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Incommensurate charge-density waves in the adiabatic Hubbard-Holstein model
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The adiabatic Holstein-Hubbard model describes electrons on a chain witta stégracting with them-
selves(with couplingU) and with a classical phonon fielgl, (with coupling)\). There is Peierls instability if
the electronic ground-state energye) as a functional ofp, has a minimum which corresponds to a periodic
function with periodw/pg, wherepg is the Fermi momentum. We considpg /7a irrational so that the
charge-density wave iscommensurateith the chain. We prove in a rigorous way in the spinless case, when
\, U are small andJ/\ large, that(a) when the electronic interaction is attractive<O there is no Peierls
instability and(b) when the interaction is repulsivd>0 there is Peierls instability in the sense that our
convergent expansion fét(¢), truncated at second order has a minimum which corresponds to an analytical
and 7/ pg periodic ¢, . Such a minimum is found solving an infinite set of coupled self-consistent equations,
one for each of the infinite Fourier modes @f.
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. INTRODUCTION whereA=1,..L—1,t,y= 8 y—3(Sxy+ 1T Sxy-1), ¥ are
fermionic creation or annihilation fields with periodic bound-

In 1955 Peierls, in Ref. 1, suggested that in a oneary conditions, andu is the chemical potentialu=1
dimensional metal it is energetically favorable to develop a—cospg. In Eqg. (1), H, is the fermionic kinetic energy,
periodic distortion of the linear lattice with periop/7 is the phonon kinetic energ¥,P is the electron-phonon in-
where pg is the Fermi momentum of the conduction elec-teraction, andJV is the electron-electron interaction; to de-
trons. The attempt of the conduction electrons to screen thecribe the Coulomb repulsion one neeadls-0, but it is not
periodic potential generated by the periodic lattice distortiorunrealistic to consider alst)<0 (in this caseUV is an
creates @harge-density waveCDW) in the conduction elec- effective interaction taking into account phonon-mediated
tron density. Ifa is the step of the undistorted lattice, then, processes If U=0, the above model is called thdolstein
depending whethepra/ = is a rational number or not, the model pg is the Fermi momentum of the noninteractibg
CDW (or the periodic lattice distortioncan be eithecom- =0 model; the Fermi momentum in tHé#0 case is in
mensurateor incommensuratevith the nondistorted lattice. general different, but we fix it tpe by adding a termvN to
While a commensurate CDW has preferred positions in thgnhe Hamiltonian, whertN=3,_ 4 i, is the total particle
lattice, an incommensurate CDW has not and so it can slidgumper operator and is a suitable counterterm. The proof
without any change of energy; this was considered bysf peijerls instability consists, within this model, in the proof
Frolich in Ref 2 a possible mechanism for superconductivity that the ground-state enerdy(@) = Sy A 022+ Eoo) is
or a least for an enhancement of conductiviige Ref. 8 minimized by ¢, =3(2ppx) where g(t) is a 2r-periodic

Indeed starting from the 1970s both commensurate or infynction, The existence of a global minimum of the form
commensurate CDW with wave vectopg have indeed 2(2pex) was proved in the half-filled band capg= /2 in
been observed in a number of compoufsise, for instance,  the Holstein model and in the spinning Holstein-Hubbard
Refs. 4 and 5 A new wind of interest followed recently the ,qe| (see Refs. 8 and)9 Local minima of the form

d@scovgry o.f high¥ supercondl{ctors showing one- 2(2pex), for any pe=wP/Q with P, Q relatively prime,
dimensional incommensurate CDW's, see Refs. 6 and 7.\ are found in Ref. 10, fofA|<O[(In Q) 1. We are inter-

From a theoreticgl point of view, Peier_ls instabilit_y can be agted here in thincommensuratease in whichpe /7 is an
studled'ln thdjolstem-Hubbardnodel, which is the simplest . ~iional number. At finiteL, it is not possible to fixpe /7
model involving both an electron-phonon and an electron-directly to an irrational number, as in this way(2pex)

e:lec:jron :ntergctlpﬂ: T?]e stéa_ngarq theory of CDW's is #_SLr‘]'cannot verify periodic boundary conditions. We look, how-
ally developed within the adiabatic approximation, in hich oy "t 5 sequence af . n; such that lim . L == and

the phonon field is treated as a classical field and the model - bei=pe and pe/m is irrational, where pg
becomes variational. We will consider the spinless case, so , = /" ; - !
. . ) : LoD e P=2qn; /L . An incommensurat@honon field has the form
that thespinless adiabatic Holstein-Hubbaidamiltonian is T e
[(Li—1)/2]
H=Hy+H,+AP+UV @, = lim E (ApneiZPF»inx. )
i—oo n=7[|‘i/2]

1
_ _ + - _ 2_ + -
_XEA (boy™ 1y i thy + 2X§A Px AEA Exth iy We require moreover that

1
U |5

xeA 2’

1 .
l//;+lllbx+l_ z}' (1) ||2np|:yiHT1>CO|n|7T, OinEZ, |n|$_| (3)
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where ||k||t1=min,.z|k—2mn|. Equation (3) means that stress that, while the usual RG methods are only approxima-
pe/m is a Diophantine numbe(see, for instance, Ref. 31 tive, our results arenathematically exactwe refer for an
and the proof of the existence ot ; verifying (3) can be introduction to rigorous RG for fermions to Ref. 17.

found in Ref. 11. Such an assumption is not really restrictive, The second stefsee Sec. Il consists in solving E(5).

as if 7>1, the complementary set of such points, has meaThis is quite a difficult task, and we consider the simpler
sure 0. A Diophantine condition like E3) (in the infinite-  problem obtained by keeping only the first two terms of the
volume limit) appears in classical mechanics, for instance irexpansion fotp,,. This means that we study

the Kolmogorov-Arnold-MosefKAM ) theorem(see Refs.

