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Thermoelectric properties of the degenerate Hubbard model
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We investigate the thermoelectric properties of a system near a pressure-driven Mott-Hubbard transition. The
dependence of the thermopower and the figure of merit on pressure and temperature within a degenerate
Hubbard model for integer fillingn51 is calculated using dynamical mean-field theory. The quantum Monte
Carlo method is used to solve the impurity model. Obtained results can qualitatively explain thermoelectric
properties of various strongly correlated materials.
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The discovery of strongly correlated materials and i
provement in theoretical methods offer perspectives in
search for systems with good thermoelectric performan1

The dimensionless figure of merit,ZT5S2sT/k, provides us
with a quantified measure of the thermoelectric performa
of materials. Higher values of the thermoelectric figure
merit corresponds to better thermoelectric properties. To
maximal thermoelectric response at a fixed temperatureT,
we need to have maximum possible thermopower,S, and the
electrical conductivity,s, while the thermal conductivity,k,
should be the smallest possible. The thermal conductivity
two contributions, an electronic,ke , and lattice,kL , one;
k5ke1kL . For some time, the highest value of the figure
merit has been equal to 1 and little improvement in gett
materials with higher figures of merit has been achieved
the last two decades. Since the electronic structure
strongly correlated electron systems exhibit properties wh
have no analogy to those of weakly correlated compound
is important to understand their physical properties and h
they impact the thermoelectric power. Strongly correla
electrons are sensitive to small changes in their control
rameters such as temperature, doping, and pressure
hence require a detailed investigation. There is now a str
interest in understanding how these changes affect the
moelectric properties in order to find more efficient mater
with higher thermoelectric response. Even a modest incre
in ZT could substantially impact a number of application1

Two important parameters in strongly correlated elect
systems are the carrier concentration and the ratio of
on-site interactionU to the bandwidthW. This ratio can be
altered by applying external pressure or internal pressure
means of isovalent substitutions.

In this paper we study behavior of the figure of merit a
the thermopower near a pressure-driven metal-insulator t
sition ~MIT ! within the framework of the degenerate Hu
bard model. Our focus is on the effects of orbital degenera
There are several motivations for our study. First, in ma
strongly correlated materials, the orbitals, which bring a m
jor contribution to unusual physical properties, are degen
ate. Second, the orbital degeneracy allows us to study
effects of particle-hole asymmetry in the Mott insulatin
state with fillingn51 in a natural way~one can also intro-
duce particle-hole asymmetry in this case by adding hopp
integrals beyond nearest neighbors!. Third, the degeneracy
will allow us to use the integer fillingn51 that in the real
0163-1829/2002/65~7!/075102~6!/$20.00 65 0751
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system corresponds to the situation in which the numbe
electrons is equal to the number of sites. We use Coulo
repulsionU and temperatureT as the parameters to vary an
take the half bandwidthD to be unity.

While calculation of the numerical value of the therm
electric coefficient requires detailed modeling of the ba
structure and interaction constants of the relevant co
pounds, we expect that thequalitative features related to the
thermoelectricity of a Mott insulator at integer filling can b
captured by the simplest model, the degenerate Hubb
model, and we undertake this study in the paper. Indeed
trends discussed here are found in NiS22xSex and
Ni12xCoxS2, as we discuss toward the end of this paper. T
algorithms necessary for more realistic calculations of th
moelectricity will be discussed in a future publication.2

To treat the two-band degenerate Hubbard model we
dynamical mean-field theory~DMFT!.3 Recent developmen
of DMFT has given a boost to the study of strongly corr
lated systems and their properties. In particular it has resu
in a detailed understanding of the Mott transition.

Previous studies of thermoelectric properties using DM
were done within the framework of the one-band Hubba
model;4–6 strong temperature and doping dependence of
thermopower was reported. Pa´lsson and Kotliar considered
the orbital degeneracy away from half filling in the limit o
infinite interaction strength.7 A good description of the See
beck coefficient dependence on temperature and doping
titanates was obtained.

In this paper we focus on the integer occupancy case w
orbital degeneracy. We also keepU finite and study depen
dence of thermoelectric properties on the interaction. Cha
ing the ratio of the interaction strength, one can mimic t
effects of pressure.

