms of t
expansion forr̂n . This means that we study

ŵn5lr̂n
~0!~w!1lr̂n

~1!~w!, ,n52@L/2#,...,@~L21!/2#,
~6!

so neglectingO(«2) terms on the right-hand side~RHS! of
Eq. ~5!. The convergence of the expansion forr̂n makes this
approximation quite reasonable. Note also thatr̂n

(0) and r̂n
(1)

are rather complex functions ofl, U ~the expansion is not a
power series inl, U!. Our main result is thatif ulu/uUu is
small enough, in the L→` limit

(a) in the attractive U,0 case there are no solutionsw
PV of Eq. (6) [and of Eq. (5) as well];

(b) in the repulsive case U.0 there is awxPV solving
Eq. (6) such that

ulŵ1u5s5AF l2

ahG1/hF11OS l2

U D G1/h

,

uŵnu<e2u lnuli /10unuusu, unuÞ1, ~7!

with h5b1U1O(U2) a critical index and a, A positive con
stants. This means that, if the electron-electron interaction
larger than the electron-phonon interaction, there is a d
matic dependence on the repulsive or attractive nature of
electron-electron interaction. In the attractive case there is
Peierls instability as there are no functions analytical a
p/pF periodic minimizing the ground-state energy. In th
repulsive case there is instead Peierls instability, in the se
that the energy, keeping the first two nontrivial terms of
convergent expansion, has a minimum which correspond
an incommensurate CDW. It is very reasonable that high
order terms do not change this result~see the consideration
in Sec. III B!.

Our results improve preceding works on the subject
which ~a! the interaction among electrons was neglected
~b! the analysis was restricted to thefirst order,

ŵn5lr̂n
~0!~w!, ~8!

where, if U50, lr̂n
(0)(w).2al2ŵ1 lnulŵ1u if n561 and

zero otherwise. There is a major difference between Eqs.~8!
and ~6!; while Eq. ~8! admits trivially a solutionlŵn
5sdn,61 ands is obtained by a BCS-like equation, a sol
tion of the formlŵn5sdn,61 does not solve Eqs. (6) or (5).
While a solution of Eq.~8! if U50 ~when the model reduce
to the Holstein model! is trivial to find, we are not able to
find a solution of Eq.~6! P V if U50, as the method we us
to find a solution of Eq.~6! whenU.0 andU/ulu is large
fails in that case. We have then no evidence of Peierls in
bility in the Holstein model, and it is unclear if this is mere
a technical problem or if there isUc.0 such that Peierls
instability holds only forU.Uc in the Holstein-Hubbard
model.
3-2
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INCOMMENSURATE CHARGE-DENSITY WAVES IN THE . . . PHYSICAL REVIEW B 65 075113
The paper is organized in the following way. In Sec. II
we describe an expansion for the ground-state energy o
Hubbard-Holstein model~1! for wPV. In order to prove the
convergence~for smalll, U! of the expansion for smalll, U,
one has to solve a small divisor problem, and this is d
cussed in Sec. II B. In Sec. II C the RG flow is studied and
Sec. II D we prove that the renormalization of the Fer
momentum ifl independent. From the ground-state ene
expansion, is it easy to derive an expansion for the den
and this is done in Sec. II E. In Sec. III we prove that Eq.~5!
has no solutionwPV in the attractive case, ifulu/uUu is
small enough, while in the repulsive case we find a solut
wPV of Eq. ~6! by a contraction method. Finally in Sec. I
we discuss some open problems, in particular for theU50
case.

II. RENORMALIZATION GROUP ANALYSIS

A. Grassman integrals

It is well known thatE0(w) can be written as aGrassman
integral ~we use the same symbolc for field and Grassman
variables with a traditional abuse of notation!

E0~w!52 lim
b→`

1

Lb
lnE P~dc!e2UV2lP2nN, ~9!

where

V5E
2b/2

b/2

dx0 (
xPL

FcxW
1cxW

22
1

2GFcxW11
1 cxW11

2 2
1

2G ,
P52E

2b/2

b/2

dx0 (
xPL

w~x!cxW
1cxW

2 ,

N5E
2b/2

b/2

dx0 (
xPL

cxW
1cxW

2 , ~10!

and xW5(x0 ,x) and xW115(x0 ,x11). Here P(dc) is a
Grassmanian integrationdefined on monomials by the ant
commutative Wick rule with propagator

g~xW ;yW !5
1

bL (
kW

eikW~xW2yW !

2 ik02cosk1cospF
, ~11!

wherekW5(k0 ,k). Equation~9! has a well-definedL, b→`
limit only if the countertermn is chosen in a suitable way a
a function of the parameters appearing in the Hamiltonian
that the Fermi momentum is justpF . In order to find the
minima ofF(w) we have to differentiate with respect toŵn ,
so one has in principle to take into account the poss
dependence ofn from ŵn , which is in general very compli-
cated. However we will show in Sec. II D that it is possib
to choosen as independentfrom l and so fromŵn . This is
due to the fact that the chemical potential can be mo
inside the gap opened bywx without affecting any physica
property, and we can use this freedom to fixn as independen
of ŵn . It follows that a necessary condition forwxPV to be
a local minimum forF(w) is that it verifieswx5lrx where
07511
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rx5 limb→`,t→0(1/L)SL,b(x,t;x,0) andSL,b(x,t;x,0) is the
Schwinger function defined by, iffxW

6 are Grassman variable
and writing*dxW5*2b/2

b/2 (xPL ,

SL,b~xW ;yW !5
]2

]fxW
1]fyW

2 ln E P~dc!

3expS V~c!2E dxW @fxW
1cxW

21fxW
2cxW

1# D
f50

,

~12!

and V5UV1lP1nN. Equation ~5! is obtained by the
Fourier transform of wx5lrx defining rx

5(n52@L/2#
@(L21)/2#e2inpFxr̂n .