12 and 13, and it is useful for handling with the so-called ®n=Ap (@) +ApV (@), ,n=—[L/2],...[(L—1)/2],

small divisor problema similar problem appears also here. (6)

That a s.ort of extension of KAM techniques to quantumSO neglectingd(£2) terms on the right-hand sid®HS) of
mEq (5). The convergence of the expansion fgrmakes this
approximation quite reasonable. Note also #{at and ("
are rather complex functions af U (the expansion is not a
power series in\, U). Our main result is thaif |\|/|U] is
small enough, in the £ o0 limit

(a) in the attractive U<0 case there are no solutions
e ) of Eq. (6) [and of Eq. (5) as well]

(b) in the repulsive case Y0 there is ag, e Q) solving
Eqg. (6) such that

mensurate case was pointed out by Aubral.in Ref. 14 by
analogy with theFrenkel-Kontorovamodels(see also Ref.
15). We have to specify the space of functions on which
F(¢) is defined as a variational form. We say thdip) is a
functionalF: Q) — R where(} is the set of function$x of the
form (2) with zero averagep,=0 and ¢,=¢_,=o} .
Moreover, ifx, Fg, F1>0 are constants andg=\ ¢,, then
|o|<F, and, for|n|>1,

INpp| <Fy|ofe«nl. (4) N2 U7 N2\ 117
INpi|=0=A —} 1+0 U” ,
The condition(4) ensures also that thep2 harmonic is a
resent(if =0, theng, is a constant If ¢ is an extremal
p tif &, ®x ntif ¢ b <e M0 o |1, (7)

point of F(¢), it must satisfy the conditioy=\p wherep

is the fermionic density. On the other hand, we can alwaysyith n=B,U~+0(U?) a critical index and a, A positive con-
include ¢, in the chemical potentigh and then we can re-  gstants This means that, if the electron-electron interaction is
strict our search of local minima of the ground state energyarger than the electron-phonon interaction, there is a dra-
F(¢) to fields ¢ with zero mean. Note thd:Q0—Ris in-  matic dependence on the repulsive or attractive nature of the
deed a function of the Fourier coefficiens,; this means  electron-electron interaction. In the attractive case there is no
that, at finiteL, it can be considered not a functional but an pejeris instability as there are no functions analytical and
L-dimensional function and Only at the end will we take theﬂ-/pp per|od|c m|n|m|z|ng the ground -state energy In the
L—oo limit. repulsive case there is instead Peierls instability, in the sense

We say thatthere is Peierls instability if the variational that the energy, keeping the first two nontrivial terms of its
form F:Q0—R has a minimung, € ). We will show in Sec.  convergent expansion, has a minimum which corresponds to
Il that if ¢,e ) is a local minimum, then an incommensurate CDW. It is very reasonable that higher-

order terms do not change this res{dée the considerations
Pn=Apn(@), n#0, n=—[L/2],...[(L-1)/2], (5 in Sec. llIB).

Our results improve preceding works on the subject in
which (a) the interaction among electrons was neglected and
(b) the analysis was restricted to thiest order,

and M= Spm— N9/ 30,) pm(e) positive definite, where
pn(@)=09Ex(¢)/ 9, . Peierls instability can be proved by
solving the infinite(asL— ) set of coupled equation®).
There are then two main steps to be performed; the first is to 5 =Ap0

- . . App (@) ®
computep, by an expansion, as there is no hope to compute
it in a simple exact form, and the second is to solve theyhere, if U=0, )\p(0>((p):_a)\2¢l|n|)\zpl| if n=*+1 and
systemo,=\py(¢). In Sec. Il an expansion fop,(¢) is  zero otherwise. There is a major difference between Ejs.
found, which isconvergentfor any ¢ €€}, for A, U small  and (6); while Eq. (8) admits trivially a solution\ &,
enough. The proof of convergence is based on a sort of gen- 08, -1 ando is obtained by a BCS-like equation, a solu-
eralization of the KAM theorem to quantum systems; in Sectjon of the form\ &, = 08, -, does not solve Egs. (6) or (5)
Il we review the main ideas referring to Ref. 16 for the while a solution of Eq(8) if U=0 (when the model reduces
mathematical proofs. The result is that we can wgite to the Holstein modglis trivial to find, we are not able to
=3_op and,if pg; verifies Eq. (3) andp,e Q, then for  find a solution of Eq(6) e Q if U=0, as the method we use
IN,JU|<e one has|p®|<f(n,\,U)C¥eX, where C is a to find a solution of Eq(6) whenU=>0 andU/|\| is large
constant and ¢n,\,U) is a proper function Of course the fails in that case. We have then no evidence of Peierls insta-
exact form off (n,\,U) is important, and it will be specified bility in the Holstein model, and it is unclear if this is merely
in Sec. IIE. The proof of the convergendéor £ small a technical problem or if there ig.>0 such that Peierls
enough of the expansion for the density is based on renordinstability holds only forU>U, in the Holstein-Hubbard
malization groupRG) methods; it is important, however, to model.
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The paper is organized in the following way. In Sec. Il A px=Iimﬁﬂm,mo(llL)SL'ﬁ(x,r;x,O) andS-A(x, 7;x,0) is the
we describe an expansion for the ground-state energy of thechwinger function defined by, if; are Grassman variables
Hubbard-Holstein modell) for ¢ € Q. In o_rder to prove the and Writingfdizf’i’f;,zZXEA,
convergencéfor small\, U) of the expansion for small, U,
one has to solve a small divisor problem, and this is dis- 92
cussed in Sec. 11 B. In Sec. Il C the RG flow is studied and in S-#(X;y)= —=———=1|
Sec. IID we prove that the renormalization of the Fermi I3 Iy
momentum ifA independent. From the ground-state energy
expansion, is it easy to derive an expansion for the density, ><exp< W lﬁ)—f dX[ b5 Yz + b5 1y ] :
and this is done in Sec. Il E. In Sec. Il we prove that E5). $=0
has no solutionp € Q) in the attractive case, ifn|/|U] is (12
small enough, while in the repulsive case we find a solutionand V=UV+\P+»N. Equation (5) is obtained by the
¢ e of Eq. (6) by a contraction method. Finally in Sec. IV Fourier  transform ' of  oy=Ap defining  p
we discuss some open problems, in particular forlthe0 — 1L D2l c2mnpexy X X X

n=—[L n-

case. The :[Jlbgve Grassman integrals can be evaluated by renor-
malization group methods; we refer to Ref. 17 for an intro-
Il. RENORMALIZATION GROUP ANALYSIS duction to the formalism we are using and to Ref. 16 for the

A. Grassman integrals mathematical proofs of the convergence of the expansion we
are describing. We start by evaluating the partition function
[P(dy)e ) Itis convenient to decompose the Grassman
integration P(d¢) into a product of independent integra-

tions. Let be|k| = Jk3+]|k[|Z. We write

nf P(dy)