The N-fold degenerate Hubbard Hamiltonian reads

H52 (
^ i j &,s

t i j cis
† cj s1

U

2 (
i ,sÞs8

nisnis82m(
i ,s

nis ,

~1!

where^ i j & runs over nearest-neighbor sites, ands is the spin
and orbital indices which run from 1 toN. The two-band
degenerate Hubbard model corresponds toN54. The hop-
ping matrix is given byt i j , U is the Coulomb repulsion, and
m is the chemical potential. We also want to restrict o
selves to the paramagnetic phase~in both spin and orbit in-
©2002 The American Physical Society02-1
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V. S. OUDOVENKO AND G. KOTLIAR PHYSICAL REVIEW B65 075102
dices!, i.e., we are interesting in the metal-insulator transit
and its influence on transport properties due to electro
correlations only. It is worth mentioning that orbital dege
eracy suppresses the magnetic correlations enough to m
our assumption easily fulfilled.8 To make computations stil
easier we assumet i j 5t.

In this paper we use the model on a cubic lattice. F
calculation of thermodynamic properties we use the sem
cular density of states~DOS! r(e)5(2/pD)A12(e/D)2,
with the half bandwidthD5W/252t. The semicircular DOS
corresponds to an infinite coordination Bethe lattice whi
as it was found earlier,3 gives a good description of three
dimensional systems.

The next step is to solve the Hubbard model. The stand
way in DMFT to do this is to map the lattice Hubbard mod
onto the effective impurity problem, which is a generaliz
single impurity Anderson model, where the operators ca
an orbital index. Supplementing with the self-consisten
condition3 solution of the impurity model gives us the sol
tion of the original Hubbard model. The quantum Mon
Carlo ~QMC! method with an extended Hirsch-Fy
algorithm9,10 is used as the impurity solver. To reduce co
putational errors~the Trotter breakup! the imaginary-time in-
terval is set toDt51/4. During the self-consistency proce
dure one needs to make direct and inverse Fou
transformations for the Green’s functions~GF’s!. In the
present calculations we use a modified Fourier transfor
tion in order to get correct results~for details, see the Appen
dix!.

The output of the self-consistent procedure descri
above is the Green’s function on an imaginary-time axis.
calculate the thermoelectric properties we need to know
behavior of the GF’s on the real frequency axis. The ma
mum entropy method is used to make the analytical cont
ation of the imaginary-time GF’s to the DOS on the re
frequency axis. Knowing the imaginary part of the GF w
reconstruct frequency dependence of the real partG(v)
through Kramers-Kronig relations. The obtained GF is us
to calculate the transport coefficients.

Using Kubo formalism one can express thermoelectric
efficients in terms of current-current correlation functio
which are reduced within DMFT to averages over the sp
tral density functionr(e,v):7,11

S52
A1

eA0
, s5

e2

T
A0 , k5S A22

A1
2

A0
D , ~2!

where the coefficientsAn have the following form,

An5
1

V (
k,s

E dvrs
2~k,v!S ]ek

]kx
D 2S 2T

] f ~v!

]v D ~bv!n

5NdegpE
2`

`

dvd«
r2~«,v!~vb!n

4 cosh2S bv

2 D F~«!, ~3!

whereT is temperature,f (v) is the Fermi distribution func-
tion, ands describes spin and orbital indices which run fro
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1 to Ndeg. The spectral density,rs(k,v), and the transport
function, F(«), contain the relevant information about th
bare band structure,ek :

F~«!5
1

V (
k

S ]ek

]kx
D 2

d~«2ek!. ~4!

As is seen from the above formulas~3! and~4!, contribution
to the thermopower strongly depends on temperature.
low temperatures only states close to the Fermi surface c
tribute to thermoelectric properties while for high tempe
tures the entire Brillouin zone is important. Coulomb rep
sion,U, acts on the transport coefficients via changes in
spectral density function,r(«,v). There is a very simple
mnemonic rule to define the sign of the thermopower. F
small temperatures it depends on the DOS slope at the F
energy: if the DOS curve rises when it crosses the Fe
energy then the sign is negative and vice versa. For very h
temperatures it depends on the weight of the Hubbard ba
if the weight of the Hubbard band above the Fermi energ
larger than the contribution from the band below the Fer
level then the thermopower is negative. This rule will help
easily understand the thermopower behavior analyzing
temperature dependence of the DOS.

