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Pinhole calculations of the Josephson effect in3He-B
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We theoretically study the dc Josephson effect between two volumes of superfluid3He-B. We first discuss
how the calculation of the current-phase relationships is divided into mesoscopic and macroscopic problems.
We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak
link is assumed to be apinhole, whose size is small in comparison to the coherence length. We derive a
quasiclassical expression for the coupling energy of a pinhole, also allowing for scattering in the hole. Using
a self-consistent order parameter near a wall, we calculate the current-phase relationships in several cases. In
the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the
oppositeanisotexturalcase the texture changes as a function of the phase difference. For this we have to
consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters.
We analyze the experiments by Marchenkovet al., @Phys. Rev. Lett.83, 3860~1999!#, although the assump-
tions of the pinhole model were not quite satisfied there. We find that the observedp states and bistability can
hardly be explained with the isotextural pinhole model, but a quantitative agreement is achieved with the
anisotextural model.
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I. INTRODUCTION
Josephson effects in superconducting weak links h

been actively studied and applied since the 1960s. By a
ogy, similar effects also exist between two volumes of sup
fluid connected by a weak link. There has been rec
progress in observing the Josephson effect in superfl
4He.1 In this paper we study superfluid3He, where the Jo-
sephson effect was experimentally confirmed over ten ye
ago by Avenel and Varoquaux.2,3 However, more recent ex
periments in Berkeley have raised questions4,5 which we are
going to address here.

Avenel and Varoquaux2,3 used a single narrow slit as th
weak link in 3He. They found current-phase relationsJ(f)
that are very similar to those seen for tunneling junctions
microbridges ins-wave superconductors. In these syste
the relations are generally close to a sine function,J(f)
5Jcsinf, or slightly tilted from this form. They are charac
terized by a single maximum supercurrentJc and a negative
derivative atf5p, J8(p),0. The experiments at Berkele
used a 65365 array of small apertures in3He-B.4,5 At high
temperaturesJ(f) was found to be sinusoidal. At lower tem
peratures a ‘‘p state’’ developed, where the derivative
positive atf'p: J8(p).0. ~Heref is defined so that al-
waysJ8(0).0.! In addition, the weak link could be found i
two distinct states with different current-phase relations. O
of the ‘‘bistable’’ states had consistently higher critical cu
rents ~the H state! than the other~the L state!. Preliminary
results ofp states and multistability in a single narrow s
were also reported.6

Several theories were put forward to explain the
findings.7–11 It was suggested that the reduction of the J
sephson coupling due to a finite number of particles can l
to p states in trapped atomic gases.12 This suggestion was
extended to3He.7,8 In the present paper we do calculatio
with quasiclassical theory, which is an exact expansion
Tc /TF ~the superfluid transition temperature over the Fe
0163-1829/2002/65~6!/064530~19!/$20.00 65 0645
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temperature!, and find no sign of such a mechanism in t
leading order. Therefore, we consider it unlikely that th
mechanism could quantitatively explain thep state observed
in 3He. What look more promising are theories based on
333 matrix structure of the order parameter in3He.10,11,13,14

Unusual current-phase relations in3He were first calculated
by Monien and Tewordt.13 Their calculation used a very sim
plified one-dimensional Ginzburg-Landau model, and
physical relevance of their intermediate branches arounf
'p remains controversial. The first unambiguous eviden
of a branch inJ(f) came from two-dimensional Ginzburg
Landau calculations.14 Besides the usual case of paralleln̂
vectors on the two sides of the junction, this calculation co
sidered also antiparalleln̂ vectors, and an unusualJ(f) was
found only in the latter case. The branch inJ(f) did not yet
qualify as ap state, however, becauseJ8(p) was found to
be negative at the parameter values studied in Ref. 14. M
extensive Ginzburg-Landau studies in Ref. 11 found tha
properp state@J8(p).0# occurs in the case ofparallel n̂’s
through spontaneous symmetry breaking in a sufficien
large aperture.

The Ginzburg-Landau calculations are applicable to re
tively large apertures. A tractable opposite limit is a ve
small aperture, a pinhole. The pinhole model was first st
ied by Kulik and Omel’yanchuk for an s-wave
superconductor.15 In this case, at low temperaturesJ(f) de-
viates considerably from the sine form, but there is nop
state. Kurkijärvi considered the same problem in3He.16 In
3He-B the order parameter is always modified near surfa
Neglecting this complication, Kurkija¨rvi found thatJ(f) for
parallel n̂’s is exactly the same as fors-wave superconduct
ors. Yip generalized Kurkija¨rvi’s calculation to other orien-
tations of then̂ vectors.10 He found ap state for antiparallel
n̂’s, as well as for some more complicated configuratio
which can occur in a magnetic fieldH*1 mT. We call this
©2002 The American Physical Society30-1
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
mechanism of thep stateisotexturalbecause the texture@the

field n̂(r )] is kept constant while calculatingJ(f).
The discussion above concerned a single aperture. T

exist three different suggestions as to how ap state can
appear in an array of apertures. Avenelet al. assumed that if
the individual apertures have a hystereticJ(f), approxi-
mately half of the apertures could be on a different bran
than the others. The net effect would be the formation of ap
state.9 We consider this explanation unlikely, because app
ently the apertures in Ref. 5 are not hysteretic, and also
cause it is difficult to understand why exactly half of th
apertures could behave differently. The second alternativ
that thep state appears trivially in a coherent array if
isotexturalp state appears in each of the apertures indep
dently. The third alternative is ananisotextural p state,
where the n̂ texture changes as a function off.11 This
mechanism can lead to ap state even in the case when th
isotexturalJ(f) is sinusoidal.