It is well known thatEy(¢) can be written as &rassman
integral (we use the same symbgifor field and Grassman
variables with a traditional abuse of notation

1 VN R .. . R -
Eol¢)=— "mm'nf P(dpe ™ 9 gk =f1(R)g(k)+[1-f1(K)g(K) =g (K)+g " (K),
where where (k) =1~ x(k—pg ko) = x(k+ pr ko) and x(k’,k)
812 1 1 is a C” function with compact support such that it is 1 for
V=J dxo >, ://gxp;—i Wi Wi — 5}’ |k'|<aq/y and O for|k’'|>a,, wherey>1 andy, a, are
—Bl2 xeh chosen so thay(k* pg,kg) are nonvanishing only in two
4o nonoverlapping regions around-pg. We write k=k’
P=—f dxo X ()¢5 vz topg, @==1and
-BI2  xeA 0 0
S gW= > X fkhg= > X gk,
N= dx S, 10 emsiheme emsL =
fﬂ/z 04 Vs U (10 (14

and X=(Xo,x) and X+1=(xo,x+1). Here P(dy) is a wheref,(K')=x(y "k')—x(y ""*k’) has supporO(y")
Grassmanian integratiodefined on monomials by the anti- aroundwpg. The integration ofy}), theultravioletintegra-
commutative Wick rule with propagator tion, gives

=y v e V- [ prayme M,

' BL T —iko—cosk+cospg’
) wherey=°=3?___4® and[denoting (18L)= simply by

wherek= (kq,k). Equation(9) has a well-defined,, g— [dk]

limit only if the counterternw is chosen in a suitable way as

a function of the parameters appearing in the Hamiltonian so © 2 _ .

that the Fermi momentum is jugt=. In order to find the V@ (y(=9)= > dky,...dkont;

minima of F(¢) we have to differentiate with respect g, , n=1m=0 !

so one has in principle to take into account the possible 2n

dependence of from &,, which is in general very compli- XWO, - (Kq s Kon) 5( > giEi+2m§F),

cated. However we will show in Sec. II D that it is possible ' =1

to chooser asindependenfrom \ and so fromg,,. This is (16)

due to the fact that the chemical potential can be moved ~

inside the gap opened hy, without affecting any physical Where  Pe=(pg,0), oi=%, and the kernels

property, and we can use this freedom torfias independent M’m(kl,..., n.;Z) are C* bounded functions such that

of &, . It follows that a necessary condition fere Q tobe ~ Wn =W2 = and |W] |<C"zm>@n2-1) jf 7z

a local minimum forF(¢) is that it verifiesp,=Ap, where  =max(\|,|U],|#]). By an explicit computation it follows that

(sO)rrl' (<0)op,

I(2n
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W) =U+0(U?), Wj,,=0(Uo) for m#0 and W3, =o
+0O(oU) for m#0. HereW? is called theeffective poten-
tial at scale Q note that it contains nonlocal interactions
between an arbitrary number of fermions.

The study of theinfrared integration is much more in-

PHYSICAL REVIEW B65 075113

In order to integratey" we write YW as M
+RVM, with R=1— L. The £ operation is defined to ex-
tract the nonirrelevant terms M"; it is easy to check from
a power counting argument that the terms\#? involving
six or more fields are irrelevant, and this=0 on such

volved. Following Wilsonian renormalization group meth- terms. Moreover, we will defin€=0 on the addenda in Eq.
ods, we have to identify the relevant, irrelevant, and margina{19) not verifying the condition

interactions; this is done by a power counting argument, and
it turns out, as is standard in fermionic one-dimensional sys-
tems, that the interactions quadratic in the fields are relevant,
the quartic are marginal, and the other processes are irrel-
evant. However, there are in this modelmany different ~Which means that we are considering irrelevant the terms
terms bilinear or quartic in the fields, depending on the valuguch that the sum of momenta measured from the Fermi

2n

> oiwipe+2mpe=0 mod 2, (20)
=1

of min Eq. (16), and so it seems that there draifferent

surface is not vanishin@ut it can be arbitrary small, due to

nonirrelevant interactions to be taken into account, whicthe irrationality ofpg /). At the moment this definition of

seems a hopeless task as we are interested in-the limit;
this problem will be solved by amproved power countingn

is completely arbitrary; it will be clear in the next section
where we will show that the terms not verifying EQQ) are

which the Diophantine condition plays a crucial role. Noteindeed irrelevanthere is where the Diophantine condition
finally that the quadratic interaction has a nontrivial flow, soplays a rolg. . o . .
it is necessary to change the fermionic integration at each In conclusion, the definition of is the following

step; in other words, the model has @amomalous behavior
due to the fact that the model is close to a Luttinger liquid.
The integration is performed iteratively, settiiy=1,
og=o0, in the following way: once that the fields
HO .. (") have been integrated, we have

f P, (dy(=M)e V" (Z =, (17)

Then, puttingCp(k') " *=3"___f;(k’) and a(k’)=(cosk’
—1)cospg, vo=SiNpg,

(sh)—
dwk’+a)§,: o)

PZh(dw(sh)):H 111 dlpfzshﬂ

, -
boo== +pr,w

Xexp{— > JdR’Ch(E')zh
w=*1
X[(—ikg— a(k")+ wvgsink’)

(sh)+ (sh)— _ >
Xl/jk’-%—mﬁp,a)l//k’-#wﬁ':,w Uh(k )

<h)+

( (<h)-
Xlﬂlz

’+wﬁF,w¢|z’wﬁF,(u]]' (18)

Note that afterh| steps the integration is different to the
initial one; there is a wave function renormalizatiépand a
mass termo;,. Moreover, the effective potential at scdie
has the form

© o n
- >, >, oj(<h)
D EDIDY fdkl---d ol v
n=0 m=0 i=1

ki’ + o f)F ,0;
2n

_2 oi(K + wiPg) +2mpe

i=1

X 0

XWgn,m(Ei+515F:---i{w})- (19

(1) If 2n>4, then
LW, (Ky,..)=0.
(2) If 2n=4, then

LW Ky ) = 80053 i Wim( 1B - 04Pp).

