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Interface optical phonons in spheroidal dots: Raman selection rules
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The contribution of interface phonons to first-order Raman scattering in nanocrystals with nonspherical
geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the correspond-
ing Fröhlich-like electron-phonon interaction is reported in the framework of the dielectric continuum ap-
proach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry,
particularly on the ellipsoid’s semiaxis ratio. The new Raman selection rules have revealed that solely interface
phonon modes with even angular momentum are allowed to contribute to the first-order phonon-assisted
scattering of light. On this basis we are able to give an explanation for the observed low-frequency ‘‘shoulders’’
present in the Raman cross section of several II-VI semiconductor nanostructures.
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By using microluminescence and micro-Raman meas
ments, nanocrystallites or quantum dots~QD’s! may be stud-
ied at an almost individual level.1–4 QD’s built from different
semiconductor materials~CdSe, CdTe, PbS, CdS, etc.!, em-
bedded in a glass matrix, were intensively discussed in
later years and the spherical geometry was extensively
plied, particularly for the consideration of polar-optic
phonons.5–9 In most of the quoted papers an investigation
the electron-phonon coupling was also made. The theore
results have been compared with experimental findings
particular, resonant Raman measurements were consid
and the corresponding spectra for the first-order proc
show some structures on the low-frequency side of the p
cipal peak~see, for instance, Fig. 8 of Ref. 5!. The same kind
of structure in the Raman line shape was also analyze
Ref. 9, where a more realistic approach to the polar-opt
phonons was applied.7,8As is shown in Fig. 1 these shoulde
move to lower energies as the quantum dot radius decrea
It has been claimed that the ‘‘shoulder’’ on the left of th
main Raman peak is due to surface-optical-~SO-! phonon-
assisted transitions. However, it can be proved that, fo
purely spherical geometry, such transitions are forbidden
selection rules.7,10 In order to explain the appearance of t
SO modes, the relaxation of the angular momentuml 50
phonon selection is invoked. The SO mode can be obse
in the Raman scattering processes due to~a! impurity or
interface imperfections,~b! valence band mixing, and~c!
nonspherical geometry of the QD’s. For this reason, the m
tivation of the present paper is to study the QD’s geometr
shape deviation from the strictly spherical geometry and
contribution to the Raman measurements. In recent wo
the electronic energy levels and wave functions of sphero
QD’s were examined.11 In the current report we consider th
polar-optical vibrations of a QD with spheroidal geometry
applying the dielectric continuum approach. We study
changes introduced in the SO-phonon eigenfrequenc
eigenstates, and also the electron-phonon Hamiltonian du
nonspherical geometry. The key point is to analyzing
selection rules for the first-order phonon-assisted Ram
scattering as a function of the QD geometry. The conclus
that solely SO phonons with even angular momentum
allowed to have a contribution to the Raman spectra prov
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us with a strong basis for an explanation of the origin of t
shoulders already invoked in previous works.

Let us briefly summarize the essential theory that we h
applied. The main macroscopic quantities involved in t
description of polar-optical vibrations, in particular the i
volved electric potentialw, is derived from the equation
e(v)¹2w50, where the frequency-dependent dielect
function is given bye(v)5e`(v22vL

2)/v22vT
2). The lat-

ter formula is valid when the phonon wavelengthlp.L,
whereL is the dot dimension. Otherwise, iflp<L, we are in
the presence of confined phonons and mixed modes inv
ing electromechanical coupled fields should be taken i
account. In this case, the interface phonon dispersion rela
of the simpleminded electrostatic model can be obtained
the form of the envelope of anticrossing modes.12 For the SO
phononse~v!Þ0 thus, the solution of the Laplace equatio

FIG. 1. First-order Raman line shape for CdSe nanocrystal fr
Ref. 9. ~a! Mean radiusR051.8 nm.~b! Mean radiusR052.6 nm.
The solid lines correspond to the calculation of the Raman spect
assuming a QD with spherical geometry. Dots represent the spe
measurement.
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w, ~i! should be continuous at the interface between t
different media and~ii ! must fulfill the boundary condition
e1@]w1 /]n#S5e2@]w2 /]n#S . By considering a prolate
spheroidal QD, the coordinatesj,h, andf are the most con-
venient and related to the rectangular Cartesian coordin
through the equations13,14 x5bA(j221)(12h2)cosf, y
5bA(j221)(12h2)sinf, andz5bjh. We also havej>1,
21<h<1 and 0<f<2p. The equationj5const describes
an ellipsoid of revolution where thez direction is taken along
the ellipsoid’s major axis with 2b being the interfocal dis-
tance. For 1<j<j0 we have, in the ellipsoid’s interior re
gion, a semiconductor of the CdSe prototype with a diel
tric functione~v!. Forj>j0 we shall consider a glass matr
with frequency-independent dielectric constanteD . The
Laplace equation is separable in the spheroidal prolate c
dinates and the solutions are given by13

w,5AlmRl
m~j!Ylm~h,f!, for j<j0 ,

~1!
w.5Alm@Rl

m~j0!/Ql
m~j0!#Ql

m~j!Ylm~h,f!, for j>j0 .

Notice that the potential is already continuous atj5j0. The
other boundary condition is fulfilled by takinge1[e(v) and
e2[eD , which leads to the following result:

e~v!

eD
5S d

dj
ln Ql

mUj0D S d

dj
ln Rl

mUj0D 21

[ f lm~j0!, ~2!

where the functionsRlm and Qlm are defined below. The
functions f lm(j0) are dependent on the nature neither of
constituent materials nor of the normalization of the fun
tions Rlm andQlm . They do depend on the QD geometric
shape through the parameterj0. The SO-phonon eigenfre
quencies in the spheroidal QD are then given by

v lm
2

vT
2

5
e02eDf lm~j0!

e`2eDf lm~j0!
. ~3!

