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Thermoelectric properties of the degenerate Hubbard model
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We investigate the thermoelectric properties of a system near a pressure-driven Mott-Hubbard transition. The
dependence of the thermopower and the figure of merit on pressure and temperature within a degenerate
Hubbard model for integer fillingi=1 is calculated using dynamical mean-field theory. The quantum Monte
Carlo method is used to solve the impurity model. Obtained results can qualitatively explain thermoelectric
properties of various strongly correlated materials.
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The discovery of strongly correlated materials and im-system corresponds to the situation in which the number of
provement in theoretical methods offer perspectives in thelectrons is equal to the number of sites. We use Coulomb
search for systems with good thermoelectric performance repulsionU and temperatur@ as the parameters to vary and
The dimensionless figure of mer#T=S?cT/k, provides us  take the half bandwidtid to be unity.
with a quantified measure of the thermoelectric performance While calculation of the numerical value of the thermo-
of materials. Higher values of the thermoelectric figure ofelectric coefficient requires detailed modeling of the band
merit corresponds to better thermoelectric properties. To geitructure and interaction constants of the relevant com-
maximal thermoelectric response at a fixed temperaflire, pounds, we expect that tlypalitative features related to the
we need to have maximum possible thermopo®eand the  thermoelectricity of a Mott insulator at integer filling can be
electrical conductivityor, while the thermal conductivitye, ~ captured by the simplest model, the degenerate Hubbard
should be the smallest possible. The thermal conductivity hagiodel, and we undertake this study in the paper. Indeed the
two contributions, an electronio,, and lattice,x, , one; trends discussed here are found in NigSe and
k= Ke+ k| . For some time, the highest value of the figure ofNi; -,Cq,S,, as we discuss toward the end of this paper. The
merit has been equal to 1 and little improvement in gettingalgorithms necessary for more realistic calculations of ther-
materials with higher figures of merit has been achieved irmoelectricity will be discussed in a future publication.
the last two decades. Since the electronic structure of To treat the two-band degenerate Hubbard model we use
strongly correlated electron systems exhibit properties whiclilynamical mean-field theoDMFT).® Recent development
have no analogy to those of weakly correlated compounds, #f DMFT has given a boost to the study of strongly corre-
is important to understand their physical properties and hovated systems and their properties. In particular it has resulted
they impact the thermoelectric power. Strongly correlatedn a detailed understanding of the Mott transition.
electrons are sensitive to small changes in their control pa- Previous studies of thermoelectric properties using DMFT
rameters such as temperature, doping, and pressure awgre done within the framework of the one-band Hubbard
hence require a detailed investigation. There is now a strongnodel;® strong temperature and doping dependence of the
interest in understanding how these changes affect the theilermopower was reported. IBson and Kotliar considered
moelectric properties in order to find more efficient materialthe orbital degeneracy away from half filling in the limit of
with higher thermoelectric response. Even a modest increadgfinite interaction strengthA good description of the See-
in ZT could substantially impact a number of applicatidns. beck coefficient dependence on temperature and doping for

Two important parameters in strongly correlated electrorfitanates was obtained.
systems are the carrier concentration and the ratio of the In this paper we focus on the integer occupancy case with
on-site interactiorlJ to the bandwidthw. This ratio can be orbital degeneracy. We also keépfinite and study depen-
altered by applying external pressure or internal pressure bgence of thermoelectric properties on the interaction. Chang-
means of isovalent substitutions. ing the ratio of the interaction strength, one can mimic the