In Fig. 1 we plot dependence of the thermopower on
teraction strengthU. The thermopower changes sign in
region of Coulomb repulsion 2.5,U,3, the region where
the system undergoes a metal-insulator transition at low t
peratures. The MIT for high temperatures transforms into
metal-insulator crossover that is reflected in the spec
function ~DOS! behavior presented in Fig. 2. It is worth no
ticing the quite strongS dependence onU in that crossover
region. WhenU→0 the thermopower will have a finite valu
depending on temperature, and in the opposite limitU→`
we expect saturation of the thermopower dependence w
will also be temperature dependent. The interaction dep
dence of the thermopower helps us qualitatively underst
the pressure influence onto the system as well as behavi
a system~e.g., NiS22xSex) changing its properties from in
sulating to metallic by varying the bandwidth. It follow
from the fact that the only important parameter in the syst

FIG. 1. Dependence of the thermopowerS ~in units of kB /e
586 mV/K) on Coulomb interactionU ~in D51 eV) for b58.
2-2



to

th
is
th
f

n
ic
ue
er
n
le
a
n
n
e

s
lo

ent
od
cles

ble.
asi-
on-
sign

ets
can

ilar

r-
ure
nd
a-
ys-
s,
he
er-
bit

ng
the
nd
er
ega-

the
me

ge in
ds’

in-
its

do
fre-

THERMOELECTRIC PROPERTIES OF THE DEGENERATE . . . PHYSICAL REVIEW B 65 075102
is the ratioU/W and one can vary any of the two variables
get a qualitative description of the system’s properties.

Behavior of the figure of merit on interaction streng
~Fig. 3! is possible to understand from its definition. It
minimum where the thermopower changes sign. After
sign changes it substantially increases and is maximum
higher values ofU. Rather high values ofZT ~more than 1!
can be explained by the absence of the lattice contributio
the thermal conductivity. If one takes into account the latt
thermal conductivity the figure of merit drops to a val
below 1. Usual values of the lattice contribution to the th
mal conductivity in transition-metal oxides lay in the regio
0.1–10 W/mK. We believe that 1 W/mK is a reasonab
value for pyrites. We see that the figure of merit is maxim
for interactionU between 4 and 4.5, but even in this regio
the obtained figure of merit could not compete with the o
for semiconductors due to the lattice contribution to the th
mal conductivity.

Temperature dependence of the thermopower forU53
presented in Fig. 4 can be easily explained from analysi
the DOS temperature dependence in Fig. 5. For very
temperatures the thermopower has linear dependence~one

FIG. 2. Spectral functions~DOS! for U52.5 and 3 forb58.

FIG. 3. The figure of merit,ZT, vs interaction strength,U, for
temperatureb58 and different values of the lattice conductivitykL

@W/mK#.
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can show it analytically; it is nearly impossible at the pres
stage to reach very low temperatures with the QMC meth!
and a negative sign indicating the presence of quasiparti
in the system, which is clearly seen in Fig. 5 (b516) where
a good quasiparticle peak in the Fermi energy is observa
With increasing temperature a smooth crossover from qu
particle excitations to incoherent ones is reflected in n
monotonic thermopower dependence which changes
from negative to positive. In Fig. 5 for temperaturesb512
andb58 we see how the quasiparticle peak of the DOS g
lower and then disappears. From this observation we
conclude that a positive value ofS tells us that the band
structure consists of two Hubbard subbands only. Sim
behavior of the thermopower~with the sign change! occurs
in the single-band Hubbard model upon doping11 and in the
Hubbard model with frustration6 as well as in the periodic
Anderson model.12 Further temperature behavior of the the
mopower is new, to our best knowledge. At a temperat
b58 in Fig. 4 the thermopower reaches its maximum a
then starts decreasing~we should notice here that temper
ture b54 is the coherent temperature for the studied s
tem!. For b54 the spectral function consists of two band
one of which is a lower Hubbard band, which is closer to t
Fermi energy and gives a greater contribution to the th
mopower than does the upper one, which is located a
further from the chemical-potential position. With increasi
temperature the two bands become less asymmetric to
Fermi energy and the weight from the upper Hubbard ba
(n51) becomes larger than the contribution from the low
band. This means that the thermopower should became n
tive, as is seen in Fig. 4~the last point!. And finally, for very
high temperature the two bands collapse into one. But
sign of the thermopower remains unchanged for the sa
reason as discussed above. The thermopower sign chan
the high-temperature limit due to the Mott-Hubbard ban
collapse was reported in Ref. 13.