The purpose of this paper is to studyJ(f) in 3He-B as
completely as possible using the pinhole model. Sectio
starts with a division of the problem into mesoscopic a
macroscopic aspects, and using symmetry arguments de
general expressions for the Josephson coupling. The me
copic problem is discussed in the following four section
Section III introduces the quasiclassical theory and the
sumptions relevant for our calculation. The pinhole mode
defined in Sec. IV, and a general pinhole energy functiona
derived in Sec. V. The propagators are calculated in Sec.
and the Josephson energy and the currents are evalu
This corrects the calculations by Kurkija¨rvi16 and Yip10 by
using a self-consistently calculated order parameter. We c
sider both diffuse and specular reflections of quasiparticle
the wall. We also discuss the case where scattering is pre
within the pinhole.

The rest of the paper is devoted to the macroscopic p
lem. In Sec. VII we discuss the interactions that are imp
tant on a macroscopic scale. We estimate the length sc
and evaluate some surface-interaction parameters that
not been calculated before, to our knowledge. In Sec. V
we plot isotextural current-phase relations in different sit
tions. The anisotextural Josephson effect is discussed in
IX. The effect is first demonstrated with a simple mod
Then we estimate the textural rigidity, and calculate curre
phase relationships for an array of pinholes. Section
is devoted to an analysis of differentp state models in
the Berkeley experiment.5 Section XI finishes with some
conclusions.

II. SYMMETRY CONSIDERATIONS

The Cooper pairs in superfluid3He are in a relative
p-wave state, and form a spin triplet. This state of affairs
reflected by the 333 tensor character of the order parame
Am i . The first index inAm i ~greek letter! refers to the spin
states, and the second index~latin letter! to the orbital states
In the bulk of 3He-B the order parameter has the form17

Am i5Rm iD exp~ if!. ~1!
06453
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HereD is a real constant, andRm i is a rotation matrix satis-
fying Rm iRm j5d i j . ~We shall consistently assume a summ
tion overx, y, andz for repeated index variablesm, n, i, j, a,
b, g, etc.! The rotation-matrix structure andD are fixed on
the scale of the superfluid condensation energy. On this
ergy scale, state~1! remains degenerate with respect to t
phasef and different rotationsRm i , which are parametrized
with an axisn̂ and an angleu. The degeneracy with respec
to f andRm i ~or equivalentlyf, n̂, andu) is partly lifted by
weaker interactions, which is discussed in detail in Sec. V

Now imagine two bulk volumes of3He-B connected by a
weak link; see Fig. 1. We consider the system to consist o
mesoscopic region at the junction and a macroscopic reg
outside. There can be a considerable variation of the
degrees of freedom in the macroscopic region, as illustra
for the n̂ vector in Fig. 1. The mesoscopic region is chos
sufficiently small so that~i! both f and Rm i are effectively
constants at the macroscopic-mesoscopic border, and~ii ! the
weak interactions affectingf and Rm i can be neglected in
the mesoscopic region. The size of the mesoscopic regio
limited from below by the condition that the bulk form o
order parameter~1! has to be valid in the macroscopic re
gion. Thus the size of the mesoscopic region has to be la
in comparison to both the superfluid coherence lengthj0
'10 nm and the size of the aperture. The mesoscopic re
can also be chosen to cover several apertures.

The rotation matrices and the phases on the left~L! and
right ~R! sides are generally different. Their values at t
macroscopic-mesoscopic border are denoted byRm i

L,R and
fL,R. The most general form for the Josephson coupling
ergy associated with the weak link is given by

FJ5FJ~fL,fR,Rm i
L ,Rn j

R !. ~2!

However, due to global phase invariance there can really
only a dependence on the phase differencef[fR2fL. In
addition, if we assume the intervening wall to be magne
cally inactive, then we should have invariance with resp
to global spin rotations as well. This means that the ene
can only depend on the product of the rotation matrices
the quantitiesc i j 5Rm i

L Rm j
R , so that

FIG. 1. A weak link between two bulk superfluids,L andR. The
arrows denote then̂ vector of 3He-B. The dashed line divides th
liquid into a mesoscopic region~inside! and a macroscopic region
~outside!.
0-2
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PINHOLE CALCULATIONS OF THE JOSEPHSON . . . PHYSICAL REVIEW B65 064530
FJ5FJ~f,Rm i
L Rm j

R !. ~3!

Using the functionalFJ @Eq. ~3!# one can now calculate
two conserved currents. First, the mass current through
aperture is given by

J5
2m3

\

]FJ

]f
. ~4!

See, for example, Ref. 18. Second, due to the different s
orbit rotation matrices on the two sides, there is also a s
current flowing through the aperture. Likewise, this
obtained fromFJ by differentiation:

Jg
spin5eabgRa i

L Rb j
R ]FJ

]~Rm i
L Rm j

R !
. ~5!

