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Breakdown of the adiabatic approximation in trans-polyacetylene
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We solve a model of interacting electrons coupled to longitudinal phonons using the density matrix renor-
malization group method. The model is parametrizedtfans-polyacetylene. We calculate the ground state
and first excited odd-parity singlet and triplet states. We investigate their energies and geometries for up to 102
sites. The transition energy and the soliton width of the triplet state show significant deviations from the
adiabatic approximation for chain lengths larger than the classical soliton size. In contrast, the transition energy
of the singlet is close to the adiabatic prediction.
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I. INTRODUCTION that the Peierls dimerization is stable against such fluctua-
tions. There has also been a variational Monte Carlo study of
The interplay of electron-electron interactions andan interacting electron-phonon modeHowever, there have

electron-lattice coupling in polyene oligomers atrdns  been no studies of excited states, as the incorporation of
polyacetylene, (CH), results in a rich variety of low-energy quantized lattice dynamics into the correlated Pariser-Parr-
excitations. These excitations include triplet states of solitonPople-Peierls model presents a formidable challenge.
antisoliton pairs, singlet states comprising bound pairs of The advent of the density matrix renormalization group
triplets, and exciton-polarons. Within the adiabatic semi-  (DMRG) method*® has enabled definitive model studies of
classical approximatiof the nature and energy of these ex- correlated electron  systems, including long-range
citations are now fairly well understood. A realistic model of interaction$***and dynamical phonort$:**In this work we
m-conjugated  systems (the  Pariser-Parr-Pople-Peierls report the results of extensive calculations on a realistic
mode), solved within the adiabatic approximation, predictsmodel system which affords us insight into the effect of
accurate excitation energies for oligomers of up to 20 or suantized lattice dynamics on the properties of excited states
sites>® However, for longer chains the calculations deviateof long polyenes. The model and the DMRG method are
from the experimental polyacetylene thin film results. Thesegliscussed in Secs. Il and Ill, respectively. In Sec. IV we
discrepancies are partly explained by the self-trapgimg ~ discuss our results, concluding in Sec. V.
localization of the excited states by the lattitehe calcu-
lated energies deviate from a linear extrapolation in the in- Il. THE MODEL
verse chain length as the chain length becomes larger than
the solitonic structures. Furthermore, a linear extrapolation in 7 electrons, interacting via long-range Coulomb forces,
the inverse chain length of the oligomer experimental value@re coupled to longitudinal phonons. The electrons couple to
predicts infinite chain energies of the dipole-allowed singlethe phonons in two ways. First, changes in bond length are
(1 15;) and the dipole-forbidden singlet (125) close to assumed to lead to linear corrections to the hybridization

those observed in polyacetylene thin filfsuggesting that integrals. Second, changes in bond lengths also affect the
self-trapping may be a partial artifact of the adiabaticCoulomb interactions. In order to quantize these fluctuations,

approximatiorf we linearize the deviations in the Coulomb interaction. We

The question therefore remains as to the role of quantizetetain only nearest neighbor deviations to the Coulomb inter-
lattice fluctuations on the depinnirigr delocalizationof the ~ action, so that we may compare our quantized results to the
excited states. These fluctuations are the subject of this pgemiclassical Hellmann-Feynman calculatfon.
per. Our key results are that the depinning of some excited The Hamiltonian is thus defined &%}
states due to quantum lattice fluctuations is significant as the
conjugation length increases. In particular, there is a signifi- + 1 ! N 1
cant reduction in the energy and an associated increase in thg =% ® 22 (bi bi+5]—hw 21 Bi+1Bi+ U,Zl (Nm_i)
soliton width of the triplet state, indicating a breakdown of o o o
the adiabatic approximation for the low-lying spin density
wave states. These quantum corrections go a long way to- X
wards removing the discrepancies between the calculated
semiclassical excitation energies and the experimental thin N-1
film results. | , =t [1-9(Bis—B)I(C] 14Ciot CCin 1)

There have been a number of studies of quantized lattice i=lo
dynamics in the ground state of the uncorrelated Su- N-—1
Schrieffer-Heeger modéljndicating that fluctuations in the _WE (Bi11—B)(N;—1)(N;.,—1). (1)
bond length are comparable to the bond length changes, but i=1

