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Hubbard-U calculations for Cu from first-principle Wannier functions
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We present first-principles calculations of optimally localized Wannier functions for Cu and use these for an
ab initio determination of Hubbard~Coulomb! matrix elements. We use a standard linearized muffin-tin orbital
calculation in the atomic-sphere approximation to calculate Bloch functions, and from these determine maxi-
mally localized Wannier functions using a method proposed by Marzari and Vanderbilt. The resulting functions
were highly localized, with greater than 89% of the norm of the function within the central site for the occupied
Wannier states. Two methods for calculating Coulomb matrix elements from Wannier functions are presented
and applied to fcc Cu. For the unscreened on-site HubbardU for the Cu 3d bands, we have obtained about 25
eV. These results are also compared with results obtained from a constrained local-density approximation
calculation.
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I. INTRODUCTION

During the past few decades powerful numerical meth
have been developed for theab initio ~first-principles! calcu-
lation of the electronic ground-state properties of solids.
most of these methods density-functional theory1 ~DFT! has
been used to treat the electron-electron Coulomb repuls
and a local-density approximation2 ~LDA ! ~or a local spin-
density approximation for magnetic systems! has been used
for the exchange-correlation potential. This procedure
been very successful for many materials and ground-s
properties~e.g., crystal structure, lattice constant, binding e
ergy, and ionization energy!, but it has its limitations; the
band gap of semiconductors is not properly reproduced,
instance. Furthermore, for systems such as high-tempera
superconductors, heavy-fermion materials, transition-m
oxides, and 3d itinerant magnets, i.e., for systems in wh
the Fermi level falls into a region of narrow energy ban
the LDA is usually not sufficient. It is generally accepted th
the problem for these materials is the strong electronic c
relations that are responsible for their electronic propert
For a description of such strongly correlated systems,
usually instead uses as a starting point model Hamilton
like the Hubbard model3 and its multiband generalizations
But in these models the Coulomb~interaction! matrix ele-
ments and also the one-particle~hopping! matrix elements
that determine the unperturbed band structure are usu
treated as free, adjustable parameters, i.e., they are
known from ‘‘first principles’’ for the given material; on the
other hand, Coulomb correlations can be studied within r
able many-body approximations that go beyond the Hart
Fock approximation.

Both the ab initio LDA and the many-body model
Hamiltonian methods based on Hubbard-like models h
their merits, but until rather recently they have been alm
separate and complementary approaches. But, in view o
power of each, a combination of these methods is desira
and, in fact, during the last few years there have been s
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attempts in this direction.4–14 All of these recent develop
ments add local, screened Coulomb~Hubbard! correlations
U between localized orbitals to the one-particle part of
Hamiltonian obtained from anab initio LDA band-structure
calculation, but differ in how they handle the correlatio
part. In the earliest attempts, the LDA1U method4 used es-
sentially a static mean-field-like~or Hubbard-I-like! approxi-
mation for the correlation. The simplest approximation b
yond the Hartree-Fock approximation, second-ord
perturbation theory in U, was used5,6,9,13 to study the elec-
tronic properties of 3d systems~like Fe and Ni! and heavy-
fermion systems~like UPt3). The LDA11 approach8,10,11

has a similar strategy, but uses other many-body approxi
tions to treat the correlation problem, namely, either
fluctuation-exchange approximation or the dynamical me
field theory15 ~DMFT!. Some of the other many-bod
treatments7,12,14have also used DMFT, which is based on t
limit of large-dimension (d→`) approximation for corre-
lated lattice electrons.16 Within DMFT the self-energy be-
comes local, i.e., independent of momentumk, which allows
a mapping of the lattice problem onto an effective impur
model. The LDA1DMFT treatments10–14 mentioned above
differ in the many-body method they used for the effecti
impurity problem, namely, quantum Monte Carlo,14 the non-
crossing approximation,12 or iterated perturbation theory.7

But all these approaches, including the LDA1U, have in
common that they have to introduce a Hubbard U as an
ditional parameter, and hence are not real first-principles~ab
initio! treatments. Although they use an LDAab initio
method to obtain a realistic band structure, i.e., sing
particle properties, Coulomb matrix elements for any p
ticular material are not known, and the Hubbard U rema
an adjustable parameter.

One can obtain estimates on the magnitude ofU either
from experiment~high-energy spectroscopy! or from the
constrained LDA method.4,17–22Within the latter method one
adds the constraint that the electron occupation number
the correlated bands is fixed to a given number throug
©2002 The American Physical Society03-1
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Lagrange parameter. One can then use LDA to calculate
ground-state energy for different occupations of the co
lated states, and the difference between the energy for do
and single occupation is an estimate for the Hubbard U. T
method has the advantage that effects of screening ar
ready somehow included. On the other hand there are usu
several bands and many interaction matrix elements~on-site,
density-density, intraband, interband, exchange, inters
etc.! that have different magnitudes, and the constrain
LDA can only give some average value for these vario
Coulomb matrix elements and not the individualab initio
parameters~Coulomb matrix elements!. This approach is in-
tuitive and contains some type of screening within a o
electron LDA approach. It is difficult to sort out the actu
approximation involved.

In this paper we suggest a different approach, namely,
directab initio calculation of the one-particle~tight-binding!
and two-particle~Coulomb! matrix elements. Our starting
point is a standard electronic band-structure calculation,
which we have used the linearized muffin-tin orbit
~LMTO! method23,24within the atomic-sphere approximatio
~ASA!. The LDA band-structure calculation yields not on
one-particle energies but also their eigenstates, the B
wave functions, which form a proper basis of a one-parti
Hilbert space. To determine the local~onsite and intersite!
Coulomb matrix elements it is necessary to construct W
nier functions,25,26 which are closely related to the Bloc
functions via a unitary transformation, but which are n
unique since the phases of the Bloch functions are unde
mined.

As first suggested by Marzari and Vanderbilt,27 this gauge
freedom can be used to construct ‘‘maximally localized Wa
nier functions.’’ Those are just Wannier functions with a sp
cial gauge that makes them optimally localized according
some criterion. A proper localization of the Wannier fun
tions is important in our opinion, because only then do
standard assumptions of the model treatments hold such
only a few~on-site, nearest, and next-nearest neighbor! one-
particle ~hopping! and two-particle~Coulomb! matrix ele-
ments have to be considered explicitely. These matrix
ments can then be calculated from the Wannier functions

We use two different methods to calculate Coulomb m
trix elements from Wannier functions. The first method us
the fact that the LMTO method provides Bloch functions
the basis of linear muffin-tin orbitals.23 Therefore the Wan-
nier functions are given as linear combinations of su
muffin-tin orbitals as well, and can be used to evaluate
Coulomb integrals efficiently, similarly to what was done
Ref. 28. The second method uses a fast Fourier transfo
tion ~FFT!. It does not rely on the property of the wav
functions being linear and is therefore more general. It is a
very quick and efficient.