In this paper we study behavior of the figure of merit andeffects of pressure.
the thermopower near a pressure-driven metal-insulator tran- The N-fold degenerate Hubbard Hamiltonian reads
sition (MIT) within the framework of the degenerate Hub-
bard model. Our focus is on the effects of orbital degeneracy. -3 + U D D
There are several motivations for our study. First, in many '~ o lijCioCis T % o~ NioNio' = Hcs Mig
strongly correlated materials, the orbitals, which bring a ma- ’ (1)
jor contribution to unusual physical properties, are degener-
ate. Second, the orbital degeneracy allows us to study thehere(ij) runs over nearest-neighbor sites, anis the spin
effects of particle-hole asymmetry in the Mott insulating and orbital indices which run from 1 tbl. The two-band
state with filingn=1 in a natural waylone can also intro- degenerate Hubbard model correspondiNte4. The hop-
duce particle-hole asymmetry in this case by adding hoppinging matrix is given byt;;, U is the Coulomb repulsion, and
integrals beyond nearest neighborghird, the degeneracy u is the chemical potential. We also want to restrict our-
will allow us to use the integer fillingh=1 that in the real selves to the paramagnetic phdseboth spin and orbit in-
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dices, i.e., we are interesting in the metal-insulator transition 3
and its influence on transport properties due to electronic
correlations only. It is worth mentioning that orbital degen-

eracy suppresses the magnetic correlations enough to make 2y
our assumption easily fulfillei.To make computations still
easier we assuntg =t.

In this paper we use the model on a cubic lattice. For
calculation of thermodynamic properties we use the semicir-
cular density of state$DOS) p(e)=(2/mD)/1—(e/D)?, 0|
with the half bandwidtiD = W/2=2t. The semicircular DOS
corresponds to an infinite coordination Bethe lattice which,
as it was found earliet,gives a good description of three- -1 . . . ‘
dimensional systems. 1 2 3 4 5

The next step is to solve the Hubbard model. The standard v
way in DMFT to do this is to map the lattice Hubbard model FIG. 1. Dependence of the thermopow(in units of kg /e
onto the effective impurity problem, which is a generalized o X . X B
single impurity Anderson model, where the operators carry ¢ #V/K) on Coulomb interactiot (in D=1 eV) for 5=8.
an orbital index. Supplementing with the self-consistency .
conditior? solution of the impurity model gives us the solu- + 10 Naeg- The spectral density(k,w), and the transport
tion of the original Hubbard model. The quantum Monte function, ®(e), contain the relevant information about the
Carlo (QMC) method with an extended Hirsch-Fye Pare band structure :
algorithn?'%is used as the impurity solver. To reduce com-
putational errorgthe Trotter breakupthe imaginary-time in- B(e)= 1 2 Jek
terval is set toA 7= 1/4. During the self-consistency proce- (e)=y |k,
dure one needs to make direct and inverse Fourier
transformations for the Green's function§F's). In the  As is seen from the above formuléd) and(4), contribution
present calculations we use a modified Fourier transformag the thermopower strong|y depends on temperature. For
tion in order to get correct resultbor details, see the Appen- |ow temperatures only states close to the Fermi surface con-
dix). tribute to thermoelectric properties while for high tempera-

The output of the self-consistent procedure describedures the entire Brillouin zone is important. Coulomb repul-
above is the Green's function on an imaginary-time axis. Tosion, U, acts on the transport coefficients via changes in the
calculate the thermoelectric properties we need to know thgpectral density functionp(e,w). There is a very simple
behavior of the GF's on the real frequency axis. The maximnemonic rule to define the sign of the thermopower. For
mum entropy method is used to make the analytical continusmall temperatures it depends on the DOS slope at the Fermi
ation of the imaginary-time GF's to the DOS on the realenergy: if the DOS curve rises when it crosses the Fermi
frequency axis. Knowing the imaginary part of the GF weenergy then the sign is negative and vice versa. For very high
reconstruct frequency dependence of the real (@&(®) temperatures it depends on the weight of the Hubbard bands:
through Kramers-Kronig relations. The obtained GF is usedf the weight of the Hubbard band above the Fermi energy is
to calculate the transport coefficients. larger than the contribution from the band below the Fermi

Using Kubo formalism one can express thermoelectric cotevel then the thermopower is negative. This rule will help us
efficients in terms of current-current correlation functionseasily understand the thermopower behavior analyzing the
which are reduced within DMFT to averages over the spectemperature dependence of the DOS.