N—-1

N
1
Nii—5|+5 2‘,] Vij(N;—1)(N;— 1)
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TABLE I. The ground state (1A;) and triplet (1°B;) ener-  electron-phonon basis is found by constructing a reduced
gies(eV) as a function of the number of optimized states per site fordensity matrix for this site by tracing over the states of the
the 30-site chain with five bare phonons per dite., 24 bare  remaining three blockéhe system and environment blocks,
electron-phonon states per Site and the adjacent sijteThe full electron-phonon Hilbert space
is used for the target site. The optimal states are then the
density matrix eigenstates with the largest eigenvalues.

Optimized states E(1'A;) E(1°B;) E(1°B;)—E(1'Ay)

10 —149.4647 —148.7655 0.6992 Once a single-site Hilbert space is optimized it is then
14 —149.5331 —148.8477 0.6854 augmented with the system block in the standard finite lattice
18 —149.5428 —148.8564 0.6844 algorithm? Since the classical lattice geometry of excited

states changes as the chain length increases, there as no
priori reason to suppose that the optimal site electron-
b/ (b;) creates(destroy$ a phonon anct, (c;,) creates phonon basis for the shortest chain is appropriate for longer
(destroy$ an electron on sitei. Biz(biT-i‘ b)/2, ¢ chains. Thus, it is generally necessary to perfamrsitu op-
=(\mh/2t)"2 andw=\2wy=y2K/m. We use the Ohno timization: a site Hilbert space is reoptimized when it forms
function for the Coulomb interactionvij=U/\/mﬁ_, part qf the target chain size. Generally, we expiecsitu
where the bond lengths are in A agi=(U/14.397. The  ©OPtimization to be necessary whenever the short scale prop-
undistorted bond lengthag) used in the evaluation of;; is erties a.re.mo.dmed by the long scalelpropertles. Dunn_grthe
140 A , and the bond angle is 120°.W situ optimization only afew statelgypically 80) are rgtalned

= (howlK)Y2U Bay/(1+ Bad)? t=2539 eV U for the system and environment blocks_, while typically, 16(_)
~10.06 eV, A=0.12 0 ﬁc,uo=0.2 eV ar71d K states are used for the system and environment blocks during

— 46 eV A~215Fixed chain lengths are enforced by having augmentation. A further truncation parameter is the product

. of the density matrix eigenvalues, of the four single block
no phonon degrees of freedom on the end sites. In the ab- 4

. : . States used in the tensor product to construct a superblock
sence of electron-phonon coupling, Ed) is the undimer-

. . S : .__state. Only superblock states with argreater than the cut-
ized Pariser-Parr-Pople model, while in the semiclassica] . . .

cer T . ; off are retained in the superblock Hilbert spaée.

limit it is the Pariser-Parr-Pople-Peierls model.

We intend to compare our quantum treatment of the lattice A key goal of this work is to study excited states, which

to the semiclassical limit, where the classical displacement¥€ do by exploiting the particle-holeJY and spin-flip £)
qi=(ﬁw/K)l’2(Bi> are found by the Hellmann-Feynman symmetries of Eq(1). The inversion symmetry is measured
theorem. To do this, we set=0 in Eq.(1), and supplement at the middle of a finite lattice sweep. We have checked that

H by sett?ng‘]= +1 andP= +1 targets the grOLind (1]Ag) state,
settingJ=—1 andP=+1 targets the 1B state, and set-
1/2'\“1 ting J=+1 andP=—1 targets the triplet ($B,) state.
H'=T(27tAK) .21 (Qi+1— ), 2 We now turn to the convergence tests. These tests were

performed at up to 30 sites, because at this chain length
whereT" is determined by the requirement that the chainsignificant deviations between the quantum and semiclassical

length remains constant. calculations are evident. We first establish convergence with
respect to the number of optimized states per site. Table |
IIl. THE DMRG METHOD AND CONVERGENCE TESTS shows the ground state and triplet energies for the 30-site

