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Parametric pumping at finite frequency
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We report a first-principles theory for analyzing the parametric electron pump at finite frequency. The pump
is controlled by two pumping parameters with phase differesicén the zero-frequency limit, our theory
recovers the well-known adiabatic result that the pumped cut(ert-sin ¢. At a finite frequency, it predicts
I(¢=0)+#0 while | (¢=m)~0, consistent with recent experimental data. We discuss a possible mechanism
behind the nonzero pumped currentdat 0 from photon-assisted processes.
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Parametric electron pumipf is an interesting device, and most intriguing is the natural theoretical outcome that
which delivers a finite dc current to the outside worldzato ~ only one periodic deforming potential can produce a pump-
bias potential by cyclic variations of two device-control pa-ing signal at finite frequency. The latter is due to the fact that
rameters. Recently, an adiabatic quantum electron pump wasfinite frequency provides extra degrees of freedom through
reported in an open quantum dot where the pumping signgihoton-assisted processes that is capable of playing the role
was produced in response to the cyclic deformation of thef a second pumping parameter. These new predictions
confining potentiaf. It was found that the pumping signal, should be testable experimentally.

Vaoi(#), is sinusoidal in the phase differengebetween the We start by considering a parametric pump that consists
two deforming potentials in the weak-pumping regime, and itof a coherent quantum-scattering region attached to two ideal
becomes non-sinusoidal in the strong-pumping regime. ThieadsL,R. The leads maintaiidentical electrochemical po-
standard deviation of the pumping signal from its averagedential, i.e.,u; = ug= . The Hamiltonian of this system®is
value over different configurations increases linearly with the
frequency of the deformation. Most notable, however, was

the data showingVy,,(0)#0 significantly at strong pump- 0~ 2
ing, whereas/ () ~0 for all pumping strengths. Even in

the weaker pumping regime, small deviations frafty,(0)

=0 could already be seénThe traditional and successful +k§:; (Tk.aCiia ), @
parametric pumping theof¥# valid in the adiabatic regime '

and up to first order in frequency, requires two pumpingwhereC,, andd; are annihilation operators of electrons for
parameters that traverse a closed path in parameter spacetite « lead and the scattering region at siteespectively®

each cyclic period, and the pumping signal should be proporThe three terms describe the leads, the scattering region, and
tional to the area enclosed by the path. Accordingly, if thethe coupling between the leads and the scattering region with
two pumping parameters are in phase so that the enclosete hopping matrixT, .. In the last term,j=1/N for «

area is zero, the pumping sigri,«(0) should vanish. Itis =L/R. The parametric pump works by cyclic deformations
extremely puzzling that the experimental datansistently —of potential at two different pumping sitdsandj in the
showedV,(0)#0, a fact that has not been understood soscattering regionV;;(t)=V;;cos@t+¢;;), whereg,; is the

far, and, clearly, it calls for the development of a first- phase of the pumping force.

principles theory going beyond the adiabatic regime and low Neglecting interaction between electrons in the ideal
frequencies. leads, the Keldysh nonequilibrium Green’s function theory

It is the purpose of this paper to present a theory forgives the following standard expression for the time-
parametric pumping, which is valid &nite frequency. Using  dependent curreht(A=1):
this theory we investigate the frequency dependence of the

6CloCrat Z [&(t)dld,+(t;d'd; 1 +c.c)]

k,a=L,R

pumping currentl ;(¢) =GyoVao( ), Gaor IS @ constant, t

and it allows us to understand why it is possible to have a lL(t)= _qjixdtl[Grll(Ltl)Ef(tlvt)

pumping signal even when the pumping forces are exactly

in-phase. When the frequency is low, our theory recovers the +G1<1(t,t1)2"[‘(t1,t)+c.c.], (2)

traditional adiabatic theor* As the frequency increases, we

predict a nonzerd,(0), which is a consequence of photon- where the Green’s function8"®= and the self-energ¥.,
assisted processes, and our theory also pretii¢ts)~0.  are defined in the usual manrtér.

