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Hubbard-U calculations for Cu from first-principle Wannier functions
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We present first-principles calculations of optimally localized Wannier functions for Cu and use these for an
ab initio determination of Hubbar@Coulomb matrix elements. We use a standard linearized muffin-tin orbital
calculation in the atomic-sphere approximation to calculate Bloch functions, and from these determine maxi-
mally localized Wannier functions using a method proposed by Marzari and Vanderbilt. The resulting functions
were highly localized, with greater than 89% of the norm of the function within the central site for the occupied
Wannier states. Two methods for calculating Coulomb matrix elements from Wannier functions are presented
and applied to fcc Cu. For the unscreened on-site Hubbdiat the Cu 3d bands, we have obtained about 25
eV. These results are also compared with results obtained from a constrained local-density approximation

calculation.
DOI: 10.1103/PhysRevB.65.075103 PACS nuni®er71.10.Fd, 71.15.Ap, 71.2Fa
. INTRODUCTION attempts in this directiofiz** All of these recent develop-

ments add local, screened Coulortihubbard correlations

During the past few decades powerful numerical method$) between localized orbitals to the one-particle part of the
have been developed for tla initio (first-principles calcu-  Hamiltonian obtained from aab initio LDA band-structure
lation of the electronic ground-state properties of solids. Incalculation, but differ in how they handle the correlation
most of these methods density-functional thédFT) has  part. In the earliest attempts, the LBAJ method used es-
been used to treat the electron-electron Coulomb repulsiorsentially a static mean-field-lik@r Hubbard-I-like approxi-
and a local-density approximatidfLDA) (or a local spin- mation for the correlation. The simplest approximation be-
density approximation for magnetic systenhas been used yond the Hartree-Fock approximation, second-order
for the exchange-correlation potential. This procedure hagerturbation theory in U, was uset®**to study the elec-
been very successful for many materials and ground-stat&onic properties of 3d systentike Fe and Nj and heavy-
propertiede.g., crystal structure, lattice constant, binding en-fermion systemglike UPt). The LDA+ + approach®®*
ergy, and ionization energybut it has its limitations; the has a similar strategy, but uses other many-body approxima-
band gap of semiconductors is not properly reproduced, fotions to treat the correlation problem, namely, either the
instance. Furthermore, for systems such as high-temperatufkictuation-exchange approximation or the dynamical mean-
superconductors, heavy-fermion materials, transition-metdield theory® (DMFT). Some of the other many-body
oxides, and 3d itinerant magnets, i.e., for systems in whichreatment§****have also used DMFT, which is based on the
the Fermi level falls into a region of narrow energy bandslimit of large-dimension §— ) approximation for corre-
the LDA is usually not sufficient. It is generally accepted thatlated lattice electron Within DMFT the self-energy be-
the problem for these materials is the strong electronic coreomes local, i.e., independent of momentigmvhich allows
relations that are responsible for their electronic propertiesa mapping of the lattice problem onto an effective impurity
For a description of such strongly correlated systems, oneodel. The LDA+ DMFT treatment¥ 4 mentioned above
usually instead uses as a starting point model Hamiltoniandiffer in the many-body method they used for the effective
like the Hubbard mod&land its multiband generalizations. impurity problem, namely, quantum Monte Catfathe non-
But in these models the Coulominteraction matrix ele-  crossing approximatiotf, or iterated perturbation theofy.
ments and also the one-partidleopping matrix elements But all these approaches, including the LBA), have in
that determine the unperturbed band structure are usuallgommon that they have to introduce a Hubbard U as an ad-
treated as free, adjustable parameters, i.e., they are nditional parameter, and hence are not real first-princifaés
known from “first principles” for the given material; on the initio) treatments. Although they use an LD&b initio
other hand, Coulomb correlations can be studied within reliimethod to obtain a realistic band structure, i.e., single-
able many-body approximations that go beyond the Hartreeparticle properties, Coulomb matrix elements for any par-
Fock approximation. ticular material are not known, and the Hubbard U remains

Both the ab initio LDA and the many-body model- an adjustable parameter.
Hamiltonian methods based on Hubbard-like models have One can obtain estimates on the magnitudeJoéither
their merits, but until rather recently they have been almosfrom experiment(high-energy spectroscopyor from the
separate and complementary approaches. But, in view of theonstrained LDA methot!’~??Within the latter method one
power of each, a combination of these methods is desirablgidds the constraint that the electron occupation number for
and, in fact, during the last few years there have been sonthe correlated bands is fixed to a given number through a
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Lagrange parameter. One can then use LDA to calculate thé/annier functions, and we present the two methods to cal-
ground-state energy for different occupations of the correculate the Coulomb matrix elements. To illustrate the
lated states, and the difference between the energy for doubfeethod, we have performed actual calculations for a well-
and single occupation is an estimate for the Hubbard U. Thiginderstood system, namely, for Cu. Although this material is
method has the advantage that effects of screening are d10t @ strongly correlated system, it has almost completely
ready somehow included. On the other hand there are usualfifled, narrow 3d bands, for whictwell-localized Wannier
several bands and many interaction matrix elemémissite, ~ functions and one- and two-particle matrix elements can be
density-density, intraband, interband, exchange, intersité@lculated. Results for Cu are presented in Sec. Ill, where we
etc) that have different magnitudes, and the constrainedNOW some of the Wannier functions, demonstrate how well

LDA can only give some average value for these varioug0c@lized they are and that the one-partidight-binding
Coulomb matrix elements and not the individu initio matrix elements obtained from them allow for a reconstruc-

parameter$Coulomb matrix elementsThis approach is in- tion of the pand structure. The direct Coulomb matrix ele-
tuitive and contains some type of screening within a oneMeNts obtained are rather large, between 20 and 25 eV for
electron LDA approach. It is difficult to sort out the actual Vannier states with mainly 3d character, and are about 5 eV

for nearest neighbors and about 1 eV for exchange interac-

th@ons. In Sec. IV we describe constrained LDA calculations,
directab initio calculation of the one-particktight-binding ~ Which yield somewhat smaller valueabout 18 eY for the

and two-particle(Coulomb matrix elements. Our starting Hubbard U of Cu, and in the final sectiav) we discuss
point is a standard electronic band-structure calculation, fo©W to extend and further apply the current approach.
which we have used the linearized muffin-tin orbital

(LMTO) method®?*within the atomic-sphere approximation Il. COMPUTATIONAL DETAILS

(ASA). The LDA band-structure calculation yields not only

. . oo We restrict ourselves to the case where there is only one
one-particle energies but also their eigenstates, the Bloch, per unit cell and where we can neglect sion-spin-