This can be seen by replacingc i j in ~3! by Ra i
L Rb j

R Rab with
the relative rotationRab5dab1eabgdug , and identifying
dFJ5Jg

spindug1O(dug
2).19

The energy and the currents also satisfy some other s
metry relations. For example, assuming invariance with
spect to time reversal, we haveFJ(2f,c i j )5FJ(f,c i j ). As
a consequenceJ(2f,c i j )52J(f,c i j ) and Jg

spin(2f,c i j )
5Jg

spin(f,c i j ). Also, since the phase factor exp(if) is de-
fined only modulo 2p, we have FJ(f12p,c i j )
5FJ(f,c i j ). Here we must keep in mind that in a lon
junction FJ is not a single-valued function. Analogousl
there is periodicity with respect to the rotation angle, wh
is automatically contained in the form of Eq.~2!, since
Rm i(n̂,u12p)5Rm i(n̂,u).

The functional form ofFJ @Eq. ~3!# can be restricted fur-
ther if we assume some additional symmetries. For exam
if the aperture is symmetric under a parity operation,
have FJ(f,c j i )5FJ(f,c i j ) and thus Jg

spin(f,c j i )
52Jg

spin(f,c i j ). If the aperture has full ‘‘orthorhombic’
symmetry 2/mmm, thenFJ can only depend on the rotatio
matrices throughcxx , cyy , andczz. From here on we fix
the z coordinate to be along the axis of the weak link. No
if the twofold rotation symmetry aroundz is replaced by a
fourfold symmetry (4/mmm), then an exchange ofcxx and
cyy must not affectFJ . Finally, if the rotation symmetry
aroundz is continuous,̀ /mm, the dependence can only b
throughczz and the invariant combinationcxx1cyy ; that is

FJ5FJ~f,Rmx
L Rmx

R 1Rmy
L Rmy

R ,Rmz
L Rmz

R !. ~6!

Close toTc the amplitudeD of the order parameter~1!
approaches zero, so that we can expandFJ(Am i

L ,An j
R ) in

powers of D. In order to be consistent with Eq.~6!, the
leading order term in the expansion must be

FJ52@aRmz
L Rmz

R 1b~Rmx
L Rmx

R 1Rmy
L Rmy

R !#cosf, ~7!

wherea andb are some real-valued phenomenological co
stants. In Ref. 11 this was introduced as the Josephson
ergy of the tunneling model, but, as the derivation abo
shows, it is more general. The tunneling barrier for3He was
first considered in Ref. 20.
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In order to further determine the functionalFJ ~3,6,7! it is
necessary to do a calculation in the mesoscopic region. T
is discussed in Secs. III–VI.

III. QUASICLASSICAL THEORY

We use the quasiclassical theory of Fermi liquids21 to cal-
culateFJ @Eq. ~3!# for a pinhole aperture. Here we prese
the theory only in the depth needed for the following.

The central quantity is the quasiclassical propagatorğ. In
the stationary case which we are considering this can
written asğ( k̂,r ,em), wherer denotes a spatial position,k̂
parametrizes a position on the Fermi surface, andem
5pkBT(2m11) are the Matsubara energies. The propaga
is determined by the Eilenberger equation and the normal
tion condition

@ i emt̆32s̆,ğ#1 i\vFk̂•¹rğ50 ~8!

ğğ52 1̆. ~9!

Equation ~8! can be interpreted as describing transport
quasiparticle wave packets which travel on classical tra
tories with the Fermi velocityvF5vFk̂. The propagatorğ as
well as the self-energys̆( k̂,r ) are 434 matrices, reflecting
the spin and particle-hole degrees of freedom of a quasi
ticle; the matricest̆ i ( i 51,2,3) are the Pauli matrices in th
particle-hole space.

The 232 spin blocks ofğ can be decomposed into scal
and vector components as

ğ5F g1g•s ~ f 1f•s!is2

is2~ f̃ 1 f̃•s! g̃2s2g̃•s s2
G , ~10!

wheres5 x̂s11 ŷs 21 ẑs 3, ands i ( i 51,2,3) are the spin-
space Pauli matrices. The self-energys̆ is written similarly:

s̆5F n1n•s D•sis2

is2D* •s ñ2s2ñ•s s2
G . ~11!

Here the off-diagonal terms contain thep-wave pairing inter-
action in the form of the gap vectorDm( k̂,r )5Am i(r ) k̂i .
This is determined by the self-consistency equation

pkBT(
m

F D

uemu
23E dV k̂8

4p
f~ k̂8,r ,em!~ k̂8• k̂!G1D ln

T

Tc
50,

~12!

whereTc is the superfluid transition temperature. This for
is valid in the weak-coupling approximation, where th
quasiparticle-quasiparticle scattering is neglected. The d
onal componentsn,ñ andn,ñ are the ‘‘molecular field’’ self-
energies arising from redistributions of quasiparticles. T
scalar parametersn andñ arise in response to mass curren
and they turn out to be negligible as will be argued in S
IV. The ~real-valued! vector parametersn andñ describe the
response to a magnetic field or spin currents. As discus
above, the magnetic field can be neglected in the mesosc
0-3
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
region. In contrast, there are always rather strong spin
rents flowing along surfaces in3He-B.22 These have to
be taken into account with the self-consistency relat
(ñ52n)

n~ k̂,r !5pkBT(
m

E dV k̂8
4p

Aa~ k̂• k̂8!g~ k̂8,r ,em!. ~13!

Here Aa(x)5( l 50
` Fl

a@11Fl
a/(2l 11)#21Pl(x), Pl are the

Legendre polynomials, and all terms with evenl drop out
due to symmetries.

