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Theory of thermoelectric phenomena in superconductors
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The theory of thermoelectric effects in superconductors is discussed in connection to the recent publication
by Marinescu and Overhauser@Phys. Rev. B55, 11 637~1997!#. We argue that the charge nonconservation
arguments by Marinescu and Overhauser do not require any revision of the Boltzmann transport equation in
superconductors. We show that the charge current proportional to the gradient of the gap,uDu, found by
Marinescu and Overhauser, is incompatible with the time-reversal symmetry, and conclude that their ‘‘electron-
conserving transport theory’’ is invalid. Possible mechanisms responsible for the discrepancy between some
experimental data and the theory by Galperin, Gurevich, and Kozub$Pis’ma Zh Éksp. Teor. Fiz.17, 687~1973!
@JETP Lett.17, 476 ~1973!#% are discussed.
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I. INTRODUCTION

The purpose of the present paper is to discuss some
pects of the kinetic approach to the thermoelectric proper
of superconductors. As early as 1944 Ginzburg1 suggested
that in the presence of a temperature gradient, there app
in a superconductor a normal current of the form given b

jn52a¹T.

It was also pointed out by Ginzburg that the total current
the bulk of a homogeneous isotropic superconductor v
ishes because the normal current is offset by a supercurrej s
so that the total current in the bulk is

jn1 j s50.

This makes impossible the direct observation of the therm
electric effect in a simply connected homogeneous isotro
superconductor. Ginzburg considered also simply conne
anisotropic or inhomogeneous superconductors as sys
where it is possible to observe thermoelectric phenomena
measuring the magnetic field produced by a temperature
dient. As indicated in Refs. 2–4~see also Ref. 5!, the best
way to observe thermoelectric phenomena in supercond
ors, in particular, to measure the thermoelectric coefficiena
is to make the superconductor a part of a bimetallic sup
conducting loop that may also contain weak links.

Using the approach based on the Boltzmann equation
the normal excitations, the calculation of the coefficienta
for impurity scattering has been made in Refs. 2 and 3,
also reviews in Refs. 6–8. The expression fora has been
later rederived in Ref. 9 using the Green’s-function vers
of the nonequilibrium statistical operator approach. In t
paper the role of paramagnetic impurities was also discus
Based on the same method, an enhancement of the the
electric flux in superconductors containing nonmagnetic
purities with localized states near the Fermi energy was
dicted in Ref. 10, see also Ref. 11. As was proved in R
9–11, the expressions fora, obtained in Refs. 2 and 3 for th
case of nonmagnetic impurities, remain valid for an arbitr
0163-1829/2002/65~6!/064531~6!/$20.00 65 0645
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relation between the coherence length of the supercondu
and the electron mean free path.

Recently, Marinescu and Overhauser12 have proposed an
other method to calculate the transport coefficientsa. In
their approach, the principal contribution to the thermoel
tric effect in superconductors comes from the dependenc
the superconducting gapD on the temperature. For som
typical interval of temperatures and impurity concentratio
their results differ from that of Refs. 2 and 3 by seve
orders of magnitude. Therefore, it is desirable to discuss
validity of their results. In the present paper we compa
these approaches. We also briefly discuss how the theore
results are related to the existing experimental data.

II. THEORY OF MARINESCU AND OVERHAUSER

Marinescu and Overhauser in Ref. 12 have propose
method which they call an ‘‘electron-conserving transp
equation.’’ They introduce distribution functions,g̃k↑ and
g̃Àk↓ , which differ from the distribution functions for the
BCS excitationsf p↑,↓ ~below, the spin index is dropped!.

The nonequilibrium part of the distribution function@see
Eq. ~47! of Ref. 12# is

dgk52
\ts

m Fbek
2f k~12 f k!

TEk
2

f kD

Ek
2 S dD

dTD Gk•¹T. ~1!

Here, as in Ref. 12,b51/kBT, Ek5AD2(T)1ek
2, and f k

5(ebEk11)21, while ek5\2k2/2m2eF is the one-electron
energy measured with respect to the Fermi level,eF .

The relaxation timets is related to the relaxation timetn
for impurity scattering in the normal state: For quasiparti
transitions fromk to k8,

ts
215tn

21uEk /eku~ukuk82vkvk8!
2. ~2!

For future convenience, we write Eq.~1! as

dgk5dgk
(I )1dgk

(II ) ,
©2002 The American Physical Society31-1
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dgk
(I )52

\ts

m

bek
2

TEk
f k~12 f k!k•¹T,

~3!

dgk
(II )5

\ts

m

f kD

Ek
2 S dD

dTD k•¹T.

