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Breakdown of the adiabatic approximation in trans-polyacetylene
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We solve a model of interacting electrons coupled to longitudinal phonons using the density matrix renor-
malization group method. The model is parametrized fortrans-polyacetylene. We calculate the ground state
and first excited odd-parity singlet and triplet states. We investigate their energies and geometries for up to 102
sites. The transition energy and the soliton width of the triplet state show significant deviations from the
adiabatic approximation for chain lengths larger than the classical soliton size. In contrast, the transition energy
of the singlet is close to the adiabatic prediction.
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I. INTRODUCTION

The interplay of electron-electron interactions a
electron-lattice coupling in polyene oligomers andtrans-
polyacetylene, (CH)x , results in a rich variety of low-energ
excitations. These excitations include triplet states of solit
antisoliton pairs, singlet states comprising bound pairs
triplets, and exciton-polarons. Within the adiabatic~or semi-
classical! approximation1 the nature and energy of these e
citations are now fairly well understood. A realistic model
p-conjugated systems ~the Pariser-Parr-Pople-Peier
model!, solved within the adiabatic approximation, predic
accurate excitation energies for oligomers of up to 20 or
sites.2,3 However, for longer chains the calculations devia
from the experimental polyacetylene thin film results. The
discrepancies are partly explained by the self-trapping~or
localization! of the excited states by the lattice:4 the calcu-
lated energies deviate from a linear extrapolation in the
verse chain length as the chain length becomes larger
the solitonic structures. Furthermore, a linear extrapolatio
the inverse chain length of the oligomer experimental val
predicts infinite chain energies of the dipole-allowed sing
(1 1Bu

2) and the dipole-forbidden singlet (21Ag
1) close to

those observed in polyacetylene thin films,5 suggesting that
self-trapping may be a partial artifact of the adiaba
approximation.6

The question therefore remains as to the role of quant
lattice fluctuations on the depinning~or delocalization! of the
excited states. These fluctuations are the subject of this
per. Our key results are that the depinning of some exc
states due to quantum lattice fluctuations is significant as
conjugation length increases. In particular, there is a sign
cant reduction in the energy and an associated increase i
soliton width of the triplet state, indicating a breakdown
the adiabatic approximation for the low-lying spin dens
wave states. These quantum corrections go a long way
wards removing the discrepancies between the calcul
semiclassical excitation energies and the experimental
film results.

There have been a number of studies of quantized la
dynamics in the ground state of the uncorrelated
Schrieffer-Heeger model,7 indicating that fluctuations in the
bond length are comparable to the bond length changes
0163-1829/2002/65~7!/075107~5!/$20.00 65 0751
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that the Peierls dimerization is stable against such fluc
tions. There has also been a variational Monte Carlo stud
an interacting electron-phonon model.8 However, there have
been no studies of excited states, as the incorporation
quantized lattice dynamics into the correlated Pariser-P
Pople-Peierls model presents a formidable challenge.

The advent of the density matrix renormalization gro
~DMRG! method9,10 has enabled definitive model studies
correlated electron systems, including long-ran
interactions2,3,11and dynamical phonons.12,13In this work we
report the results of extensive calculations on a reali
model system which affords us insight into the effect
quantized lattice dynamics on the properties of excited st
of long polyenes. The model and the DMRG method a
discussed in Secs. II and III, respectively. In Sec. IV w
discuss our results, concluding in Sec. V.

II. THE MODEL

p electrons, interacting via long-range Coulomb forc
are coupled to longitudinal phonons. The electrons coupl
the phonons in two ways. First, changes in bond length
assumed to lead to linear corrections to the hybridizat
integrals. Second, changes in bond lengths also affect
Coulomb interactions. In order to quantize these fluctuatio
we linearize the deviations in the Coulomb interaction. W
retain only nearest neighbor deviations to the Coulomb in
action, so that we may compare our quantized results to
semiclassical Hellmann-Feynman calculation.3

The Hamiltonian is thus defined as,13,3

H5\v (
i 52

N21 S bi
†bi1

1

2D2\v (
i 51

N21

Bi 11Bi1U(
i 51

N S Ni↑2
1

2D
3S Ni↓2

1

2D1
1

2 (
iÞ j

N

Vi j ~Ni21!~Nj21!