The above Grassman integrals can be evaluated by re
malization group methods; we refer to Ref. 17 for an intr
duction to the formalism we are using and to Ref. 16 for t
mathematical proofs of the convergence of the expansion
are describing. We start by evaluating the partition funct
*P(dc)e2V(c). It is convenient to decompose the Grassm
integration P(dc) into a product of independent integra
tions. Let beukW u5Ak0

21ikiT
2. We write

g~kW !5 f 1~kW !g~kW !1@12 f 1~kW !#g~kW !5g~uv!~kW !1g~ ir!~kW !,
~13!

where f 1(kW )512x(k2pF ,k0)2x(k1pF ,k0) and x(k8,k)
is a C` function with compact support such that it is 1 fo
ukW8u<a0 /g and 0 for ukW8u.a0 , whereg.1 andg, a0 are
chosen so thatx(k6pF ,k0) are nonvanishing only in two
nonoverlapping regions around6pF . We write k5k8
1vpF , v561 and

g~ ir!~kW !5 (
v561

(
h52`

0

f h~kW8!g~kW ![ (
v561

(
h52`

0

g~h!~kW !,

~14!

where f h(kW8)5x(g2hkW8)2x(g2h11kW8) has supportO(gh)
aroundvpF . The integration ofc (1), theultraviolet integra-
tion, gives

e2V~0!~c~<0!!5E P~dc~1!!e2V~c~1!1c~<0!!, ~15!

wherec<05(k52`
0 c (k) and@denoting (1/bL)(kW simply by

*dkW #

V ~0!~c~<0!!5 (
n51

`

(
m50

` E dkW1 ,...dkW2nc
kW1

~<0!s1
¯c

kW2n

~<0!s2n

3W2n,m
0 ~kW1 ,...,kW2n!dS (

i 51

2n

s ikW i12mpW FD ,

~16!

where pW F5(pF,0), s i56, and the kernels
Wn,m

0 (kW1 ,...,kWn ;z) are C` bounded functions such tha
Wn,m

0 5Wn,2m
0 and uWn,m

0 u<Cnzmax(2,n/221) if z
5max(ulu,uUu,unu). By an explicit computation it follows tha
3-3
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W4,0
0 5U1O(U2), W4,m

0 5O(Us) for mÞ0 and W2,m
0 5s

1O(sU) for mÞ0. HereV(0) is called theeffective poten-
tial at scale 0; note that it contains nonlocal interaction
between an arbitrary number of fermions.

The study of theinfrared integration is much more in
volved. Following Wilsonian renormalization group met
ods, we have to identify the relevant, irrelevant, and marg
interactions; this is done by a power counting argument,
it turns out, as is standard in fermionic one-dimensional s
tems, that the interactions quadratic in the fields are relev
the quartic are marginal, and the other processes are i
evant. However, there are in this modelL many different
terms bilinear or quartic in the fields, depending on the va
of m in Eq. ~16!, and so it seems that there areL different
nonirrelevant interactions to be taken into account, wh
seems a hopeless task as we are interested in theL→` limit;
this problem will be solved by aimproved power countingin
which the Diophantine condition plays a crucial role. No
finally that the quadratic interaction has a nontrivial flow,
it is necessary to change the fermionic integration at e
step; in other words, the model has ananomalous behavior,
due to the fact that the model is close to a Luttinger liqu

The integration is performed iteratively, settingZ051,
s05s, in the following way: once that the field
c (0),...,c (h11) have been integrated, we have

E PZh
~dc~<h!!e2V~h!~AZhc~<h!!. ~17!

Then, puttingCh(kW8)215( j 52`
h f j (kW8) and a(k8)5(cosk8

21)cospF , v05sinpF ,

PZh
~dc~<h!!5)

kW8
)

v561
dc

kW81vpW F ,v

~<h!1
dc

kW81vpW F ,v

~<h!2

3expH 2 (
v561

E dkW8Ch~kW8!Zh

3@~2 ik02a~k8!1vv0 sink8!

3c
kW81vpW F ,v

~<h!1
c

kW81vpW F ,v

~<h!2
2sh~kW8!

3c
kW81vpW F ,v

~<h!1
c

kW82vpW F ,2v

~<h!2
#J . ~18!

Note that afteruhu steps the integration is different to th
initial one; there is a wave function renormalizationZh and a
mass termsh . Moreover, the effective potential at scaleh
has the form

V~h!~c~<h!!5 (
n50

`

(
m50

` E dkW18 ...dkW2n8 )
i 51

n

c
kW

i81v i pW F ,v i

s i ~<h!

3dS (
i 51

2n

s i~kW i81v i pW F!12mpW FD
3W2n,m

h ~kW181vW 1pW F ,...;$v%!. ~19!
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In order to integratec (h) we write V(h) as LV(h)

1RV(h), with R512L. The L operation is defined to ex
tract the nonirrelevant terms inV(h); it is easy to check from
a power counting argument that the terms inV(h) involving
six or more fields are irrelevant, and thusL50 on such
terms. Moreover, we will defineL50 on the addenda in Eq
~19! not verifying the condition

(
i 51

2n

s1v i pF12mpF50 mod 2p, ~20!

which means that we are considering irrelevant the te
such that the sum of momenta measured from the Fe
surface is not vanishing~but it can be arbitrary small, due t
the irrationality ofpF /p!. At the moment this definition ofL
is completely arbitrary; it will be clear in the next sectio
where we will show that the terms not verifying Eq.~20! are
indeed irrelevant~here is where the Diophantine conditio
plays a role!.

In conclusion, the definition ofL is the following
~1! If 2n.4, then

LW2n,m
h ~kW1 ,...!50.

~2! If 2n54, then

LW4,m
h ~kW1 ,...!5dm,0d(

i 51
4 s ivW i ,0

W4,m
h ~v1pW F ,...,v4pW F!.

~21!

~3! If 2n52, v15v2 , then

L$W2,m
h ~kW181v1pW F ,kW281v2pW F!

5dm,0@W2,m
h ~v1pW F ,v2pW F!

1v1E~k81v1pF!]kW2,m
h ~v1pW F ,v2pW F!