It is easy to show that the limitj0→` in Eq. ~3! leads to the
corresponding eigenfrequencies of a purely spherical QD5

The functionsRl
m(j) and Ql

m(j) are defined in Ref. 13
and we shall give them here in terms of hypergeome
functions

Rl
m~j!5

~2l !! ~j221!m/2j l 2m

2l l ! ~ l 2m!!
FFm2 l

2
,
m2 l 11

2
,
1

2
2 l ,

1

j2G ,

Ql
m~j!5

2m~ l 2m!!G~1/2!~j221!m/2

G~ l 13/2!~2j! l 1m11

3FF l 1m11

2
,
l 1m12

2
,l 1

3

2
,

1

j2G . ~4!

The functionsYlm(h,f) are the usual spherical harmoni
and, in all cases, the quantum numbers are given bl
51,2,3, . . . andumu< l . The other limit properties are tha
~i! Rl

m(j) is divergent asj l whenj→` and are convergent a
j51; ~ii ! Ql

m(j) converges to zero asj2 l 21 whenj→` and
diverges logarithmically atj51. We assumej0.1.
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The corresponding electron-phonon Hamiltoni
Ĥe-ph(r)52eŵ(r) can be derived by standard procedure
The potential operatorŵ can be written as

ŵ~r!5(
lm

e`vL

e`2eDf lm~j0! F 2p\

e* bv lmglm~j0!
G 1/2

3$Fl
m~j!Ylm~h,f!âlm1H.c.%, ~5!

where Fl
m5Rl

m(j) for j<j0 and Fl
m5@Rl

m(j0)/
Ql

m(j0)#Ql
m(j) for j>j0. Moreover, 1/e* 5(1/e021/e`).

Let us consider the case of a CdSe spheroidal QD emb
ded in a glass matrix. The applied physical parameters
vT5165.2 cm21, e059.53, ande`55.72, while for the host
material, we takeeD54.64.9 For prolate ellipsoidal geometry
the phonon frequenciesv lm as a function of the deviation
parameterj0 are presented in Fig. 2~a!, for l 51,2. Each
involved SO-phonon mode is explicitly indicated in the fi

FIG. 2. ~a! The squared frequenciesv lm
2 in units of vT

2 as a
function of 1/j0 for l 51,2 and all possible values ofm for the
prolate ellipsoid.~b! Same plot forl 53 and all possible values o
m. In both cases the dotted lines correspond to the strictly sphe
case.
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BRIEF REPORTS PHYSICAL REVIEW B 65 073303
ure. The dotted lines are the corresponding eigenfrequen
for the strictly spherical case. In Fig. 2~b! we are showing the
same dependences forl 53. Notice the splitting of the fre-
quencies~according to the rulem< l ) and the main conclu-
sion is that the separation betweenSO-phonon frequencie
depends on the QD dimensions~throughj0). We have found
that the observed frequency splitting is in the range of
structural features seen in the spectral line shapes of Fig
For higher values ofl we obtain lower values for the fre
quency splitting. Another important quantity is the ellipsoid
semiaxis ratio r 5j0 /Aj0

221. According to Ref. 15 we
should expect a ratio 1.1<r<1.3. A direct comparison be
tween the experimental data and the results here prese
should provide a much better understanding of the r
played by the QD geometry.

First-order resonant Raman scattering cross sections
single QD are proportional to the square of the scatter
amplitude,WFI , between the initial and final states,I andF,
as given by

WFI5 (
m1 ,m2

^FuHE2R
1 um2&^m2uHE2Pum1&^m1uHE2R

2 uI &
~\vs2Em2!~\v l2Em1!

.

~6!

Here,v l(vs) is the incoming~scattered! andHE-P(HE-R) is
the electron-hole phonon~electron-radiation! Hamiltonian
interaction. The corresponding electron-hole wave functi
um& were taken in the same spirit of Ref. 11, but extended
the QD exterior region; i.e., hard wall boundary conditio
on the spheroid’s surface were not assumed. By introduc
Eq. ~5! into Eq.~6! we were able to obtain selection rules f
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the electron-phonon transitions, which are summarized
follows: ~a! Only SO phonons withm50 andl 5even inte-
ger are allowed. Notice thatl 51 is not allowed for the tran-
sitions in contradiction to the assumptions of previo
works.9 ~b! For the electronic states~denoted as in Ref. 11!
the angular momental e and l h should have the same parit
while me5mh5m. By e(h) we mean electron~hole! quan-
tum numbers. The latter results permit us to give an interp
tation for the shoulder at the left side of the main Ram
peak seen in Fig. 1 as a direct consequence of the spher
geometry of the dot. On the other hand, the observed Ra
data, together with the spheroidal SO phonons here repo
can be used in order to determine the ellipsoid’s semia
ratio r. On the basis of data taken from Ref. 9, we have th
for the QD of Fig. 1~a! where the shoulder maximum is see
at approximately 183 cm21, the corresponding SO-phono
frequency for the prolate QD~settingl 52 andm50) gives
a ratior 51.86. This result indicates that this QD has a ve
strong deviation from the spherical geometry. On the ot
hand, the shoulder maximum at 188 cm21 in Fig. 1~b! with
mean radius of 2.6 nm will lead tor 51.065, an indication
that this is a sample with a shape closer to spherical ge
etry. The latter results confirm the general idea that Q
with large mean radius should display a more spher
shape.

We acknowledge financial support from Fundac¸ão de Am-
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