For our purposes the most important physical quantitie
be evaluated fromğ are the mass supercurrent

j ~r !52m3vFN~0!pkBT(
m

E dV k̂

4p
k̂g~ k̂,r ,em! ~14!

and the spin supercurrent

jg
spin~r !5\vFN~0!pkBT(

m
E dV k̂

4p
k̂gg~ k̂,r ,em!. ~15!

Here N(0)5m* 2vF /(2p2\3) is the one-spin normal-stat
density of states at the Fermi surface, wherem* 5m3(1
1F1

s/3) is the effective quasiparticle mass,m3 being the
mass of a bare3He atom. The superfluid coherence length
defined byj05\vF /(2pkBTc). For F1

s , vF , Tc and other
pressure dependent quantities, we use the vapor pressur
ues whenever needed. In Eq.~13! we assumeFl

a50 for all
odd l>3. Since the parameterF1

a is not well known, we
usually set it to zero also, but values in the range21 . . . 0
have been tested.

IV. PINHOLE PROBLEM

Consider the case of a single pinhole in a thin wall se
rating two volumes of3He-B—the situation of Fig. 2. The
hole can be thought of as a pinhole~i.e., ‘‘very small’’! and
still be treated quasiclassically, if its dimensions~diameterD
and wall thicknessW) satisfy j0@D,W@lF , wherelF is
the Fermi wavelength. In addition3He is in the pure limit,
where the mean free path of quasiparticlesl @j0. Usually
one further assumes thatW!D, so that scattering in the
aperture itself can be neglected. We allow for a finiteW/D
and thus also consider deflected trajectories of the fo
shown in Fig. 2. The pinhole limit was first considere
within the quasiclassical theory by Kulik and Omel’yanch
in the case ofs-wave superconducting microbridges.15 Sev-
eral previous calculations for the spin-triplet case of3He
also exist.10,11,16,23–26For another type of quasiclassical J
sephson model, see Ref. 27.

What makes the pinhole case attractive is thatno self-
consistent calculation of the order parameter in the aper
is needed. More precisely, the leading term in the coup
energyFJ is on the order of the superfluid condensation e
ergy in the volumeD2j0. This effective volume is large
compared to the volume (;D3 or WD2) of the pinhole. The
leading term inFJ ~and thus also the corresponding terms
the currents! can be computed usings̆ @Eq. ~11!#, that is
06453
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calculated for a planar wallwithout the pinhole. Thereis a
correction}D2 to s̆, but because of the stationarity of th
energy functional with respect tos̆, this affectsFJ only in
the order}D4/j0, which is negligible for a pinhole. There
fore we can use the order parameter profiles calculated f
planar wall.

Determining the suppression of the order parameterD at
the wall is thus the first step needed for our calculation.
the absence of mass currents and magnetic scattering
sufficient to consider the parametrization

D(0)~ k̂,z!5@D'~z!ẑẑ1D i~z!~ x̂x̂1 ŷŷ!#• k̂, ~16!

where ẑ is perpendicular to the wall. The gap function
D'(z) andD i(z), which are real valued, are calculated se
consistently as explained in Ref. 22. Forğ we use the ‘‘ran-
domly oriented mirror’’ ~ROM! boundary condition at a
specular or a diffusive surface.25 The numerical calculation
of ğ is described in Sec. VI B. Our results forD'(z) and
D i(z) are similar to those found previously with ROM an
other surface models.22,25,26,28–31In order to incorporate dif-
ferent phases and spin-orbit rotations on the two sides
write

D~ k̂,z!5H exp~ ifL!RJ L
•D(0)~ k̂,z! for z,0

exp~ ifR!RJ R
•D(0)~ k̂,z! for z.0.

~17!

The thin wall is located atz50 andD(0) @Eq. ~16!# is as-
sumed to be symmetric:D'(2z)5D'(z) and D i(2z)
5D i(z).

V. ENERGY FUNCTIONAL

Here we derive a general quasiclassical expression for
Josephson coupling energy in a pinhole. The derivation
lows closely the lines of a quasiclassical treatment of im
rities in 3He or superconductors.32,33 We start from an ex-
pression for the energy differencedV tot between states with
one impurity and no impurity,V̆ being the impurity
potential.21,34 For a small spatial range ofV̆, the self-energy

S̆ can be assumed to be unchanged by it, and we obtai32

FIG. 2. The mesoscopic region~Fig. 1! for a pinhole. Two qua-
siparticle trajectories are shown. The coordinateu is plotted along
the straight transmitting trajectory. The arch on the left-hand side
the pinhole denotes an imaginary surface that is used to close
pinhole~Sec. V!. The diameterD of the pinhole and the thickness o
the wall W are assumed to be small compared toj0.
0-4
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dV tot52
1

2
Tr@ ln~2Ğ0

211S̆1V̆!2 ln~2Ğ0
211S̆!#.

~18!

The trace operation Tr is defined as

Tr F̆5kBT(
m

E d3k

~2p!3
Tr4F̆~k,k,em!, ~19!

where Tr4 denotes the trace of the 434 Nambu matrixF̆. To
eliminate the logarithm, we may apply some form of the ‘l

trick.’’ 35 We choose to integrate over the strength ofV̆ by
making the substitutionV̆→lV̆, and writing

dV tot5
1

2
TrE

0

1dl

l
~Ğ0

212S̆2lV̆!21lV̆5
1

2
TrE

0

1dl

l
Ğ1T̆l .