2
) o(e— €y). 4

tral density functiorp(e,w):"** In Fig. 1 we plot dependence of the thermopower on in-
teraction strengtiJ. The thermopower changes sign in a
Aq e? Af region of Coulomb repulsion 25U <3, the region where
S=- @’ o= ?AO, k=|Ay— A_o ' 2 the system undergoes a metal-insulator transition at low tem-
peratures. The MIT for high temperatures transforms into the
where the coefficients,, have the following form, metal-insulator crossover that is reflected in the spectral

function (DOS) behavior presented in Fig. 2. It is worth no-
1 FE: if (@) ticing the quite stronds dependence obJ in that crossover
A== >, f dwpg(k,w)(—) ( —T—) (Bw)" region. WherlJ — 0 the thermopower will have a finite value
Vis K de depending on temperature, and in the opposite llthit o
we expect saturation of the thermopower dependence which

” p’(g,0)(wp)" - : :
=Nge Wf dods———————d (&), (3) will also be temperature dependent. The interaction depen-
R 4 cosR ﬂ_w dence of the thermopower helps us qualitatively understand
cosft| = the pressure influence onto the system as well as behavior of

a system(e.g., NiS_,Sg) changing its properties from in-
whereT is temperaturef () is the Fermi distribution func- sulating to metallic by varying the bandwidth. It follows
tion, ands describes spin and orbital indices which run from from the fact that the only important parameter in the system
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) can show it analytically; it is nearly impossible at the present

FIG. 2. Spectral functionDOS) for U=2.5 and 3 fo3=8. stage to reach very low temperatures with the QMC method

and a negative sign indicating the presence of quasiparticles
is the ratioU/W and one can vary any of the two variables to in the system, which is clearly seen in Fig. < 16) where
get a qualitative description of the system’s properties.  a good quasiparticle peak in the Fermi energy is observable.

Behavior of the figure of merit on interaction strength With increasing temperature a smooth crossover from quasi-
(Fig. 3 is possible to understand from its definition. It is particle excitations to incoherent ones is reflected in non-
minimum where the thermopower changes sign. After thanonotonic thermopower dependence which changes sign
sign changes it substantially increases and is maximum fdirom negative to positive. In Fig. 5 for temperatuigs- 12
higher values ofJ. Rather high values & T (more than 1  andB=8 we see how the quasiparticle peak of the DOS gets
can be explained by the absence of the lattice contribution itower and then disappears. From this observation we can
the thermal conductivity. If one takes into account the latticeconclude that a positive value @& tells us that the band
thermal conductivity the figure of merit drops to a value structure consists of two Hubbard subbands only. Similar
below 1. Usual values of the lattice contribution to the ther-behavior of the thermopowewith the sign changeoccurs
mal conductivity in transition-metal oxides lay in the region in the single-band Hubbard model upon doginand in the
0.1-10 W/mK. We believe that 1 W/mK is a reasonableHubbard model with frustratiénas well as in the periodic
value for pyrites. We see that the figure of merit is maximalAnderson model? Further temperature behavior of the ther-
for interactionU between 4 and 4.5, but even in this region, mopower is new, to our best knowledge. At a temperature
the obtained figure of merit could not compete with the ong8=28 in Fig. 4 the thermopower reaches its maximum and
for semiconductors due to the lattice contribution to the therthen starts decreasingve should notice here that tempera-
mal conductivity. ture B=4 is the coherent temperature for the studied sys-