VI-\|I'6I‘t\)/e IunCt'OnSLI_WZ'CP form atﬁrolper bas_,;s of 3 Qnte'p‘f"rt'depolarized calculations For a given material the only input to
ilbert space. To determine the loc@nsite and intersite o, o1 injtio LDA calculation is the atomic number. In the
Coulomb matrix elements it is necessary to construct Wanaensity—functional approact?® a local-density approxima-

. . 5,26 .
fmer tfuncuo.ns’-, V\.’th'Ch tare ;:Iosel¥ relatt)e(tj tc;].tr;]e Bloch ttion is normally used for the exchange and correlation inter-
unclions via a unitary transformation, but which ar€ noty.ijons petween the electrons; we have used the von

“r?iq“e since the phases of the Bloch functions are undeteEarth—Hediﬁ0 exchange-correlation potential and a frozen-
mined. core approximation. Within DFT the total energy of the

As first suggested by Marzari and Vanderbfithis gauge ground state could be calculated as a function of volume for

frgedom can b,? used to construct ”?ax'ma”Y Iocah_zed Wan- given crystal structure and used to determine the equilib-
nier functions.” Those are just Wannier functions with a spe-

. : . ! rium lattice constant; it is usually in good agreement with
cial gauge that makes them optimally localized according tcbxperiment. However, since our focus is on the determina-

some criterion. A proper localization of the Wannier func- tion of Coulomb matrix elements in a Wannier basis, we

tions is important _in our opinion, because only then do th%ave simply used the experimental lattice parameters.
standard assumptions of the model treatments hold such that

only a few(on-site, nearest, and next-nearest neighbaoe-
particle (hopping and two-particle(Coulomb matrix ele-
ments have to be considered explicitely. These matrix ele- For our band-structure results we have used the LMTO
ments can then be calculated from the Wannier functions. method®2*within the ASA. The combined correction tefin

We use two different methods to calculate Coulomb ma-was not included. The muffin-tin spheres are overlapping and
trix elements from Wannier functions. The first method usegheir radius(the Wigner-Seitz radiuS) is determined by the
the fact that the LMTO method provides Bloch functions in condition that the sphere volume equals the volume of the
the basis of linear muffin-tin orbitafS. Therefore the Wan- unit cell. Within the muffin-tin spheres the potential and
nier functions are given as linear combinations of suchwave functions are expanded in spherical harmonics with a
muffin-tin orbitals as well, and can be used to evaluate theutoff | ,,,,=3, i.e., s, p, d, and f orbitals are included. Fur-
Coulomb integrals efficiently, similarly to what was done in thermore, the Bloch wave functions are given in terms of the
Ref. 28. The second method uses a fast Fourier transformaelution to the radial Schdinger equationg,(r) to some
tion (FFT). It does not rely on the property of the wave fixed energiesE,; and its energy derivative,(r),
functions being linear and is therefore more general. It is also
very quick and efficient. nk . nk -

The paper is organized as follows. In Sec. Il we present \Pnk(r)=§|_: (Pu(DAM+ ¢, (NBIYL(r), (D
some of the computational details: we describe the form of
the Bloch functions in the LMTO method, how to obtain the where we use complex spherical harmonics in all of our cal-
Wannier functions from them, and how to optimize theculations. This expansion is valid in one muffin-tin sphere.
choice of the Wannier functions by using the Marzari- Here, as usuall. ={l,m} is understood ana is the band
Vanderbilt method. Then we describe how the one-particléndex andk is the wave vector. We defineby the condition
(hopping matrix elements are obtained from these localizedthat E, (k) <E, . 1(k). The virtue of using this method for

approximation involved.
In this paper we suggest a different approach, namely,

A. LMTO wave functions
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Wannier functions is the simplification that only integrals supercell that is used to discretize thenesh. As mentioned
over spheres are needed; no real-space integrations ovghove, Wannier functions are not unique. Consider, for ex-

complicated Wigner-Seit@unit) cells are required. ample, a single band with Bloch functions| ¥ ,); a trans-
The Bloch functions obey formation of the kind
W oi(r+R) =€ Ry (r). ) W )
W) —e | w),  for ¢ real 7)

Therefore, the knowledge of a Bloch function in a single
muffin-tin sphere is sufficient for the knowledge of the func- . . . :

tion in the whole crystal. This situation is different when we will still Ieaq to Bloch .func'qons. We shall call this a gauge
consider Wannier functions. which can be centered on differransformation of the first kind. In the case of a composite set

7 . .
ent sites. It is useful to introduce a notation that holds forOf bands;” this nonuniqueness corresponds to the freedom to

both Bloch and Wannier functions. To do this we perform anc?orc])seB}hehpPase_s and “band-index labeling” at dagioint
expansion like Eq(1) in each muffin-tin sphere, which we of the Bloch functions,
label by its site vectoR. The complete wave functioither

Bloch or Wanniey is then given by |‘1’nk>—>2 Um‘l’mk)- ®
m

D (1)=2 D (Ri;r—Ry). (3) , _ ,
! We shall call this a gauge transformation of the second kind.

In this equation we have used the general notation for thé'ereU‘m_’n is a unitary matrix. From all the arbitrary choices

Wave_function expansio@a( Ri or— RI) . (|) () iS any k|nd of Of Wannier fUnCtlonS we will p|Ck out that pal’tICU|aI’ set that

wave function.(ii) « stands for quantum numbe(Bloch, ~ Minimizes the total spread given by

a={n,k}; Wannier,a={R,n}). (iii) The first argument in

the parenthesis indicates the muffin-tin sphere about which 5 5

we are expanding and is labeled by its site vedioy. The Q:; [(r5n—(r)al. 9

second argument in the parenthesis is the position inside this

muffin-tin sphere described by its relative vector. This mean

that this vector has zero length in the center of the muffin—tir?z: £L|2?én§pzr?ntg:ﬁ6d<¢c>> p rga?:wﬁgfnshéq Fg);pr?é:;agggnviue
h i he fi N hat, f : )
sphere described by the first argumen Note that, for veloped by Marzari and Vanderfiftand its application to

everyR, the ASA wave functions does not pose any particular prob-
o, (R;r)=0 if [r|>S. (4)  lems(details will be given below
) ) _ Before minimizing() according to this procedure, it is
In the case wheré is a Bloch function we find useful to prepare the Bloch orbitals to make the starting