chain with five bare phonons per site. We see that with 18
The essential approach we adopt to solve #g.is an  states the transition energy has converged to within 0.001 eV.
extension of the local Hilbert space reduction of Ref. 15 forNext, we consider the convergence with superblock Hilbert
a single site. The bare electron-phonon Hilbert space for gpace size at 30 sites. As shown in Table II, the convergence
single site consists of X4 (number of bare phonons per site of the ground state energy is reasonable for up to 180 000
+1) states. For more than three or four bare phonons thergates, and the transition energy has converged to better than
are too many single-site states to augment with the systei®.01 eV. Finally, we consider the triplet transition energy as a
block; thus an optimal truncation is required. The optimalfunction of the number of bare phonons per site for various

TABLE Il. The ground state (1A;) and triplet (1°B,}) energiegeV) as a function of the density matrix
eigenvalue product cutoffe(), the number of system block statem)( and superblock Hilbert space size
(SBHSS for the 30-site chain with five bare phonons per site. There are 18 optimized states per site.

€ 1'Ag 1387 E(1°B,)—E(1'Ag)
m SBHSS  E(1'Aj) m SBHSS  E(1°B)

10712 79 54876  —149.5377 103 102770 —148.8456 0.6921

10713 110 105640 —149.5417 124 178568 —148.8528 0.6889

1074 131 180568 —149.5428 145 304896 —148.8584 0.6844

1074 150 200226 —149.5432 182 410984 —148.8614 0.6818
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TABLE llI. The triplet transition energiegeV) as a function of
the number of sites\. The mode([Eg. (1)] with zero phonons is the
undimerized Pariser-Parr-Pople model.

g
‘g‘h
< 004
N Number of bare phonons per site Semiclassical § 0.02
0 1 2 3 4 5 3
g
6 1.8075 1.9259 1.9631 1.9751 1.9789 1.9799 2.0261 .g 0
14 0.8616 1.0200 1.0648 1.0796 1.0860 1.0887 1.1923 T 002
30 0.4212 0.5917 0.6518 0.6712 0.6800 0.6844 0.8842 é 0.04°
50 0.2559 — 0.5306 — — 0.5578 0.8500 £
66 0.1935 — 04949 — — @ — 0.8494 B 006l
82 01541 — 04790 — —  — 0.8490 Z 0 4 8 216 20 24
102 0.1209 — 04718 — — @ — 0.8486 _ Bond index
E 006 ——
chain lengths, as shown in Table Ill. We see that the transi- %” 0.04‘_
tion energy has converged to better than 0.01 eV with five T L
. g 002§
phonons per site. We conclude from the convergence tests S i
that by using five bare phonons and 18 optimal states per site g 0
and ca. 160 states per system block, the transition energies g A
have converged to better than 0.01 eV. We use these param- 5 002 ¢
eters to extend the quantum calculations to 50 sites. As the 2, F
chain length increases, however, these calculations become 3
prohibitively expensive in computer time. For chain lengths % -006 Lot oo o000y vy
of greater than 50 sites we retain two bare phonons per site. & 0 10 20 30 40 30

The convergence of the transition energies at 50 sites with Bond index
respect to the number of bare phonons suggests that the en- FIG. 2. The geometriegstaggered bond distortion as a function

ergies are still accurate to much better than 0.1 eV. of bond index from the center of the chaif various states: iAg
(diamondy, 1!B; (circles, and 1°B; (triangles. Semiclassical
(quantum calculations are indicated by soli@pen symbols.(a)
50-site chain with five bare phonons per site in the quantum calcu-

Figure 1 shows the transition energies for th%Bg and lation. (b) 102-sit_e chain with two bare phonons per site in the
13B; states as a function of inverse chain length for up tofuantum calculation.
102 sites. For short chains the differences between the tran-
sition energies in the quantum and semiclassical limits arstate energy deviates from the semiclassical result in two
very small. However, the quantum calculation of the tripletways. First, the gradient as a function of inverse chain length
is greater, and second, the flattening off of the energy occurs
4 at a larger chain length. As a consequence, there is a clear