Temperature dependence of the thermopowerler3  tem). For 8=4 the spectral function consists of two bands,
presented in Fig. 4 can be easily explained from analysis ofne of which is a lower Hubbard band, which is closer to the
the DOS temperature dependence in Fig. 5. For very lowrermi energy and gives a greater contribution to the ther-
temperatures the thermopower has linear dependéme mopower than does the upper one, which is located a bit

further from the chemical-potential position. With increasing

4 ‘ ‘ ‘ temperature the two bands become less asymmetric to the
Fermi energy and the weight from the upper Hubbard band
(n=1) becomes larger than the contribution from the lower
band. This means that the thermopower should became nega-
tive, as is seen in Fig. éhe last point And finally, for very
high temperature the two bands collapse into one. But the
sign of the thermopower remains unchanged for the same
reason as discussed above. The thermopower sign change in
the high-temperature limit due to the Mott-Hubbard bands’
collapse was reported in Ref. 13.

To gain further understanding of the temperature and in-
teraction dependencies of the thermopower we study its
high-frequency behavior in the high-temperature limit. To do
so we generalize the thermoelectric response to finite fre-
quenciesac thermopower*

X, =0.0

FIG. 3. The figure of meritZT, vs interaction strength), for 1 le(w)
temperaturgg=8 and different values of the lattice conductivity Sw)=————, (5)
[W/mK]. eT LY w)
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where coefficientd. 1* andL'? are defined as one-band electron correlation theory with a good fit of ex-
50 N e e perimental _data using a six—pa_rameterlr;’nodel was_given some
L30(0) = e D (mlailv) (|3} u)(e”FPu—e"F) years ago in the work of Kwizerat al To explain low-
I wB o wte,—e,tid ' temperature dependence of the thermopower it was sug-

gested that both holes and electrons participate in charge

Here e #2=Tr(e #"~#N), i,j=x, J=j«, J3=i3, ix transport and a two-band model was proposed as an appro-
and j? are electrical and heat currents in thedirection, priate model for data interpretatiéhOur calculations show
correspondingly, andy is the polarization operator satisfy- that the two-band degenerate Hubbard model treated within
ing jx(t) = day(t)/at. DMFT is a sufficient model for at least a qualitative descrip-

Expanding the numerator and denominator of the thersign of pyrites in the whole temperature range>®in the
mopower[L*(w) and L' )] in frequency and dividing  ¢ase of the half-filled Ni d—e, band in the Ni$_, S, the-
one onto the other we obtain the following expansion of the,etical model under consideration, due to the symmetry in
thermopower in the high-frequency limit: the system, it should give zero thermopower for all tempera-

/(9 .QD tures, while experimentally it is zero only for temperature
S(w):__(X;J.XjL@(w))_ (6) T<100 K. For higher temperatures the thermopower be-
e | ([ax.ix]) comes positive. It is clear that one needs to take into account

effects of other band€illed t,, band in the first turh The
thermopower behavior in Ni,CoS, with temperature
1 looks rather similar to Nig ,Sg, but with Co substitution
— [0.j9=> it[cj‘r+2Xst+ CjT—Zx st,s]+/"[CjT+stj,s of Ni atoms, occupancy of thed3-e, band changes from
It Is ' ’ two (x=0) to one =1). One can track the experimental
situation in NiS_,Se, by analyzing model calculation$or

The relevant commutators are given by

+C]fo,scj,s]_u CJ'TH,st,sE N4 temperatures low enough to neglect contributions coming
s s from other bandsespecially in the case of CeSwhich cor-
responds to a one-quarter filled 3 e, band.
el e S N @) In conclusion, we calculatec_j dependen(_:ies of the ther-
JmxsTs = TS mopower and the figure of merit on interaction strength and

temperature of the thermopower in the two-band degenerate
This expression consists of three terms. The first one, proslubbard model for integer fillingi=1. The strong depen-

portional tot, does not contribute to the high-temperaturedence on studied parameters was obtained. Analytical esti-
expansion if one takes into account only nearest-neighbgmations of the high-frequency limit of ac thermopower is
hoppings. The second terfproportional to the chemical po- Provided. In the high-temperature limit ac and dc ther-
tentia) is similar to what we have in the denominator and themopowers have the same sigmegative for fillingn<0.5).
last one proportional toU contributes to the high- We expect that the thermopower behavior in the three-band
temperature expansion of the thermopower. The final resuegenerate Hubbard model would behave in a similar way.

is presented below: This means that we can qualitatively understand the behavior
of the thermoelectric properties in a wide range of strongly
To= g n correlated materials where a major role is playeddbynd
S(w) — — o —u+U m) , (8)  f-shell electrons.