Accordingly, the electric current density is split asj5 j (I )

1 j (II ), where

j (I )52a (I )
“T, j (II )52a (II )

“T

with

a (I )5
4eN~0!

3mkBT2E2\vD

\vD
dets~e1eF! f ~12 f !

e2

E
,

a (II )52
4eN~0!

3mkBT2E2\vD

\vD
dets~e1eF!

kBT2f D

E2

dD

dT
,

with N(0) being the density of states per spin.

III. DISCUSSION

Now we are in position to discuss the results of Ref.
The first term,dgk

(I ) in Eq. ~3! comes from the coordinat
dependence of the temperatureT entering the Fermi-Dirac
distribution function, and therefore, is of true nonequilibriu
origin. A nonequilibrium term exists in the distribution func
tion found from the Boltzmann equation approach2,3 @cited as
Eq. ~21! in Ref. 12# with a very important difference:dgk

(I ) is
evenunder e→2e so that electrons above and below t
Fermi surface do not tend to compensate each other a
Refs. 2 and 3. The opposite symmetry ine is the reason why
the thermoelectric current obtained by Marinescu and Ov
hauser is some five orders of magnitude larger than tha
Refs. 2 and 3.

The origin of the second term,gk
(II ) , is ther dependence

of D5D@(T(r )# as is obvious whendgk
(II ) is identically

written in the following form:

dgk
(II )5tsf k

D~r !

Ek
2 S v•

]

]r
D~r ! D , v5

\k

m
.

This means that in the approach of Ref. 12,dgk
(II ) would

exist irrespective of the origin of dependence ofD(r ) on the
coordinater . For instance, such dependence may be du
the variation of the chemical composition of the superc
ductor or to the spatial variation of the strain.

Even if the dependenceD(r ) is due to one of these equ
librium mechanisms, the theory12 nevertheless predicts th
current,

j52b
]D

]r
, ~4!

whereb5a (II )(dD/dT)21. In our opinion, such a current i
forbidden. Below we give physical considerations support
this statement.
06453
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It is well known that any linear-response process can
classified as either reversible or irreversible~dissipative!13

~see Ref. 14 for a general discussion of nonequilibrium th
modynamics of superconductors, including thermoelec
phenomena!. The basis for the classification is the tim
reversal symmetry~T symmetry!. For instance, the charg
currentj induced by the electric fieldE, in a normal conduc-
tor, is irreversible. Indeed, the current changes its sign un
time reversal whereasE remains intact, and the Ohm law,j
5sE, is not invariant relative to the T-symmetry transform
tion. Thermoelectric current,j (T)52a“T, is irreversible be-
cause the left-hand side changes its sign under time reve
whereas“T does not. Another example is the supercurre
js52eNsvs , proportional to the density of the Cooper pair
Ns , and their velocity,vs . This relation is T invariant since
both current and velocity are T-odd quantities. Consequen
supercurrent is reversible and compatible with thermal eq
librium.

From this point of view, the current in Eq.~4! is irrevers-
ible. Indeed, the gap functionD(5uDu) is unchanged by the
time-reversal transformationc→c* , whereas the curren
changes its sign. Unlike the supercurrent, the irrevers
current in Eq.~4! if existed would be accompanied by
steady entropy production. Being incompatible with equil
rium, the current must be equal to zero.

The contradiction with the T-symmetry arguments can
also demonstrated by the following gedanken experime
Consider a ring built of two superconducting arms, left a
right, both in thermal equilibrium. The arms are thic
enough, so in their bulks the magnetic field is complet
screened. The right arm is made of a chemically inhomo
neous superconductor with a position-dependent g
D (r )(r ), varying along the arm fromD1 to D2 if one moves
counterclockwise, Fig. 1. The left arm is built of a homog
neous superconductor with the gapD ( l ). The expression for
the electric current, according to Eq.~4! and the theory of
Ref. 12, reads

FIG. 1. The equilibrium of nonquantized magnetic flux.
1-2
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j5H 2e\

m
Ns

(r )F“x (r )2
2p

F0
AG2b“D (r ) right arm,

2e\

m
Ns

( l )F“x ( l )2
2p

F0
AG left arm.

~5!

Thus, there is an additional current in the right arm given
Eq. ~4!. Since the current vanishes in the bulk of the ringj
50, from Eq. ~5! one gets the following equation for th
phasex,

~2p!21
“x (r )5F0

21A1~bm/2e\Ns
(r )!“D (r )~r !,

~2p!21
“x (r )5F0

21A. ~6!