V. (R1) =@k Ry 5 Wannier functions somewhat localized. This has two advan-
(Rir)=e ak(F)- (5) tages:(i) the minimization procedure converges faster and
It is easy to see that E¢p) inserted in Eq(3) obeys Eq(2). (i) this helps to avoid getting trapped in local minima.
Also note that Eq(3) disregards the effects of overlap- Marzari and Vanderbiff suggest several possible prepara-
ping muffin-tin spheres. Within the ASA approximation, all tions. We have found our own method, which seems to work
derivations are done as though nonoverlapping muffin tingvell. This involves a simple gauge transformation for each
are being used, and then these formulas are used with ekand, which is given by
panded muffin tins, whose volumes sum up to equal the unit
ce_ll-volumg(where the muffin-tin radius_is expand_e_d to a VoD —exd —i MmN, (ro) W (). (10)
Wigner-Seitz radius for one atom per unit ¢gelh addition,
this approximation eliminates the necessity to handle inter=|-his
stitial regions, and hence the ASA formalism is mathemati—Irn Inw
cally much simpler than a full-potential electronic-structureBIOCh
calculation would require.

gauge transformation has the property that
w(ro) transforms to zero. So at the poiry all the
functions will have the same phae this case just
1+i0) and(r,|On) will take a large value. We thus expect
) _ the Wannier function to be fairly localized Bj. To make the
B. Wannier functions method work well one should choosg where the Wannier
In this section we show how to calculate Wannier func-functions are expected to be reasonably large. In our calcu-
tions from the LMTO type of Bloch functions of E¢l). The  lations we have chosen the direction of this vector to be well
Wannier function® are defined by away from the expected zeros of the spherical harmonics and
with an absolute value far enough away from the origin to be
B 1 LR in a place where the Wannier functions should have a signifi-
Wrn(F)=(r|Rn)= N Ek: e T Wn(r). (6)  cant magnitude. We found ag of (0.8, 1.0, 0.3, to work
well for fcc Cu.
Here,N is the number ok-mesh points in the Brillouin zone We shall now derive expressions of the form of E3).for
or, equivalently, the number of unit cells in the real-spacéWannier functions. From Eq$5) and(6) we have
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1 A this reason we used many iteratiof@out 1500 stepsand
Wern(R%1) = > e RY (R converged) to about 0.01%. For the step sifef. Eq. (57)
. of Ref. 27 we used anv of 0.2.
1 o The final result can be written in a form similar to the
N Ek: e (R=Rhp (). (1)  LMTO wave functions, Eq(1),

Because Wannier functions on different sites have the same nR, nR -
)= +
form (shape of their wave functions and differ only by a Wa(Rir) ; (Pu(DAT Gu(NBLOYLT), (19

translation of their origin, it is useful to use a notation that

indicates values of a wave function relative to a Wannietvhere theA andB matrices originally come from the LMTO
function centered at the origin, wave functions, but are then updated from the relevant phase

information, unitary matrix, and other integrations and trans-
Wrn(R":1) =Woy(R' —R;r)=w,(R'—R;r), (12 formations of the method.
) ) ) ) Because of the normalization of the starting LMTO Bloch
where we have introduced the notatieg,=w, (i.e., if the  wave functions(which are normalized to unity within a
subscript contains only a wave function label without a spasjngle unit cell, each Wannier function is naturally normal-
tial vectorR, then we are using a relative notation that refersjzeq to unity when integrated over all space.
to a Wannier function centered at the origi/e can use the
Bloch'condlthn[cf. Eq. (11)] to calculate the parts of the C. One-particle matrix elements
Wannier function on other siteR,
The Wannier function basis can be viewed as an orthogo-
_ 1 R nal tight-binding basis. For this reason it is useful to calcu-
Wa(RIN =g ; e W k(r). (13 |ate one-particle matrix elements of the Hamiltonian in the
Wannier basis. As we shall see, these matrix elements are
Note that|r|<S. For this notation to work in our numerical (for a gauge transformation of the first kind ongguivalent
calculations, it is essential to force the Wannier center, i.e.to the Fourier components of the band structure; this equiva-
the muffin-tin sphere wherér|On) is largest, to be at the lence is useful for checking some of the numerical aspects of
muffin-tin sphere around the lattice sipwe achieve this by the calculations.
setting|ro|<Sin Eq. (10). In most of the rest of the paper,  Because the Hamiltonian has the property th#tr)
we will almost always use the relative notation that refers to=H(r +R), it is sufficient to consider the matrix elements
Wannier states centered at the origin, and will perform what-
ever translations are necessary to be able to use these states. tram=(RN|H|OmM). (16
In the method of Marzari and Vanderbiit,the starting
point for the calculations are a set of reference matrices d
fined by

dnserting Eq.(6) and usingH| W ) =E(K)| V) we find

Snm .
- tram="1y 2 € REq(k), 1
MEr?%(k,b):<\I,mk|e—|b-r|\1,n’k+b>. (14) Rnm= | ; n(K) (17)

Hereb denotes a nearest-neighbor vector on the discretizedhich are just the Fourier components of the band structure.
mesh ink space(in this method, the set db vectors are The Bloch statef¥ ) continue to be eigenstatesidfunder
needed for numerical derivativesNVe calculated the action a gauge transformation of the first kind and one can also
of e 'P'" on the ket by using Eq$A4) and(A2) and solved  easily show that theg,, are invariant under this type of
the remaining integral by using E22). We used a uniform gauge transformation. The,,, from Eq.(17) can be directly
(cubio) discretek mesh with a spacindk of 0.2(27/a). In  calculated from the band structuig (k).
such a mesh there are six nearest neighbors fob tectors A gauge transformation of the second kind leads to states
needed for the numerical derivatives. We were careful not t¢¥,,) that are no longer eigenstates ldfwith eigenvalue
double count vectors in tHe mesh(those equivalent to each E, (k). Thereforetr,, are not invariant under a gauge trans-
other by a reciprocal lattice vecjowithin the Brillouin zone  formation of the second kind. However, generally we can
(BZ) (which has 500k points in the full zong always calculate

We then used the steepest-descent method and relevant
equations in Sec. IV of Ref. 27 to iterate a series of small i
steps where a set dfWX were calculated and used to update HEmE<‘P”k|H|\I’mk>: ; e " Ftgom (18)
the unitary matricesJ* and theM*® matrices. After each
iteration, where we update all the relevdntmatrices, we and use its diagonalized eigenvalues as the band structure for
calculated the spread functiéd, and continued iterating un- any set of Wannier functions. The matii, is Hermitian;
til this converged. it is, of course, already diagonal for a gauge transformation