The paper is organized as follows. In Sec. II we pres
some of the computational details: we describe the form
the Bloch functions in the LMTO method, how to obtain th
Wannier functions from them, and how to optimize t
choice of the Wannier functions by using the Marza
Vanderbilt method. Then we describe how the one-part
~hopping! matrix elements are obtained from these localiz
07510
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Wannier functions, and we present the two methods to
culate the Coulomb matrix elements. To illustrate t
method, we have performed actual calculations for a w
understood system, namely, for Cu. Although this materia
not a strongly correlated system, it has almost comple
filled, narrow 3d bands, for which~well-localized! Wannier
functions and one- and two-particle matrix elements can
calculated. Results for Cu are presented in Sec. III, where
show some of the Wannier functions, demonstrate how w
localized they are and that the one-particle~tight-binding!
matrix elements obtained from them allow for a reconstr
tion of the band structure. The direct Coulomb matrix e
ments obtained are rather large, between 20 and 25 eV
Wannier states with mainly 3d character, and are about 5
for nearest neighbors and about 1 eV for exchange inte
tions. In Sec. IV we describe constrained LDA calculation
which yield somewhat smaller values~about 18 eV! for the
Hubbard U of Cu, and in the final section~V! we discuss
how to extend and further apply the current approach.

II. COMPUTATIONAL DETAILS

We restrict ourselves to the case where there is only
atom per unit cell and where we can neglect spin~non-spin-
polarized calculations!. For a given material the only input to
an ab initio LDA calculation is the atomic number. In th
density-functional approach,1,29 a local-density approxima
tion is normally used for the exchange and correlation int
actions between the electrons; we have used the
Barth–Hedin30 exchange-correlation potential and a froze
core approximation. Within DFT the total energy of th
ground state could be calculated as a function of volume
a given crystal structure and used to determine the equ
rium lattice constant; it is usually in good agreement w
experiment. However, since our focus is on the determi
tion of Coulomb matrix elements in a Wannier basis, w
have simply used the experimental lattice parameters.

A. LMTO wave functions

For our band-structure results we have used the LM
method23,24within the ASA. The combined correction term23

was not included. The muffin-tin spheres are overlapping
their radius~the Wigner-Seitz radiusS) is determined by the
condition that the sphere volume equals the volume of
unit cell. Within the muffin-tin spheres the potential an
wave functions are expanded in spherical harmonics wit
cutoff l max53, i.e., s, p, d, and f orbitals are included. Fu
thermore, the Bloch wave functions are given in terms of
solution to the radial Schro¨dinger equationfn l(r ) to some
fixed energiesEn l and its energy derivativeḟn l(r ),

Cnk~r !5(
L

~fn l~r !AL
nk1ḟn l~r !BL

nk!YL~ r̂ !, ~1!

where we use complex spherical harmonics in all of our c
culations. This expansion is valid in one muffin-tin sphe
Here, as usual,L5$ l ,m% is understood andn is the band
index andk is the wave vector. We definen by the condition
that En(k),En11(k). The virtue of using this method fo
3-2
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Wannier functions is the simplification that only integra
over spheres are needed; no real-space integrations
complicated Wigner-Seitz~unit! cells are required.

The Bloch functions obey

Cnk~r1R!5eik•RCnk~r !. ~2!

Therefore, the knowledge of a Bloch function in a sing
muffin-tin sphere is sufficient for the knowledge of the fun
tion in the whole crystal. This situation is different when w
consider Wannier functions, which can be centered on dif
ent sites. It is useful to introduce a notation that holds
both Bloch and Wannier functions. To do this we perform
expansion like Eq.~1! in each muffin-tin sphere, which w
label by its site vectorR. The complete wave function~either
Bloch or Wannier! is then given by

Fa~r !5(
i

Fa~Ri ;r2Ri !. ~3!

In this equation we have used the general notation for
wave-function expansionFa(Ri ;r2Ri). ~i! F is any kind of
wave function.~ii ! a stands for quantum numbers~Bloch,
a5$n,k%; Wannier,a5$R,n%). ~iii ! The first argument in
the parenthesis indicates the muffin-tin sphere about wh
we are expanding and is labeled by its site vector.~iv! The
second argument in the parenthesis is the position inside
muffin-tin sphere described by its relative vector. This me
that this vector has zero length in the center of the muffin
sphere described by the first argument.~v! Note that, for
everyR,

Fa~R;r !50 if ur u.S. ~4!

In the case whereF is a Bloch function we find

Cnk~R;r !5eik•RCnk~r !. ~5!

It is easy to see that Eq.~5! inserted in Eq.~3! obeys Eq.~2!.
Also note that Eq.~3! disregards the effects of overlap

ping muffin-tin spheres. Within the ASA approximation, a
derivations are done as though nonoverlapping muffin
are being used, and then these formulas are used with
panded muffin tins, whose volumes sum up to equal the
cell-volume ~where the muffin-tin radius is expanded to
Wigner-Seitz radius for one atom per unit cell!. In addition,
this approximation eliminates the necessity to handle in
stitial regions, and hence the ASA formalism is mathem
cally much simpler than a full-potential electronic-structu
calculation would require.

B. Wannier functions

In this section we show how to calculate Wannier fun
tions from the LMTO type of Bloch functions of Eq.~1!. The
Wannier functions25 are defined by

wRn~r ![^r uRn&5
1

N (
k

e2 ik•RCnk~r !. ~6!

Here,N is the number ofk-mesh points in the Brillouin zone
or, equivalently, the number of unit cells in the real-spa
07510
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supercell that is used to discretize thek mesh. As mentioned
above, Wannier functions are not unique. Consider, for
ample, a single bandn with Bloch functionsuCnk&; a trans-
formation of the kind

uCnk&→eifn
(k)

uCnk&, for fn
(k) real ~7!

will still lead to Bloch functions. We shall call this a gaug
transformation of the first kind. In the case of a composite
of bands,27 this nonuniqueness corresponds to the freedom
choose the phases and ‘‘band-index labeling’’ at eachk point
of the Bloch functions,

uCnk&→(
m

Umn
(k)uCmk&. ~8!

We shall call this a gauge transformation of the second ki
HereUmn

(k) is a unitary matrix. From all the arbitrary choice
of Wannier functions we will pick out that particular set th
minimizes the total spread given by

V5(
n

@^r 2&n2^r &n
2#. ~9!

For any operatorA, ^A&n denotes the expectation valu
^RnuAuRn&. A method for minimizing Eq.~9! has been de-
veloped by Marzari and Vanderbilt27 and its application to
the ASA wave functions does not pose any particular pr
lems ~details will be given below!.