Integrating the phase gradient along a contourC in the bulk
of the ring shown in Fig. 1 and remembering that the ph
gets an increment 2pn, one gets for the total flux in the ring

F5nF01F (MO), n50,61, . . . , ~7!

where the additional fluxF (MO) is

F (MO)5
bmF0

2e\ E
D1

D2 dD

Ns
(r )~D!

. ~8!

The lowest-energy state~at least for small values ofF (MO))
corresponds ton50, and, therefore, theequilibrium flux of
the ring is predicted to be finite and equal toF (MO). A simi-
lar conclusion was made in Ref. 15.

Clearly, the finite magnetic flux and a finite electric cu
rent generating the flux are not compatible with the unde
ing time-reversal symmetry of the Hamiltonian of the sup
conductors. It is true that the state of the system may h
symmetry lower that the Hamiltonian: A ferromagnet giv
an example of a system with spontaneously broken T s
metry. However, the underlying T symmetry guarantees
existence of two macroscopically allowed states related
each other by the T transform: for a magnet, theses are s
with reversed magnetizations. In other words, the underly
T-reversal symmetry demands permission of any sign of
parameter that quantifies the spontaneous symmetry v
tion.

In the case under consideration, the sign of the flux in
ring is predetermined,15 given the geometry and the materi
parameters. This contradicts the time-reversal symmetry
which the existence of the two equilibrium states with t
opposite magnetic flux is compulsory. Therefore, the curr
in Eq. ~4!, which is the source of the spurious flux, must
equal to zero.~Incidentally, a finiteF (MO) would mean that
there are material-dependent corrections to the flux quan
tion phenomena.!

These are our general arguments for why we think that
current given by Eq.~4! should not exist. Of course, th
absence of the equilibrium current which would be sol
due to a spatial dependence ofuDu is well known in the
microscopic theory of superconductivity.16 Therefore, in our
opinion, the predictions of the theory12,15 contradict the gen-
eral principles, and this is why we believe that the transp
theory suggested in Ref. 12 is invalid.
06453
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Although the derivation of the ‘‘charge conserving tran
port equation’’ has not been presented by Marinescu
Overhauser12 in enough detail, let us try to specify thos
parts in their calculations which has lead to the above c
tradictions with general principles. In our opinion, it
mostly related to the transport Eq.~39! of their paper.

The equation is formulated for the functiongk↑ , which
gives the occupation number ofbareelectrons@see Eqs.~37!
and ~38! of Ref. 12#. The transport Eq.~39! is identical to
that which would be obtained by the standard proced
based on the Liouville theorem.13 As is clear from Eq.~46!,
the Hamilton function H(r ,p), which defines \ k̇5

2(]H/]r ) and ṙ5(]H/]\k), is taken in Ref. 12 to be the
BCS excitation energy

H~r ,\k!5Ek~r !5Aek
21uD~r !u2.

We believe that this procedure is qualitatively unsatisfacto
Due to the electron-hole quantum coherence, the bare e
trons are not good semiclassical eigenstates, and the mo
of wave packets built of them cannot be described by
Hamilton equation, even approximately.

The main objection of Marinescu and Overhauser to
Boltzmann equation approach6,7 is based on an apparent no
conservation of ‘‘bare electrons’’ and thus of electric char
in the course of the propagation of a wave packet. As is w
known, the BCS Hamiltonian itself does not support detai
conservation of the ‘‘bare electrons’’ while the charge co
servation takes place only after the quantum averaging o
the quantum states, provided the complex pair potentiaD
5uDueix satisfies the self-consistency condition~see the Ap-
pendix for the details!. It has been specifically emphasized
Refs. 6 and 7 that the continuity equation,

e
]N

]t
1div j50,

bears no explicit relation to the Boltzmann equation. In s
perconductors, the charge conservation law plays the rol
a subsidiary equation allowing one to find the phasex of the
superconducting order parameter. Again, the conserva
holds only as an average over different states and the
consistency equation plays a crucial role to support
charge conservation. Thus, the objections of Marinescu
Overhauser do not undermine the Boltzmann equation
proach. Furthermore, the same result for the transport c
ficient was derived using the Green’s-function method.9

IV. EXPERIMENTAL SITUATION

Let us briefly discuss experimental results. The therm
electric flux through a closed loop has been first measured
Zavaritskii.17 The results exhibited no serious discrepanc
with the theory of Refs. 2 and 3. However, in the lat
experiments18–21 the observed thermoelectric flux was mu
larger than the estimates from Refs. 2 and 3.