In these calculations the initial matric&(®)%:?) are by  of the first kind, with the energy levels as the diagonal matrix
far the most time consuming computationally requires elements.
storing 6x 500x 16?=768 000 complex numbersThe itera- To calculatetg,,, from Eq.(16), i.e., using Wannier func-
tions of the steepest-descent method were much faster. Foons, we can use Eg$3) and(12) to find
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whereV is the volume of the unit cell. In the same way that
the DOS is often projected in terms of theharacter of the
states, one can do a similar treatment for a projection onto
where the integral is over a single sphere only. The effect ofhe Wannier states. We can define a projected DOS for Wan-
H on the second wave function can be carried out easilyier states, by inserting the projection operator onto the Wan-
because we are working in a linear basis. We only note thatier stateg0j)(0j| into Eq. (27),

tan:Ei JdSrW:(Ri_R;r)HWm(Ri;r)r (19

(H=E,)#(r)=0 and H—E,|)¢(r)=¢(r), for details
see Ref. 23. In order to calculate EG9), we must evaluate
integrals of the form

|:J d3r F3(r)f,(r), (20

where the functions;(r) are given by the expansion

fi(r)=§ RiL(N)YL(F). (21)

Inserting Eq.(21) into Eq.(20) and using the orthonormality
of the spherical harmonics yields

1=>

L

fd”z TL(NRy (7). (22

Because Eq(1l) was our starting point, the radial functions
R(r) will always be given in terms oé,(r) and ¢(r), i.e.,
RiL(1)=AiL (1) +Bi i (r). (23

We will use this form to calculate the integrbivery effi-

\%

S | aKi(waloi)PoEEqk).
(28

Note that they,,, in this formula have to be the Bloch states
before the gauge transformation, since the band structure
E,(Kk) is related to the untransformed states. The Bloch wave
functions are normalized to a single unit cell and each Wan-
nier function over all space. We can calculBtgE) by using
the tetrahedron methdd.For thek points that form the tet-
rahedrons we need to calculdta,|0j)|2, which we have
done using the scheme described in Sec. Il C. In these cal-
culations it is important to be aware tH&f) has parts of its
wave function on sites other than the central site where it is
centered. In our calculations, we included parts of the Wan-
nier function out to 17 near-neighbor shells of sites.

Note that the exact projection operator is a sum over all
R, since

> IRiXRj|=1. (29

R

ciently. It is clear that any integral can be reduced to a linear

combination of “basic” integrals. Those basic integrals con-

sist of the(very limited combinations of thep(r)’s and
& (r)’s. We will label them by

bl;plpzzf drr2[5p1,0¢|(r)+5p1,1¢|(r):|

X[8p, 001(1)+ 8p, 11(1)], (24)

However, it is sufficient to only consider the Wannier states

|0j) in our projection(and not all thgRj)), since
[kl R = [kl 03] (30

We can check the correctness of our projection by comparing

Niof( E) = Z;N;(E) with the N(E) that is calculated directly

from the LMTO energy eigenvalues. We find that our pro-
jected sum is accurate to within 0.2% of the LMTO value.

wherep, andp, can take the values 0 and 1. So it must be

possible to write the integrdlas

(29

11
I=2 E 20 aL;plpgb'iplpz'

L p1=0 pp=

It follows that the coefficientaL;plp2 are given by

aL;p,p, =L 0p, AL+ p, BT 8p, Aol + 6p,1BaL .
(26)

We are now in a position to calculate E39) with the aid of
Eq. (25).
D. Wannier-function projected density of states

The density of state€DOS) per spin is defined by

\Y,

N(E)= e

) fBZdSk SE-ELK), (27

E. Coulomb matrix elements

The matrix elements we wish to calculate are

dr d3r’e?

Wiz 5= f =

W ()W (1 )Ws(1)Wa(r").
(31)

where 1,2,3,4i={R;n;} is a Wannier state and/ denotes

the Coulomb interaction. The spatial integrals ovemdr’
extend over all space. Using Eq8) and (12), we can use
translations to rewrite this expression so that the integrals are
only over the muffin-tin sphere at the origin,

W12,34:2 W(12,34R; \R)), (32
0]

where the expressiow/(12,34R,R’) is defined by
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d3r d3r
f|r—r+R R’|

X Wy (R=Rg;r)wp, (R"=Ry;r'). (33

PHYSICAL REVIEW B35 075103

Wy (R=Ry;nwy (R'=Ry;r') ||;L1L2L3L4Ej drr?RiL (MR (1)

1 12D% ' ! r|<
X | dr'r/?Rg (1" )Ry, (1 )rl—ﬂ, (40
>

Since most applications of the Hubbard model use only

two orbitals instead of all four, it is useful to define the the integral takes the form

limiting subset of theV functions as direct Coulomt;; and A
exchangel;; integrals, |:I,Li mCI;L1L2L3L4II;L1L2L3L4- (41
Upp=Wip 1o, J1o=Wop o (34

The task is now to determinta|;|_i (we use the shorthand

and the obvious generalizations for notationL; for L;L,L3L,4). To do this, we will use the for-

malism developed in the preceding section. In complete anal-

U(12;R,R")=W(12,12R,R"), ogy to Eqgs.(24)—(26) we now find

J(12:R,R")=W(12,21R,R"). (35) =3 au,birp, 42)
(| p| 1= |

1. Spherical-harmonics expansion where
We will now only consider matrix elements between Wan-

nier functions centered on the oridine., where thék;=0in

Eq. (31)]. Because we are using maximally localized Wan- at;p, H [ 8p,,0AIL, + 8p, 1BiL ]H [ Sp;.0AiL, + 8p,.1BiL, ]

nier functions, most of the Wannier functions have their larg- (43)

est component in the center céee Sec. l). As a first

approximation, we will therefore neglect all other muffin-tin and

spheres. This approximation allows us to calculate on-site

interband matrix elements. We are thus looking for

Wh.n, ngn,~W(12,340, O)—fdsr d®r'wi (O;r)wi (O;r')

2
e
X|r—r’|Wns(o”)wm(o?r')' (36)

where the integral over is only over the central site. Insert-
ing the expansion Eq21) for the Wannier functions and
making use of the well-known expansiésee, for example,

Ref. 32

© | |
2 lfl = YEEOVUD, @D

|r—r | =02

wherer~. (r.) is the length of the greatdsmalle) of the
two vectorsr andr’, we find

2|+1 2 fdrrzR T, (NRL(1) fdr’ 2

r-
RS (TR (1) |+1 2 CLonCri,. (39

The coefficient<, | ;| » are called Gaunt coefficientsee Eq.