~20!

The latter equality follows from a formal application of th

t-matrix equationT̆l5lV̆1T̆lĞ1lV̆ and the relationĞ

5Ğ11Ğ1T̆lĞ1. HereĞ5(Ğ0
212S̆2lV̆)21 gives the full

propagator in the presence of an impurity scattering po
tial. The intermediate Green’s functionĞ1 corresponds to a
quasiclassicalğ1 which has no discontinuity at the impurity
Equation~20! is now in a form where the propagator can
uku-integrated directly. However, to avoid a divergence in
Matsubara summation, we have to subtract from Eq.~20! the

normal-state contributiondVN, obtained by settingS̆5S̆N in
Eq. ~18!. We definedV5dV tot2dVN and transform this to
the quasiclassical form

dV5
1

2
\vFN~0!pkBT(

m
E dV k̂

4p E
0

1dl

l
Tr4@ ğ1~ k̂,r imp ,em!

3 t̆l~ k̂,k̂,em!2ğ1
N~ k̂,r imp ,em! t̆l

N~ k̂,k̂,em!#, ~21!

wherer imp is the location of the impurity andt̆l( k̂,k̂,em) is
the forward-scattering part of thet matrix, which is obtained
by solving

t̆l~ k̂,k̂8,em!5l v̆~ k̂,k̂8!1lpN~0!E dV k̂9
4p

v̆~ k̂,k̂9!

3ğ1~ k̂9,r imp ,em! t̆l~ k̂9,k̂8,em!. ~22!

Energy formula~21! is simpler to use than those in Refs. 3
and 33, since it does not involve an integration overr . More
importantly,ğ1 is constant in thel integration.

Now we specialize the above approach to the pinh
problem. The coupling energyFJ we wish to know is, by
definition, the difference in energies between an open p
hole and a blocked pinhole. It should be irrelevant how
hole is blocked as long as the transmission of quasiparti
is prevented: changing the type of blockage should o
change some constant terms in the energy, which do
depend on the soft degrees of freedom in Eq.~3!. We choose
to block the pinhole by a surface just on the left hand side
it ~Fig. 2!. This surface is now considered as the ‘‘impurity
06453
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in Eqs.~18!–~22!. The coupling energy is then equal todV
@Eq. ~21!#, except for a minus sign:FJ52dV. The interme-
diateğ1 is the exact propagator that is calculated for an op
pinhole, and we drop the subindex 1 from here on.

The simplest choice for the blocking wall is a specula
scattering surface. It corresponds to a delta-function sca
ing potentialVd( l̂•r ) for the ~infinitesimal piece of! flat sur-
face l̂•r50 in the limit V→`. The t matrix of this type of
impurity is of a particularly simple form21,28

t̆l~ k̂,k̂8,em!

5

2vFuk̂• l̂ ulVdAdki ,ki8
(2)

2vFuk̂• l̂ u2lV @ ğ~ k̂,r imp ,em!1ğ~ k̂,r imp ,em!#
,

~23!

wheredA is an area element (lF
2!dA!j0

2) of the blocking

piece of wall with normall̂ . The component ofk̂ parallel to
this wall is denoted byki5 k̂2( k̂• l̂) l̂ , andk̂5 k̂22(k̂• l̂) l̂ is
the mirror-reflected direction. We insertt̆l @Eq. ~23!# into
dV @Eq. ~21!#, and integrate over the blocking surface. Al
performing thel integration, we find

FJ~V!52
1

2
\vFN~0!pkBTE dA(

m
E dV k̂

4p
uk̂• l̂ uTr4

3 ln
2vFuk̂• l̂u2V@ ğ~ k̂,r imp ,em!1ğ~ k̂,r imp ,em!#

2vFuk̂• l̂ u12iVt̆3Sgn~em!
,

~24!

where the normal-state propagatorğN5 i t̆3Sgn(em) was
used. Next we take the limitV→` and use the general prop
erties Tr4ln Ă5ln Det4Ă and Det4ĂB̆5Det4Ă Det4B̆, noting
further that Det4@ i t̆3Sgn(em)#51. All trajectories that do
not pass through the hole in the absence of the blockade
be neglected, and thus the integration over the surfaceA can
be transformed to one over the cross section~of areaAo) of
the hole. This leads to the general pinhole energy functio

FJ52
1

2
Ao\vFN~0!pkBT(

m
E dV k̂

4p
uk̂zu

3 K lnH Det4
1

2
@ ğ~ k̂,0L,em!1ğ~ k̂,0L,em!#J L , ~25!

where k̂z5 k̂• ẑ, the bracketŝ •••& denote an average ove
the trajectories~at fixedk̂) that hit the areaAo of the pinhole
(Ao5pD2/4 for a circular hole!, and0L denotes the location
immediately on the left hand side of the hole.

Coupling energy~25! depends on the shape of the bloc
ing wall only through the directions of the reflected momen
k̂5 k̂22(k̂• l̂) l̂ . Because the surface can be chosen in diff
ent ways, there is a lot of freedom in choosing the reflec
momenta. A particularly simple choice isretroreflection:
k̂52 k̂. This can be achieved, for example, by a semisph
cal blocking surface of radiusR satisfyingj0@R@D, cen-
0-5
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
tered at the pinhole. This choice can simplify practical c
culations considerably, since one can use symmet
effectively. After this one may, for example, calculate t

determinant by using Det4(ğ11ğ2)5@Det4(221̆
1$ğ1 ,ğ2%)#1/2.