Before minimizingV according to this procedure, it i
useful to prepare the Bloch orbitals to make the start
Wannier functions somewhat localized. This has two adv
tages:~i! the minimization procedure converges faster a
~ii ! this helps to avoid getting trapped in local minim
Marzari and Vanderbilt27 suggest several possible prepar
tions. We have found our own method, which seems to w
well. This involves a simple gauge transformation for ea
band, which is given by

Cnk~r !→exp@2 i Im ln Cnk~r0!#Cnk~r !. ~10!

This gauge transformation has the property th
Im ln Cnk(r0) transforms to zero. So at the pointr0 all the
Bloch functions will have the same phase~in this case just
11 i0) and^r0u0n& will take a large value. We thus expec
the Wannier function to be fairly localized atr0. To make the
method work well one should chooser0 where the Wannier
functions are expected to be reasonably large. In our ca
lations we have chosen the direction of this vector to be w
away from the expected zeros of the spherical harmonics
with an absolute value far enough away from the origin to
in a place where the Wannier functions should have a sign
cant magnitude. We found anr0 of ~0.8, 1.0, 0.3!a0 to work
well for fcc Cu.

We shall now derive expressions of the form of Eq.~3! for
Wannier functions. From Eqs.~5! and ~6! we have
3-3
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wRn~R8;r !5
1

N (
k

e2 ik•RCnk~R8;r !

5
1

N (
k

eik•(R82R)Cnk~r !. ~11!

Because Wannier functions on different sites have the s
form ~shape! of their wave functions and differ only by
translation of their origin, it is useful to use a notation th
indicates values of a wave function relative to a Wann
function centered at the origin,

wRn~R8;r !5w0n~R82R;r ![wn~R82R;r !, ~12!

where we have introduced the notationw0n[wn ~i.e., if the
subscript contains only a wave function label without a s
tial vectorR, then we are using a relative notation that refe
to a Wannier function centered at the origin!. We can use the
Bloch condition@cf. Eq. ~11!# to calculate the parts of th
Wannier function on other sitesR,

wn~R;r !5
1

N (
k

eik•RCnk~r !. ~13!

Note thatur u,S. For this notation to work in our numerica
calculations, it is essential to force the Wannier center,
the muffin-tin sphere wherêr u0n& is largest, to be at the
muffin-tin sphere around the lattice site0; we achieve this by
settingur0u,S in Eq. ~10!. In most of the rest of the pape
we will almost always use the relative notation that refers
Wannier states centered at the origin, and will perform wh
ever translations are necessary to be able to use these s

In the method of Marzari and Vanderbilt,27 the starting
point for the calculations are a set of reference matrices
fined by

Mmn
(0)(k,b)5^Cmkue2 ib•ruCn,k1b&. ~14!

Hereb denotes a nearest-neighbor vector on the discret
mesh ink space~in this method, the set ofb vectors are
needed for numerical derivatives!. We calculated the action
of e2 ib•r on the ket by using Eqs.~A4! and~A2! and solved
the remaining integral by using Eq.~22!. We used a uniform
~cubic! discretek mesh with a spacingDk of 0.2(2p/a). In
such a mesh there are six nearest neighbors for theb vectors
needed for the numerical derivatives. We were careful no
double count vectors in thek mesh~those equivalent to eac
other by a reciprocal lattice vector! within the Brillouin zone
~BZ! ~which has 500k points in the full zone!.

We then used the steepest-descent method and rele
equations in Sec. IV of Ref. 27 to iterate a series of sm
steps where a set ofDWk were calculated and used to upda
the unitary matricesUk and theM k,b matrices. After each
iteration, where we update all the relevantk matrices, we
calculated the spread functionV, and continued iterating un
til this converged.

In these calculations the initial matricesM (0)(k,b) are by
far the most time consuming computationally~it requires
storing 6350031625768 000 complex numbers!. The itera-
tions of the steepest-descent method were much faster.
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this reason we used many iterations~about 1500 steps! and
convergedV to about 0.01%. For the step size@cf. Eq. ~57!
of Ref. 27# we used ana of 0.2.

The final result can be written in a form similar to th
LMTO wave functions, Eq.~1!,

wn~R;r !5(
L

~fn l~r !AL
nR1ḟn l~r !BL

nR!YL~ r̂ !, ~15!

where theA andB matrices originally come from the LMTO
wave functions, but are then updated from the relevant ph
information, unitary matrix, and other integrations and tra
formations of the method.

Because of the normalization of the starting LMTO Blo
wave functions~which are normalized to unity within a
single unit cell!, each Wannier function is naturally norma
ized to unity when integrated over all space.

C. One-particle matrix elements

The Wannier function basis can be viewed as an ortho
nal tight-binding basis. For this reason it is useful to calc
late one-particle matrix elements of the Hamiltonian in t
Wannier basis. As we shall see, these matrix elements
~for a gauge transformation of the first kind only! equivalent
to the Fourier components of the band structure; this equ
lence is useful for checking some of the numerical aspect
the calculations.

Because the Hamiltonian has the property thatH(r )
5H(r1R), it is sufficient to consider the matrix elements

tRnm[^RnuHu0m&. ~16!

Inserting Eq.~6! and usingHuCnk&5En(k)uCnk& we find

tRnm5
dnm

N (
k

eik•REn~k!, ~17!

which are just the Fourier components of the band struct
The Bloch statesuCnk& continue to be eigenstates ofH under
a gauge transformation of the first kind and one can a
easily show that thetRnm are invariant under this type o
gauge transformation. ThetRnm from Eq.~17! can be directly
calculated from the band structureEn(k).

A gauge transformation of the second kind leads to sta
uCnk& that are no longer eigenstates ofH with eigenvalue
En(k). ThereforetRnm are not invariant under a gauge tran
formation of the second kind. However, generally we c
always calculate

Hnm
k [^CnkuHuCmk&5(

R
e2 ik•RtRnm ~18!

and use its diagonalized eigenvalues as the band structur
any set of Wannier functions. The matrixHnm

k is Hermitian;
it is, of course, already diagonal for a gauge transformat
of the first kind, with the energy levels as the diagonal mat
elements.

To calculatetRnm from Eq.~16!, i.e., using Wannier func-
tions, we can use Eqs.~3! and ~12! to find
3-4
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HUBBARD-U CALCULATIONS FOR Cu FROM FIRST- . . . PHYSICAL REVIEW B 65 075103
tRnm5(
i
E d3r wn* ~Ri2R;r !Hwm~Ri ;r !, ~19!

where the integral is over a single sphere only. The effec
H on the second wave function can be carried out ea
because we are working in a linear basis. We only note
(H2En l)f l(r )50 and (H2En l)ḟ l(r )5f l(r ), for details
see Ref. 23. In order to calculate Eq.~19!, we must evaluate
integrals of the form

I 5E d3r f 1* ~r ! f 2~r !, ~20!

where the functionsf i(r ) are given by the expansion

f i~r !5(
L

RiL~r !YL~ r̂ !. ~21!