(21)
3) If 2n=2, w;=w,, then
E{Wg,m( Ki+ w1Pe K5+ woPe)
= 5m,o[W2,m(w1ﬁF ,2PE)
+ o E(K + wlpF)akwg,m(wlﬁF ,2PF)
+ ko&kOWQ,m(wlf)F v @2PF) ], (22)

where E(k’ + wpg) =vow sink’ +(1—cosk’)cospe and the
symbolsd,, dx, mean discrete derivatives.
(4) If 2n=2, w;=— w,, then

'ng,m( ki+ w1Pr ky+ woPp) = 5m,w2W2,m(w1ﬁF L 02PE).
(23

The Kronecker deltas on the RHS of E¢81)—(23) en-
sure thatL=0 if Eq. (20) is not verified.
We find

LYV () =y 4 s RS 4 2 B e RN

+uFSM, (24)

where

(<h)+ (<h)—

(sh) _ AN (;
FU' _w:Eil dk "bk’-%—wf),:,wl/lk’—wﬁ,:,—a)’

<h)—

(=h+ (;
wl/jk’+wﬁp o

k’+a)5,: ,

=3 | dkfik)y
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<h
IEJ)f
4

(<0)+ (<0)- i
VgV, *Fl‘s(z """)’

i=1

(=h)—

4
- (=h+
o2 ""‘i) Vi veeati o

4
[ dk
=1

(29

where i=v, {, a and f,=1, f,=—iky, and f,=E(K’
+wpg); moreover, uy=U[5(0)—0(2pg)]+0(U?), s,
=0(U\), ag, Zo=0(U?), andny=r+0O(U). Note that in

£V there are terms renormalizing mass and the wave func-
tion renormalization and it is convenient to include them in

the fermionic integration writing
fch(dw(gh))e"’(h)(‘/z—h*”(gh))
= <h)y e A (=h)
:j ch—l(dl’b(\h))e N (Vzp! ), (26)

whereP;  (dy(=") is defined as, (dy/="), Eq.(18),
with Z,,_; andoy_4 replacingZ;,, oy, with

Zn 1(K)=Z[1+C Y (K")zZ],  Zn_2(K)ap_1(K)

=Znon(K') +Cp (K sy (27)
Moreover, "= £Y"M + (1 £)" and
LV =y 0 FSV 4 (@ -z FED+u PG, (29

The RHS of Eq(26) can be written as

J’ chfl(dl/I(Shil))J;AF‘)thj_(dw(h))efv(h)(y/z_hl//(gh%
(29

wherePz,  (dy(=""1) andﬁzh_l(dtp(h)) are given by Eq.

(18) with Z,,_; replaced byZ, ;(0)=Z, ; andCy,(K’) re-
placed withC,,_,(k’) andf, *(k’), respectively, if

CpM(K")
Zn-1(K")

Cp (k")

Th(k)=2Zp-4 =
h—1

] (30

and =" replaced with (="~ and M, respectively.

Note thaﬁh(IZ’) is a compact support function, with support

of width O(y") and farO(»") from the “singularity,” i.e.,

PHYSICAL REVIEW B 65075113

! fdlz'e-‘k"<f—9>—1 (k")
Zy 4 An-1(k")
(—iko—a(k')—vosink’
X

on-1(K")

on-1(k")
—iko— a(k’) +vysink’ )’
(31

where An(k')=[—iko— a(k')]?— (voSink')>—[on_1(K') 2.
It is convenient to decompose the propagator as

g, (X=y)=g("(x-y)+CP(x-y), (32
where
1 e K ) o -
M) (g oy— ,
9eo(X=Y) Lﬁ% kot wuosink’ + ak’) MK
(33
and, for any integeN>1,
h
C
(h) ).(,_.) - Y N
w ST Rle_o\N»
|gL, (X=y)| 1+(y |X—y|)N
2 h
Oh 7'Cn
CP(R—y)|= T hic_SN- 34
| 2 ( y)| ;ﬁ 1+('}’|X_y|)N ( )
Moreover,
h
C
M (g—v)l< Oh Y LN 35
w,—w = hlo_ o .
|g s ( y)| ;ﬁl+(y|x—y|)N ( )

Finally, we rescalethe fields so that

=h- P Ry () (<h)
f Pz, (A" ”)f Py (dyM)e Wz ™),

(36)
where
LV () =y F =M+ s FEV U FSY (37)
and, by definition,
Zn s Zh( ) U (Zh )2
vn= Ny, = an—Zp), = u
h Zh—l h h Zh— h h h Zh—l h
(38)

We perform the integration

f ﬁzh (dl//(h))e”}(h)(\/zh—Msh)) _ efwhfl)(vrh_w(shﬂ)),
-1
(39

where "1 has the same form ag™ and the procedure
can be iterated, as the insertion of E89) in Eq. (29) gives
an expression like Eq17) with h—1 replacingh. The above
procedure is iterated untill a scale defined as the mini-
mum h such thaty"> || is reached. Then we will integrate
directly the field y{=")=3"" _4® without splitting the
corresponding integration in scal@ss was done fon>h*).
This can be done ag="" (X— ) verifies the bound, Eq34),

wpe. The Grassmanian integratioﬁzhfl(dz/f(h)) has a
propagator

o (=)= [ Poy (@™ g,
given by

075113-5
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with h* replacingh; i.e., it verifies the bound valid for a
single scale; the reason is that for momenta larger than
O(yh*) the theory is essentially a massless theory and for

momenta smaller is a massive theory with m@$3/h*). We

will call running coupling constants,=(U,,d,,vs) and
renormalization constants,Z oy, ; their behavior as a func-
tion of h can be found by an iterative equation called the
function Note that the irrelevant terms ar®t neglected,
contrary to what is done in the usual RG methods, which are
only approximative and not mathematically exact. The ex-
pansion generated by our RG is insteaxhctin a math-
ematical sense and nothing is negledtsee Refs. 16 and 17
for details.