The choice to block the surface on the left-hand side w
arbitrary, and the blocking could equally well be done on
right hand side. The reason for not blocking in the middle
the hole is that there may be scattering taking place th
For example, a quasiparticle may hit the wall inside of t
hole and be deflected~Fig. 2!. In general this causesğ to be
discontinuous at the hole, and in order to give an unamb
ous prescription forFJ @Eq. ~25!#, one has to specify one o
the sides. If there is no scattering in the pinhole (W/D
50), the propagator is continuous and the energy functio
can be evaluated in the middle of the hole. In the absenc
scattering also the average^•••& in FJ @Eq. ~25!# is trivial
and can be dropped.

Apart from the assumption of a pinhole aperture, ene
functional ~25! is very general. Below, we shall apply it fo
the special case of3He-B.

VI. PINHOLE CALCULATION

A. Trajectories

For the caseW/D50 and no scatterers localized with
the pinhole, all trajectories hitting the orifice are direc
transmitted. For the case of finiteW/D we consider a mode
which is based on the ROM boundary condition.25

The ROM model assumes that the surface consists of
croscopic pieces of randomly oriented mirrors. Therefo
any trajectory hitting the surface is simply deflected into a
other direction and the physical propagator is continu
along it. When this process is averaged over a length s
which is large compared to the size of the mirrors~the mirror
size is larger thanlF, but much smaller thanW, D!, one
obtains a probability distribution for the scattering from o
direction to another. Consider a quasiparticle coming ou
the pinhole in directionk̂. The probability density that it
entered the hole from directionk̂8 can be written as

Wk̂,k̂85p~ k̂!d k̂,k̂81@12p~ k̂!#wk̂,k̂8 . ~26!

Here p( k̂) is the probability for direct transmission, an
wk̂,k̂8 is the scattering distribution obtained by averagi
over the surface of the pinhole which is visible from dire
tion k̂. For givenk̂ the distributions are normalized accor
ing to *(dV k̂8/4p)Wk̂,k̂851 and *(dV k̂8/4p)wk̂,k̂851,
where the integrals are overall directions~backscattering is
also possible!. For a circularly cylindrical aperture of diam
eterD in a wall of thicknessW one finds a simple form for
the transmission functionp( k̂):

p~q!5H 2

p
~g2cosg sing! for q,arctan~D/W!

0 for q.arctan~D/W!,
~27!
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whereg5arccos(W/D)tanq andq, is the polar angle of the
trajectory (k̂• ẑ5cosq).

Calculatingwk̂,k̂8 for a general type of ROM surface an
a finite ratioW/D is difficult, since one has to consider mu
tiple scattering. We shall restrict to a cylindrical aperture a
start with fully diffusive walls. In this case one can in prin
ciple expand wk̂,k̂85P( k̂uk̂8)5*d2r 1Pout( k̂ur 1)Pin(r 1uk̂8)
1*d2r 1*d2r 2Pout( k̂ur 2)P(r 2ur 1)Pin(r 1uk̂8) 1•••, wherer i
parametrizes positions on the surface of the cylinder.
given outcoming directionk̂ the functionPout( k̂ur ) gives the
distribution inr for its origin, whereas the functionPin(r uk̂8)
gives the distribution in incomingk̂8, given a position of
impactr. The diffuse intermediate scatterings follow a ‘‘Ma
kovian’’ process, so that the distributionP(r 2ur 1) is indepen-
dent of the incoming direction. The formal expansion para
eter here isW/D, and the first term inwk̂,k̂8 is of zeroth order
in it, corresponding to only one event. The second term
one intermediate scattering and is thus of first order, and
on. In the limitW/D→0 only the zeroth-order term remain
and the functionsPin and Pout are assumed to approac
simple ‘‘cosine laws’’:Pin(r uk̂8)}uŝ(r )• k̂8u for ŝ(r )• k̂8,0
andPout( k̂ur )}uk̂• ŝ(r )u for k̂• ŝ(r ).0, whereŝ(r ) is the sur-
face normal at positionr. Upon normalization and insertion
into the expansion forwk̂,k̂8 one finds

wk̂,k̂85sinq k̂8~sinx k̂,k̂82x k̂,k̂8cosx k̂,k̂8!, ~28!

wherex k̂,k̂8 is the difference in incoming and outgoing az
muthal angles andq k̂8 is the incoming polar angle. This
distribution is largest for angles nearx k̂,k̂85p and q k̂8
5p/2, i.e., for scattering into directions close to the plane
the surface.

As a second case, consider the possibility of specular s
tering in the pinhole. Then ak̂8 directional quasiparticle hit-
ting the surface at positionr will reflect into the direction
k̂85 k̂822@ k̂8• ŝ(r )# ŝ(r ). In this case the previous distribu
tion functionsPout,Pin , andP have to be generalized a bit t
take into account the non-Markovian character of the scat
ing, but in the limitW/D→0 no problems will arise. Sinceŝ
is in the xy plane, we necessarily havek̂• ẑ5 k̂8• ẑ, and a
similar calculation as for the diffusive case gives

wk̂,k̂85p~sinq k̂!21d~q k̂2q k̂8!sin~x k̂,k̂8/2!. ~29!