1k0]k0
W2,m

h ~v1pW F ,v2pW F!#, ~22!

where E(k81vpF)5v0v sink81(12cosk8)cospF and the
symbols]k , ]k0

mean discrete derivatives.

~4! If 2n52, v152v2 , then

LW2,m
h ~kW181v1pW F ,kW281v2pW F!5dm,v2

W2,m
h ~v1pW F ,v2pW F!.

~23!

The Kronecker deltas on the RHS of Eqs.~21!–~23! en-
sure thatL50 if Eq. ~20! is not verified.

We find

LV~h!~c!5ghnhFn
~<h!1shFs

~<h!1zhFz
~<h!1ahFa

~<h!

1uhFU
~<h! , ~24!

where

Fs
~<h!5 (

v561
E dkW8ckW81vpW F ,v

~<h!1
c

kW82vpW F ,2v

~<h!2
,

Fi
~<h!5 (

v561
E dkW8 f i~kW8!c

kW81vpW F ,v

~<h!1
c

kW81vpW F ,v

~<h!2
,

3-4
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FU
~<h!5E F)

i 51

4

dkW i8GdS (
i 51

4

s ikW i Dc
kW

181pW F,1

~<h!1
c

kW
281pW F,1

~<h!2

3c
kW

382pW F21

~<0!1
c

kW
482pW F21

~<0!2
dS (

i 51

4

s ikW i D , ~25!

where i 5n, z, a and f n51, f z52 ik0 , and f a5E(k8
1vpF); moreover, u05U@ v̂(0)2 v̂(2pF)#1O(U2), s0
5O(Ul), a0 , z05O(U2), andn05n1O(U). Note that in
LV(h) there are terms renormalizing mass and the wave fu
tion renormalization and it is convenient to include them
the fermionic integration writing

E PZh
~dc~<h!!e2V~h!~AZhc~<h!!

5E P̃Zh21
~dc~<h!!e2Ṽ~h!~AZhc~<h!!, ~26!

where P̃Zh21
(dc (<h)) is defined asPZh

(dc (<h)), Eq. ~18!,

with Zh21 andsh21 replacingZh , sh , with

Zh21~kW8!5Zh@11Ch
21~kW8!zh#, Zh21~kW8!sh21~kW8!

5Zhsh~kW8!1Ch
21~kW8!sh . ~27!

Moreover,Ṽ(h)5LṼ(h)1(12L)V(h) and

LṼ~h!5ghnhFn
~<h!1~ah2zh!Fa

~<h!1uhFU
~<h! . ~28!

The RHS of Eq.~26! can be written as

E PZh21
~dc~<h21!!E P̃Zh21

~dc~h!!e2Ṽ~h!~AZhc~<h!
,

~29!

wherePZh21
(dc (<h21)) and P̃Zh21

(dc (h)) are given by Eq.

~18! with Zh21 replaced byZh21(0)[Zh21 andCh(kW8) re-
placed withCh21(kW8) and f̃ h

21(kW8), respectively, if

f̃ h~kW8!5Zh21F Ch
21~kW8!

Zh21~kW8!
2

Ch21
21 ~kW8!

Zh21
G ~30!

and c (<h) replaced withc (<h21) and c (h), respectively.
Note thatf̃ h(kW8) is a compact support function, with suppo
of width O(gh) and farO(gh) from the ‘‘singularity,’’ i.e.,
vpF . The Grassmanian integrationP̃Zh21

(dc (h)) has a
propagator

gv,v8
h

~xW2yW !5E P̃Zh21
~dc~h!!cv,xW

2 cv8,yW
1 ,

given by
07511
c-

1

Zh21
E dkW8e2 ikW8~xW2yW !

1

Ah21~k8!
f̃ h~kW8!

3S 2 ik02a~k8!2v0 sink8 sh21~k8!

sh21~k8! 2 ik02a~k8!1v0 sink8
D ,

~31!

where Ah(kW8)5@2 ik02a(k8)#22(v0 sink8)22@sh21(kW8)#
2.

It is convenient to decompose the propagator as

gv,v
~h! ~xW2yW !5gL,v

~h! ~xW2yW !1C2
~h!~xW2yW !, ~32!

where

gL,v
~h! ~xW2yW !5

1

Lb (
kW8

e2kW8~xW2yW !

2 ik01vv0 sink81a~k8!
f̃ h~kW8!

~33!

and, for any integerN.1,

ugL,v
~h! ~xW2yW !u<

ghCN

11~ghuxW2yW u!N ,

uC2
~h!~xW2yW !u<Ush

ghU2 ghCN

11~ghuxW2yW u!N . ~34!

Moreover,

ugv,2v
~h! ~xW2yW !u<Ush

ghU ghCN

11~ghuxW2yW u!N . ~35!

Finally, we rescalethe fields so that

E PZh21
~dc~<h21!!E P̃Zh21

~dc~h!!e2Ṽ~h!~AZh21c~<h!!,

~36!

where

LṼ~h!~c!5ghnhFn
~<h!1dhFa

~<h!1UhFU
~<h! ~37!

and, by definition,

nh5
Zh

Zh21
nh , dh5

Zh

Zh21
~ah2zh!, Uh5S Zh

Zh21
D 2

uh .

~38!

We perform the integration

E P̃Zh21
~dc~h!!e2V̂~h!~AZh21c~<h!!5e2V~h21!~AZh21c~<h21!!,

~39!

whereV(h21) has the same form asV(h) and the procedure
can be iterated, as the insertion of Eq.~39! in Eq. ~29! gives
an expression like Eq.~17! with h21 replacingh. The above
procedure is iterated untill a scaleh* defined as the mini-
mumh such thatgh.ushu is reached. Then we will integrat

directly the fieldc (,h* )5(k52`
h* c (k) without splitting the

corresponding integration in scales~as was done forh.h* !.
This can be done asg<h* (xW2yW ) verifies the bound, Eq.~34!,
3-5
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with h* replacingh; i.e., it verifies the bound valid for a
single scale; the reason is that for momenta larger t
O(gh* ) the theory is essentially a massless theory and
momenta smaller is a massive theory with massO(gh* ). We
will call running coupling constantsvW h5(Uh ,dh ,nh) and
renormalization constants Zh , sh ; their behavior as a func
tion of h can be found by an iterative equation called theb
function. Note that the irrelevant terms arenot neglected,
contrary to what is done in the usual RG methods, which
only approximative and not mathematically exact. The
pansion generated by our RG is insteadexact in a math-
ematical sense and nothing is neglected~see Refs. 16 and 17
for details!.