2t (
i 51,s

N21

@12g~Bi 112Bi !#~ci 11s
† cis1cis

† ci 11s!

2W(
i 51

N21

~Bi 112Bi !~Ni21!~Ni 1121!. ~1!
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bi
† (bi) creates~destroys! a phonon andcis

† (cis) creates
~destroys! an electron on site i. Bi5(bi

†1bi)/2, g
5(lp\v/2t)1/2, andv5A2v05A2K/m. We use the Ohno
function for the Coulomb interaction,Vi j 5U/A11br i j

2 ,
where the bond lengths are in Å andb5(U/14.397)2. The
undistorted bond length (a0) used in the evaluation ofVi j is
1.40 Å , and the bond angle is 120°.W
5(\v/K)1/2Uba0 /(11ba0

2)3/2, t52.539 eV, U
510.06 eV, l50.1,2 \v050.2 eV,14 and K
546 eV Å 22.16 Fixed chain lengths are enforced by havi
no phonon degrees of freedom on the end sites. In the
sence of electron-phonon coupling, Eq.~1! is the undimer-
ized Pariser-Parr-Pople model, while in the semiclass
limit it is the Pariser-Parr-Pople-Peierls model.

We intend to compare our quantum treatment of the lat
to the semiclassical limit, where the classical displaceme
qi5(\v/K)1/2^Bi& are found by the Hellmann-Feynma
theorem. To do this, we setv50 in Eq.~1!, and supplemen
H by

H85G~2ptlK !1/2(
i 51

N21

~qi 112qi !, ~2!

where G is determined by the requirement that the ch
length remains constant.3

III. THE DMRG METHOD AND CONVERGENCE TESTS

The essential approach we adopt to solve Eq.~1! is an
extension of the local Hilbert space reduction of Ref. 15
a single site. The bare electron-phonon Hilbert space fo
single site consists of 43(number of bare phonons per si
11) states. For more than three or four bare phonons th
are too many single-site states to augment with the sys
block; thus an optimal truncation is required. The optim

TABLE I. The ground state (11Ag
1) and triplet (13Bu

1) ener-
gies~eV! as a function of the number of optimized states per site
the 30-site chain with five bare phonons per site~i.e., 24 bare
electron-phonon states per site!.

Optimized states E(1 1Ag
1) E(1 3Bu

1) E(1 3Bu
1)2E(1 1Ag

1)

10 2149.4647 2148.7655 0.6992
14 2149.5331 2148.8477 0.6854
18 2149.5428 2148.8564 0.6844
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electron-phonon basis is found by constructing a redu
density matrix for this site by tracing over the states of t
remaining three blocks~the system and environment block
and the adjacent site!. The full electron-phonon Hilbert spac
is used for the target site. The optimal states are then
density matrix eigenstates with the largest eigenvalues.

Once a single-site Hilbert space is optimized it is th
augmented with the system block in the standard finite lat
algorithm.9 Since the classical lattice geometry of excit
states changes as the chain length increases, there isa
priori reason to suppose that the optimal site electr
phonon basis for the shortest chain is appropriate for lon
chains. Thus, it is generally necessary to performin situ op-
timization: a site Hilbert space is reoptimized when it form
part of the target chain size. Generally, we expectin situ
optimization to be necessary whenever the short scale p
erties are modified by the long scale properties. During thin
situ optimization only a few states~typically 80! are retained
for the system and environment blocks, while typically, 1
states are used for the system and environment blocks du
augmentation. A further truncation parameter is the prod
of the density matrix eigenvalues,e, of the four single block
states used in the tensor product to construct a superb
state. Only superblock states with ane greater than the cut
off are retained in the superblock Hilbert space.17

