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Interface optical phonons in spheroidal dots: Raman selection rules
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The contribution of interface phonons to first-order Raman scattering in nanocrystals with nonspherical
geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the correspond-
ing Frahlich-like electron-phonon interaction is reported in the framework of the dielectric continuum ap-
proach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry,
particularly on the ellipsoid’s semiaxis ratio. The new Raman selection rules have revealed that solely interface
phonon modes with even angular momentum are allowed to contribute to the first-order phonon-assisted
scattering of light. On this basis we are able to give an explanation for the observed low-frequency “shoulders”
present in the Raman cross section of several 1I-VI semiconductor nanostructures.
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By using microluminescence and micro-Raman measureds with a strong basis for an explanation of the origin of the
ments, nanocrystallites or quantum d@@D’s) may be stud- shoulders already invoked in previous works.
ied at an almost individual levér.* QD’s built from different Let us briefly summarize the essential theory that we have
semiconductor materiallCdSe, CdTe, PbS, CdS, atcem-  applied. The main macroscopic quantities involved in the
bedded in a glass matrix, were intensively discussed in théescription of polar-optical vibrations, in particular the in-
later years and the spherical geometry was extensively apolved electric potentiakp, is derived from the equation
plied, particularly for the consideration of polar-optical €(w)V?¢=0, where the frequency-dependent dielectric
phonon$~? In most of the quoted papers an investigation offunction is given bye() = e.(w?— wf)/w?— w%). The lat-
the electron-phonon coupling was also made. The theoreticér formula is valid when the phonon wavelength>L,
results have been compared with experimental findings; invhereL is the dot dimension. Otherwise,Nf,<L, we are in
particular, resonant Raman measurements were considerdte presence of confined phonons and mixed modes involv-
and the corresponding spectra for the first-order procesisig electromechanical coupled fields should be taken into
show some structures on the low-frequency side of the prinaccount. In this case, the interface phonon dispersion relation
cipal peak(see, for instance, Fig. 8 of Ref).5he same kind of the simpleminded electrostatic model can be obtained in
of structure in the Raman line shape was also analyzed ithe form of the envelope of anticrossing mod&Bor the SO
Ref. 9, where a more realistic approach to the polar-opticaphononse(w)+0 thus, the solution of the Laplace equation,
phonons was appliet® As is shown in Fig. 1 these shoulders

move to lower energies as the quantum dot radius decreases. 100 = T T T —
It has been claimed that the “shoulder” on the left of the - (a) CdSe .
main Raman peak is due to surface-optid®80-) phonon- 80 [~ R -1.8nm ]
assisted transitions. However, it can be proved that, for a 60 [ ° .
purely spherical geometry, such transitions are forbidden by 2 ol N
selection ruled:'° In order to explain the appearance of the E [ ]
SO modes, the relaxation of the angular momentus® s 20
phonon selection is invoked. The SO mode can be observed S0 e o=
in the Raman scattering processes dugdoimpurity or g
interface imperfections(b) valence band mixing, anc) S wpE—T— T T T
nonspherical geometry of the QD’s. For this reason, the mo- % L () J -
tivation of the present paper is to study the QD’s geometrical 2 80 - 7]
shape deviation from the strictly spherical geometry and its S 60 |- i
contribution to the Raman measurements. In recent works, = - .
. . . < 40 |- -]
the electronic energy levels and wave functions of spheroidal g i i
QD’s were examined: In the current report we consider the e 20| -
polar-optical vibrations of a QD with spheroidal geometry by P = ,, |

applying the dielectric continuum approach. We study the
changes introduced in the SO-phonon eigenfrequencies,
eigenstates, and also the electron-phonon Hamiltonian due to
nonspherical geometry. The key point is to analyzing the F|G. 1. First-order Raman line shape for CdSe nanocrystal from
selection rules for the first-order phonon-assisted RamaRef. 9.(a) Mean radiusR,= 1.8 nm.(b) Mean radiusR,=2.6 nm.
scattering as a function of the QD geometry. The conclusiorrhe solid lines correspond to the calculation of the Raman spectrum
that solely SO phonons with even angular momentum ar@ssuming a QD with spherical geometry. Dots represent the spectra
allowed to have a contribution to the Raman spectra providesieasurement.
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¢, (i) should be continuous at the interface between two The corresponding electron-phonon  Hamiltonian
different media andll) must fulfill the boundary condition He-ph(r): _e(:p(r) can be derived by standard procedures_

€[dpi/dn]s= €l dgp,/dn]s. By considering a prolate The potential operatop can be written as
spheroidal QD, the coordinatésy, and ¢ are the most con-

venient and related to the rectangular Cartesian coordinates e o 20t 1/2

through the equatioh$* x=b\/(£2—1)(1- 7%)cos¢, y p(r=2 — °°fL - 1

—b(£2=1)(1— 79)sin$, andz=bé7. We also have=1, m €2~ €pfim(£0) | €¥bwimGim(£o)

—1<#=<1 and G=¢<27. The equationé=const describes S AEP(E)Y (7, ) A+ H.C) )
| Im\7/» Im Loy

an ellipsoid of revolution where thedirection is taken along
the ellipsoid’s major axis with & being the interfocal dis- | 1 o1a F'=R"(&) for é<¢ and FM'=[R"(&)/

tance. For ¢<¢, we have, in the ellipsoid’s interior re- QM(£,)JQ(£) for £= &,. Moreover, 16* = (1/eo— Lle.).