B. Small divisor problem

We have consideredirrelevant the terms involving two or
four fermions in the effective potential not verifying Eq
~20!. Looking at Eq.~19! we see that each addendum co
tributing to the effective potential describes the interactio
of 2n fermions whose momentameasured from the Ferm
surfaceverify

(
i 51

2n

s iki85(
i

s iv i pF12mpF . ~40!

Then Eq.~20! says simply that the nonirrelevant terms a
only the ones in which the sum of the momenta measu
from the Fermi surface is vanishing modulo 2p. This condi-
tion seems very natural in thecommensuratecase, i.e., when
pF5pP/Q; in that case, forn51, 2, if the RHS of Eq.~20!
is non vanishing modulo 2p, then it is greater thanO(1/Q),
so for Q not too big at least one fermion involved has
momentum far enough from the Fermi surface~see Ref. 29!.
However, things are not so simple inincommensuratecase;
in such a case forn51, 2, the RHS of Eq.~40! can be very
small~modulo 2p! for very largem; in other words, there are
terms in the effective potential which are dimensionally r
evant or marginal involving fermions with momenta arb
trarily close to the Fermi surface and not verifying Eq.~20!;
for instance,ck1pF,1

1 ck2pF12mpF ,21
2 with 2mpF12kp.0

for a suitablek. Then in the incommensurate case it is n
clear if the terms not verifying Eq.~20! are really irrelevant
~this problem is often not seen in the literature: see, for
stance, Ref. 18!. This problem, with a different language,
well known in classical or celestial mechanics as thesmall
divisor problem, for instance, in the KAM or Lindstedt serie
for invariant tori of a Hamiltonian system close to an int
grable one. It is possible to write such classical series
terms of Feynman graphs so that the similarity becomes v
clear~see Refs. 19 and 20!; the crucial difference is that suc
graphs have no loops, contrary to what happens here.
other remarkable case in which small divisors appear is
the study of the Schro¨dinger equation with a quasiperiod
potential~very related to our problem in theU50 case!; if a
Diophantine conditionis assumed on the period, there a
quasi-Bloch states ifl is small ~see Ref. 21! for suitable
07511
n
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-
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t
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ry
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values of the quasimomentum, while the eigenstates are
calized~Anderson localization! for largel ~see Ref. 22!.

The fact that the contributions to the effective potent
not verifying Eq. ~20! are irrelevant in a RG sense mean
that the perturbative series as a function oflk , dk , nk ,
Zk /Zk21 , andsk /sk21 are convergent in a neighborhood
the origin. To give a complete mathematical proof of t
above statement is not straightforward, as one has to
determinant bounds for the fermionic truncated expectat
one cannot simply prove that each Feynman graph adm
finite bound as the number of Feynman graphs at ordern is
O(n! 2), so we refer to Ref. 16. However, the key idea w
the terms not verifying Eq.~20! are irrelevant can be under
stood from an analysis based on Feynman graphs.

Each W2n,m
(h) admits an expansion in terms ofFeynman

diagramsdefined in the following way. Akth-order diagram
contributing toW2n,m

(h) can be obtained fromk graph elements
representing the addenda in Eq.~37! or in RV(0), Eq. ~16!,
by pairing the half-lines~bearing indicesh, v, kW8!. The un-
paired lines are calledexternal lines, and to each paired line

we associate a propagatorg
vW i ,vW

i8

hi (kW i8), Eq. ~31!; integrating

the product of these factors over all the momentakW i8 of the
paired lines we obtain thevalue of the graph if the expres
sion is multiplied by a suitable sign to take into account t
Fermi statistic. A maximal connected subset of lines w
scales>hv is called aclusterwith scalehv and denoted by
v. An inclusion relation can be established between the c
ters in such a way that the innermost clusters are the clus
with the higher scale and so on; see the picture for an
ample of graphs with its clusters, pictured as boxes includ
the paired lines. The half-lines~contracted or not contracted!
are emerging by theend points, associated withvW h or to the
kernels ofRV 0; if to an end point is associated withvW k , the
minimal cluster containing it has scalek.

To each Feynman graph~see Fig. 1! is associated by the
above rule avalueand so to each subdiagram associated w
each cluster; moreover, to the lines external to a cluste
associated a momentumkW8 smaller in modulus than one
flowing in the lines internal to a cluster. We denote byv each
cluster, byhv its scale~i.e., all the lines internal to the cluste
v have scale<hv and at least one has scalehv , and the

FIG. 1. A Feynman diagram with its associated clusters.
3-6
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external are larger!, by Pv the indices of the external lines
by uPvu their number, and by 2NvpF the sum of the momenta
kW of the external lines. Ifv8 is the minimal cluster enclosing
the clusterv, the RÞ1 operation produces one or morekW8
associated with the external lines~which are bounded by
ghv8! and one or more derivatives on the propagators inte
to the cluster~giving one or more extrag2hv!. At the end
~see, for instance, Ref. 17! one gets the following bound
@essentially found by power counting using Eq.~34! for
bounding the propagators# for a graph withk vertices and 2n
external lines with valueG2n,k

(h) :

uG2n,k
~h! u<Ck«kg~22u2nu/2!h)

i
uŵni

u

3)
v

g2~221uPvu/21zv!~hv2hv8!, ~41!