Inserting Eq.~21! into Eq.~20! and using the orthonormality
of the spherical harmonics yields

I 5(
L
E dr r 2 R1L* ~r !R2L~r !. ~22!

Because Eq.~1! was our starting point, the radial function
R(r ) will always be given in terms off l(r ) andḟ l(r ), i.e.,

RiL~r !5AiLf l~r !1BiLḟ l~r !. ~23!

We will use this form to calculate the integralI very effi-
ciently. It is clear that any integral can be reduced to a lin
combination of ‘‘basic’’ integrals. Those basic integrals co
sist of the ~very limited! combinations of thef l(r )’s and
ḟ l(r )’s. We will label them by

bl ;p1p2
5E dr r 2@dp1,0f l~r !1dp1,1ḟ l~r !#

3@dp2,0f l~r !1dp2,1ḟ l~r !#, ~24!

wherep1 andp2 can take the values 0 and 1. So it must
possible to write the integralI as

I 5(
L

(
p150

1

(
p250

1

aL;p1p2
bl ;p1p2

. ~25!

It follows that the coefficientsaL;p1p2
are given by

aL;p1p2
5@dp1,0A1L* 1dp1,1B1L* #@dp2,0A2L1dp2,1B2L#.

~26!

We are now in a position to calculate Eq.~19! with the aid of
Eq. ~25!.

D. Wannier-function projected density of states

The density of states~DOS! per spin is defined by

N~E!5
V

~2p!3 (
n
E

BZ
d3k d„E2En~k!…, ~27!
07510
f
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whereV is the volume of the unit cell. In the same way th
the DOS is often projected in terms of thel character of the
states, one can do a similar treatment for a projection o
the Wannier states. We can define a projected DOS for W
nier states, by inserting the projection operator onto the W
nier statesu0j &^0j u into Eq. ~27!,

Nj~E!5
V

~2p!3 (
n
E

BZ
d3ku^cnku0j &u2d„E2En~k!….

~28!

Note that thecnk in this formula have to be the Bloch state
before the gauge transformation, since the band struc
En(k) is related to the untransformed states. The Bloch w
functions are normalized to a single unit cell and each W
nier function over all space. We can calculateNj (E) by using
the tetrahedron method.31 For thek points that form the tet-
rahedrons we need to calculateu^cnku0j &u2, which we have
done using the scheme described in Sec. II C. In these
culations it is important to be aware thatu0j & has parts of its
wave function on sites other than the central site where
centered. In our calculations, we included parts of the W
nier function out to 17 near-neighbor shells of sites.

Note that the exact projection operator is a sum over
R, since

(
Rj

uRj &^Rj u51. ~29!

However, it is sufficient to only consider the Wannier sta
u0j & in our projection~and not all theuRj &), since

u^cnkuRj &u5u^cnku0j &u. ~30!

We can check the correctness of our projection by compa
Ntot(E)5( jNj (E) with the N(E) that is calculated directly
from the LMTO energy eigenvalues. We find that our pr
jected sum is accurate to within 0.2% of the LMTO value

E. Coulomb matrix elements

The matrix elements we wish to calculate are

W12,345E d3r d3r 8e2

ur2r 8u
w1* ~r !w2* ~r 8!w3~r !w4~r 8!.

~31!

where 1,2,3,45 i 5$Rini% is a Wannier state andW denotes
the Coulomb interaction. The spatial integrals overr and r 8
extend over all space. Using Eqs.~3! and ~12!, we can use
translations to rewrite this expression so that the integrals
only over the muffin-tin sphere at the origin,

W12,345(
i , j

W~12,34;Ri ,Rj !, ~32!

where the expressionW(12,34;R,R8) is defined by
3-5
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E d3r d3r 8e2

ur2r 81R2R8u
wn1

* ~R2R1 ;r !wn2
* ~R82R2 ;r 8!

3wn3
~R2R3 ;r !wn4

~R82R4 ;r 8!. ~33!

Since most applications of the Hubbard model use o
two orbitals instead of all four, it is useful to define th
limiting subset of theW functions as direct CoulombUi j and
exchangeJi j integrals,

U125W12,12, J125W12,21 ~34!

and the obvious generalizations for

U~12;R,R8!5W~12,12;R,R8!,

J~12;R,R8!5W~12,21;R,R8!. ~35!

1. Spherical-harmonics expansion

We will now only consider matrix elements between Wa
nier functions centered on the origin@i.e., where theRi50 in
Eq. ~31!#. Because we are using maximally localized Wa
nier functions, most of the Wannier functions have their la
est component in the center cell~see Sec. III!. As a first
approximation, we will therefore neglect all other muffin-t
spheres. This approximation allows us to calculate on-
interband matrix elements. We are thus looking for

Wn1n2 ,n3n4
'W~12,34;0,0!5E d3r d3r 8wn1

* ~0;r !wn2
* ~0;r 8!

3
e2

ur2r 8u
wn3

~0;r !wn4
~0;r 8!, ~36!

where the integral overr is only over the central site. Inser
ing the expansion Eq.~21! for the Wannier functions and
making use of the well-known expansion~see, for example
Ref. 32!

1

ur2r 8u
5(

ł 50

`
4p

2l 11

r ,
l

r .
l 11 (

m52 l

l

YL* ~ r̂ 8!YL~ r̂ !, ~37!

where r . (r ,) is the length of the greater~smaller! of the
two vectorsr and r 8, we find

I 5(
l

4p

2l 11 (
Li

E dr r 2R1L1
* ~r !R3L3

~r !E dr8r 82

3R2L2
* ~r 8!R4L4

~r 8!
r ,

l

r .
l 11 (

m52 l

l

CL3L1LCL2L4L . ~38!

The coefficientsCLL8L9 are called Gaunt coefficients@see Eq.
~A3! in the appendix#. If we define

Cl ;L1L2L3L4
[ (

m52 l

l

CL3L1LCL2L4L ~39!

and
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I l ;L1L2L3L4
[E dr r 2R1L1

* ~r !R3L3
~r !

3E dr8r 82R2L2
* ~r 8!R4L4

~r 8!
r ,

l

r .
l 11

, ~40!

the integral takes the form

I 5(
l ,Li

4p

2l 11
Cl ;L1L2L3L4

I l ;L1L2L3L4
. ~41!