These results allows us to reach the conclusion that the ex- It is tedious but straightforward to evaluate the Green’s
perimental datashowing Vq,(0)#0 and Vg.(7)~0 are functions by iterating the equation of motiéh*?and for our
generic nonlinear transport features of parametric pumps gurpose it is adequate to calculate them to second order in
finite frequency. Furthermore, our theory predicts that at verghe pumping potentialV;,;(t), which gives the average
large frequenciesl,(7) should start to deviate from zero; pumped current to the second order. We note that the next
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higher nonvanishing order is the fourth. After all the Green’s 015
functions are obtained, the average pumped current is calcu
lated from Eq.(2) by integrating time over one pumping 010
cycle. We obtain
0.05 -
IpE<|L>:III+I]]+II]+I]I1 (3) = 0.00 -
-0.05 |
where
0.10
quiVj dE Or ~0a i or— Oa— : : : : ‘
lij=— T4 ZFLGliGjl{(f_f—)eld)[Gij -Gj] 1 2 3 4 5 Znerg: 8 9 10 11 12
+(f— 1E+)efi¢[Gi(}r+ _Gﬂﬁ]}, 4 FIG. 1. Pumped currerisolid line) and transmission coefficient

T (long dashed lingvs energy with¢p= /2 at w=0.2,0.4,0.6,0.8.

o For illustrating purpose, we shiftefl by multiplying a factor 0.1.

Whergfzf(E) andfiEf(Ei“’) are the Fermi QIstrlbutlon Inset: Feynmgnpdizgrams correspon}és to éqy V\Elle have sek;

functions, I’ = —2Im(2[) is the linewidth functiong= o =0.022, x;=0.25, V(=79.2,V;=V,=1.

— ¢, is the phase difference between the two pumping

forces. FinallyG”=G% (E) andG**=G”(E+ w) are the q (dE '

retarded Green’s functions when there is no pumping forcel ,= — mf E{(f—f_)ﬂgil(E,E— w)+e"¢gj1(E,E

In Eq. (4), |;; is obtained by setting=i. Equations(3) and

(4) are the main result of this work. —w)|2+ |giN(E,E—w)+e*‘¢g}“(E,E—w)|2]+(f— f,)
Before we discuss Eq$3) and(4) in connection with the

experimental data of Ref. 2, let us first examine the low- ><[|gi1(E,E+ w)+e‘¢gjl(E,E+ w)|2+|giN(E,E+ )

frequency limit of these results and show that the conven- 6N )

tional parametric pumping theory is recoverédie expand +e'’gi(E,E+ )|}, (6)

E.q. (4) in powers _Ofw and only keep thdinear term, this where g*(E,E— w)= \/E[G(l){(E)]Vi[G?;(E—w)] with

gives the adiabatic curreff. Note thatl;; andl;; are of ,_ indicating the left and right positions where the scat-

second order in frequency, E@) reduces to tering region is contacted by the leads, so tha&=I", and

I'y=TR. The propagatoGﬂ{n describes the free motion of
an electron from positiom to position m in the device.

| _lgVivje d_E(; f sin( )T Therefore, the quantity’(E,E— w) describes the following
P 1/2 2 E r( ¢) L _' . .
77 process: a charge carrier with enelgy o enters the device
(9G(fr1 aG(lxim 07(3% f7Gaa1 from the left lead, it absorbs a photon with frequeneyat

+c.c., (5  sitei, and then exits from the left lead with energy This
process is represented by the Feynman diagram in the inset
of Fig. 1. Similarly,gjl(E,E—w) describes exactly the same

where we have used the relati@f —G2= —iG'TG? and  Process except that the electron absorbs a photon at position

GGl ,=dG' 4V, 13 Using the Fisher-Lee relatibht2s ~ i- Now the physics is transparent: the first term in Eg).

J’_
N Chav, v, Ry,

= 'Jrirl/zGrrl/z, Eq. (5) reduces to exactly the same ex- represents an interference of the photon-absorption processes

pression as that obtained from the scattering-matrix theoryN@PPENING at positionsj, i.e., the interference of the two
Due to the factor of sing) in the low-frequency results), processes in the Feynman diagram of Fig. 1. Therefore, when