. FIG. 1. A Feynman diagram with its associated clusters.
B. Small divisor problem

We have considereidrelevantthe terms involving two or  Vvalues of the quasimomentum, while the eigenstates are lo-
four fermions in the effective potential not verifying Eq. calized(Anderson localizationfor large\ (see Ref. 2@
(20). Looking at Eq.(19) we see that each addendum con- The fact that the contributions to the effective potential
tributing to the effective potential describes the interactiongiot verifying Eq.(20) areirrelevantin a RG sense means
of 2n fermions whose momentmeasured from the Fermi that the perturbative series as a functiongf, &y, vy,
surfaceverify Z1Z 4, andoy /oy, are convergent in a neighborhood of
the origin. To give a complete mathematical proof of the
above statement is not straightforward, as one has to use
determinant bounds for the fermionic truncated expectation;
one cannot simply prove that each Feynman graph admits a
finite bound as the number of Feynman graphs at onder

2n

2

Uiki’:Z oi@iPE+2mMpg. (40)

Then Eq.(20) says simply that the nonirrelevant terms are
only the ones in which the sum of the momenta measure
from the Fermi surface is vanishing modula-.2This condi-

0o(n!?), so we refer to Ref. 16. However, the key idea why
Hwe terms not verifying Eq.20) are irrelevant can be under-
stood from an analysis based on Feynman graphs.

) ) X (h) . . .
tion seems very natural in ttedemmensuratease, i.e., when Each Wy, ,, admits an expansion in terms &eynman

pe=7P/Q:; in that case, fon=1, 2, if the RHS of Eq(20) diagramsdefinedhin the following way. Ath-order diagram
is non vanishing modulo, then it is greater tha®(1/Q),  contributing tows})  can be obtained frork graph elements
so for Q not too big at least one fermion involved has arepresenting the addenda in E87) or in RV?, Eq. (16),
momentum far enough from the Fermi surfdsee Ref. 28 by pairing the half-linegbearing indices, o, k’). The un-
However, things are not so simple imcommensuratease; paired lines are calledxternal lines and to each paired line
in such a case fon=1, 2, the RHS of Eq(40) can be very e associate a propagatg?f Q,(gi/), Eq. (31); integrating
small(modulo 2r) for very largem; in other words, there are ;@ _

terms in the effective potential which are dimensionally rel-the product of these factors over all the momekjtaof the
evant or marginal involving fermions with momenta arbi- paired lines we obtain thealue of the graph if the expres-
trarily close to the Fermi surface and not verifying E2Q);  sion is multiplied by a suitable sign to take into account the
for i”Stance,¢/|<++pF,1¢|Z—pF+2mpF,—1 with 2mpe+2k7=0  Fermi statistic. A maximal connected subset of lines with

for a suitablek. Then in the incommensurate case it is notScales=h, is called aclusterwith scaleh, and denoted by
clear if the terms not verifying Eq20) are really irrelevant V- Ar_1 inclusion relation can be established between the clus-
(this problem is often not seen in the literature: see, for in1€rs N suc.h a way that the innermost cluster_s are the clusters
stance, Ref. 18 This problem, with a different language, is with the higher scale and so on; see the picture for an ex-
well known in classical or celestial mechanics as sheall ~ample of graphs with its clusters, pictured as boxes including
divisor problem for instance, in the KAM or Lindstedt series the paired lines. The half-lindsontracted or not contracted
for invariant tori of a Hamiltonian system close to an inte- are emerging by thend points associated withy, or to the
grable one. It is possible to write such classical series ifkernels ofRV?; if to an end point is associated witfy , the
terms of Feynman graphs so that the similarity becomes verfpinimal cluster containing it has scate

clear(see Refs. 19 and 20the crucial difference is that such ~ To each Feynman grapisee Fig. 1 is associated by the
graphs have no |00pS, Contrary to what happens here. Arﬁ.bove rule aralueand so to each Subdiagram associated with
other remarkable case in which small divisors appear is ireaCh ClUSter; moreover, _)tO the lines external to a cluster is
the study of the Schainger equation with a quasiperiodic associated a momentulk’ smaller in modulus than one
potential(very related to our problem in tHé=0 casg; ifa  flowing in the lines internal to a cluster. We denotetbgach
Diophantine conditionis assumed on the period, there arecluster, byh, its scale(i.e., all the lines internal to the cluster
quasi-Bloch states ik is small (see Ref. 2] for suitable v have scale<h, and at least one has scdle, and the
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external are larger by P, the indices of the external lines, Fermi surface only ifN, is very large. The corresponding
by |P,| their number, and by, pr the sum of the momenta contribution is then very small for the exponential decay
k of the external lines. It is the minimal cluster enclosing Properties of¢,. We can define a depth, defined in the
the clusterv, the R+ 1 operation produces one or mdké foIIowmg way: if v does not Conta',[‘ any clusteR, =1;
associated with the external lingwhich are bounded by °therwiseD,=1+max, D,., wherev” are the clusters con-
4™} and one or more derivatives on the propagators interndfin€d inv. Itis easy to see that

to the cluster(giving one or more extray” ). At the end

(see, for instance, Ref. 1ne gets the following bound IT | |<e KmA[] e MmIA]T e kN2> (45
[essentially found by power counting using E@4) for i ' i v

bounding the propagatdrfor a graph wittk vertices and B Using Eq.(43) and the fact thab,< —h, . +2, we get
external lines with valu&y), :

*
H |(’\Pn~|$eik|m|/4]._.[ e—k\ni|/4H efky*hu'/f/thufﬂ_
i ! i v
(46)

wherellI* is restricted to clusters with two or four external
lines withN,# 0; choosingy*™2~1>1, we can associated to
each of this clusters a factor

e Sl | I

x [ y~(2+IPuliz+z)h,=hyn) (41)
v

wherez,=1 if |P,|=4 andN,=0; z,=1 if |P,|=2 and
N,=w,, 0= —w,,; z,=2 if |P,|]=2,N,=0; 2z,=0 in all exd —ky Mo /20 T3] < 8 < 58 =) (47)
the remaining cases. The factgris due to the action o

on each clustev. In order to sum over all the possible as-
signments of labelk, we need that-2+|P,|/2+z,>0 and
this is true for all but the clusters with two or four external
lines not verifying Eq.(20) (except whenP,|=2 and v,

= —w, Iin which case it is zeno We have to improve the
bound in the cases in which 2+|P,|/2+2z,<0. The first
case we can consider iB,|=2 andw;=—w,, N,=w,. A
similar cluster can be produced only if’{athere is a nondi-
agonal propagatay'¥)_, internal to the clustes and (B) if
there are one or more points associated tanternal tov. In
both cases this means that there is in the bounds an extra
factor oy~ ¥ for some scald>h, [see Eq(35)] and

and this extra factor allows us to sum over the scale indices.