In our opinion, the notable discrepancy between differ
experimental results as well between some of those res
and the microscopic theory2,3,9–11 remains a challenging
problem. We present a brief review of different suggestio
1-3
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regarding this problem, see also p. 1856 of Ref. 21, whe
discussion of possible reasons for the discrepancy is
sented.

Two possible suggestions can be made regarding
source of puzzling discrepancies between the theory and
experimental results.18–21 The first is focused on the differ
ences between the realistic circuits used in Refs. 18–21
the simple theoretical model.2,3

The complications can arise, in particular, from the ne
contact regions. In Ref. 22, a thermoelectric loop consist
of an impure branch with higherTc and a pure branch with
lower Tc ~passive and active branches, respectively! was
considered. It was shown that if~i! the electronic therma
conductance of the passive branch is much smaller than
of the active one, and~ii ! there is finite thermal flux through
the contact between these branches, then there exists a
contact thermoelectric contribution to the measured flux
to the phonon drag. The reason is that the phonon ther
flux in one of the materials cannot be transformed to
electronic one abruptly at the contact. Rather, the trans
mation takes place within a near-contact layer of finite thi
ness where the phonon flux within the active branch ismuch
larger than that in its bulk. As a result, the contact contrib
tion can exceed the predictions of Refs. 2 and 3 by a fa
;eF /QD , whereeF is the Fermi energy whileQD is the
Debye energy. However this enhancement, although subs
tial, seems to be still too small to explain the magnitude
the effect reported in Refs. 20 and 21.

Another suggestion is that the effects observed in R
18–21 can be related to some temperature-dependent
netic fluxes produced by external sources. A possible ef
of such a sort was suggested in Ref. 23 and later consid
in detail in Ref. 24. This effect is related to a spatial red
tribution of a background magnetic flux due to the tempe
ture dependence of the London penetration depth,l, of the
superconductor. Since the redistribution effect is proportio
to l/L, whereL is a size of the circuit, while the ‘‘true’’
thermoelectric flux within the superconducting circuit is pr
portional to a smaller factor, (l/L)2, even very weak back
ground fields can produce a temperature-dependent flux
deed, the effective near-surface area;lL becomes rathe
large in the vicinity ofTc , wherel.1 mm. Then, the non-
screened magnetic field of the Earth, for instance, may g
erate a temperature-dependent magnetic flux as big
;103F0.

It is worthwhile to note that if the diameterd of the wires
forming the loop is much less thanL the ‘‘redistribution’’
effect can be suppressed by a small factord/L. The reason is
that the contributions of the ‘‘inner’’ and the ‘‘outer’’ parts o
the wire to the redistribution effect have opposite signs.
believe that it is because of the suppression of the redi
bution effect that the first observation of the thermoelec
flux17 exhibited no serious discrepancies with the theory.

To avoid the ‘‘redistribution’’ effect, the authors of Ref
20 and 21 exploited the experimental set where the ther
electric circuit had a shape of a hollow toroid, the therm
electric flux being concentrated within its cavity. The me
suring coil was winded along the toroid. The main idea w
that the background fields were screened out by the bul
06453
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the toroid. In our opinion, there still existed a region betwe
the coil and the bulk of the toroid where the background fi
can penetrate. In particular, this region included the ne
surface layer of the thickness;l. Thus the measured flux
obviously included a contribution of this ‘‘outer’’ region
Consequently, a temperature dependence of the penetr
length brought about a temperature-dependent contribu
provided that there existed some background field. The
that, as reported in Refs. 20 and 21, the effect vanished f
homogeneous sample, in our opinion, cannot serve as p
of the absence of the redistribution effect. Indeed, if the m
suring circuit is fully symmetric the contributions due to di
ferent parts of the toroid are compensated. However, for
inhomogeneous sample this symmetry will be absent, and
effect of the background field will be restored.