To gain further understanding of the temperature and
teraction dependencies of the thermopower we study
high-frequency behavior in the high-temperature limit. To
so we generalize the thermoelectric response to finite
quencies~ac thermopower!:14

S~v!52
1

eT

L12~v!

L11~v!
, ~5!

FIG. 4. Temperature dependence of the thermopowerS for U
53. The solid line is a guide for the eye.
2-3
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V. S. OUDOVENKO AND G. KOTLIAR PHYSICAL REVIEW B65 075102
where coefficientsL11 andL12 are defined as

L ji
1n~v!5

iebV

vb (
mn

^muqi un&^nuJj
num&~e2b«m2e2b«n!

v1«m2«n1 id
.

Here e2bV5Tr(e2b(H2mN)), i , j 5x, Jx
15 j x , Jx

25 j x
Q , j x

and j x
Q are electrical and heat currents in thex direction,

correspondingly, andqx is the polarization operator satisfy
ing j x(t)5]qx(t)/]t.

Expanding the numerator and denominator of the th
mopower @L11(v) and L12(v)] in frequency and dividing
one onto the other we obtain the following expansion of
thermopower in the high-frequency limit:

S~v!52
b

e S ^@qx, j x
Q#&

^@qx , j x#&
1O~v! D . ~6!

The relevant commutators are given by

2
1

i t
@qx , j x

Q#5(
js H t@cj 12x

† cjs1cj 22x,s
† cj ,s#1m@cj 1x,s

† cj ,s

1cj 2x,s
† cj ,s#2UFcj 1x,s

† cj ,s (
s8Þs

nj 1xs8

1cj 2x,s
† cj ,s (

s8Þs

nj 2xs8G J . ~7!

This expression consists of three terms. The first one,
portional to t, does not contribute to the high-temperatu
expansion if one takes into account only nearest-neigh
hoppings. The second term~proportional to the chemical po
tential! is similar to what we have in the denominator and t
last one proportional toU contributes to the high-
temperature expansion of the thermopower. The final re
is presented below:

S~v! →
T→`

2
b

e
S 2m1U

n̄

12n
D , ~8!

wheren̄ corresponds to the contribution to fillingn coming
from Ndeg21 degrees of freedom~spin and orbital! and is
equal to (s,s8Þs^(12ns)ns8&. If one assumes high
temperature behavior of the chemical potential in the fo
m/T5a, where a should be negative for the fillingn
, 1

2 Ndeg, one obtains that the sign of the thermopow
should be negative in the high-temperature limit. Hence
and dc thermopowers have the same sign in the h
temperature limit.