The task is now to determineI l ;Li
~we use the shorthand

notationLi for L1L2L3L4). To do this, we will use the for-
malism developed in the preceding section. In complete a
ogy to Eqs.~24!–~26! we now find

I l ;Li
5(

pi

aLi pi
bl ; l i pi

, ~42!

where

aLi pi
5)

i 51

2

@dpi ,0
AiL i

* 1dpi ,1
BiL i

* #)
i 53

4

@dpi ,0
AiL i

1dpi ,1
BiL i

#

~43!

and

bl ; l i pi
5E dr r 2@dp1,0f l 1

~r !1dp1,1ḟ l 1
~r !#@dp3,0f l 3

~r !

1dp3,1ḟ l 3
~r !#E dr8 r 82@dp2,0f l 2

~r 8!

1dp2,1ḟ l 2
~r 8!#@dp4,0f l 4

~r 8!1dp4,1ḟ l 4
~r 8!#

r ,
l

r .
l 11

.

~44!

It should be noted that these basic integrals are symme
with respect to some of their indices. If we introduce t
joined indexni5$ ł i ,pi% then

bl ;n1n2n3n4
5bl ;n3n2n1n4

5bl ;n1n4n3n2
5bl ;n3n4n1n2

5bl ;n2n1n4n3

5bl ;n2n3n4n1
5bl ;n4n1n2n3

5bl ;n4n3n2n1
. ~45!

If we consider the numerical aspects for the case wheres, p,
d, andf orbitals are included in the wave-function expansio
we find that we need to use a cutoff ofl max56 in Eqs.~37!
and ~39!. Using the symmetries in Eq.~45!, we then find
9072 basic integrals that have to be calculated and sto
The sum in Eq.~41!, however, involves 731645458 752
elements. Fortunately, only 6778 combinations of t
l , L1 , L2 , L3 , L4 coefficients in Eq.~42! have to be calcu-
lated; the others vanish. Each of these coefficients involve
sum over 16 elements, and each of these elements is a p
uct of five numbers.

2. Fast fourier transformation approach

The method we have just described works well, but
quires a lot of Gaunt functions and other complications.
3-6
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HUBBARD-U CALCULATIONS FOR Cu FROM FIRST- . . . PHYSICAL REVIEW B 65 075103
mentioned, it also only involves integrals over the cent
site and ignores parts of the Wannier functions on nea
neighbors. We have therefore found a different approac
the problem.

To calculateW(12,34;R,R8) for any lattice sitesR and
R8, we make use of the Fourier transform

E d3q
eiq•r

q2
5

2p2

ur u
~46!

and find for Eq.~33!

W~12,34;R,R8!5
e2

2p2E d3q

q2
eiq•(R2R8) f 13~q! f 24~2q!,

f i j ~q![E d3r eiq•rwni
* ~R2Ri ;r !wnj

~R2Rj ;r !. ~47!

The f i j functions are just the Fourier transforms of a prod
of some Wannier functions in a sphere. These can be ca
lated very efficiently by calculating the Wannier functions
a cubic mesh in real space and then applying a standard
algorithm. To do this, we have used the routine ‘‘fourn’’~cf.
Ref. 33!. For details on how to apply the FFT to continuo
functions, Ref. 34 is very useful. The result of the Four
transform isf i j (q) on a cubic mesh inq space with someDq
~the distance between the mesh points!. We perform the re-
mainingq integral in the following way. Let us call the in
tegrand without theq22 term

F~q!5eiq•(R2R8) f 13~q! f 24~Àq!, ~48!

which is smooth function atq50. In order to treat the diver-
gence arising fromq22, we split the integral in the following
way:

E d3q
F~q!

q2
5E d3q

F~q!2F~0!

q2
1F~0!E d3q

q2
. ~49!

All integrals are over a cube with lengthNDq. The last in-
tegral is just half of this length timesC, which we define as

C[E
21

11

dxE
21

11

dyE
21

11

dz
1

r 2
'15.348 25. ~50!

The remaining integral in Eq.~49! is transformed into a sum
over little cubes with volume (Dq)3. For q50 the value of
the integrand is calculated via the second derivative ofF(q)
at q50 numerically~the second derivative is needed to ca
cel theq2 in a power-law expansion ofF).

The cubic grid in real space that we used to calculate
Wannier functions in Eq.~47! hadN5643 points in the real
space grid with a spacingDx50.17. TheDq spacing of theq
mesh is determined byN and Dx. Using the FFT for con-
tinuous Fourier transformations one has to be very car
about the choice of these values because the FFT is a dis
Fourier transform. It is important to make sure that the
sults of a FFT calculation do not depend on the valuesN and
Dx.
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Note that each integral in Eq.~47! could be calculated
from the spherical-harmonic expansions. However, ma
such integrals would be required and the method would
extremely computationally expensive. The FFT method g
erates all theq values needed with a single calculation and
much more efficient. However, because of finite mesh si
and compromises between real andq space integrals, it is no
as accurate as the spherical-harmonic expansion metho
Sec. II E 1, when the latter is applicable.

III. RESULTS AND DISCUSSION

We have tested our methods on Cu, which has the follo
ing properties:~i! It has a simple close-packed fcc cryst
structure for which the ASA should be a reasonable appro
mation. ~ii ! Cu is a simple metal that belongs to the 3d
transition metals, so one can determine Coulomb matrix
ements for the 3d states, which are interesting and of re
evance for the really correlated 3d systems.~iii ! Since Cu is
nonmagnetic, we do not have to worry about spin-polariz
or magnetic calculations. We have used the experimental
tice constanta53.614 Å as given in Ref. 35. As usual w
use atomic Rydberg units anda05\2/me2 is the Bohr ra-
dius.

From the one-electron Bloch wave functions, the Wann
functions were obtained using 500k points in the BZ. Since
we have used a cutoff ofl max53, the LMTO method gener-
ates 16 bands. In the minimization procedure, all 16 ba
were treated as a composite set of bands. To demonstrat
localization of the Wannier functions obtained, we have c
culated

^wnuwn&R5E d3r uwn~R;r !u2, ~51!

which is the relative weight the Wannier function localized
the site0 has in the muffin-tin sphere centered aroundR. In
Fig. 1 we have plotted forn52 the function ln̂w2uw2&R as a
function of uRu. Although the contribution tow2 appears to

FIG. 1. Localization of Wannier functions before~gray! and
after ~solid! minimization of the spread functionalV. Each dot
represents the portion of the wave function in a muffin-tin sphe
The best exponential fit to the decay is roughlye2gr with the values
of g given within the figure. In Eq. ~10! we set r0