Systems near the temperature-driven Mott transition ex-
hibit very rich thermoelectric behavior. As we cross the
from Ngeq—1 degrees of freedortspin and orbital and is IocaI|zat|on—delocgl|zat|on threshold the thermopower in-

_ - creases substantially. The high-temperature precursors of the
equal 10 2,5 po{(1=Ne)N,1). If one assumes high- g fo e "yoi iransition takes pl t lower temperatur
temperature behavior of the chemical potential in the formAS'5 thoe tgm gratu?e ?S Igwe?egsaagiﬁeacrigcael ME:)tt 2?]; ltj)iﬁf
p/T=a, where a should be negative for the filling is a roacﬂed the specific Heat diverges and the erF:tro
<%Ndeg, one obtains that the sign of the thermopower. PP - pecitic . g 1ropy

umps. The figure of merit is low in this crossover regime

should be negative in the high-temperature limit. Hence a . .
and dc thermopowers have the same sign in the high_ecguse of the great de"?" of can_cellat|on between the quasi-
temperature limit. particle contributions which are, in our m_odel, electro_nllke,
It is quite difficult to make a direct comparison of a model gg'?afizg H#;Sbea:jqabfgg] f:r?]trfrl:t'opes V;?SICZ ?Irl'en h?(')er"g%eﬁ
calculation and situation in real materials due to complexity t ! | P U lag th P tu v Llf] '.”' bg ; dl' q
and the wide variety of real structures. To make a compariSan values ol using the current approach will be studie
son with our model calculations we need a material with aelsewhere.
degenerate, band hosting one electrahole). As we men- The authors are indebted to G.I§on, and A. I. Licht-
tioned in the introduction good candidates for the comparienstein for many helpful and stimulating discussions. We
son are pyrite compounds with doubly degenerate 8y Ni also acknowledge usage of the Rutgers Computational Grid
bands. An attempt to understand high-temperature depeC cluster as well as the NERSC Cray T3E supercomputer

dence of the thermopower in these materials on the basis efhich made our computations possible. The research was

whereﬁcorresponds to the contribution to fillingcoming
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APPENDIX: FOURIER TRANSFORMATION 21

IN QMC CALCULATIONS . R A A S B s S PR B
Q04| D — E
In the self-consistent procedure to solve the impurity
problem using the QMC methddve need to do two direct 02y T /\/\ +
Fourier transformations for GF&(7) andGg(7) (the Weiss 0 I AN .
function) and one inverse Fourier transformation ®p(7) AR

only. FunctionGq(7) is an input for QMC simulations pro- .
ducing G(7). Two direct Fourier transformations are neces- FIG. 5. Temperature dependence of the density of states for
sary to impose the self-consistency condition which is usu=3

ally written in frequency space. Both the GF and the Weiss correct boundary conditions. The standard way to do this is

function contain the discontinuities at=0 and 7= 8. The

to set the second derivatives at the end points of the time
discontinuities in these functions and their derivatives determterval [0,8] to zero(the so-called natural splineln our
mine the high-frequency behavior of their frequency- B P

. . . approach we use analytical information about the momenta

dependent Fourier transformatio@f w) and Gy(w). As is

(the sum of the second and first derivatives at the end points,
well known, information about high-frequency behavior of M@ andM @)

GF's is absent in QMC simulations themseluéise maxi- O . .
mum frequency available is the Nyquist frequeney, To obtain this |nformat|on we need .to know the expansion
ax  of the self-energy in the &/ series or in another words we