We believe that to check experimentally the validity of t
theoretical approach2,3 it is practical, along with further stud
ies of the thermoelectric flux under different geometries,
study thermoelectric effects of other types. Among these
fects, there is a specific interplay of a temperature grad
and a supercurrent in a superconducting film. Due to such
interplay a difference between the populations of the el
tronlike and holelike branches of the quasiparticle spectr
is established.25,26,8,27As a result, a differenceUT between
the electrochemical potential and the partial chemical pot
tial of the quasiparticles appears. According to the exp
mental studies,25,28the measured values ofUT agree with the
theoretical predictions. We would like to emphasize that
measurements ofUT are local and consequently are muc
less sensitive to the above-mentioned masking redistribu
effect. Another way of local measurement is the thermoel
tric modification of the Josephson effect in th
superconductor–normal metal–superconductor junction
dicted in Ref. 29. The theoretical predictions obtained by
Boltzmann equation approach agree with the experime
results.30

V. CONCLUSIONS

In our opinion, the theory of thermoelectric effect in s
perconductors suggested by Marinescu and Overhause
Ref. 12 is not valid. We come to this conclusion because
main contribution to the thermoelectric coefficienta calcu-
lated in Ref. 12 can be attributed to the spatial dependenc
the order parameterD(r ), which is due to the temperatur
dependence of the gapD(T) when T5T(r ). As such, the
spatial inhomogeneity ofD does not disturb the therma
equilibrium. We have shown that the existence of an equi
rium current}“D contradicts the time-reversal symmetr
and, therefore, it cannot contribute to the thermoelectric
efficient a. In addition, being irreversible, the current foun
in Ref. 12 would lead to a steady entropy production in
inhomogeneousequilibrium superconductor in contradictio
with thermodynamics.13,14 It is our belief that ‘‘the electron-
conserving transport equation’’ proposed in Ref. 12, fro
which the above unphysical results are inferred, is errone

We have presented the conventional point of view6,7,31on
the issue of the charge conservation in superconductors:
an intrinsic feature of the BCS mean-field theory that t
charge conservation may be violated, i.e., divjnÞ0, for any
1-4



, i
-

o
e

re
le

e

in
it

le
ed
g
o

ce
he

ce
w

o

pe
he
s

n
et

to

rg
e

the
and,
m

-
d via

of

a
in
ates

er-
.,

ther

rate

e
r-
ma-

CS

.

THEORY OF THERMOELECTRIC PHENOMENA IN . . . PHYSICAL REVIEW B65 064531
individual quasiparticle statecn . However, the total electric
current j, which is the sum over the quasiparticle states
locally conserved, i.e., divj50, if and when the pair poten
tial is self-consistent~see the Appendix for details!. There-
fore, the Boltzmann equation supports the local charge c
servation, and we disagree with the opposite claims in R
12.

The results2,3 of the Boltzmann equation approach a
consistent with the experimental studies of the thermoe
trically induced branch imbalance28 and corrections to the
critical current of the Josephson junction.30 The results of the
thermoelectricallyinduced magnetic flux through a clos
loop exhibit substantial scatter. Whereas the results17 are
consistent with the theory,2,3 the giant thermoelectric flux
observed in Refs. 18–21 is still not understood. We th
that it is a challenging problem which is still open, and
may require an account of additional sources of thermoe
trically induced magnetic flux. However, we are convinc
that within the framework of the physical picture involvin
quasiparticle diffusion, the Boltzmann equation approach
Ref. 2 does not in principle require any revision.
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APPENDIX: CHARGE CONSERVATION

A quasiparticle in a superconductor is described by a tw
component wave functionc5(v

u), with u and v being the
electron and hole components of the quasiparticle, res
tively. The stationary wave function corresponding to t
energy E is found from the Bogoliubov–de Genne
equation,16 Ĥc5Ec, with the matrix Hamiltonian

Ĥ5S jS p̂2
e

c
AD1U~r ! D

D* 2jS p̂1
e

c
AD2U~r !

D .

~A1!

Here j(p)5p2/2m2eF . For definiteness, we consider a
isotropics-wave superconductor so that the order param
D(r ) does not depend on the momentum. Also,A is the
vector potential, andU is the potential energy, e.g., due
impurities or the scalar electric potential.

Generally, the eigenenergyE in Eq. ~A1! may be positive
or negative. In the ground state~the condensate!, the states
with the negative energy are filled, and the positive-ene
states are empty. As usual, the excitation is defined relativ
the ground state, i.e., it occupies anE.0 state or empties an
E,0 state. It is a property of Eq.~A1! that the eigenfunc-
tions corresponding to the energyE and 2E are related to
each other as16
06453
s
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c-
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S u
v D and S 2v*

u* D .