5(0.8,1.0,0.3)a0.
3-7
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I. SCHNELL, G. CZYCHOLL, AND R. C. ALBERS PHYSICAL REVIEW B65 075103
decrease exponentially with increasing distance from
central sphere when plotted in this way, i.e., our Wann
functions are exponentially localized, we actually get just
good a fit through the scatter of the data with a power-l
dependence with a power of about27. It is not easy to
numerically decide whether the decay is an exponential
power-law dependence, since our Wannier functions are
timately periodic in a supercell determined by theDk spac-
ing of the discretek mesh used to construct them. In eith
case, the Wannier function is highly localized. The gray d
and line in the figure show the result when only the ph
has been adjusted according to Eq.~10!; then the Wannier
functions have a relatively smaller decay constant ofg
50.38a0

21. The black dots and line show the result after t
full localization ~minimization! procedure of Ref. 27 ha
been applied by minimizing the full set of all 16 bands co
sidered; clearly a much better localization with a larger
cay constantg51.14a0

21 has been achieved. When we trie
to minimize a smaller subset of bands~five bands instead o
the full 16! the decay factor was in between the other t
values, withg'0.71a0

21 ~not shown in the figure!.
Here we should note that the Wannier functions are

pure in terms of theirl character. Table I shows the angul
character in the center muffin tin~MT! and the first shell for
the first seven Wannier states. We see that for the states
n50 to n54 thed character is largest, which suggests to c
these states d-like states yielding five d states per spin d
tion as expected. But among these states the d charac
highest~nearly 90%! for the statesn52 and 3. Table I also
tells us how much of the state is found in the center mu
tin. We see that the staten52 has 97.7% in the center MT
and only 2.1% in the next shell demonstrating how well
calized this Wannier function is. The Wannier functions c
responding ton50, n55, andn56 have considerable 4s
and 4p character, andn55 and n56 have the least 3d
character. But they are very well localized as well, having
least 88% of their total weight already within the cent
muffin-tin sphere. On the other hand, all Wannier states
mixed with respect to theirl character, since the minimiza
tion procedure mixes all thel characters.

Figure 2 shows a few radial-averaged Wannier functio

TABLE I. Angular character of Wannier functions in the cent
muffin-tin sphere~top! and first shell, i.e., 12 nearest neighbo
~bottom!.

l n50 1 2 3 4 5 6

~4!s 0.102 0.013 0.000 0.008 0.026 0.134 0.18
~4!p 0.297 0.131 0.058 0.042 0.151 0.373 0.39
~3!d 0.407 0.663 0.895 0.886 0.716 0.323 0.25
~4!f 0.096 0.140 0.024 0.039 0.064 0.069 0.05
( 0.902 0.947 0.977 0.975 0.956 0.899 0.88

~4!s 0.009 0.004 0.002 0.002 0.004 0.009 0.01
~4!p 0.019 0.008 0.004 0.004 0.008 0.020 0.02
~3!d 0.052 0.029 0.012 0.013 0.024 0.053 0.06
~4!f 0.012 0.008 0.003 0.003 0.006 0.012 0.01
( 0.092 0.049 0.021 0.023 0.041 0.094 0.10
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in their center MT. We should note that the peak of the sta
n50 and 6 forr→0 does not contribute very much to ma
trix elements because of ther 2 in Eq. ~22!. Figure 2 may also
be qualitatively compared with the Wannier function of Cu
Ref. 36.

From these Wannier functions we have calculated
hopping matrix elementstRnm according to Eq.~19!. These
can be inserted into Eq.~18! in order to determine an effec
tive orthogonalized~diagonal S-matrix! tight-binding repre-
sentation. The matricesHk are not diagonal because the un
tary matrix that was used in the minimization of the Wann
functions scrambled the different bands. However, we
still diagonalizeHk for eachk point and compare the eigen
values with the original LDA band structure. The results a
shown in Fig. 3, where we have cutoff theR sum in Eq.~18!
to include only0 and the 3 nearest shells, i.e., 43 sites. W
have found that the decay oftRnm as a function ofuRu is a lot
faster than that of the Fourier components of the band st
ture, Eq.~17!. If we just take Eq.~17! and recalculate the
band structure according to Eq.~18!, the agreement is a lo
worse ~for the same number of sites intRnn). This can be
understood in the following way: Labeling the bands acco

FIG. 2. Radial-averaged Wannier functions in the center muf
tin sphere for various indicesn.

FIG. 3. Comparison of LDA band structure~dashed line! and the
diagonalized eigenvalues of Eq.~18!, where three shells in the lat
tice sum were included. The bands are relative to the Fermi leve
0 eV.
3-8
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HUBBARD-U CALCULATIONS FOR Cu FROM FIRST- . . . PHYSICAL REVIEW B 65 075103
ing to En(k),En11(k) is not ‘‘natural,’’ therefore at points
in k space where two bands cross each otherEn(k) has a
kink. Those kinks have non-negligible Fourier compone
with large uRu, which our cutoff sets to zero.

In Fig. 4 we have included eight shells in the lattice su
of Eq. ~18!, i.e., 141 sites. As we can see the two curv
agree even better. These calculations are a test of the qu
of the Wannier functions, i.e., how well the matrix elemen
obtained from these Wannier functions reproduce the kno
band structure.

With respect to the magnitude of the hopping matrix e
ments, thet0nm are largest and provide information about t
positions of the bands. For a next neighborR, the utRnmu are
of the order of 0.3 eV for d states~and 1 eV for the state with
n50). For largerR the hopping matrix elements are le
than 0.15 eV for d states~and less than 0.5 eV for the sta
with n50).

Next, consider the projected DOS. In these calculati
we have used the tetrahedron method31 ~see also Ref. 23!
with 200k points and 691 tetrahedron in the irreducible p
of the Brillouin zone. In Fig. 5 we have plotted the tot
DOS, which can also be found in the literature~see Ref. 37!.

FIG. 4. Comparison of LDA band structure~dashed line! and the
diagonalized eigenvalues of Eq.~18!, where eight shells in the lat
tice sum were included.

FIG. 5. Total electronic density of states, relative to the Fe
energy. We have used a Gaussian broadening of 2 mRy to rem
the spikes inherent in the linear tetrahedron method.
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Figures 6 and 7 show the projected DOS according to
~28! for the Wannier functions 0–7. It is interesting th
statesj 52 and 3 have very similarl character~cf. Table I!
but a very different projected DOS in Fig. 6, i.e., they a
peaked at different energies and emphasize different par
the d band. Table II shows the projected density of sta
~actually the percentage of the DOS in different states! and
the projected number of states evaluated at the Fermi le
where thej th projected number of states is defined as

nj~EF!5EEF
dE Nj~E!. ~52!

This is just the number of electrons in thej th state. Every
state could maximally be occupied with two electrons~one
for each spin direction!.