It is quite difficult to make a direct comparison of a mod
calculation and situation in real materials due to complex
and the wide variety of real structures. To make a comp
son with our model calculations we need a material with
degenerateeg band hosting one electron~hole!. As we men-
tioned in the introduction good candidates for the comp
son are pyrite compounds with doubly degenerate 3d2eg Ni
bands. An attempt to understand high-temperature de
dence of the thermopower in these materials on the bas
07510
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one-band electron correlation theory with a good fit of e
perimental data using a six-parameter model was given s
years ago in the work of Kwizeraet al.15 To explain low-
temperature dependence of the thermopower it was s
gested that both holes and electrons participate in cha
transport and a two-band model was proposed as an ap
priate model for data interpretation.13 Our calculations show
that the two-band degenerate Hubbard model treated wi
DMFT is a sufficient model for at least a qualitative descr
tion of pyrites in the whole temperature range.13,15,16In the
case of the half-filled Ni 3d2eg band in the NiS22xSex the-
oretical model under consideration, due to the symmetry
the system, it should give zero thermopower for all tempe
tures, while experimentally it is zero only for temperatu
T,100 K. For higher temperatures the thermopower
comes positive. It is clear that one needs to take into acco
effects of other bands~filled t2g band in the first turn!. The
thermopower behavior in Ni12xCoxS2 with temperature
looks rather similar to NiS22xSex , but with Co substitution
of Ni atoms, occupancy of the 3d2eg band changes from
two (x50) to one (x51). One can track the experiment
situation in NiS22xSex by analyzing model calculations~for
temperatures low enough to neglect contributions com
from other bands! especially in the case of CoS2, which cor-
responds to a one-quarter filled 3d2eg band.

In conclusion, we calculated dependencies of the th
mopower and the figure of merit on interaction strength a
temperature of the thermopower in the two-band degene
Hubbard model for integer fillingn51. The strong depen
dence on studied parameters was obtained. Analytical e
mations of the high-frequency limit of ac thermopower
provided. In the high-temperature limit ac and dc th
mopowers have the same sign~negative for fillingn,0.5).
We expect that the thermopower behavior in the three-b
degenerate Hubbard model would behave in a similar w
This means that we can qualitatively understand the beha
of the thermoelectric properties in a wide range of stron
correlated materials where a major role is played byd- and
f-shell electrons.

Systems near the temperature-driven Mott transition
hibit very rich thermoelectric behavior. As we cross t
localization-delocalization threshold the thermopower
creases substantially. The high-temperature precursors o
first-order Mott transition takes place at lower temperatu
As the temperature is lowered, and the critical Mott endpo
is approached, the specific heat diverges and the ent
jumps. The figure of merit is low in this crossover regim
because of the great deal of cancellation between the qu
particle contributions which are, in our model, electronlik
and the Hubbard band contributions which are holelike
detailed phase diagram temperature versus filling for diff
ent values ofU using the current approach will be studie
elsewhere.

The authors are indebted to G. Pa´lsson, and A. I. Licht-
enstein for many helpful and stimulating discussions.
also acknowledge usage of the Rutgers Computational G
PC cluster as well as the NERSC Cray T3E supercomp
which made our computations possible. The research
2-4



R

ity
t

-
s
su
is

te
y

of

th

r-
tio
o

s
lc

in

,

s-
r

ne
s
e
ef
s

s is
ime

nta
ints,

ion
e

or-

rre-
to

ccu-
ntial
r-

re-
he
cor-

r

on

THERMOELECTRIC PROPERTIES OF THE DEGENERATE . . . PHYSICAL REVIEW B 65 075102
supported by the American Chemical Society Petroleum
search Fund, Grant No. ACS-PRF 33495-ACS.

APPENDIX: FOURIER TRANSFORMATION
IN QMC CALCULATIONS

In the self-consistent procedure to solve the impur
problem using the QMC method3 we need to do two direc
Fourier transformations for GF’sG(t) andG0(t) ~the Weiss
function! and one inverse Fourier transformation forG0(t)
only. FunctionG0(t) is an input for QMC simulations pro
ducingG(t). Two direct Fourier transformations are nece
sary to impose the self-consistency condition which is u
ally written in frequency space. Both the GF and the We
function contain the discontinuities att50 andt5b. The
discontinuities in these functions and their derivatives de
mine the high-frequency behavior of their frequenc
dependent Fourier transformationsG(v) and G0(v). As is
well known, information about high-frequency behavior
GF’s is absent in QMC simulations themselves~the maxi-
mum frequency available is the Nyquist frequencyvmax
51/2D, whereD is the imaginary-time interval!. The high-
frequency ~small imaginary-time! information is not con-
tained in the QMC itself but has to be incorporated into
splining procedure using additional information.

This information is available from the calculation of co
responding moments of the GF’s. To make this connec
clear, we make a consecutive integration by parts of the F
rier integral:

G~ ivn!5 (
k50

N
~21!k11@G(k)~0!1G(k)~b!#

~ ivn!k11

1
~21!N11

~ ivn!N11E0

b

eivnt
]N11G~t!