A key goal of this work is to study excited states, whic
we do by exploiting the particle-hole (Ĵ) and spin-flip (P̂)
symmetries of Eq.~1!. The inversion symmetry is measure
at the middle of a finite lattice sweep. We have checked t
settingJ511 andP511 targets the ground (11Ag

1) state,
settingJ521 andP511 targets the 11Bu

2 state, and set-
ting J511 andP521 targets the triplet (13Bu

1) state.
We now turn to the convergence tests. These tests w

performed at up to 30 sites, because at this chain len
significant deviations between the quantum and semiclass
calculations are evident. We first establish convergence w
respect to the number of optimized states per site. Tab
shows the ground state and triplet energies for the 30-
chain with five bare phonons per site. We see that with
states the transition energy has converged to within 0.001
Next, we consider the convergence with superblock Hilb
space size at 30 sites. As shown in Table II, the converge
of the ground state energy is reasonable for up to 180
states, and the transition energy has converged to better
0.01 eV. Finally, we consider the triplet transition energy a
function of the number of bare phonons per site for vario

r

e
.

TABLE II. The ground state (11Ag
1) and triplet (13Bu

1) energies~eV! as a function of the density matrix
eigenvalue product cutoff (ec), the number of system block states (m), and superblock Hilbert space siz
~SBHSS! for the 30-site chain with five bare phonons per site. There are 18 optimized states per site

ec 1 1Ag
1 1 3Bu

1 E(1 3Bu
1)2E(1 1Ag

1)
m SBHSS E(11Ag

1) m SBHSS E(13Bu
1)

10212 79 54876 2149.5377 103 102770 2148.8456 0.6921
10213 110 105640 2149.5417 124 178568 2148.8528 0.6889
10214 131 180568 2149.5428 145 304896 2148.8584 0.6844
10214 150 200226 2149.5432 182 410984 2148.8614 0.6818
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BREAKDOWN OF THE ADIABATIC APPROXIMATION IN . . . PHYSICAL REVIEW B65 075107
chain lengths, as shown in Table III. We see that the tra
tion energy has converged to better than 0.01 eV with fi
phonons per site. We conclude from the convergence t
that by using five bare phonons and 18 optimal states per
and ca. 160 states per system block, the transition ene
have converged to better than 0.01 eV. We use these pa
eters to extend the quantum calculations to 50 sites. As
chain length increases, however, these calculations bec
prohibitively expensive in computer time. For chain lengt
of greater than 50 sites we retain two bare phonons per
The convergence of the transition energies at 50 sites
respect to the number of bare phonons suggests that th
ergies are still accurate to much better than 0.1 eV.

IV. RESULTS AND DISCUSSIONS

Figure 1 shows the transition energies for the 11Bu
2 and

1 3Bu
1 states as a function of inverse chain length for up

102 sites. For short chains the differences between the t
sition energies in the quantum and semiclassical limits
very small. However, the quantum calculation of the trip

TABLE III. The triplet transition energies~eV! as a function of
the number of sites,N. The model@Eq. ~1!# with zero phonons is the
undimerized Pariser-Parr-Pople model.

N Number of bare phonons per site Semiclas
0 1 2 3 4 5

6 1.8075 1.9259 1.9631 1.9751 1.9789 1.9799 2.026
14 0.8616 1.0200 1.0648 1.0796 1.0860 1.0887 1.19
30 0.4212 0.5917 0.6518 0.6712 0.6800 0.6844 0.88
50 0.2559 — 0.5306 — — 0.5578 0.8500
66 0.1935 — 0.4949 — — — 0.8494
82 0.1541 — 0.4790 — — — 0.8490
102 0.1209 — 0.4718 — — — 0.8486

FIG. 1. Transition energies for the 11Bu
2 ~circles! and 13Bu

1

~triangles! states as a function of inverse chain length. Semiclass
~quantum! calculations are indicated by solid~open! symbols. The
quantum calculations for five~10 to 50 sites! and two ~50 to 102
sites! bare phonons per site are shown by solid and dashed li
respectively. Also shown are the 11Bu