where zv51 if uPvu54 and Nv50; zv51 if uPvu52 and
Nv5v2 , v152v2 ; zv52 if uPvu52, Nv50; zv50 in all
the remaining cases. The factorzv is due to the action onR
on each clusterv. In order to sum over all the possible a
signments of labelshv we need that221uPvu/21zv.0 and
this is true for all but the clusters with two or four extern
lines not verifying Eq.~20! ~except whenuPvu52 and v1
52v2 in which case it is zero!. We have to improve the
bound in the cases in which221uPvu/21zv<0. The first
case we can consider isuPvu52 andv152v2 , Nv5v2 . A
similar cluster can be produced only if (a8) there is a nondi-
agonal propagatorgv,2v

(k) internal to the clusterv and (b8) if
there are one or more points associated toŵn internal tov. In
both cases this means that there is in the bounds an e
factor skg

2k for some scalek.hv @see Eq.~35!# and

uskug2k5
usku
ushu

g h2k
ushu
gh <

ushu
gh g~h2k!/2 ~42!

and the factorg (h2k)/2 allows us to sum overhv .
It remains to discuss the clusters withuPvu52, 4 not veri-

fying Eq. ~20!; here is where the Diophantine conditio
comes in. Given a clusterv, if ( is iv i pF12NvpF
Þ0 mod 2p, then

uNvu>CFg2hv8 /t

uPvu1/t 2uPvuG . ~43!

In fact, by the compact support properties of the propaga
and theDiophantine condition

a0ghv8>I(
i 51

uPvu

s iki8I
T

>I 2NvpF1(
i 51

uPvu

s iv i pFI
T

>C0~2uPvu1uNvu!2t.

~44!

The meaning of Eq.~43! is quite clear; remembering tha
the momenta of the external lines isO(ghv8), Eq. ~43! says
that the external fields can have momenta very close to
07511
al

tra

rs

e

Fermi surface only ifNv is very large. The correspondin
contribution is then very small for the exponential dec
properties ofŵn . We can define a depthDv defined in the
following way: if v does not contain any cluster,Dv51;
otherwise,Dv511maxv9 Dv9 , wherev9 are the clusters con
tained inv. It is easy to see that

)
i

uŵni
u<e2kumu/4)

i
e2kuni u/4)

v
e2kuNvu/2Dv11

. ~45!

Using Eq.~43! and the fact thatDv<2hv812, we get

)
i

uŵni
u<e2kumu/4)

i
e2kuni u/4)

v

*
e2kg2hv8 /t/22hv813

.

~46!

wherePv* is restricted to clusters with two or four extern
lines withNvÞ0; choosingg1/t221.1, we can associated t
each of this clusters a factor

exp@2kg2hv8 /t2hv823#,g3hv8<g3~hv82hv! ~47!

and this extra factor allows us to sum over the scale indic
In the above discussion of small divisor problem we ha

used the exponential decay ofŵn but such a condition could
be probably relaxed to a power law decay, i.e.,uŵnu
<CN /unuN for some integerN, i.e., relaxing the analyticity
condition forwx to a differentiability one. This is quite rea
sonable, by analogy with the KAM theorem which is val
not only for analytic but also for differentiable perturbatio
~see Ref. 13!, but the analysis would be probably much mo
involved.

C. Flow of the running coupling constants

The equations for the running coupling constants are,
h>h* ,

nh215gnh1Gn
h , Uh215Uh1GU

h ,

sh215sh1Gs
h , dh215dh1Gd

h ,

Zh21

Zh
511Gz

h . ~48!

It is convenient to splitGi
(h) , with i 5m, s, n, m5(l,d) into

Gi
h~mh ,nh ,sh ;...;m0 ,n0s0!

5Gi
1,h~mh ,nh ;...;m0 ,n0!

1Gi
2,h~mh ,nh ,sh ;...;m0 ,n0s0!, ~49!

where we have spitgv,v
(h) as in Eq.~32! and Gi

1,h contains
only gL,v

(h) propagators; moreover, there are no vertices w
mÞ0; in Gi

2,h are all the remaining contributions. It is eas
to check that fori 5m, n, for maxk>h uvWku<«,

uGi
2,hu<CFsh

ghG2

«2. ~50!

This follows from the bound~34! for C2
h and from the fact

that n, m are momentum conserving terms. Fori 5s, by
symmetry reasons,Gi

1,h[0 and
3-7
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uGs
2,h~mh ,nh ,sh ;...;m0 ,n0 ,s0!u<CuUhshu. ~51!

We decompose, fori 5m, n,

Gi
1,h~mh ,nh ;...;m0 ,n0!

5Ḡi
1,h~mh ;...;m0!1Ĝi

1,h~mh ,nh ;...;m0 ,n0!,

~52!

where the first term on the RHS of Eq.~52! is obtained
putting nk50, k>h on the LHS. It is easy to see, from th
fact thatgL,v

(h) (xW ;yW ) can be divided into an even part plus
correction smaller than a factorgh/4, that for maxk>h uvWku
<«,

uḠn
1,h~mh ;...;m0!<C«gh/4. ~53!

On the other hand,

uḠm
1,h~mh ;...;mh!u<C«2gh/4. ~54!

as one can prove using the exact solution of the L
tinger model: see Refs. 23–25. Moreover, we have that,
i 5n, m,

uĜi
1,h~mh ;nh ;...;m0 ,n0!u<CnhuUhu2. ~55!

Finally, by a second-order computation one obtains

Gs
1,h5shUh@b11Ḡs

1,h#, Gz
1,h5Uh

2@b21Ḡz
1,h#, ~56!

with b1 , b2 nonvanishing positive constants,uḠs
1,hu

<CuUhu, anduḠz
1,hu<CuUhu.

By using the above properties we can control the flow
the running coupling constants. In fact, ifunku<C«@gk/4

1usku/gk# for any k>h* ~which will be proved in the fol-
lowing section!, it follows that there exist positive constan
c1 , c2 , c3 , c4 , C such that, ifl, u are small enough and
h>h* ,

uUh212Uu,CU3/2, e2Ub1c3h,
ush21u
us0u

,e2Ub1c4h,

e2b2c1U2h,Zh21,e2b2c2U2h. ~57!