In the above discussion of small divisor problem we have
used the exponential decay @f, but such a condition could
be probably relaxed to a power law decay, i.63,)
<Cy/|n|N for some integeN, i.e., relaxing the analyticity
condition for ¢, to a differentiability one. This is quite rea-
sonable, by analogy with the KAM theorem which is valid
not only for analytic but also for differentiable perturbations
(see Ref. 18 but the analysis would be probably much more
involved.

C. Flow of the running coupling constants

The equations for the running coupling constants are, for

B % I 1 I e h=h*,
lowly kszh R I AL C.7) . .
n 4 4 vh-1=yvht G, Up1=UptGy,

and the factory("~%’2 allows us to sum oveh, .

It remains to discuss the clusters wjf,|= 2, 4 not veri-
fying Eq. (20); here is where the Diophantine condition
comes in. Given a clusterw, if Zjoiwipr+2N,pr
#0 mod 2r, then

0'h71:0'h+G2., 5h,1:5h+Gh,

Zn_y
Zp
It is convenient to spIiGi(h), withi=pu, o, v, u=(\,d) into

=1+G!. (48)

—hy,r /7
IN,[=C W‘“’J}- (43 G+ Vh Oh -0 V0OT0)
_clh -
In fact, by the compact support properties of the propagators =Gi" (#nh,Vh;---iM0,V0)
and theDiophantine condition

+ G (n Vh, O il0, V000),  (49)
where we have spig", as in Eq.(32) and G{" contains
only g(,_hzu propagators; moreover, there are no vertices with
T )

m=0; in Giz'h are all the remaining contributions. It is easy
to check that foii = u, v, for max.p|v<e,

1Pyl

> ok

agy™'=

[Py
2vaF+i:21 OiwiPE

=

=Co(2|P,[+[N, ).
.

2
2. (50)

Oh
G-Z'h$C[
(44) IGTI=Cl

The meaning of Eq(43) is quite clear; remembering that This follows from the bound34) for CQ and from the fact
the momenta of the external lines@y™'), Eq. (43) says that », x are momentum conserving terms. Fot o, by
that the external fields can have momenta very close to theymmetry reasonsGil'“EO and
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G5 (in vh, 0. ik0,v0,00) | <ClUpory|. (B2 then
We decompose, far=pu, v, ~ ) h ko~
o =—y" 2 YIGKER) (60)
G (hsVh;-- M0, V0) =
and|7,|<Cey", as by Eq.(53):

h h

=G (- sm0) + G (e v iat0,v0),

B2 h S UGG RI=Cey " S Py hsCey
where the first term on the RHS of E(2) is obtained k=—o k=—o
putting »,=0, k=h on the LHS. It is easy to see, from the (61)

fact thatg{") (X;¥) can be divided into an even part plus a For the model with\ 0, for h=h*,
correction smaller than a factop™*, that for max.p, |0y
=g,

1
. =y "1 V—i-k:;+1 ykZ[G,Z,’k(v,/.L,(r)-i-G,l,’k(v,,u)]}
|G (ni-eipo) <Ce Y™™, (53 62

On the other hand, and, insertingv given by Eq.(59),

IGE (i) | < Ce2yM4, (54) 1

o~ _ .—h+1 k—2~2k
as one can prove using the exact solution of the Lut- ~h ”h |k§+1 Y G (v, o)
tinger model: see Refs. 23—25. Moreover, we have that, for

. 1
e + > ykZ[Givkw,m—eivkw,m]].
|G (s v -0, v0) | < Cp|Up|2. (55) e
Finally, by a second-order computation one obtains 63
We prove that, foh=h*,
Gy"=onUn A1+ G, G;"=Uf[B2+G;"], (56) o2 e
with B;, B, nonvanishing positive constantsG."| |Vh_7’h|s86(;ﬁ) ’ |7‘h_“h|$87(;ﬁ (64)

<C|U,|, and|Gi"|<C|u,|.

By using the above properties we can control the flow
the running coupling constants. In fact, |if\|<Ce[ y*
+|ayl/9¥] for any k=h* (which will be proved in the fol-

f The proof is done by induction, assuming that it holds for
scales=h+1 and proving by Eq(63) that it holds for scale
h. Looking at the first sum in Eq63) and using Eqs(50)

. T ; - nd(57),
lowing section, it follows that there exist positive constants 7
C1, Cy, C3, C4, C such that, if\, u are small enough and 1
h=h*, DI A (o O]
k=h+1
|Uh—1_ U|<CU3/2, e—UB1C3h<|Uh_1|<e—UB1C4h, 1 oy 2
ey <Cyy "e? D 2
1Y € Y K
k=h+1 Y
e PaUhez, <o BacUth (57 1 |2 oy 2
( ) C,e? 2 yhk(—> SCgsz(—ﬁ> .
D. Determination of the counterterm » 7, k=h+1 Th 4
We show that it is possible to fix to a A-independent (69

value; more exactly, we show that it is possible to chomse
as in thex =0 case so that, is small for anyk=h*. In the
A=0 caseo,=0 and there are no contribution to the effec-
tive potential withm=0; callingv,, uy the analogs o,
My, We can write

Finally, we can write G.¥(v,u)—GL(%,7)
:2E>kDEk! with

Dick= G (v, i+ i, i Fie 1, Bk 10, o)
. =G (n b+ TG BIG Vier 10Tk 15+ V0, o),
=y e 2 TSGR, (69 (66)
and, by the inductive hypothesis and E41),

whereGI*(¥, 1) = GX¥ (¥, Tuic; - ... 0, Teo) - We choose i )
_ - i Ok J— Ok
- 2 [Dil=CiCe? > ¥ k)/z(_:) $C2C82(7) '
v=— 2 Y 2GHw0), (59) k=k oy y
o (67)
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and Eq.(64) is proved; from that equation it follows that for C (U)Z

so that the last sum in E¢63) is bounded b)C_Zs((Th/'yh)z f E[~
g
h=h*, then|v,|<Ce, so that it is possible to have the flow