(A3) in the appendik If we define
[
m; Cr,iCu,L (39

CriLy,LaL,=

and

bp, = f drr?[ 8y o1, (1)+ 85 16b1 (N[, 06b1,(F)

RG] RTLECNTND

|
<

+ 85,161, (t )8, 06b1,(1') + 5p4,1éz>|4<r'>]r|—+l.

(44)

It should be noted that these basic integrals are symmetric
with respect to some of their indices. If we introduce the

joined indexn;={t; ,p;} then
bl;nln2n3n4: bI Ngnonyn, — bI NgNNgn, bl;n3n4n1n2: bI;n2n1n4n3
:bl;n2n3n4nl:bl;n4n1n2n3:bl;n4n3n2nl- (45)

If we consider the numerical aspects for the case whepe

d, andf orbitals are included in the wave-function expansion,
we find that we need to use a cutoff lpf,,=6 in Egs.(37)

and (39). Using the symmetries in Ed45), we then find
9072 basic integrals that have to be calculated and stored.
The sum in Eq.(41), however, involves ¥ 16*=458 752
elements. Fortunately, only 6778 combinations of the
I, Ly, Ly, Lg, L, coefficients in Eq(42) have to be calcu-
lated; the others vanish. Each of these coefficients involves a
sum over 16 elements, and each of these elements is a prod-
uct of five numbers.

2. Fast fourier transformation approach

The method we have just described works well, but re-
quires a lot of Gaunt functions and other complications. As
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mentioned, it also only involves integrals over the central 0 5 10 15 |R[- a0
site and ignores parts of the Wannier functions on nearby 0 e ' '
neighbors. We have therefore found a different approach to —2 1 ) Fane g
the problem. ] : L N 151,
To calculateW(12,34R,R’) for any lattice sitesR and R 29 o 0,380
. -6+ T . s 77~ 0.38ag
R’, we make use of the Fourier transform ' '
—8 b
e 2g72 ~10 + :
f d*g—5 =11 (46) ! ' i
q Ir —12 4 ' e i
and find for Eq.(33) T N |
—16 1 )
2 3 * v~ 1.14a7
e d . ’ ¥ Qg
W(12,34R,R') = _zf _qu|q.(R7R )f13(q)f24(_q)7 In{ws|wz)r
2 q

FIG. 1. Localization of Wannier functions befokgray) and

after (solid) minimization of the spread functiond). Each dot
fij(Q)Ef d3r eiqu:'(R_ Ri;Nw, (R=R;;r). (47) represents the portion of the wave function in a muffin-tin sphere.

! ! The best exponential fit to the decay is rouglly”" with the values
The f;; functions are just the Fourier transforms of a product® 7 given within the figure. In Eq. (10} we set o
of some Wannier functions in a sphere. These can be calcy: (0-8:1.0.0.3%.
lated very efficiently by calculating the Wannier functions on

a cubic mesh in real space and then applying a standard Fﬁ}'or’:l]mti;h:t heear('::all-%tzrgnr]?)lnl'z EqAa?ns?gwsd tlfoczlcg:at?ndan
algorithm. To do this, we have used the routine “four(af. pner IC_expansions. WEVe, y

Ref. 33. For details on how to apply the FFT to continuous such integrals WOUIQ be required gnd the method would be

functions, Ref. 34 is very useful. The result of the Fourierextremely computationally expensive. The FFT method gen-

transform’ isf.. () on a cubic mesh i space with soméq erates all they values needed with a single calculation and is
ij

(the distance between the mesh pointe perform the re- much more efficient. However, because of finite mesh sizes
maining g integral in the following way. Let us call the in- and compromises between real apspace integrals, it is not

. 5 as accurate as the spherical-harmonic expansion method of
tegrand without they = term Sec. Il E 1, when the latter is applicable.

F(q)=€9®RRIf (q)f,i(—q), (48)

which is smooth function aj= 0. In order to treat the diver-
gence arising frong ~ 2, we split the integral in the following
way:

III. RESULTS AND DISCUSSION

We have tested our methods on Cu, which has the follow-
ing properties:(i) It has a simple close-packed fcc crystal
structure for which the ASA should be a reasonable approxi-

_ 3 mation. (i) Cu is a simple metal that belongs to thel 3

f d3qlg):f d3qL2|:(O)+F(o)f d_zq (49)  transition metals, so one can determine Coulomb matrix el-

q q q ements for the @ states, which are interesting and of rel-
evance for the really correlatedi 3ystems(iii ) Since Cu is
nonmagnetic, we do not have to worry about spin-polarized
or magnetic calculations. We have used the experimental lat-
1 1 11 tice constana=3.614 A as given in Ref. 35. As usual we
czf dxf dyf dz—~1534825.  (50) gse atomic Rydberg units arah=7%%/mé is the Bohr ra-
-1 -1 -1 ius.

From the one-electron Bloch wave functions, the Wannier
functions were obtained using 500 points in the BZ. Since
we have used a cutoff df,,,=3, the LMTO method gener-
ates 16 bands. In the minimization procedure, all 16 bands
were treated as a composite set of bands. To demonstrate the
localization of the Wannier functions obtained, we have cal-
Bulated

All integrals are over a cube with lengthAqg. The last in-
tegral is just half of this length timeS, which we define as

The remaining integral in Eq49) is transformed into a sum
over little cubes with volumeXq)3. For q=0 the value of
the integrand is calculated via the second derivativE (@f)

at g=0 numerically(the second derivative is needed to can-
cel theg? in a power-law expansion d¥).