D. Determination of the counterterm n

We show that it is possible to fixn to a l-independent
value; more exactly, we show that it is possible to choosn
as in thel50 case so thatnk is small for anyk>h* . In the
l50 case,sk50 and there are no contribution to the effe
tive potential withmÞ0; calling ñk , m̃k the analogs ofnk ,
mk , we can write

ñh5g2h11Fn1 (
k5h11

1

gk22Gn
1,k~ ñ,m̃ !G , ~58!

whereGn
1,k( ñ,m̃)5Gn

1,k( ñk ,m̃k ;....;ñ0 ,m̃0). We choose

n52 (
k52`

1

gk22Gn
1,k~ ñ,m̃ !, ~59!
07511
t-
r

f

then

ñh52g2h (
k52`

h

gk21Gn
1,k~ ñ,m̃ ! ~60!

and uñhu<C«gh/4, as by Eq.~53!:

g2h (
k52`

h

gk21uGn
1,k~ ñ,m̃ !u<C8«g2h (

k52`

h

gkgk/4<C«gh/4.

~61!

For the model withlÞ0, for h>h* ,

nh5g2h11Fn1 (
k5h11

1

gk22@Gn
2,k~n,m,s!1Gn

1,k~n,m!#G
~62!

and, insertingn given by Eq.~59!,

nh2 ñh5g2h11H (
k5h11

1

gk22Gn
2,k~n,m,s!

1 (
k5h11

1

gk22@Gn
1,k~n,m!2Gn

1,k~ ñ,m̃ !#J .

~63!

We prove that, forh>h* ,

unh2 ñhu<«C̄S sh

ghD 2

, um̃h2mhu<«tS sh

ghD 2

. ~64!

The proof is done by induction, assuming that it holds
scales>h11 and proving by Eq.~63! that it holds for scale
h. Looking at the first sum in Eq.~63! and using Eqs.~50!
and ~57!,

g2h (
k5h11

1

gk22uGn
2,k~n,m!u

<C1g2h«2 (
k5h11

1

gk22S sk

gkD 2

<S sh

ghD 2

C2«2 (
k5h11

1

gh2kS sk

sh
D 2

<C3«2S sh

ghD 2

.

~65!

Finally, we can write Gn
1,k(n,m)2Gn

1,k( ñ,m̃)
5( k̄.kDk̄,k , with

Dk̄,k5Gn
1,k~nk ,mk ;...;n k̄ ,m k̄ ; ñ k̄11 ,m̃ k̄11 ;...;ñ0 ,m̃0!

2Gn
1,k~nk ,mk ;...;ñ k̄ ,m̃ k̄ ; ñ k̄11 ,m̃ k̄11 ;...;ñ0 ,m̃0!,

~66!

and, by the inductive hypothesis and Eq.~41!,

(
k̄>k

uDk̄,ku<C1C̄«2(
k̄>k

g~k2 k̄!/2S s k̄

g k̄D 2

<C2C̄«2S sk

gkD 2

,

~67!
3-8
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so that the last sum in Eq.~63! is bounded byC̄«(sh /gh)2,
and Eq.~64! is proved; from that equation it follows that fo
h>h* , thenunhu<C«, so that it is possible to have the flo
of nh is bounded choosing al independentn.

E. Bounds for the density

An expansion similar to the one we have seen for
effective potential can be defined for the Schwinger funct
and hence forr̂n . One obtains

r̂15 (
h5h*

1 E dkW ĝ1,21
~h! ~kW !1 (

k51

`

(
h5h*

1

r̂121
k,~h! , ~68!

with r̂1,21
k,(h) being sum over Feynman graphs similar to t

one for the effective potential in whichh is the lowest scale
of the propagators andk the number of points. There are tw
kinds of contributions. The ones in which there are no poi
associated tolŵn , which means that there is at least a n
diagonal propagator; such terms are bounded
Ck«kushuZh

21. The remaining ones~in which there is at leas
an irrelevant point! are bounded byCk«kgh/4, the factorgh/4

coming from Eq.~41!.
In the same way fornÞ1, r̂n5(k51

` (h5h*
1 r̂n

k,(h) . To the
expansion ofr̂n with unu.1 are contributing only graph
with at least one irrelevant pointlŵn8 ; in fact, it is not
possible, by conservation of momenta, to get a contri
tion to r̂n with unu.1 from graphs containing onlyU, d, n
vertices ~taking into account that there are nondiagon
propagators, the difference of the external momenta of s
graphs can be at most 0,62pF!. Hence urn

k(h)u
<e2k/2unuusuCk«kgh/4.

This concludes the construction of a well-defined alg
rithm for computing the LHS of Eq.~5! with any prefixed
precision, ifl, U are small enough; in the next section we t
to find a solutionwPV of Eq. ~5! or ~6! by a contraction
method.

III. SOLUTION OF THE SELF-CONSISTENCE EQUATION

A. Contraction mapping

We have seen in Sec. II E thatr̂n5dn,61r̂n
(0)

1(k51
` r̂n

(k) , wherer̂n
(0) is the first addendum in Eq.~68!. We

keep in the RHS of Eq.~5!, instead of the full expansion, jus
the terms withk50, 1, forgetting the others for the momen

We find natural, in order to find a solution of Eq.~6!, to
proceed in the following way, callingFn5lŵn for unu.1.

~1! We considers[lŵ1 as a parameter and we stud
Fn5l2r̂n

(1)(l,U,s,F), looking for a solutionF(l,U,s) in
the classV.

~2! If a nontrivial solutionF(l,U,s) is found, we insert
it in Eq. ~6! with n51 looking for a solutions function ofl,
U.

According to the above strategy, we have to solve,
unu.1,

ŵn52l2cn
~1!~s!ŵn1lr̂n

~1!~l,U,s,F!, ~69!

where
07511
e
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cn
~1!~s!5E dkW H g̃1,1

~1!~kW8!g̃1,1
~1!~kW812npW F!

1 (
v561

F g̃1,1
~1!~kW8! (

h5h*

0
1

Zh
g̃v,v

~h! @kW812npW F

1~12v!pW F#1 (
h5h*

0
1

Zh
g̃v,v

~h! ~kW8!g̃1,1
~1!