2 (3) and 13Bu
1 (1) tran-

sition energies for the undimerized Pariser-Parr-Pople model@i.e.,
Eq. ~1! with zero phonons, or equivalently the limit\v→`#.
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state energy deviates from the semiclassical result in
ways. First, the gradient as a function of inverse chain len
is greater, and second, the flattening off of the energy occ
at a larger chain length. As a consequence, there is a c
deviation between these limits for the triplet state as the c
jugation length increases. This deviation is a result of
depinning of the excited state by the lattice fluctuations.
contrast, the deviation between the semiclassical and q
tum limits for the singlet excited state is relatively mode
At 50 sites, using five bare phonons, the deviations are 0
eV and 0.07 eV for the triplet and singlet states, respectiv
while at 102 sites, using two bare phonons, the deviations
0.38 eV and 0.14 eV for the triplet and singlet states, resp
tively.

Further insight into the depinning of the excited states c
be obtained from a study of their geometrical structures.
calculate the classical phonon displacement,qi , the bond
length distortion, and the root-mean-square fluctuations
the bond length. Figure 2~a! shows the staggered bond leng
changes in the ground state and excited states of a 50
chain. We see that the ground state dimerization of ca. 0
Å in the quantum limit is slightly smaller than the semicla
sical result of ca. 0.05 Å . We find that in the limit of lon
chains the relative root-mean-square fluctuation in the b

cal

al

s,

FIG. 2. The geometries~staggered bond distortion as a functio
of bond index from the center of the chain! of various states: 11Ag

1

~diamonds!, 1 1Bu
2 ~circles!, and 13Bu

1 ~triangles!. Semiclassical
~quantum! calculations are indicated by solid~open! symbols.~a!
50-site chain with five bare phonons per site in the quantum ca
lation. ~b! 102-site chain with two bare phonons per site in t
quantum calculation.
7-3



mit
s and

al

BARFORD, BURSILL, AND LAVRENTIEV PHYSICAL REVIEW B 65 075107
TABLE IV. The triplet transition energies~eV! as a function of the phonon energy at 30 sites. In the li
that\v0→` the model@Eq. ~1!# becomes the undimerized Pariser-Parr-Pople model. Five bare phonon
18 optimized states per site were used in the quantum calculation.

Pariser-Parr-Pople Quantum phonons Semiclassic
A10\v050.632 eV \v050.2 eV \v0 /A1050.0632 eV

0.4214 0.5257 0.6844 0.8026 0.8842
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length is ca. 0.9, almost independent of the number
phonons per site, and close to previous theoretical7 and
experimental18 estimates.

Significant deviations are found between the quantum
semiclassical predictions for the triplet soliton structur
The soliton width in the semiclassical calculation~ca. 10
bond lengths! is relatively short, and much less than half t
chain length at 50 sites. Provided that a soliton is furt
away than its half-width from another soliton or a chain en
its potential energy varies very weakly with bond index. Th
explains the location of the solitons near the chain end
our semiclassical calculation, as our DMRG procedure
creases the chain size by inserting new bonds in the cent
the chain. The classical soliton structure also pins the e
tronic wave function, and leads to the flattening off of t
triplet transition energy.

In contrast, the soliton width in the quantum limit
greater than half the chain length at 50 sites, and hence
soliton and antisoliton are repelled by each other and by
chain ends. Furthermore, since the chain length has not
ceeded twice the soliton width, the electronic wave funct
is not yet pinned, and the transition energy is still decreas
with chain length. At 102 sites, shown in Fig. 2~b!, the soli-
ton width of the triplet in the quantum calculation is rough
half the chain size, and so, as expected the transition en
is fairly flat as function of chain length.

Finally, we consider the optically allowed exciton
(11Bu

2) state. According to the adiabatic approximation19

this state creates a shallow polaronic distortion of the latt
with self-trapping only becoming important for chain lengt
longer than ca. 40 sites.2 This is confirmed by the excitation
energies shown in Fig. 1, indicating that the transition en
gies calculated in the quantum limit are within ca. 0.1 eV
the semiclassical result, and Fig. 2, showing that the qu
tum and semiclassical polaronic structures are similar~al-
though wider in the quantum calculation!.