The cubic grid in real space that we used to calculate th
Wannier functions in Eq(47) hadN= 643 points in the real
space grid with a spacingx=0.17. TheAq spacing of theg
mesh is determined by and Ax. Using the FFT for con- (WnIWn>R=f dr|w,(R;1)|?, (51
tinuous Fourier transformations one has to be very careful
about the choice of these values because the FFT is a discretdich is the relative weight the Wannier function localized at
Fourier transform. It is important to make sure that the rethe siteO has in the muffin-tin sphere centered arotdn
sults of a FFT calculation do not depend on the vaNes\d  Fig. 1 we have plotted fon=2 the function Igw,|w,)s as a
AX. function of |R|. Although the contribution tav, appears to
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TABLE I. Angular character of Wannier functions in the center 4L Sp |Ro(r)|?
muffin-tin sphere(top) and first shell, i.e., 12 nearest neighbors i
(bottom).

| n=0 1 2 3 4 5 6

(4s 0.102 0.013 0.000 0.008 0.026 0.134 0.187
(4p 0.297 0.131 0.058 0.042 0.151 0.373 0.392
(3yd 0.407 0.663 0.895 0.886 0.716 0.323 0.256 a.u.
(4f 0.096 0.140 0.024 0.039 0.064 0.069 0.051
= 0.902 0.947 0.977 0.975 0.956 0.899 0.886

(4s 0.009 0.004 0.002 0002 0004 0009 0.011
(4p 0.019 0.008 0004 0.004 0.008 0.020 0.023
(3d 0.052 0029 0012 0013 0024 0.053 0.060 —
(#f 0012 0008 0003 0.003 0006 0012 0013 g 05 10 15 20 25 T-agl
S 0092 0049 0021 0023 0041 0094 0.107

S = 2.669a0

FIG. 2. Radial-averaged Wannier functions in the center muffin-
tin sphere for various indices
decrease exponentially with increasing distance from the
central sphere when plotted in this way, i.e., our Wanniefin their center MT. We should note that the peak of the states
functions are exponentially localized, we actually get just ash=0 and 6 forr—0 does not contribute very much to ma-
good a fit through the scatter of the data with a power-lawyrix elements because of th& in Eq.(22). Figure 2 may also
dependence with a power of about7. It is not easy to  pe qualitatively compared with the Wannier function of Cu in
numerically decide whether the decay is an exponential or ®ef. 36.
power-law dependence, since our Wannier functions are ul- From these Wannier functions we have calculated the
timately periodic in a supercell determined by thk spac-  hopping matrix elementss,,,, according to Eq(19). These
ing of the discretek mesh used to construct them. In either can be inserted into Eq18) in order to determine an effec-
case, the Wannier function is highly localized. The gray dotsijve orthogonalizeddiagonal S-matrix tight-binding repre-
and line in the figure show the result when only the phasgentation. The matrices* are not diagonal because the uni-
has been adjusted according to E40); then the Wannier tary matrix that was used in the minimization of the Wannier
functions have a relatively smaller decay constantyof functions scrambled the different bands. However, we can
=O.38agl. The black dots and line show the result after thestill diagonalizeH* for eachk point and compare the eigen-
full localization (minimization procedure of Ref. 27 has values with the original LDA band structure. The results are
been applied by minimizing the full set of all 16 bands con-shown in Fig. 3, where we have cutoff tResum in Eq.(18)
sidered,; clearly a much better localization with a larger deto include only0 and the 3 nearest shells, i.e., 43 sites. We
cay constanty=1.14a, * has been achieved. When we tried have found that the decay tf,, as a function ofR| is a lot
to minimize a smaller subset of ban(ire bands instead of faster than that of the Fourier components of the band struc-
the full 16) the decay factor was in between the other twoture, Eq.(17). If we just take Eq.(17) and recalculate the
values, withy~0.71a, ! (not shown in the figure band structure according to E@L8), the agreement is a lot
Here we should note that the Wannier functions are notworse (for the same number of sites ig,,). This can be
pure in terms of theit character. Table | shows the angular understood in the following way: Labeling the bands accord-
character in the center muffin tiMT) and the first shell for

the first seven Wannier states. We see that for the states witt
n=0 ton=4 thed character is largest, which suggests to call
these states d-like states yielding five d states per spin direc-
tion as expected. But among these states the d character i 2
highest(nearly 90% for the statesi=2 and 3. Table | also
tells us how much of the state is found in the center muffin
tin. We see that the state=2 has 97.7% in the center MT
and only 2.1% in the next shell demonstrating how well lo-
calized this Wannier function is. The Wannier functions cor-
responding tcn=0, n=5, andn=6 have considerables4
and 4p character, anch=5 andn=6 have the least & /.
character. But they are very well localized as well, having at -1t
least 88% of their total weight already within the central
muffin-tin sphere. On the other hand, all Wannier states are FIG. 3. Comparison of LDA band structufeashed lingand the
mixed with respect to their character, since the minimiza- diagonalized eigenvalues of E(.8), where three shells in the lat-
tion procedure mixes all thecharacters. tice sum were included. The bands are relative to the Fermi level at
Figure 2 shows a few radial-averaged Wannier function® eV.

Energy / eV

X W L T K X U
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0
FIG. 4. Comparison of LDA band structug@ashed lingand the 0 Efev

diagonalized eigenvalues of E(.8), where eight shells in the lat-

. ; FIG. 6. Projected DOS for Wannier states 0—3.
tice sum were included.

Figures 6 and 7 show the projected DOS according to Eq.
ing to E, (K)<E,. (k) is not “natural,” therefore at points (28) for the Wannier functions 0-7. It is interesting that
in k space where two bands cross each Oﬁﬁlk) has a StateSj =2 and 3 have very similar CharaCtel’(Cf. Table I)
kink. Those kinks have non-negligible Fourier componentdut a very different projected DOS in Fig. 6, i.e., they are
with large|R|, which our cutoff sets to zero. peaked at different energies and emphasize different parts of

In Fig. 4 we have included eight shells in the lattice sumthe d band. Table Il shows the projected density of states
of Eq. (18), i.e., 141 sites. As we can see the two curves(@ctually the percentage of the DOS in different statesd
agree even better. These calculations are a test of the qualifye pProjected number of states evaluated at the Fermi level,
of the Wannier functions, i.e., how well the matrix elementswWhere thejth projected number of states is defined as
obtained from these Wannier functions reproduce the known
band structure.

With respect to the magnitude of the hopping matrix ele-
ments, thdy,, are largest and provide information about the
positions of the bands. For a next neighlBarthe |t are
of the order of 0.3 eV for d statéand 1 eV for the state with S .
n=0). For largerR the hopping matrix elements are less for each spin direction

We next consider a calculation of the direct Coulomb in-
f/r\:i?r? 2'21(5))6\/ for d statefand less than 0.5 eV for the state tegralU;; for a d-like orbital with itself. As discussed above,

Next, consider the projected DOS. In these calculation the Wannier function fon=2 has nearly perfed character

o ; Wi )
we have used the tetrahedron meffotsee also Ref. 23 2nd to a good approximation we can consider only its con

) . ) . . tribution in the central MT, i.e., at sit®. What we then
with 200k. p0|_nts and 691 tgtrahedron in the irreducible Ioartcalculate is the on-site Coulomb matrix element between two
of the Brillouin zone. In Fig. 5 we have plotted the total