3@kW812npW F2~12v!pW F#1 (
h5h*

0
1

Zh
g̃v,2v

~h!

3~kW8! (
h85h*

0
1

Zh8
g̃2v,v

~h8! ~kW812npW F!1 (
h5h*

0
1

Zh
g̃v,v

~h8!

3~kW8! (
h85h*

0
1

Zh8
g̃v,v

~h8!~kW812npW F!1 (
h5h*

0
1

Zh
g̃v,v

~h!

3~kW8! (
h85h*

0
1

Zh8
g̃2v,2v

~h8! @kW81~2n12v!pW F#G J~70!

and

r̂n
~1!5 (

h,h85h*

1
1

ZhZh8
(

mÞ0,n
(

v1 ,v18

v2 ,v28

d2m2v11v
182v21v

28,2nlŵm

3E dkW8gv1 ,v
18

~h!
~kW8!gv2 ,v

28
~h8!

@kW81~2m1v182v2!pF#,

~71!

whereg(1)(kW )5guv(kW )5gv,v
(1) (kW8) if kW5kW81vpF . We shall

rewrite Eq.~69! as

Fn5
l2

11l2cn
~1! r̂n

~1!~l,U,s,F!, ~72!

and we will look for a solutionF(l,U,s) of such an equa-
tion by applying an iterative method.

For a fixedL, F is a finite sequence ofL23 elements,
which can be thought as a vector inRL23. We consider the
spaceF5C1(RL23) of C1 functions of ŵn , n52,3,...,Li
21. We shall define a norm inF for anyl, s different from
zero:

iFiF5 sup
unu.1

H eunuu lnuluu/10F usu21uFn~s!u1U]Fn

]s UG J .

~73!

We shall also define

B5$FPF:iFiF<1%.
3-9
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The solutions of Eq.~72! can be seen as fixed points of th
operatorTl :F→F, defined by the equation

@Tl~F!#n~s!5
l2r̃n

~1!~l,U,s,F!

@11l2cn
~1!~s!#

. ~74!

In the sum overm in Eq. ~71!, mÞn, so that there is a
least a nondiagonal propagator, so that by Eq.~57!, if v185
2v1 ~say!,

(
h,h85h*

1
1

ZhZh8
U E dkW8gv1 ,2v1

~h! ~kW8!gv2 ,v
28

~h8!

3@kW81~2m1v182v2!pF#U
<C (

h5h*

1

@ ushg2hu21ushg2hu#<C8. ~75!

Consideringcn
(1) , Eq. ~70!, it is easy to see that the inte

grals in the first four terms of Eq.~70! are bounded by con
stants, as there is at least a nondiagonal propagator o
ultraviolet one; for the fifth integral the bound is

(
h5h*

0 U E dkW8
1

Zh
g̃v,v

~h8!~kW8! (
h85h*

0
1

Zh8
g̃v,v

~h8!~kW812npW F!U
<C1 (

h5h*

1
1

~Zh!2 <
2C1

c1b2U2 . ~76!

A similar bound is found also for the last integral of Eq.~70!.
Then from the above bounds, ifl2/U2 is small enough,

one has

l2

11l2cn
~1! <2l2. ~77!

We find a solution of Eq.~72! as the fixed pointF̄ of Tl in
B. Note thatB is invariant under the action ofTl(F), as, by
Eq. ~75!,

uTl,n~F!u<2Cl2F sup
k561,62

ulu un1ku/10

ulu unu/10 G ulu unu/10usu

<
1

2
ulu unu/10usu, ~78!

so that forl small enough,

iTl~F!i<1. ~79!

Moreover, by a similar argument,

iTl~F!2Tl~F8!iF<
1

2
iF2F8iF , ~80!

so that Tl is a contraction. It is also evident thatTl(0)
PB. Hence, by the contraction mapping principle, there i
unique fixed pointF̄ of Tl in B, which can be obtained a
the limit of the sequenceF (k) defined through the recurrenc
07511
an

a

equationF (k11)5Tl(F (k)), with any initial conditionF (0)

PB. If we chooseF (0)50, we get

iF̄iF<(
i 51

`

iF~ i !2F~ i 21!iF<(
i 51

`
1

2i 21
iF~1!iF<iF~1!iF ,

~81!

which immediately implies thatiF̄iF<1. Then if U2/l2 is
large enough, there is a solutionF of Eq. ~69! which is a
function of l, U, s; in the following section, we insert it in
Eq. ~6! with n51 looking for a solutions which is function
of l, U.

B. Determination of lŵ1

We have now to insertF(l,U,s) found above in Eq.~6!
with n51, in order to finds in a self consistent way. We ca
rewrite Eq.~6! as

ŵ152l2c1
~1!~s!ŵ11lr̂1

~1!~l,U,s,F!, ~82!

where

c1
~1!~s!5E dkW8H (

h5h*

0 g̃21,1
~h! ~kW8!

s
1g̃1,1

~1!~kW8!g̃1,1
~1!~kW812pW F!

1 (
v561

F g̃1,1
~1!~kW8! (

h5h*

0
1

Zh
g̃v,v

~h! @k81~32v!pW F#

1 (
h5h*

0
1

Zh
g̃v,v

~h! ~kW8!g̃1,1
~1!@kW81~11v!pW F#G J

52F~s,l,U !1 c̃1~s! ~83!

and, more explicitly,

F~s,l,U !

[ (
h5h*

0 E dkW8
g̃21,1

~h! ~kW8!

s

5 (
h5h*

0 E dkW
1

Zh

sh

s

f h~kW !

k0
21sin2 k81~12cosk8!21sh

2 ,

~84!

wheresh andZh verify Eq. ~57!, anduc̃1u<C, whereC is a
constant.