of vy, is bounded choosing & independent. 0
~(1)/ 1 1~(h) ’ =
+ gra(k') > =9, [K +2npe
E. Bounds for the density w==1 h=h* <h
An expansion similar to the one we have seen for the o 1 .
effective potential can be defined for the Schwinger function +(1-w)Pel+ > Z_TJSRL(k’)@(ﬂ
and hence fop,. One obtains h=h* <h
- S X[K'+2npe— (1 )*]+§ L
N e - R Npe—(1- o &
pi= 2 | dkaf 0+ X Pk, (69) b Pel* 2, 7. B0
h=h* k=1 p=p* .
with ;,‘I M being sum over Feynman graphs similar to the x(K') 2 7’ ) (K +2npe) + D i~gwh2
one for the effective potential in whidhis the lowest scale h/ —h* Zh’ hen* Zh
of the propagators ankdthe number of points. There are two 0 0
kinds of contributions. The ones in which there are no points -, 1o gr o 1w
associated ta @,, which means that there is at least a non x(k )h;::h* Z_h,gw~‘°(k T2nPe) 2%* Z, Z, Jow

diagonal propagator; such terms are bounded by
C*eXa|Z,, . The remaining one€n Which there is at least oS 1 4
an irrelevant pointare bounded bg¥eXy"4, the factory™* x(k) Zy J-o-e
coming from Eq.(41).

In the same way fon#1, p,=31_,3:_..p<™ . To the
expansion ofp, with |n|>1 are contributing only graphs
with at least one irrelevant pointg, ; in fact, it is not
possible, by conservation of momenta, to get a contribu- A1) 1
tion to p, with |n|>1 from graphs containing only, &, v Pn = 2 7270 S 2 52m7w1+w£
vertices (taking into account that there are nondiagonal hh'=h* SRERTMEON o) 0]
propagators, the difference of the external momenta of such w0,
graphs can be at most 0+2pg). Hence |pkM| o
<e 2| | CHeky™ xfdk'gfja,,(k')g; o [K (2 wf — w3) Pe],

This concludes the construction of a well-defined algo- i 22
rithm for computing the LHS of Eq(5) with any prefixed (71
precision, if\, U are small enough; in the next section we try
to find a solutiong € ) of Eq. (5) or (6) by a contraction whereg®(K) = g"(K) = g(l) (K') if K=K’ + wpg. We shall
method. rewrite Eq.(69) as

[k +(2n+2w)pe]

’(70)

1

—wyt wé,Zn)\‘Pm

I1l. SOLUTION OF THE SELF-CONSISTENCE EQUATION X
A. Contraction mapping d,= an )\, U, 0,®), (72

We have seen in Sec. IE thap,=5,1p”
+3¢_;p4, wherep is the first addendum in Eg68). We  and we will look for a solutior(\,U, o) of such an equa-
keep in the RHS of Eq5), instead of the full expansion, just tion by applying an iterative method.
the terms withk=0, 1, forgetting the others for the moment.  For a fixedL, ® is a finite sequence df —3 elements,
We find natural, in order to find a solution of E@), to  which can be thought as a vector Rt 3. We consider the
proceed in the following way, callind>,=\ &, for [n|>1. space F=CY(R-"3) of C! functions of ¢,,, n=2,3,...L;
(1) We considere=\¢; as a parameter and we study —1. We shall define a norm iF for any \, o different from
®,=22pM(\,U,0,®), looking for a solutiond(\,U,s) in  zero:

the class).

(2) If a nontrivial solution®(A,U, o) is found, we insert oD
it in Eq. (6) with n=1 looking for a solutioro function ofX, |®| = Sup(elnllnxl/m[ld Y (o) |+ | — H
u. In|>1 do

According to the above strategy, we have to solve, for (73
[n|>1,

We shall also define
bn=—NcM () ot NP (N, U, 0, D), (69)

where B={® e F||P| <1}
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The solutions of Eq(72) can be seen as fixed points of the equationd** =T, (®®), with any initial conditiond(®

operatorT, : F— F, defined by the equation e B. If we choosed (=0, we get
o AP (\U, o, (I)) = 1
= eemey - 7 el=<Z lo0-at 1>||P2 PTE P L P
In the sum ovem in Eq. (71), m#n, so that there is at (8D

least a nondiagonal propagator, so that by &), if w;=  which immediately implies thaf®|| 1. Then if U%/\? is
—w, (say, large enough, there is a solutieh of Eq. (69) which is a

1 function of \, U, o; in the following section, we insert it in

f dkrg™ (kN (h") Eq. (6) with n=1 looking for a solutions which is function
h.h' =h* ZhZhl gw1’7w1 ng'w/ Of )\, U

B. Determination of A&,

X[K'+(2m+ o} — w,) Pe]
We have now to insed (\,U, o) found above in Eq(6)

! with n=1, in order to findo in a self consistent way. We can
\ChEh* [lony "?+lony "1<C'. (75  rewrite Eq.(6) as

~ 21 A ~(1)
Consideringe!, Eq. (70), it is easy to see that the inte- @1=—NCy ()1t Apr (N, U,0,®), (82)

grals in the first four terms of Eq70) are bounded by con- \here
stants, as there is at least a nondiagonal propagator or an

ultraviolet one; for the fifth integral the bound is ) S g k) Do)
O 0 o= [ ak] 3 S gnEgK +200
1. 1 R h=h*
> J dk'—-90 oK) X =T, (K' +2np)
h=h* Zh @@ h' =n* Zh’ . 0 1
. + 2 |THK) 2 oYK+ (3-0)Be]
1 2C, . 0=*1 h=n* Zh
=<C S SsS 7.
lh=h* (Zh) Cq 2U ( 0
=) ey
A similar bound is found also for the last integral of E@0). +h:h* Zn Go.0(K’ )g [k +(1+"’)pF]l
Then from the above bounds, i?/U? is small enough,
one has =—F(a,\,U)+Ty(0) (83
A2 and, more explicitly,
mszxz. (77
n F(o,\,U)
We find a solution of Eq(72) as the fixed pointb of T, in ) k)
B. Note thatB is invariant under the action df, (®), as, by Z dk’ (
Eq. (79), h=h*
Ty n(®)|<2C\ su A |Inl9 i
[Thn(®) K= +1p+2W| | 9] hzh* Zh o ko+sm2k’+(1 cosk’ )2+aﬁ’
1 (84)
< = |A\|MA9 g, (78) . ~ :
2 whereay, andZ,, verify Eq. (57), and|¢;|<C, whereC is a
so that forA small enough constant
' Then by Eqgs(84) and (68) we obtain
||T7\((I))||$l (79) 2 |0_| -7
Moreover, by a similar argument, S (T) —1|[a '+ Uf (N U,0) ]+ of,(\ U, 0)=1,