IV. RESULTS AND DISCUSSIONS

: deviation between these limits for the triplet state as the con-
~ 3L jugation length increases. This deviation is a result of the
i . depinning of the excited state by the lattice fluctuations. In
g 2 [ contrast, the deviation between the semiclassical and quan-
5 . tum limits for the singlet excited state is relatively modest.
§ 1L At 50 sites, using five bare phonons, the deviations are 0.29
g eV and 0.07 eV for the triplet and singlet states, respectively,
& oFf while at 102 sites, using two bare phonons, the deviations are

i 0.38 eV and 0.14 eV for the triplet and singlet states, respec-

0 0.02 0.04 0.06 0.08 0.1 tively.

Further insight into the depinning of the excited states can
be obtained from a study of their geometrical structures. We

FIG. 1. Transition energies for the'B, (circles and 1°B; calculatg thelclassmal phonon displacement, the bo_nd ]
(triangles states as a function of inverse chain length. Semiclassicd€ndth distortion, and the root-mean-square fluctuations in
(quantum calculations are indicated by solidpen symbols. The  the bond length. Figure(@) shows the staggered bond length
guantum calculations for fivél0 to 50 sitesand two (50 to 102 ~ changes in the ground state and excited states of a 50-site
site9 bare phonons per site are shown by solid and dashed lineghain. We see that the ground state dimerization of ca. 0.04
respectively. Also shown are the'B, (x) and 1B (+) tran- A in the quantum limit is slightly smaller than the semiclas-
sition energies for the undimerized Pariser-Parr-Pople mae]  sical result of ca. 0.05 A . We find that in the limit of long
Eqg. (1) with zero phonons, or equivalently the linfitw—]. chains the relative root-mean-square fluctuation in the bond

Inverse chain length

075107-3



BARFORD, BURSILL, AND LAVRENTIEV PHYSICAL REVIEW B 65 075107

TABLE IV. The triplet transition energie@V) as a function of the phonon energy at 30 sites. In the limit
that#i wg— o the modelEq. (1)] becomes the undimerized Pariser-Parr-Pople model. Five bare phonons and
18 optimized states per site were used in the quantum calculation.

Pariser-Parr-Pople Quantum phonons Semiclassical
J10hwo=0.632 eV #wy=0.2 eV  fwy/\/10=0.0632 eV

0.4214 0.5257 0.6844 0.8026 0.8842

length is ca. 0.9, almost independent of the number ofQuantum lattice fluctuations play an important role in the
phonons per site, and close to previous theorétigald  depinning of the self-trapped excited states, leading to cor-
experimentdf estimates. rections to the adiabatic approximation. Corrections to the
Significant deviations are found between the quantum anggjabatic approximation are particularly important for the
semiclassical predictions for the triplet soliton Str“CtureS-lowest-lying triplet, as this state is gapless in the long chain
The soliton width in the semiclassical calculatioca. 10 - in the absen(’:e of electron-phonon coupfirige., the
bond lengthsis relatively short, and much less than half the Pariser-Parr-Pople modelFigure 1 and Table IlI shaw the
chain Ieng'gh at 50 sites. Provided that a soliton is .furthertriplet transition energy for the undimerized Pariser-Parr-
away tha'.q Its half-W|dth from another so!|ton or a_chaln en.d’PopIe model. Thus, the phonon frequency is not small in
explains the location of th. solitons near the chain ends OTIPAS0N {0 the elecironic energy scale, and the appros-
mation of slow nuclear motion relative to the electronic time

our semiclassical calculation, as our DMRG procedure In'sFaIes is no longer valid. This breakdown of the adiabatic

creases the chain si;e by in_serting new bonds in.the center gpproximation is an emergent property of long chains. At
the _chaln. The clqssmal soliton structure also_pms the eIeCiOZ sites the phonon-calculated triplet energy is only 56% of
tronic wave funct|on, and leads to the flattening off of thethe adiabatic approximation. Since the dipole-forbidden
triplet transition energy. 2'A, state is formed from a pair of bound triplets, this