Then by Eqs.~84! and ~68! we obtain

l2

h1
F S usu

A D 2h2

21G@a211U f 1~l,U,s!#1ls f 2~l,U,s!51,

~85!

with u f 1u, u f 2u<C andh15b1U1h̃1 , h25b1U1h̃2 , uh̃1u,
uh̃2u<CU2, andC,a,b1 ,A are positive constants. Equatio
~85! is a non-BCS oranomalousself-consistence equatio
similar to the one describing a superconductor whose nor
state is a Luttinger liquid; ifU50, it reduces to a standar
BCS equation. If the electron-electron interaction is larg
3-10
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INCOMMENSURATE CHARGE-DENSITY WAVES IN THE . . . PHYSICAL REVIEW B 65 075113
than the electron-phonon interaction, i.e., ifulu/uUu is small,
the result is very sensitive to the sign ofU.

~a! In the attractive caseU,0 there isno solution usu
,1 if l2/U2 is small enough. In fact, all the terms in th
LHS of Eq. ~85! can be taken arbitrary small ifU, l and
l2/uUu are small enough so that there is nousu<F0 solving
Eq. ~85!. Note that this is a1lso true considering Eq.~5!: i.e.,
there is no solutionwPV of Eq. ~5! if l2/U2 is small
enough for anywPV.

~b! In the repulsivecaseU.0 for l2/uUu2 small enough
there is a solution of the form~7!, asb, L→`. Note that this
expression for the gap is very different with respect to
BCS-like form of theU50 case; in particular, it is as larg
as

A expS 2
a

l2 U l2

ahUu lnuU l2

ahU D@Ae2a/l2
.

A similar expression for the gap appears in the interact
Kondo problem~see Ref. 26! and in superconductors whos
ground state is a Luttinger liquid~see Refs. 27 and 30!. It is
easy to check that corresponding to such a solution the H
sian is positive definite.

Finally, I discuss shortly how to solve the full equation~5!
without truncating the RHS at second order. At finiteL we
can use a contraction method to find a fixed point of Eq.~5!.
However, the fact that for the higher-order terms we ha
only bounds and we cannot make use their exact express
as was done for Eq.~6! has the effect that we can only get
weaker bound for the decay of the solution, i.e., a power
decayulŵnu<CNs/unuN instead of an exponential one. Th
was also what we could get in Ref. 10 in the commensu
case. In the incommensurate case this forbids one from
ing theL→` limit, just because we have proved in Ref. 1
the convergence ofr̂n in that limit only if lŵn have an
exponential decay; on the contrary, in the commensurate
convergence holds with a weak decay condition and the l
can be taken. This problem seems, however, merely tec
cal, and it could be solved proving convergence under po
law decay~see discussion at the end of Sec. II B!; this would
allow us to prove Peierls instability in the incommensur
case without truncating the density expansion.

IV. CONCLUSIONS

In the perturbative regime of smallU there is Peierls in-
stability then forU>Uc,1 and forU<Uc,2 there is not. It is
an interesting open question whetherUc,15Uc,25Uc or not
and, if they are equal, whetherUc is greater, smaller, o
equal to zero. We are at the moment not able to answe
this question; we can only say that whenU50 or U small
with respect tol2 the iterative method for solving Eq.~6! is
not working. Let us consider in fact theU50 case. In that
case Eq.~85! with n51 is a BCS-like equation and give
usu5Ae2@a1g#/l2

, whereug(U,l)u<Culu. However, we are
not able to find a solution to the equation forF; the contrac-
tion method used in the large (U/l) case here fails as ther
are integersn such that 2npF is very close to 2pF modulo
2p ~of course, analogous considerations can be done
close to22pF!; i.e., d5i2npF22vpFiT can be very small.
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For suchn, cn
(1) , Eq. ~70! computed atU50 ~i.e., Zh51,

sh5s! can be written as

cn
~1!5c1

~1!1b1OS i2npF22pFiT

s D1O~l!, ~86!

whereb is a constant. As 11l2c15O(l2), we have that

l2

11l2cn
5O~1!,

insteadO(l2), as in the preceding section, so it is not cle
how a contraction method could be applied@an explicit com-
putation shows thatl2/(11l2cn) times the coefficient of
ŵn12 tends to 1 whenan→0#. This fact could be not simply
a technical problem linked to the method. The idea unde
ing the analysis of the preceding section, which is essenti
the Peierls idea, is that the process involving the exchang
2pF is the dominant one and the others are corrections. H
ever, in the incommensurate case for very largen, 2pF and
2npF are almost the same, due to umklapp scattering, so
not clear physically why the first harmonic is the domina
one. Technically this means that there are largen for which
r̂n. r̂1 @see Eq.~86! in which b is negligible with respect to
c1 which is logarithmically diverging# so that the self-
consistence equationŵn5lr̂n for suchn or for n51 seems
similar, and it is not clear whyuŵnu!uŵ1u, as it should be in
orderwx to be analytic. This problem is absent in thecom-
mensuratecase; in that case~see Ref. 10!, it is possible to see
that ucn

(1)u<C ln Q so that for Q<e21/ulu, then l2/(1
1l2cn)<ulu and the contraction method will work, so tha
Peierls instability is proved.

The mechanism why the above difficulty is avoided in t
Holstein-Hubbard model withU.0 andU/l large, so that
Peierls instability is proved in the incommensurate case
that the harmonic withn51 has a nontrivial flow and be
comes larger, whileŵn for unu>2 has no flow; this is in a
sense a consequence of the Diophantine condition.

The difficulty in finding a solution to Eq.~6! when U
50 could mean that there is Peierls instability only forU
.Uc with Uc.0, but of course a deeper analysis is nec
sary to conclude. Note that in thed5` limit of the Holstein-
Hubbard model an incommensurate CDW is found~see Ref.
28! only for U.Uc with Uc nonvanishing positive. On the
other hand, the existence of Peierls instability whenU50 is
usually supported by the analogy of the Holstein model w
theFrenkel-Kontorovachain in which the extremality condi
tion for the energy gives a dynamical system known asstan-
dard map. For this model the existence of an incommens
rate phonon field minimizing the energy is an application
the KAM theorem in the perturbative regime~and in the
strong-coupling regime of the so-called Aubry-Mather the
rem, in whichwx is not smooth, but it has infinitely man
discontinuities!.29–31
3-11
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