(89

with |f4], |f2|$C and 7,=B1U+%1, 7,=B1U+ 7, |7l

_ _ _ _ |7%,/<CU?, andC,a,B;,A are positive constants. Equation
so thatT, is a contraction. It is also evident that(0)  (85) is a non-BCS oranomalousself-consistence equation

e B. Hence, by the contraction mapping principle, there is asjmjlar to the one describing a superconductor whose normal
unique fixed pointd of T, in B, which can be obtained as state is a Luttinger liquid; iU=0, it reduces to a standard
the limit of the sequenc® () defined through the recurrence BCS equation. If the electron-electron interaction is larger

1
ITA(®) =T (@)= 5|0 =] £, (80)
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than the electron-phonon interaction, i.e |Nf/|U| is small,  For suchn, ¢c{*, Eq. (70) computed atU=0 (i.e., Z,=1,
the result is very sensitive to the sign Of on=0) can be written as
(@ In the attractive caseU<0 there isno solution|o|
<1 if A?/U? is small enough. In fact, all the terms in the
LHS of Eq. (85 can be taken arbitrary small Iff, A and
\2/|U]| are small enough so that there is Jag<F solving
Eq. (85). Note that this is allso true considering Eg). i.e.,
there is no solutionpe Q of Eq. (5) if A2/U? is small
enough for anyp € (). whereb is a constant. As + A%c;=0(\?), we have that
(b) In the repulsivecaseU >0 for A?/|U|? small enough
there is a solution of the forrf¥), asB, L— . Note that this
expression for the gap is very different with respect to the \? _
BCS-like form of theU =0 case; in particular, it is as large 1+N\%c,
as

cP=cV+b+0 O(N),  (86)

2Npg—2
[2npe pF”T) N
o

O(1),

2
>Ae ¥

2 . . . . L
7\_ lIn| insteadO(\2), as in the preceding section, so it is not clear
Y

A F{ a A2
exp — — . -
\?|a an how a contraction method could be applieeh explicit com-

A similar expression for the gap appears in the interactingutation shows thah?/(1+\?c,) times the coefficient of
Kondo problem(see Ref. 2Band in superconductors whose &n- 2 tends to 1 whernv,— 0]. This fact could be not simply
ground state is a Luttinger liquibee Refs. 27 and 30itis  a technical problem linked to the method. The idea underly-
easy to check that corresponding to such a solution the He#ag the analysis of the preceding section, which is essentially
sian is positive definite. the Peierls idea, is that the process involving the exchange of
Finally, | discuss shortly how to solve the full equati@  2p is the dominant one and the others are corrections. How-
without truncating the RHS at second order. At finiteve ever, in the incommensurate case for very lang@pg and
can use a contraction method to find a fixed point of &%.  2np. are almost the same, due to umklapp scattering, so it is
However, the fact that for the higher-order terms we haveyot clear physically why the first harmonic is the dominant
only bounds and we cannot make use their exact expressiogge. Technically this means that there are larder which
as was done for Ed6) has the effect tha_t we can only get a pn=p, [see Eq(86) in which b is negligible with respect to
weaker bound for the decay of the solution, i.e., a power Ia\/\él which is logarithmically diverging so that the self-

~ N . . .
decay|A §,|<Cyo/|n|" instead of an exponential one. This .o icionce equatiop, =\ p, for suchn or for n=1 seems

was also what we could get in Ref. 10 in the commensurate. . s - - : .
: ; . Similar, and it is not clear whig,|<|4|, as it should be in
case. In the incommensurate case this forbids one from tak-

ing theL — o limit, just because we have proved in Ref. 16 order ¢, to be f'zl_nalytlc. This problem IS _absent_m tbem-
the convergence o, in that limit only if A, have an mensuratease; in that cassee Ref. 1)) it is possible to see

exponential decay; on the contrary, in the commensurate cadgat ciP[<CInQ so that for Q=e "™, then \%/(1
convergence holds with a weak decay condition and the limit- A°Cn)<|\| and the contraction method will work, so that
can be taken. This problem seems, however, merely technReierls instability is proved.

cal, and it could be solved proving convergence under power The mechanism why the above difficulty is avoided in the
law decay(see discussion at the end of Sec. )j Bhis would  Holstein-Hubbard model wittu >0 andU/\ large, so that
allow us to prove Peierls instability in the incommensuratePeierls instability is proved in the incommensurate case, is

case without truncating the density expansion. that the harmonic witm=1 has a nontrivial flow and be-
comes larger, whilép,, for |n|=2 has no flow; this is in a
IV. CONCLUSIONS sense a consequence of the Diophantine condition.
_ ] _ ) ) The difficulty in finding a solution to Eq(6) when U
In the perturbative regime of small there is Peierls in-  — g could mean that there is Peierls instability only for

stability then fortU=U, and forU<U,, there is not. Itis  ~_with U.>0, but of course a deeper analysis is neces-
an interesting open question whetigr,=U;,=U: 0r not  sary'to conclude. Note that in thie=c limit of the Holstein-
and, if they are equal, whethdJ, is greater, smaller, or yppard model an incommensurate CDW is fousele Ref.
equal to zero. We are at the moment not able to answer 198) only for U>U, with U, nonvanishing positive. On the
this question; we can only say that whei=0 or U small  gther hand, the existence of Peierls instability when 0 is
with respect to\~ the iterative method for solving E@) i ysually supported by the analogy of the Holstein model with
not working. Let us consider in fact tHé=0 case. In that  the Frenkel-Kontorovachain in which the extremality condi-
case Eq(89) with n=1 is a BCS-like equation and gives tjon for the energy gives a dynamical system knowrstas:-
|o|=Ae BT "where|g(U,\)|<C|\|. However, we are  dard map For this model the existence of an incommensu-
not able to find a solution to the equation fbr the contrac-  rate phonon field minimizing the energy is an application of
tion method used in the larg&J(\) case here fails as there the KAM theoremin the perturbative regiméand in the
are integers such that 2pg is very close to P modulo  strong-coupling regime of the so-called Aubry-Mather theo-
27 (of course, analogous considerations can be done if isem, in which ¢, is not smooth, but it has infinitely many
close to—2pg); i.e.,d=||2np:— 2wpg|+ can be very small.  discontinuitie$.?*-3!
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