We next consider a calculation of the direct Coulomb
tegralUii for a d-like orbital with itself. As discussed above
the Wannier function forn52 has nearly perfectd character
and to a good approximation we can consider only its c
tribution in the central MT, i.e., at site0. What we then
calculate is the on-site Coulomb matrix element between
electrons~with different spin because of the Pauli principl!
at the same site in the same Wannier state, i.e., essentiall
Hubbard U in its original sense.3 The method described in
Sec. II E 1 yieldsU(dd;0,0)525.26 eV while the method
from Sec. II E 2 yields 25.16 eV for this quantity. But wit
the second method we are able to calculate all the elem
involving tails of the Wannier functions in other muffin tin
in the double sum in Eq.~32!. When we do this and include

i
ve

FIG. 6. Projected DOS for Wannier states 0–3.

FIG. 7. Projected DOS for Wannier states 4–7.
3-9
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I. SCHNELL, G. CZYCHOLL, AND R. C. ALBERS PHYSICAL REVIEW B65 075103
sites whereRi and Rj are nearest neighbors, we getUdd
525.51 eV, which shows that including the portions of t
Wannier function on neighboring sites is a rather small c
rection onU for such a strongly localized function. Table I
show these quantities for the Wannier functionsn50
through 6. Going beyond nearest neighbors would have e
a smaller effect. Therefore, one can truncate the sums
higher neighbor shells for the Coulomb matrix elemen
which converge faster than for the hopping matrix eleme
The reason for this is that the Coulomb integral involve
product of four wave functions, whereas the hopping ma
elements involve only two wave functions.

The FFT approach allows us to calculate Coulomb ma
elements for Wannier functions centered on different si
We have done this for the statesa5$0,2% and b5$R,2%
whereR is a nearest neighbor of0. Both ared-like states. In
Eq. ~32! we have again included nearest neighbors forRi and
Rj . The result isUab55.87 eV. The largest contribution i
the sum isU(ab;0,R)55.66 eV, which is the contribution
arising from the two center spheres of statesa andb.

Our first method is most useful for calculating interba
~on-site! Coulomb matrix elements when the states are
well localized that we can neglect the contribution fro
neighboring spheres. We have calculated both the direct C
lomb matrix elementsUnm and the exchange integralsJnm
for all n andm. Here then,m just indicates the band and a
Wannier states are centered at site0. The results are given in
Tables IV and V for the first seven bands. We see that
on-site intraband Coulomb matrix elements are largest
the Wannier statesn52 and 3, which have almost pure
character. We also note that all the direct Coulomb ma
elementsUnm are rather large, while the exchange Coulom
matrix elementsJnm with nÞm are rather small@note that
the diagonal terms for bothUii andJii are identical by defi-
nition, cf. Eq. ~34!#. When we compare the diagonal el
mentsUnn (5Jnn) from Tables IV and V with the first line
of Table III we note relatively large differences for the sta
n50, 5, and 6, which have larges andp character, as can b

TABLE II. Projected number of states at the Fermi energy, i
nj (EF). For j .8 ~the numbers not given!, nj (EF),0.25. The sec-
ond line shows the percentage of the DOS at Fermi energy,
100Nj (EF)/N(EF).

j 0 1 2 3 4 5 6 7 8

nj (EF) 1.17 1.31 1.59 1.80 1.34 0.66 0.90 0.51 0.7
% DOS 4.7 2.1 11.1 7.1 15.4 13.0 4.6 3.2 27

TABLE III. On-site FFT U ’s. In the first line ~on-siteU) we
have only includedRi5Ri50 in Eq. ~32!, i.e., U( j j ;0,0). The
second line~NN U) shows the same quantity, where we have
cluded nearest neighbors forRi andRj .

j 0 1 2 3 4 5 6

on-site-U 14.82 19.05 25.16 25.49 20.79 13.81 13.22
NN-U 16.29 19.81 25.51 25.86 21.44 15.32 14.97
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seen from Table I~e.g., 0.52 eV forn50). This leads to a
peak in their charge density nearr50 as we can see from
Fig. 2 for n50 and 6. For those states our FFT calculatio
had a numerical problem because our real-space grid was
large ~with Dx50.17a0). But for n52, we do not have a
peak atr50, and the FFT approach does an excellent job

The HubbardU clearly depends on the specific shape
the Wannier functions. Intuitively, one expects biggerU ’s for
more localized orbitals. As an example of this, we have c
culated a less-localized Wannier state~by performing fewer
steps in the minimization procedure!. In this case, the highes
d-character state, which is almost pured like, has only 58.5%
of its charge density in the center muffin tin, and 95.4
within the first three shells. For those three shells we h
used the FFT method to calculate all 432 terms~33!. We find
U513.8 eV for this less-localizedd state.

We should also note that most model calculations assu
very localized, pure~in l character! Wannier functions. In
particular, they often assume that LDA or some one-electr
like treatment is adequate for non-d and non-f electron
states, and that the only explicit correlations that need to
included are related to on-site~or sometimes also neares
neighbor! CoulombU ’s for thed ~or f ) states. It is also often
implicitly assumed that the non-d and non-f states have
some screening contribution to the effectiveU ’s in the model
Hamiltonian. These types of assumptions raise some diffi
ties for us to connect our treatment to the model Hamil
nians, since the orthogonalization properties and mixing n
essary for localizing our Wannier functions scramble thl
character of the resulting orbitals. Hence, our effectiveU ’s
do not have a pured or f character~or s or p). Also, since we
calculateU ’s for all of the orbitals, we are implicitly includ-
ing correlation effects for all orbital (s andp as well asd and
f ), and however theU ’s in our treatment are ultimately

.,

.,

-

TABLE IV. Interband on-site matrix elements,Unm in eV.

m50 1 2 3 4 5 6

n50 14.30 15.86 17.86 17.45 16.31 13.24 12.7
1 15.86 19.02 21.36 20.98 19.33 15.25 14.4
2 17.86 21.36 25.26 24.13 22.30 17.09 15.8
3 17.45 20.98 24.13 25.26 21.88 16.69 16.1
4 16.31 19.33 22.30 21.88 20.70 15.76 14.7
5 13.24 15.25 17.09 16.69 15.76 13.23 12.3
6 12.77 14.42 15.86 16.12 14.78 12.32 12.4

TABLE V. Interband on-site matrix elements,Jnm in eV.

m50 1 2 3 4 5 6

n50 14.30 0.91 0.73 0.76 0.92 0.98 1.34
1 0.91 19.02 1.22 0.84 0.91 1.43 0.69
2 0.73 1.22 25.26 0.92 1.14 0.95 0.58
3 0.76 0.84 0.92 25.26 0.99 0.71 0.62
4 0.92 0.91 1.14 0.99 20.70 1.20 0.79
5 0.98 1.43 0.95 0.71 1.20 13.23 1.22
6 1.34 0.69 0.58 0.62 0.79 1.22 12.4
3-10
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screened in some many-body treatment, this screening
be different from that assumed in the model Hamiltonia
We may ultimately be forced to use some kind of project
of our orbitals onto purel-character states in order to mak
appropriate identification between our types of states
more conventional model Hamiltonians.