one obtains the familiar outcorﬁmatlp(<z>)=0 at bothe ¢1=0, we have a <l:onstructive interference so that the
—0 and¢=rr. 0; (E,E—_w) and theg;j (E,E—w) processes add L[me f_ac—
Clearly, the low-frequency resul) does not explain the tOr exp(-ig)=+1]. When$=m, there is a destructive inter-
experimental restftof I (#=0)+0; we need to investigate ference in which the two photon—al:_)sorptlon processes cancel
the full result, Eq(4), at a finite frequency. The first term on 0 @ large extenfthe factor exp{i¢)=—1]. Exactly the
the right-hand side of Eq4) has a clear physical meaning: it Same can bNe said for the three other terms of(E the term
represents the photon-absorption process indicated by tHBvolving gi'(E,E—w) describes a photon-absorption pro-
factor exp{wt+i¢). Similarly, the second term corresponds ce€ss with electrons entering the device at the right lead and
to the photon-emission process with factor expft—i¢).  €xiting from the left, and the terms involving'(E,E + w)
These two competing processes tend to cancel each other @&md gM(E,E+ o) describe photon-emission processes.
the expression of pumped current. These photon-assisted In addition to the interference effects, the pumped current
processes are essential to understand the experimenialalso affected by a competition between photon emission
finding® that the pumped signal is nonzero#t0. To see  and absorption, marked by thé«f_) term for absorption
this clearly, we rewrite Eq(3) into the following form: and the € —f_) term for emission, in Eq4). The combined
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02 Our discussion so far is completely general on the general
result Eq.(4). In the following we investigate a model in a
more specific manner by applying E¢,) to a double-barrier
. guantum structure, which we model by potentidl(x)
=V,8(x) +Vyb(x—a), whereV, is the barrier height and
is the barrier separatiofi.For this system the Green’s func-
| tion G(x,x") can be calculated exactly.We choose the
pumping force as V(t)=V;d(x—x;)sin(wt)+V;dx
—X)sin(wt+¢). With this specific pump model, E¢4) can
be evaluated numerically without difficult§.
® phase aierence In Fig. 1, we plot the pumped currehy at zero tempera-
0 ] 2 3 . 5 p 7 ture versus the Fermi energy at different frequencies with
phase difference phase differenceb= 7/2. For comparison, we also plot the
transmission coefficienfong dashed line The peak in the
FIG. 2.1, vs ¢ for differentw at resonant point. Solid liney  transmission coefficient indicates a quantum resonance me-
=0.01; dotted line,w=0.05; dash-dotted linew=0.09; dashed (jated by the resonance state in the double barrier. Clearly,
line, w=_0.13. Left_ insetl, vs w for _different values of¢ at reso-  he pumped current, also shows a resonance behavior,
nant point. Solid lineg=0; dotted line,¢p= 7/2; dash-dotted line, peaked at the same resonance state, and is largely suppressed

¢ =, dashed linegp=37/2. The long dashed line i, vs » for - o
single pumping parameter at positina 0.2a. Right inset: the mag- away from it. As the frequency is increased, the pumped

nitude of pumped current at resonant point due to contributions Of:urrent reverses the sign and the pe_ak is shifted slightly. The

the first two termgsolid line) and due to the last two ternfdotted ~ 9€Neral feature of, versus phase differenag can be ob-

line) in Eq. (7) for w=0.13. Values; , x;, Vo, V;, andV; are as in ta'neq from Eq.(4), Wh'Qh can be rewritten as,=c;

Fig. 1. + C,Sin ¢+ C3c08p=Cq+C,SiN(p+ ¢bg), Wherec;’s and ¢ are
constants. This indicates thigf has a sinusoidal behavior in

effect, competition plus interference, can be clearly seen by- The sinusoidal behavior is a direct consequence of the

expanding Eq(6) to orderO(w?), which produces a com- fact that our theory is valid up to the second order of the

. . ; g do
plex expression for generdl, but if we concentrate only on PUmMpIng amplitude:

#=0 or , the result is much simpler and physically trans-  Figure 2 presentk, as a function oi for several differ-
parent, ent frequencies at resonance where the transmission coeffi-

cient is unity. We notice that at very low frequen¢solid
line) 1,~sin(¢). As the frequency increases, the amplitude of
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Ipzmwz(aEl—&EZ)[|gi1(El,E2)+ei‘f’gj1(El,E2)|2 |, also increases. At the same time, the enttjreb curve is
shifted upward although leavind,(¢=m) largely un-
+ |giN(E1!E2) +é ¢9,N(E1,Ez)|2], 7) changed. Howevel,(¢=0) is seen to increase significantly

for the curve withw=0.13. As already discussed above,

where one set&,=E,=E after taking the derivative and these features are due to interference of the photon-assisted
after the temperature is set to zero. HencepatO the con-  processes and are consistent with the experimental
structive interference gives larger current thanpat = (see observatiorf. To make better comparison with experimental
also the right inset of Fig. 2 described beloWhe behavior ~data, we calculated the dimensionless raijg=0)/l ,ay,
of the pumped current for generd is the result of the Wherel,,,is the maximum pumped current. Using our re-
interplay between the photon-assisted processes and interf@ult shown in Fig. 1, this ratio is found to be0.29 atw
ence processes. =0.13 (w=0.13 correponds to 70 MHz, which is close to