=1/2A, whereA is the imaginary-time interval The high- X
frequency (small imaginary-timg information is not con- need to know the first two momenta of the self-energy.

tained in the QMC itself but has to be incorporated into the (0)
splining procedure using additional information. =(2N-1)Un,
This information is available from the calculation of cor-
responding moments of the GF’s. To make this connection MM =(2N—-1)U%n(1—(2N—1)n)+2U2c2N"Xnn),

clear, we make a consecutive integration by parts of the Fou- (A4)
rier integral:
N whereN is the number of bands alﬁﬁ=(k)!/n!(k—n)! is
Gliw)=> (- GM(0)+G6M(B)] a combinatorial factor which arrives due to the spin and or-
"o (iwy) Tt bital degeneracies.
The self-energy expansion contains density-density corre-
(—pN*tre . NTIG(7) lation functions for different spins and orbitals. One way to
Wfo " Wd“ (A1) obtain them is to use an approximate scheme which is accu-

rate at high frequencies, such as the coherent-potential
Values of the GF sum and its derivatives can be expresseapproximation:®!°Another possibility is to evaluate the cor-
via corresponding momenta. These momenta can be calctelation functions which enter in EqA4) using the QMC
lated similarly to the one-band Hubbard modleh momen-  procedure which allows us to compute arbitrary local corre-
tum of k degrees is defined as follows: lation functions such as the density-density correlators. The
self-consistency procedure ensures that they are correct cor-

=+ oo
M(k)=J dwo*p(w). (A2)
— 0 0 .
We can bind Egs(Al) and(A2) by writing the following 02
expression for the sum of GF's and its derivatives in |
imaginary-time space: 3 o4
g -
GR0)+GH0 (B =M®, (A3) £ os
where k=0 ...N. To make direct Fourier transformation,
first, we interpolates(7) defined inL points (L is the num- -08 |
ber of time slicesand then take an analytical Fourier trans-
formation of the resulting function. The procedure of inter- -1 h m > =

polation plays a key role. We used the cubic spline
interpolation forG(7) where the condition of the continuous
second derivative®(?) is imposed. Using this condition we FIG. 6. Dependence of the imaginary part of the self-energy on
write a system of linear equations to find interpolation coef-the Matsubara frequency axis (8=8) for two different Fourier
ficients. To close the set of linear equations we need to setansformations, the “old{dashed lingand the “new” (solid line).

(0]
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relation functions when self-consistency is reached. Havinghe tail analytically. Finally, inr space we sum up the ob-
correct momenta we solve the set of linear equations to oktained functions and as a result we have the correct inverse
tain the cubic spline function which is Fourier-transformedFourier transformation; we call it the “new” one.
analytically. To demonstrate the difference between two “old” and
The power of modern computers allows us to use‘new” Fourier transformations we calculate the self-energy
imaginary-time ) space up toL=256 time slices only, in the considered model fod=4 and 8=8. Results are
while in frequency ) space we do not have such limita- plotted in Fig. 6 where the “new” solution is drawn by a
tions and can use as many frequency points as we want, bablid line and the “old” one is plotted by with dashed line.
only frequencies less than the Nyquist frequency have physMe see that the “old” one has the region where the self-
cal meaningusually less than®). As we know, the GF has energy changes sigffovershoots”). It corresponds to an
1/w asymptotic behavior and dealing with the finite numberunphysical contribution to self-energy which should always
of frequency points we introduce the finite-energy cutoff.keep the same sign for positive or negative frequencies. Fi-
Cutting off the tail of the GF, we remove the discontinuity nally, we stress that the difference between the two Fourier
from the Fourier-transformed function inspace. To correct transformations becomes substantial especially in critical re-
the situation we subtract the high-frequency tail from the GFgions of parameters: low doping, high valuesthfand low
and Fourier transform the obtained function numerically andemperatured.
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