More refined distributions could be obtained by taking in
account higher-order terms in the expansion, but doing
analytically would be difficult. In Ref. 27 these were briefl
discussed in the case of a long pore with specular walls.

B. Propagator

Here we briefly describe the method used to generate
propagators. The idea is to calculate the propagators num
cally only for D(0) @Eq. ~16!#, and to obtain analytically the
dependence of the true propagator on the soft degree
freedom inD @Eq. ~17!#. The matching of the left and righ
solutions at the pinhole is most conveniently done with
‘‘multiplication trick.’’ 22,25,33 There one first calculates tw
0-6
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unphysical solutionsğ, and ğ. of the Eilenberger equation
~8!, andğ is constructed using

ğ~ k̂,r ,em!5 i Sgn~ k̂z!
@ ğ,~ k̂,r ,em!,ğ.~ k̂,r ,em!#

$ğ,~ k̂,r ,em!,ğ.~ k̂,r ,em!%
. ~30!

Here we denote byğ, and ğ. the solutions decaying expo
nentially towards left (z52`) and right (z51`), respec-
tively, independently of the direction ofk̂.

We rewrite the propagator components asg5c1d, g5c
1d, f 5a1b, and f5a1b and g̃5c2d, g̃5c2d, f̃ 5a

2b, and f̃5a2b. In terms of these, the Eilenberger equ
tion decouples conveniently into three independent block
linear, first-order differential equations which are nume
cally more convenient to handle.22 The first task is to find the
unphysical solutions consisting of componentsa, b, and c.
For the real-valued order parameterD(0), the unphysical
propagator components can be chosen such thata andb are
real and c is purely imaginary. The unphysical block o
equations22 then becomes

emb1
1

2
\vF]ua50,

ema1D(0)
•Imc1

1

2
\vF]ub50, ~31!

2n3Im c1D(0)b1
1

2
\vF]uIm c50.

Here u is the coordinate along an arbitrary trajectoryr5r0

1uk̂, and we fixu50 at the wall (z50). In accordance
with Eq. ~30!, the exponential solutions of Eqs.~31! which
go through the pinhole are denoted byğ ,

(0) andğ .
(0) , respec-

tively. These are the solutions that are naturally obtained
integrating from the bulk toward the wall onL andR sides.
Because of symmetries we only need to calculateğ ,

(0) , and
we do this using fourth-order Runge-Kutta method. We
troduce a shorthand notation for the numerically calcula
quantities

A~ k̂,em![a,
(0)~ k̂,u50,em!,

B~ k̂,em![b,
(0)~ k̂,u50,em!, ~32!

C~ k̂,em![c,
(0)~ k̂,u50,em!.

These were evaluated for several directions ofk̂, whose po-
lar anglesq were chosen so that angular integrations in E
~38! and~40! could be carried out using the Gaussian quad
ture, usually with 32 points in the range cosq521 . . . 1.
~Due to the symmetry of the integrands, only values fork̂z
.0 actually need to be considered.! The number of~posi-
tive! Matsubara energiesem5pkBT(2m11) was between
10 to around 100 depending on the temperature. Above
assumedD(0) and n already to be known. The method fo
their self-consistent calculation is the same as above, ex
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that also the solutions diverging away from the wall have
be calculated. The initial conditions for these were obtain
using the specular reflection or the ROM boundary con
tion.

The functionsğ .
(0) can be obtained by using the relation

a.
(0)~ k̂,u,em!51a,

(0)~ k̂,2u,em!,

b.
(0)~ k̂,u,em!52b,

(0)~ k̂,2u,em!, ~33!

c.
(0)~ k̂,u,em!51c,

(0)~ k̂,2u,em!,

which are based on the symmetry

D(0)~ k̂,u!5D(0)~ k̂,2u!. ~34!

From the solutionsğ ,
(0) for D(0) we obtain the solutionsğ,

for the generalD @Eq. ~17!# on theL side, by forming the
linear combinations

a,5a,
(0)cosfL1 ib,

(0)sinfL,

b,5 ia,
(0)sinfL1b,

(0)cosfL, ~35!

c,5RJ L
•c,

(0) .

The same equations hold on theR side whenL is replaced by
R and, by ..

The physical propagator at the pinhole (r5r 050) can
now be obtained using Eqs.~30!, ~32!, ~33!, and~35!. For the
case of deflected trajectories we have to specify separa
the momentumk̂8 on theL side andk̂ on theR side. Only the
transmitted trajectories (k̂zk̂z8.0) need to be considered, an
we obtain

ak̂,k̂8~em!5 isk̂,k̂8
21

@CL8~ iA sin1
2 f2B cos1

2 f!

1~ iA8sin1
2 f2B8cos1

2 f!CR#,

bk̂,k̂8~em!5 isk̂,k̂8
21

@CL8 ~A cos1
2 f2 iB sin1

2 f!

2~A8 cos1
2 f2 iB8sin1

2 f!CR#, ~36!

dk̂,k̂8~em!5 isk̂,k̂8
21

@ i ~AA81BB8!

3sinf2~AB81A8B!cosf#dk̂,k̂8~em!

dk̂,k̂ 8~em!52sk̂,k̂8
21 CL83CR ,

whereCL,R5RJ L,R
•C, and primes denote values correspon

ing to directionk̂8. The normalization constant is given by

sk̂,k̂8~em!52s
2 k̂,2 k̂8
* ~em!

5Sgn~ k̂z!@2~AA81BB8!