. . ) electrons(with different spin because of the Pauli principle
DOS, which can also be found in the literatjsee Ref. 3. at the same site in the same Wannier state, i.e., essentially the
Hubbard U in its original senseThe method described in
N(E)-eV Sec. Il E 1 yieldsU(dd;0,0)=25.26 eV while the method
6l from Sec. Il E 2 yields 25.16 eV for this quantity. But with
the second method we are able to calculate all the elements
involving tails of the Wannier functions in other muffin tins
in the double sum in Eq.32). When we do this and include

Ep
nj(EF):f dE N;(E). (52

This is just the number of electrons in thth state. Every
state could maximally be occupied with two electrdqpae

N](E) -eV

[
o ot

|

|

|

|

1.00 +

0.75 1

0.50

T T T T T T 0_25-
-8 -7 -6 -3 -4 -3 -2 -1 0 1 E/eV

FIG. 5. Total electronic density of states, relative to the Fermi
energy. We have used a Gaussian broadening of 2 mRy to remove
the spikes inherent in the linear tetrahedron method. FIG. 7. Projected DOS for Wannier states 4—7.

E/eV
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TABLE Il. Projected number of states at the Fermi energy, i.e., TABLE IV. Interband on-site matrix elements,,,, in eV.
n;(Eg). Forj>8 (the numbers not givenn;(Eg) <0.25. The sec-
ond line shows the percentage of the DOS at Fermi energy, i.e., m=0 1 2 3 4 5 6
100N;(Eg)/N(EE).

n=0 1430 15.86 17.86 17.45 16.31 1324 12.77
j o 1 2 3 4 5 § 7 8 1 15.86 19.02 21.36 20.98 19.33 1525 14.42
2 17.86 21.36 2526 2413 22.30 17.09 15.86
%DOS 47 21 111 71 154 130 46 32 2734 16.31 19.33 2230 21.88 20.70 1576 14.78
5 1324 1525 17.09 16.69 1576 13.23 12.32
6 12.77 1442 1586 16.12 1478 12.32 12.43

sites whereR; and R; are nearest neighbors, we détq
=25.51 eV, which shows that including the portions of the
Wannier function on neighboring sites is a rather small corseen from Table [e.g., 0.52 eV fom=0). This leads to a
rection onU for such a strongly localized function. Table Ill peak in their charge density nea+0 as we can see from
show these quantities for the Wannier functions=0 Fig. 2 forn=0 and 6. For those states our FFT calculations
through 6. Going beyond nearest neighbors would have evepad a numerical problem because our real-space grid was too
a smaller effect. Therefore, one can truncate the sums ovéarge (with Ax=0.17a,). But for n=2, we do not have a
higher neighbor shells for the Coulomb matrix elementspeak atr=0, and the FFT approach does an excellent job.
which converge faster than for the hopping matrix elements. The HubbardU clearly depends on the specific shape of
The reason for this is that the Coulomb integral involves ahe Wannier functions. Intuitively, one expects bigges for
product of four wave functions, whereas the hopping matrixmore localized orbitals. As an example of this, we have cal-
elements involve only two wave functions. culated a less-localized Wannier stély performing fewer
The FFT approach allows us to calculate Coulomb matrixsteps in the minimization procedurén this case, the highest
elements for Wannier functions centered on different sitesd-character state, which is almost paréke, has only 58.5%
We have done this for the states={0,2} and b={R,2}  of its charge density in the center muffin tin, and 95.4%
whereR is a nearest neighbor 6f Both ared-like states. In  within the first three shells. For those three shells we have
Eg.(32) we have again included nearest neighborRfoand  used the FFT method to calculate alP48rms(33). We find
R;. The result isU,,=5.87 eV. The largest contribution in U=13.8 eV for this less-localized state.
the sum isU(ab;0,R)=5.66 eV, which is the contribution We should also note that most model calculations assume
arising from the two center spheres of stadesndb. very localized, purg(in | character Wannier functions. In
Our first method is most useful for calculating interbandparticular, they often assume that LDA or some one-electron-
(on-sité Coulomb matrix elements when the states are sdike treatment is adequate for noh-and nonf electron
well localized that we can neglect the contribution from states, and that the only explicit correlations that need to be
neighboring spheres. We have calculated both the direct Councluded are related to on-sif@r sometimes also nearest-
lomb matrix elementdJ,,, and the exchange integrals,, neighboj CoulombU’s for thed (or f) states. It is also often
for all n andm. Here then,m just indicates the band and all implicitly assumed that the nod-and nonf states have
Wannier states are centered at €itd he results are given in  some screening contribution to the effectly& in the model
Tables IV and V for the first seven bands. We see that thélamiltonian. These types of assumptions raise some difficul-
on-site intraband Coulomb matrix elements are largest foties for us to connect our treatment to the model Hamilto-
the Wannier statea=2 and 3, which have almost pure d nians, since the orthogonalization properties and mixing nec-
character. We also note that all the direct Coulomb matrixessary for localizing our Wannier functions scramble khe
elementdJ,,, are rather large, while the exchange Coulombcharacter of the resulting orbitals. Hence, our effectiVe
matrix elements],,, with n#m are rather smallnote that do not have a purd or f charactefor s or p). Also, since we
the diagonal terms for botbl;; andJ;; are identical by defi- calculateU’s for all of the orbitals, we are implicitly includ-
nition, cf. Eq. (34)]. When we compare the diagonal ele- ing correlation effects for all orbitals(andp as well asd and
mentsU,,, (=J,,,) from Tables IV and V with the first line f), and however theJ’s in our treatment are ultimately
of Table Il we note relatively large differences for the states
n=0, 5, and 6, which have largeandp character, as can be ~ TABLE V. Interband on-site matrix elements,, in eV.

TABLE Ill. On-site FFT U’s. In the first line (on-siteU) we m=0 L 2 s 4 5 6
have only includedR;=R;=0 in Eq. (32, i.e., U(jj;0,0). The n=0 1430 091 073 076 092 098 1.34

second line(NN U) shows the same quantity, where we have in- 091 19.02 1.22 0.84 0.91 1.43 0.69
cluded nearest neighbors & andR; . 2 073 122 2526 092 114 095 0.58
j 0 1 5 3 4 5 6 3 0.76 084 092 2526 099 071 0.62

4 092 091 114 099 2070 120 0.79
on-sitet 14.82 19.05 25.16 2549 20.79 13.81 13.22 5 098 143 095 071 120 1323 1.22
NN-U 16.29 19.81 2551 25.86 21.44 1532 1497 6 134 069 058 062 079 122 1243
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screened in some many-body treatment, this screening ma SEiot/eV
be different from that assumed in the model Hamiltonians.