gion, a semiconductor of the CdSe prototype with a dielec- Let us consider the case of a CdSe spheroidal QD embed-

tric function e(w). For é= &, we shall consider a glass matrix ded i . . .
: : : . ed in a glass matrix. The applied physical parameters are
with frequency-independent dielectric constasy. The w,=165.2 cni L, e,=9.53, ande..=5.72, while for the host

L_aplace equation is s_eparable n the spheroidal prolate COOka';lterial, we takep, = 4.64° For prolate ellipsoidal geometry
dinates and the solutions are given‘by

the phonon frequencies,,, as a function of the deviation

<—A_RM&Y b)), for £<gg, parameteré, are presented in Fig.(®, for I1=1,2. Each
¢ iR Yim( 7. ) £=fo 1) involved SO-phonon mode is explicitly indicated in the fig-

¢~ =Am[R"(£0)/Q"(£0)1Q" (&) Yim( 7, ¢),  for §=&. -

Notice that the potential is already continuoustaté,. The (@) 0

other boundary condition is fulfilled by taking = e(w) and [ M
e,=€p, Which leads to the following result: 1.3 . e

() _( d e

d
d—gln le d—g In le )
~ 1.2 }
where the functionRR,, and Q,, are defined below. The £
functionsf, (&) are dependent on the nature neither of the 8 i PROLATE
constituent materials nor of the normalization of the func- ELLIPSOID
tionsR;,, andQ,,,. They do depend on the QD geometrical
shape through the paramet&. The SO-phonon eigenfre-
guencies in the spheroidal QD are then given by

-1
go) =fim(éo). @ o

€p §0

ofn _ €0~ enfim(£o)
w? €~ epfim(&o)’

3 | '1/§

It is easy to show that the lim§,— < in Eq. (3) leads to the " ' " T ' T ' '
corresponding eigenfrequencies of a purely sphericaPQD. L ) (3.3)

The functionsR"(£) and Q"(&) are defined in Ref. 13 /
and we shall give them here in terms of hypergeometric 1.3 |
functions
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The functionsY,,(7,¢) are the usual spherical harmonics 178,

and, in all cases, the guantum numbers are givenl by 5 5 (a) The squared frequencias, in units of w3 as a
fl'?nﬁ U Qnd|m|$l. The other limit properties are that function of 1€, for I=1,2 and all possible values on for the

(i) R"(¢) is divergent ag” whené— and are convergent at prqjate ellipsoid.(b) Same plot foi =3 and all possible values of
£=1; (i) Q"(¢) converges to zero @& '~* when¢—w= and  m. In both cases the dotted lines correspond to the strictly spherical
diverges logarithmically af=1. We assume&,>1. case.
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ure. The dotted lines are the corresponding eigenfrequencig¢se electron-phonon transitions, which are summarized as
for the strictly spherical case. In Fig(® we are showing the follows: (a) Only SO phonons withm=0 andl=even inte-
same dependences fbr 3. Notice the splitting of the fre- ger are allowed. Notice that1 is not allowed for the tran-
guencies(according to the rulen<I) and the main conclu- sitions in contradiction to the assumptions of previous
sion is that the separation betwe&®-phonon frequencies works? (b) For the electronic stateslenoted as in Ref. 11
depends on the QD dimensiofierough&;). We have found the angular momentg andl,, should have the same parity,
that the observed frequency splitting is in the range of thevhile m,=m,=m. By e(h) we mean electroithole) quan-
structural features seen in the spectral line shapes of Fig. tum numbers. The latter results permit us to give an interpre-
For higher values of we obtain lower values for the fre- tation for the shoulder at the left side of the main Raman
guency splitting. Another important quantity is the ellipsoid’s peak seen in Fig. 1 as a direct consequence of the spheroidal
semiaxis ratior=&q/\/£2—1. According to Ref. 15 we geometry of the dot. On the other hand, the observed Raman
should expect a ratio 1Ir<1.3. A direct comparison be- data, together with the spheroidal SO phonons here reported,
tween the experimental data and the results here presentédn be used in order to determine the ellipsoid’s semiaxis
should provide a much better understanding of the rolgatior. On the basis of data taken from Ref. 9, we have that,
played by the QD geometry. for the QD of Fig. 1a) where the shoulder maximum is seen
First-order resonant Raman scattering cross sections ofat approximately 183 ci', the corresponding SO-phonon
single QD are proportional to the square of the scatteringrequency for the prolate Q@settingl =2 andm=0) gives
amplitude, W, , between the initial and final statdsandF,  a ratior =1.86. This result indicates that this QD has a very

as given by strong deviation from the spherical geometry. On the other
hand, the shoulder maximum at 188 ¢hin Fig. 1(b) with
Wez S (FIHg_rlpa)(palHe pluer)(malHe_gl1) mean radius of 2.6 nm will lead to=1.065, an indication
Fi _uwz (hws—Euy)(hw—Euy) : that this is a sample with a shape closer to spherical geom-

(6) etry. The latter results confirm the general idea that QD’s
with large mean radius should display a more spherical

Here,w|(w) is the incoming(scatteredandHg_ p(He.g) is shape.

the electron-hole phonoftelectron-radiation Hamiltonian
interaction. The corresponding electron-hole wave functions We acknowledge financial support from Funaade Am-
|u) were taken in the same spirit of Ref. 11, but extended tgaro aPesquisa do Estado dedsRaulo(FAPESP and Con-
the QD exterior region; i.e., hard wall boundary conditionsselho Nacional de Desenvolvimento Cidieb e Tecnolgico
on the spheroid’s surface were not assumed. By introducinCNPq. F.C. and C.T.G. are grateful to Departamento de
Eg. (5) into Eq.(6) we were able to obtain selection rules for Fisica, Universidade Federal dedS@arlos, for hospitality.
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