This property allows one to express the contribution of
negative-energy states via the positive-energy ones,
therefore, exclude the negative energies fro
consideration.16,32

We denote

cn5S un~r !

vn~r ! D
as the wave function of the excitation with the energyEn
.0 and f n,s as the distribution function of excitation (s
5↑,↓ being the spin!; heren stands for the quantum num
bers other than spin. The observables can be expresse
un ,vn , and f n,s .16,32

The densities of charge,Q(r ), and electric current,j (r ),
are given by the following expressions:

Q5 (
En.0

~2euvnu21~ f n↑1 f n↓!qn!,

~A2!

j5 (
En.0

~211 f n↑1 f n↓!jn ,

where the partial charge,qn(r ), and current,jn(r ), densities
are

e21qn5uunu22uvnu2,

e21jn5Re~un* v̂un2vn* v̂* vn!, v̂5
1

m S p̂2
e

c
AD .

Indeed, as is rightly stated in Ref. 12, the effective charge
the excitationqn is, generally, a function of the coordinater .
Accordingly, the total charge of a wave packet built as
superposition ofcn’s varies while the packet propagates
an inhomogeneous superconductor. Of course, this viol
the charge conservation on the level of anindividual excita-
tion. However, it is well known that the local charge cons
vation is restored:~i! after summation over the states, i.e
one should consider only the total charge and current ra
than qn and jn ; ~ii ! the pair potentialD5uDueix is taken
self-consistently rather than as an input. Below, we elabo
upon this point.

Unlike the exact Hamiltonian of interacting particles, th
BCS effectiveHamiltonian does not commute with the pa
ticle number operator because of the presence of the ano
lous average termD ĉp↑

† ĉ2p↓
† 1H.c. For this reason, the

charge conservation is not an automatic property of B
theory. From Eq.~A1!,

div jn524ImD* unvn* , ~A3!

so that lack ofdetailedcurrent conservation, i.e., divjnÞ0,
is obvious.

For the total electric current densityj , one gets from Eqs
~A2! and ~A3!,

div j54ImD* ~r !F~r !,
1-5
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where

F~r !5 (
En.0

~12 f n,↑2 f n,↓!un~r !vn* ~r !.

As discussed in Ref. 31, the pair potentialD(D* ) serves as a
source~sink! of the charge. Again, the charge conservation
not guaranteed if the potentials in Eq.~A1! are arbitrary in-
puts. However, the Gor’kov self-consistency condition d
mands that

D~r !5gF~r !,

whereg is the coupling constant. If the complex potentialD
is self-consistent, one readily sees that divj50, i.e., the local
charge conservation.
.

,
or
I.

o
bs

s

06453
s

-

These are our arguments against the point of view
pressed by Marinesku and Overhauser that the Boltzm
equation scheme violates the local charge conservation
avoid confusion, another point should be mentioned. T
lack of the detailed current conservation does not mean
absence of unitarity. Indeed, it generally follows from t
Bogoliubov–de Gennes equation that thequasiparticlecur-
rent j(qp),

jn
(qp)5Re~un* v̂un1vn* v̂* vn!,

is a conserved quantity, i.e., divjn
(qp)50, for any solution to

the Bogoliubov–de Gennes equation. The conservation
jn
(qp) leads, e.g., to the conservation of probabilities in t

Andreev reflection problem.
ics,

. B

ry
1V.L. Ginzburg, Zh. Eksp. Teor. Fiz.14, 177 ~1944!.
2Y.M. Galperin, V.L. Gurevich, and V.I. Kozub, Pis’ma Zh. E´ksp.

Teor. Fiz.17, 687 ~1973! @JETP Lett.17, 476 ~1973!#.
3Y.M. Galperin, V.L. Gurevich, and V.I. Kozub, Zh. E´ksp. Teor.

Fiz. 65, 1045~1974! @Sov. Phys. JETP38, 517 ~1974!#.
4J.C. Garland and D.J. van Harlingen, Phys. Lett.47A, 423~1974!.
5Y.M. Galperin, V.L. Gurevich, and V.I. Kozub Phys. Rev. B,18,

5116 ~1978!.
6A.G. Aronov, Y.M. Galperin, V.L. Gurevich and V.I. Kozub, Adv

Phys.30, 539 ~1981!.
7A. G. Aronov, Y. M. Galperin, V. L. Gurevich, and V. I. Kozub

Nonequilibrium Properties of Superconductors—Transp
Equation Approach, edited by D. N. Langenberger and A.
Larkin ~Elsevier, New York, 1986!, p. 325.

8G. Schön, Adv. Solid State Phys.21, 341 ~1981!.
9L.Z. Kon, Fiz. Tverd. Tela~Leningrad! 17, 1711 ~1975! @Solid

State Ionics17, 1113~1975!#.
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