]tN11
dt. ~A1!

Values of the GF sum and its derivatives can be expres
via corresponding momenta. These momenta can be ca
lated similarly to the one-band Hubbard model.17 A momen-
tum of k degrees is defined as follows:

M (k)5E
2`

1`

dvvkr~v!. ~A2!

We can bind Eqs.~A1! and~A2! by writing the following
expression for the sum of GF’s and its derivatives
imaginary-time space:

G(k)~0!1G(k)~b!5M (k), ~A3!

where k50 . . .N. To make direct Fourier transformation
first, we interpolateG(t) defined inL points (L is the num-
ber of time slices! and then take an analytical Fourier tran
formation of the resulting function. The procedure of inte
polation plays a key role. We used the cubic spli
interpolation forG(t) where the condition of the continuou
second derivative (G(2)) is imposed. Using this condition w
write a system of linear equations to find interpolation co
ficients. To close the set of linear equations we need to
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correct boundary conditions. The standard way to do thi
to set the second derivatives at the end points of the t
interval @0,b# to zero ~the so-called natural spline!. In our
approach we use analytical information about the mome
~the sum of the second and first derivatives at the end po
M (1) andM (2)).

To obtain this information we need to know the expans
of the self-energy in the 1/v series or in another words w
need to know the first two momenta of the self-energy.

MS
(0)5~2N21!Un,

MS
(1)5~2N21!U2n„12~2N21!n…12U2C2

2N21^nn&,
~A4!

whereN is the number of bands andCn
k5(k)!/n!(k2n)! is

a combinatorial factor which arrives due to the spin and
bital degeneracies.

The self-energy expansion contains density-density co
lation functions for different spins and orbitals. One way
obtain them is to use an approximate scheme which is a
rate at high frequencies, such as the coherent-pote
approximation.18,19Another possibility is to evaluate the co
relation functions which enter in Eq.~A4! using the QMC
procedure which allows us to compute arbitrary local cor
lation functions such as the density-density correlators. T
self-consistency procedure ensures that they are correct

FIG. 5. Temperature dependence of the density of states foU
53.

FIG. 6. Dependence of the imaginary part of the self-energy
the Matsubara frequency axisv (b58) for two different Fourier
transformations, the ‘‘old’’~dashed line! and the ‘‘new’’~solid line!.
2-5
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V. S. OUDOVENKO AND G. KOTLIAR PHYSICAL REVIEW B65 075102
relation functions when self-consistency is reached. Hav
correct momenta we solve the set of linear equations to
tain the cubic spline function which is Fourier-transform
analytically.

The power of modern computers allows us to u
imaginary-time (t) space up toL5256 time slices only,
while in frequency (v) space we do not have such limita
tions and can use as many frequency points as we want
only frequencies less than the Nyquist frequency have ph
cal meaning~usually less than 28). As we know, the GF has
1/v asymptotic behavior and dealing with the finite numb
of frequency points we introduce the finite-energy cuto
Cutting off the tail of the GF, we remove the discontinui
from the Fourier-transformed function int space. To correct
the situation we subtract the high-frequency tail from the
and Fourier transform the obtained function numerically a
an

H

07510
g
-

ut
i-

the tail analytically. Finally, int space we sum up the ob
tained functions and as a result we have the correct inv
Fourier transformation; we call it the ‘‘new’’ one.

To demonstrate the difference between two ‘‘old’’ an
‘‘new’’ Fourier transformations we calculate the self-ener
in the considered model forU54 and b58. Results are
plotted in Fig. 6 where the ‘‘new’’ solution is drawn by
solid line and the ‘‘old’’ one is plotted by with dashed line
We see that the ‘‘old’’ one has the region where the se
energy changes sign~‘‘overshoots’’!. It corresponds to an
unphysical contribution to self-energy which should alwa
keep the same sign for positive or negative frequencies.
nally, we stress that the difference between the two Fou
transformations becomes substantial especially in critical
gions of parameters: low doping, high values ofU, and low
temperaturesT.
k,

nd
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