The above physical picture allows us to unambiguouslthe experimental frequengyThis value is quite close to that
conclude that the behavior of pumped current depends on @f the experimental data presented in Ref. 2. In order to
combination of interference and competition of photon-make further quantitative comparisons, other system details
assisted processes. The competition between absorption aif¢luding chaotic scattering should be included. The left in-
emission sets an overall magnitude for the pumped current &€t of Fig. 2 shows, as a function of frequency for several
each¢. Destructive interference occurs @t=, therefore  phase differences. We observe that at small frequenties,
I,(7m)~0; constructive interference occurs @t=0, giving ~0 at¢=0 andw. For ¢=m/2 and 3/2r, |, have similar
rise to a nonvanishinty,(0). Todemonstrate this, in the right values. At larger frequencies, increases in different fash-
inset of Fig. 2, we plot the magnitude of pumped currention. For instancel, at $=0 increases slowly at small fre-
versuse at a finite frequency due to the contributions of the quency and then has a linear behavior for larger frequencies.
photon-absorptiofisolid line, first two terms of Eq6)] and At ¢=m/2, |, increases initially, reaches a maximum, and
photon-emissioridotted line, the last two terms of E¢6)]  then decreases slowly. A=, |, is very small but nonzero
processes, respectively. Taking into account absorption anahd increases linearly with a much smaller slope, whelrgas
emission processes|,(0) is significantly larger than at¢=3w/2is the largest among all the curves. This suggests
Io(7) 15 The result in this inset is obtained from a one-that one should operate the parametric electron pump at
dimensional model, which we now discuss in more detail. =3w/2 to achieve the maximum pumped current.
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06 * photon-assisted process. The inset of Fig. 3 shigys the
; position of the single pumping site at different frequencies
03 ; o 3421 for a value of energy near the resonance. Due to the symme-
N s i — gg | try of the systeml, is antisymmetric across the center of the
2 A ' double barrier. It is surprising that the magnitude of the
. 03] b5 oz v+ w5 us 1o /' 4 ] pumped current has the same order of magnitude as that
- position i \'\.‘ } pumped by two driving forcegésee long dashed line in the
02 [ ] inset of Fig. 2. The reason that a pump can operate with
, \.\ only one external driving force is directly related to photon-
orr N 1 assisted processes that happen at a finite frequency. It will be
0.0 *,f.f-‘{' SN interkesting to test this prediction by further experimental
— T work.

1 2 3 4 5 6 7 8 9 10 11 12 13

energy In summary, we have developed a parametric pumping

theory valid at finite frequency and it shows that the pumped

FIG. 3. I, vs energy atw=0.2,0.4,0.6,0.8 near resonant point signal for two pumping parameters in-phase can deviate

with a single pumping parameter. The position of the pumping pafrom zero due to the photon-assisted process at finite fre-
ramet_er is ak=0.2a. Inset: |, vs position(in units of a) of the guency. This explains the anomaly#t0 observed experi-

pumping parameter as=0.2,0.4,0.6,0.8. mentally. This theory also suggests that even with one pump-

So far, we have explained the physics behind the peculiaf'd Parameter, it is possible to produce a pumped signal at
experimental finding of I,(¢=0)#0: it is due to photon- finite _frequency whose amplltu_de is of the same order of
assisted processes, which are a nonlinear phenomena. Hoagnitude as that of two pumping parameters.
ever, when the two pumping forces act exactly in-phase, Note addedAfter the paper was submitted, we were made
nothing distinguishes therfexcept that they act af different aware of a recent work by Brouwgt, which examined
positions of the pump Therefore, it is extremely interesting magnetic-field symmetry of the pump. It suggested that rec-
to ask: can one operate a pump with only one pumping patification effect might be important in understanding tihe
rameter? To check if this is possible, we ¥gt=0 in Eq.(3) =0 anomaly.
and notice that the resulting still remains finite due to the
first term of Eq.(3). Figure 3 plots thid , versus energy at We gratefully acknowledge support by a RGC grant from
different frequencies. Agairl,, is peaked near the resonant the SAR Government of Hong Kong under Grant No. HKU
point. As the frequency increases, the amplitude phlso ~ 7115/98P. H.G. is supported by NSERC of Canada and
increases and its peak shifts towards larger energy due to teCAR of Quéec.
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