We may ultimately be forced to use some kind of projection 0.4 1
of our orbitals onto puré-character states in order to make

appropriate identification between our types of states anc

more conventional model Hamiltonians.

Uq =18.2eV

IV. CONSTRAINED LDA

Finally, we have done a constrained LDA calculatioto
obtain an estimate for the Hubbaldl In this method the °
HubbardU is defined as the Coulomb energy cost to place
two (in our cased) electrons at the same site. This is

02 T

Here E(Ny) is the ground-state energy witlyy d electrons. o A
If we consider this energy as a continuous functiorNgf, , , : ,

where we constrain the value ®fy to be away from its —02 —o1 0 01 0.2
minimized value, then the Hubbald is given by

6nd

FIG. 8. The total energy as a function of the effective change in

52E(Nd) d charge. The line is a quadratic fit.
=7 (54

<.
oNgy V. CONCLUSIONS

This constraint, which fixes the total number of d electrons to  We have shown in this paper thalb initio band-structure
be Ng, can be taken into account by adding a Lagrangemethods can be used for a first-principles calculation of well-
parametew 4 to the total energy; i.e., the energy of the con-|ocalized Wannier functions, which is achieved by using a
strained system is given by method proposed by Marzari and Vanderbilttrom these
localized Wannier functions the on-site and intersite one-
article matrix elements of the Hamiltonian can be calcu-
E{n(r)H”d[f d?rng(r) - Nd”' (59 Ipated. A good localization of the Wannier functions is needed
to keep tight-bindinghopping matrix elements restricted to
HereE{n(r)} is the usual band-structure energy andr) is  a small number of near neighbors. The Coulomb matrix ele-
thed-electron density. On minimization, the extra term in Eq.ments within these localized Wannier states can also be cal-
(55) leads to an additional constant potentiglin the Kohn-  culated and are similarly only important between on-site and
Sham equations, which acts only on the2 angular mo- nearest-neighbor Wannier functions. The result is thus an
mentum components of the wave function. Within theelectronic multiband Hamiltonian in second quantization
LMTO method, this is accomplished by adding a constaniyith first-principles one- and two-particle matrix elements.
potentialvq when solving the radial Schdinger equation for  The Hamiltonian is of the form of an extended multiband
=2, and then calculating the total energy as a function oHubbard model but without adjustable parameters; the pa-
vq. Since each value afy changes the occupation num- rameters are directly calculated for a given material. The
ber, the final result can be written &Ng). This depen- only approximations still involved are the ones inherent to
dence is shown in Fig. 8 and can be accurately fitted by @e ab initio band-structure method uséglg., the muffin-tin
paraboladE=1U44N3 with Uyq=18.2 eV. This is of the assumption, the ASA approximation, the choice of linearized
same magnitude as the result obtained from the direct calcwrbitals in the LMTO, and the “frozen-core” approxima-
lation of the Coulomb matrix elements, even though oneion), and the truncation in the number of bar(dtate$ per
might expect a smaller value because of the screening effecsste that is explicitly taken into accoufiruncation of thel
that are believed to be included in this calculation. In oursum. The resulting multiband Hamiltonian that includes the
calculations we have only used a one-atom unit cell. If aHubbardU terms, of course, still has to be studied within a
larger unit cell is chosen, one could do a variety of additionakeliable many-body method or approximation, e.g, a multi-
constraints(e.g., changing thel occupation separately on band version of the DMFT as in Refs. 7, 10, 12, and 14.
two different atomgs Such calculations could attempt to sort ~ Our Cu calculations yield on-site direct Coulomb matrix
out more details of effective Hamiltonian@erhaps even elementg“Hubbard U’s”) of the magnitude of 20 eV for 3d
two-particle parameteysHowever, such calculations would Wannier states and inter-sitelubbard U’s between nearest
take our work in a different direction from the one we areneighbor$ values of 5 eV. This is the magnitude discussed
interested in. Also, given the intuitive nature of the con-already earliet and similar to those for atomic 3d states.
strained method and the difficulties in fitting such a largeThese U values are much larger than commonly expected or
parameter space, it is not clear how useful the resulting paised in model studies. Although our calculated Coulomb ma-
rameters would be or their uniqueness. trix elements are unscreened, the constrained LDA, which

E(Ng)=min
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includes some screening effects, gives comparable magnénce of the U.S. Department of Energy under Contract No.
tudes for U. Since dynamic screening due to the mobile elecDE-AC03-76SF00098. We also acknowledge a generous
trons in the outer shellbands is taken into account auto- grant from the University of Bremen for a visit by one of us
matically when using an appropriate many-body method(R.C.A) that helped make possible this work. We thank Vel-
e.g., a generalized random-phase approximation, the onfko Zlatic for suggesting the application of the FFT algo-
screening that should be included in a better theory is aithm in the Coulomb matrix-element calculations.

static, short-range screening by the inner core electrons.

However, the(atomic-like) electronic states representing the  ApPENDIX: SPHERICAL HARMONICS EXPANSIONS

inner (“frozen”) core are well known, and it should be pos-

sible to calculate their screening contribution fronigener- Any function A(r) within a (muffin-tin) sphere may be
alized static Lindhard theory. In future work we plan to expanded in terms of spherical harmonics,

examine the static screening due to the inner core states, an

application of appropriatémultiband many-body methods, _ -

and the application to more strongly correlated 3d materials A(r)—z ALY (AL)

such as iron, cobalt, and nickel. Any treatment of screemngf
will, of course, have to be done very carefully so that screenlf two functions A(r) and B(r) are given via their coeffi-

ing effects are not double counte@nce in the explicit cientsA,(r) andB,(r), then the corresponding coefficients
screening and then a second time when the many-bodyL(r) of the functionF(r)=A(r)B(r) are given by
Hamiltonian is solvel Finally, although any localized orbit-

als could be used as the basis for a tnany—bocty treatment, the FL(r)= 2 AL (NB_(NC_ L (A2)
approach we have us€@f constructing localized orbitals 2
from LDA band stateshas the advantage that these orbitals
are a good basis set for any states without strong electro
electron correlations, since LDA is believed to be an accurate

ﬁl’he Gaunt coefficient€, |, » are defined by

approximation in this limit. We can hope that an additional CLL,L,,:f d2Q Y (Q)Y],(Q)Y(Q)
more explicit treatment of the strong correlations by a many-
bopl;; theory will correct and improve on the LDA starting T .
point. =6 m' —m P (L",L) (A3)
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