In contrast, the soliton width in the quantum limit is duction in the triplet f um fluctuati )
greater than half the chain length at 50 sites, and hence tr{% uction in the triple energyl “1”‘ quantum fluctuations 1s
so expected to apply to the"2 state. It would be rea-

soliton and antisoliton are repelled by each other and by th@

chain ends. Furthermore, since the chain length has not exOnable to expect that the semiclassical predidtiufnl. 74

ceeded twice the soliton width, the electronic wave functior€V for its transition energy might be reduced to ca. 1.0 eV
ith the inclusion of quantum phonons. This prediction is

is not yet pinned, and the transition energy is still decreasin - . )

with chain length. At 102 sites, shown in Figlh2, the soli- ery close to Kohler’s linear extrapolatidand to the experi-
. , i - +

ton width of the triplet in the quantum calculation is roughly Mmental determination of the ‘2 energy by Halverson and

. . . 0,21
half the chain size, and so, as expected the transition enerd"yeege'z- _ _ N _ _
is fairly flat as function of chain length. The reduction of the triplet transition energy is associated

Finally, we consider the optically allowed excitonic with a significant increase in the soliton width. Self-trapping

(1!'B;) state. According to the adiabatic approximatidn, OCCurs when the chain length exceeds twice the soliton

this state creates a shallow polaronic distortion of the latticeVidth- As the phonon frequency increases, the mqéej.
(1)] approaches the Pariser-Parr-Pople mddel, with no

with self-trapping only becoming important for chain lengths

longer than ca. 40 sitésThis is confirmed by the excitation PNonons$, and the soliton width increases. Furthermore, as

energies shown in Fig. 1, indicating that the transition enerthe chain length increases the Pariser-Parr-Pople model pre-

gies calculated in the quantum limit are within ca. 0.1 eV ofdicts that the triplet energy tends to zero. Whether or not the

the semiclassical result, and Fig. 2, showing that the quarEd- (1) iS in the adiabatic limit is determined by a compari-

tum and semiclassical polaronic structures are simigr SO0 of the excitation energy of the Pariser-Parr-Pople model

though wider in the quantum calculation to the phonon frequency at chain lengths comparable to the
As already noted in Ref. 1, we should expect our quantun*?omon width. However, because the soliton width is deter-

calculation to approach the semiclassical approximation ifnin€d by the phonon frequency, there isariori way of

the limit thatw— 0. We check this by repeating the calcula- Predicting whether or not the E) is in the ad|abatJ|rc limit.

tion for two other values of phonon frequencWOwo and As already stated, this argument suggests thatﬂ%t\gZState

o/+/10. These results, shown in Table 1V, indeed show tha{S not in the adiabatic limit for these model parameters, as its

as w is reduced the transition energies approach the semi-

classical limit. The nature in which the quantum result ap- TABLE V. The singlet (1!B,) transition energiegeV) as a
proaches the semiclassical result as a functiow @ inter-  function of the number of sitey.

esting subject, which we discuss briefly in the Conclusions:

However, it lies outside the main scope of this paper. N Number of bare phonons per site Semiclassical
V. CONCLUSIONS 0 B S
50 1.9003 2.4341 2.4809 2.5508
In conclusion, an extended DMRG method has been apt02 1.7427 2.3788 — 2.5211

plied to an interacting electron-phonon model of polyenes
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energy is also gapless in the long-chain limit of the Pariserlow-lying spin-density wave states. However, a further con-
Parr-Pople model. tribution to this delocalization may be interchain coupling. A
In contrast, the exciton-polaron ¢B) state is expected rigorous analysis of the effects of interchain coupling within
to be in the adiabatic limit, as its energy in the Pariser-Parrthe present model lies outside the scope of the current paper.
Pople model is 1.6 eV in the long-chain linfiThis is con-
firmed by the current calculation, and in particular Fig. 1 and
Table V, which show that the deviations between the quan-
tum and semiclassical limits is only ca. 0.1 eV at 102 sites. This work was supported by the EPSRO.K.) (GR/
In this paper we claim that quantum corrections to theK86343 and GR/R03931the Royal Society, the Australian
adiabatic approximation lead to the delocalization of theResearch Council, and the J.G. Russell Foundation.
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