IV. CONSTRAINED LDA

Finally, we have done a constrained LDA calculation17 to
obtain an estimate for the HubbardU. In this method the
HubbardU is defined as the Coulomb energy cost to pla
two ~in our cased) electrons at the same site. This is

U5E~Nd11!1E~Nd21!22E~Nd!. ~53!

HereE(Nd) is the ground-state energy withNd d electrons.
If we consider this energy as a continuous function ofNd ,
where we constrain the value ofNd to be away from its
minimized value, then the HubbardU is given by

Udd5
d2E~Nd!

dNd
2

. ~54!

This constraint, which fixes the total number of d electrons
be Nd , can be taken into account by adding a Lagran
parametervd to the total energy; i.e., the energy of the co
strained system is given by

E~Nd!5minFE$n~r !%1vdH E d3rnd~r !2NdJ G . ~55!

HereE$n(r )% is the usual band-structure energy andnd(r ) is
thed-electron density. On minimization, the extra term in E
~55! leads to an additional constant potentialvd in the Kohn-
Sham equations, which acts only on thel 52 angular mo-
mentum components of the wave function. Within t
LMTO method, this is accomplished by adding a const
potentialvd when solving the radial Schro¨dinger equation for
l 52, and then calculating the total energy as a function
vd . Since each value ofvd changes thed occupation num-
ber, the final result can be written asE(Nd). This depen-
dence is shown in Fig. 8 and can be accurately fitted b
paraboladE5 1

2 UddNd
2 with Udd518.2 eV. This is of the

same magnitude as the result obtained from the direct ca
lation of the Coulomb matrix elements, even though o
might expect a smaller value because of the screening ef
that are believed to be included in this calculation. In o
calculations we have only used a one-atom unit cell. I
larger unit cell is chosen, one could do a variety of additio
constraints~e.g., changing thed occupation separately o
two different atoms!. Such calculations could attempt to so
out more details of effective Hamiltonians~perhaps even
two-particle parameters!. However, such calculations woul
take our work in a different direction from the one we a
interested in. Also, given the intuitive nature of the co
strained method and the difficulties in fitting such a lar
parameter space, it is not clear how useful the resulting
rameters would be or their uniqueness.
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V. CONCLUSIONS

We have shown in this paper thatab initio band-structure
methods can be used for a first-principles calculation of w
localized Wannier functions, which is achieved by using
method proposed by Marzari and Vanderbilt.27 From these
localized Wannier functions the on-site and intersite o
particle matrix elements of the Hamiltonian can be calc
lated. A good localization of the Wannier functions is need
to keep tight-binding~hopping! matrix elements restricted to
a small number of near neighbors. The Coulomb matrix e
ments within these localized Wannier states can also be
culated and are similarly only important between on-site a
nearest-neighbor Wannier functions. The result is thus
electronic multiband Hamiltonian in second quantizati
with first-principles one- and two-particle matrix elemen
The Hamiltonian is of the form of an extended multiba
Hubbard model but without adjustable parameters; the
rameters are directly calculated for a given material. T
only approximations still involved are the ones inherent
theab initio band-structure method used~e.g., the muffin-tin
assumption, the ASA approximation, the choice of lineariz
orbitals in the LMTO, and the ‘‘frozen-core’’ approxima
tion!, and the truncation in the number of bands~states! per
site that is explicitly taken into account~truncation of thel
sum!. The resulting multiband Hamiltonian that includes t
Hubbard-U terms, of course, still has to be studied within
reliable many-body method or approximation, e.g, a mu
band version of the DMFT as in Refs. 7, 10, 12, and 14.

Our Cu calculations yield on-site direct Coulomb matr
elements~‘‘Hubbard U’s’’ ! of the magnitude of 20 eV for 3d
Wannier states and inter-site~Hubbard U’s between neares
neighbors! values of 5 eV. This is the magnitude discuss
already earlier3 and similar to those for atomic 3d state
These U values are much larger than commonly expecte
used in model studies. Although our calculated Coulomb m
trix elements are unscreened, the constrained LDA, wh

FIG. 8. The total energy as a function of the effective change
d charge. The line is a quadratic fit.
3-11
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includes some screening effects, gives comparable ma
tudes for U. Since dynamic screening due to the mobile e
trons in the outer shells~bands! is taken into account auto
matically when using an appropriate many-body meth
e.g., a generalized random-phase approximation, the
screening that should be included in a better theory i
static, short-range screening by the inner core electr
However, the~atomic-like! electronic states representing th
inner ~‘‘frozen’’ ! core are well known, and it should be po
sible to calculate their screening contribution from a~gener-
alized! static Lindhard theory. In future work we plan t
examine the static screening due to the inner core state
application of appropriate~multiband! many-body methods
and the application to more strongly correlated 3d mater
such as iron, cobalt, and nickel. Any treatment of screen
will, of course, have to be done very carefully so that scre
ing effects are not double counted~once in the explicit
screening and then a second time when the many-b
Hamiltonian is solved!. Finally, although any localized orbit
als could be used as the basis for a many-body treatment
approach we have used~of constructing localized orbitals
from LDA band states! has the advantage that these orbit
are a good basis set for any states without strong elect
electron correlations, since LDA is believed to be an accu
approximation in this limit. We can hope that an addition
more explicit treatment of the strong correlations by a ma
body theory will correct and improve on the LDA startin
point.
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APPENDIX: SPHERICAL HARMONICS EXPANSIONS

Any function A(r ) within a ~muffin-tin! sphere may be
expanded in terms of spherical harmonics,

A~r !5(
L

AL~r !YL~ r̂ ! ~A1!

If two functions A(r ) and B(r ) are given via their coeffi-
cientsAL(r ) andBL(r ), then the corresponding coefficien
FL(r ) of the functionF(r )5A(r )B(r ) are given by

FL~r !5 (
L1 ,L2

AL1
~r !BL2

~r !CL1LL2
. ~A2!

The Gaunt coefficientsCLL8L9 are defined by

CLL8L95E d2V YL~V!YL8
* ~V!YL9~V!

5dm9,m82mA2ł 911

4p
cl 9~L8,L ! ~A3!

and theck(L8,L) are tabulated in Ref. 38. We may use E
~A2! to multiply a function with a plane waveek(r )
[e2 ik•r whose coefficients are given by~see Ref. 32!

eL
k~r !54p j l~kr !@ i lYL~ k̂!#* . ~A4!
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