As already noted in Ref. 1, we should expect our quant
calculation to approach the semiclassical approximation
the limit thatv→0. We check this by repeating the calcul
tion for two other values of phonon frequency:A10v0 and
v0 /A10. These results, shown in Table IV, indeed show t
as v is reduced the transition energies approach the se
classical limit. The nature in which the quantum result a
proaches the semiclassical result as a function ofv is inter-
esting subject, which we discuss briefly in the Conclusio
However, it lies outside the main scope of this paper.

V. CONCLUSIONS

In conclusion, an extended DMRG method has been
plied to an interacting electron-phonon model of polyen
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Quantum lattice fluctuations play an important role in t
depinning of the self-trapped excited states, leading to c
rections to the adiabatic approximation. Corrections to
adiabatic approximation are particularly important for t
lowest-lying triplet, as this state is gapless in the long ch
limit in the absence of electron-phonon coupling3 ~i.e., the
Pariser-Parr-Pople model!. Figure 1 and Table III show the
triplet transition energy for the undimerized Pariser-Pa
Pople model. Thus, the phonon frequency is not small
comparison to the electronic energy scale, and the appr
mation of slow nuclear motion relative to the electronic tim
scales is no longer valid. This breakdown of the adiaba
approximation is an emergent property of long chains.
102 sites the phonon-calculated triplet energy is only 56%
the adiabatic approximation. Since the dipole-forbidd
2 1Ag

1 state is formed from a pair of bound triplets, th
reduction in the triplet energy from quantum fluctuations
also expected to apply to the 21Ag

1 state. It would be rea-
sonable to expect that the semiclassical prediction3 of 1.74
eV for its transition energy might be reduced to ca. 1.0
with the inclusion of quantum phonons. This prediction
very close to Kohler’s linear extrapolation5 and to the experi-
mental determination of the 21Ag

1 energy by Halverson and
Heeger.20,21

The reduction of the triplet transition energy is associa
with a significant increase in the soliton width. Self-trappi
occurs when the chain length exceeds twice the sol
width. As the phonon frequency increases, the model@Eq.
~1!# approaches the Pariser-Parr-Pople model~i.e., with no
phonons!, and the soliton width increases. Furthermore,
the chain length increases the Pariser-Parr-Pople model
dicts that the triplet energy tends to zero. Whether or not
Eq. ~1! is in the adiabatic limit is determined by a compa
son of the excitation energy of the Pariser-Parr-Pople mo
to the phonon frequency at chain lengths comparable to
soliton width. However, because the soliton width is det
mined by the phonon frequency, there is noa priori way of
predicting whether or not the Eq.~1! is in the adiabatic limit.
As already stated, this argument suggests that the 21Ag

1 state
is not in the adiabatic limit for these model parameters, as

TABLE V. The singlet (11Bu
2) transition energies~eV! as a

function of the number of sites,N.

N Number of bare phonons per site Semiclassic

0 2 5
50 1.9003 2.4341 2.4809 2.5508
102 1.7427 2.3788 — 2.5211
7-4
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BREAKDOWN OF THE ADIABATIC APPROXIMATION IN . . . PHYSICAL REVIEW B65 075107
energy is also gapless in the long-chain limit of the Paris
Parr-Pople model.

In contrast, the exciton-polaron (11Bu
2) state is expected

to be in the adiabatic limit, as its energy in the Pariser-Pa
Pople model is 1.6 eV in the long-chain limit.3 This is con-
firmed by the current calculation, and in particular Fig. 1 a
Table V, which show that the deviations between the qu
tum and semiclassical limits is only ca. 0.1 eV at 102 site

In this paper we claim that quantum corrections to t
adiabatic approximation lead to the delocalization of t
o
,
s

a
e
i

l
o

.
e

a

07510
r-

r-

d
-
.
e
e

low-lying spin-density wave states. However, a further co
tribution to this delocalization may be interchain coupling.
rigorous analysis of the effects of interchain coupling with
the present model lies outside the scope of the current pa
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