3cosf1 i ~A8B1AB8!sinf1CL8•CR#.

~37!
0-7
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For the case of direct transmission (k̂85 k̂) these expression
simplify considerably.

C. Currents and coupling energy

As an application of the above results, consider the
sephson current in the pinhole. Using the general symme
for propagators, the mass current density~14! can be written
in terms of Red alone. The total current is then given b
Redk̂,k̂8 @Eq. ~36!# integrated over distribution~26! of trajec-
tories:

J5Ao2m3vFN~0!pkBT(
m

E dV k̂

4p
k̂z

3E dV k̂8
4p

Wk̂,k̂8Redk̂,k̂8~em!. ~38!

In the case of direct transmission only (W/D50 or
Wk̂,k̂85d k̂,k̂8), one can apply trigonometric identities to p
d( k̂,0,em)5dk̂,k̂(em) in the form

d~ k̂,0,em!

5Sgn~ k̂z!
1

4

3 (
s561

~B22A2!sin~f1sz!12iAB

A2sin2@ 1
2 ~f1sz!#1B2cos2@ 1

2 ~f1sz!#
,

~39!

wherez( k̂,em) is defined byCL•CR5C2cosz. The real part
of Eq. ~39! is now equivalent to Eq.~1! in Ref. 10, but more
general. The quantitiesf6z( k̂,em) are the effective phas
differences experienced by quasiparticles with different s
projections along the axisCL3CR }DL( k̂)3DR( k̂). In the
special case thatD is assumed constant, i.e., unsuppresse
the walls, the Matsubara summation can be done analytic
and one obtains the same result forJ as in Ref. 10.

For the Josephson coupling energy@Eq. ~25!# we find

FJ5
1

2
Ao\vFN~0!pkBT(

m
E dV k̂

4p
uk̂zu E dV k̂8

4p

3Wk̂,k̂8$ lnusk̂,k̂8~em!u22 ln@4~AA8!2#%. ~40!

In the first term there appears the squared modulus of
trajectory-invariant normalization constant@Eq. ~37!#. The
second term has to be retained to have convergence in
Matsubara summation.

Consider, again, the direct-transmission caseW/D50. In
the Ginzburg-Landau limitT→Tc we can verify the phe-
nomenological form@Eq. ~7!# and calculate the parametersa
and b. In this limit the amplitude ofD is small and, since
uDu2;uCu25uA22B2u, we should haveuA22B2u!A21B2,
A2'B2 andusk̂,k̂u2'4A4. It follows that the logarithm in the
first term of Eq.~40! can be expanded to linear order to gi
Eq. ~7!, where
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a5Ao\vFN~0!pkBTE dV k̂

4p
uk̂zu(

m

~ Im Cz!
2

A21B2
,

b5
1

2
Ao\vFN~0!pkBTE dV k̂

4p
uk̂zu(

m

~ Im Cr!2

A21B2
. ~41!

Figure 3 shows the temperature dependence of the tun
ing parameters for a diffusive wall withAo chosen to match
the total open area of a coherent array of holes with dim
sions as in Ref. 5. Also shown is the textural rigidity para
eterg, whose role is to be discussed below in Sec. IX. Clo
to Tc the strength of the coupling, i.e., the parametersa and
b go as a,b}(12T/Tc)

2, whereas the rigidityg}(1
2T/Tc).

The Josephson current@Eq. ~38!# and energy@Eq. ~40!#
were obtained completely independently. It is essentia
check that they are consistent with each other. One can e
see that the component Redk̂,k̂8 satisfies

Redk̂,k̂8~em!5
1

2
Sgn~ k̂z!

]

]f
lnusk̂,k̂8~em!u2, ~42!

and hence the macroscopic current formula@Eq. ~4!# is ex-
actly satisfied. As a further check of the energy@Eq. ~40!# we
can see that also the spin current formula~5! is satisfied.
Using CL8•CR5Rm i

L Rm j
R Ci8Cj the energy@Eq. ~40!# is seen

to be a function of the productsRm i
L Rm j

R and calculating
the spin current from Eq.~5! is thus possible. Writing also
@CL83CR#g5eabgRak

L Rb l
R Ck8Cl in the propagator componen

@Eq. ~36!# and using the quasiclassical spin current expr
sion ~15!, it can be checked that the result forJg

spin agrees
with the one obtained from Eq.~5!.

FIG. 3. Temperature dependence of the tunneling model par
etersa, b @Eq. ~41!#, andg @Eq. ~57!# as calculated for a diffusive
wall and total open areaAo5Ak where, A53.831028 m2, k
514.731024. The pressure is 0 bar,W/D50, andFi

a50 for i
51, 3, etc.
0-8
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VII. TEXTURAL INTERACTIONS

As discussed in Sec. II, the Josephson effect in3He de-
pends on the rotation matricesRm i

L,R on the two sides of the
weak link. These matrices are determined by the competi
of a number of relatively weak bulk and surface interactio
which lift the degeneracy of theB-phase order paramete
@Eq. ~1!#. The equilibrium configuration is found by mini
mizing a hydrostatic energy functional. We shall present
hydrostatic theory to the extent needed here. For a re
review, see Ref. 36.

A. Interactions and coupling constants

The most important hydrostatic energy term arises fr
the dipole-dipole interaction between the nuclear magn
moments,

FD58gDD2E d3r S 1

4
1cosu D 2

, ~43!

where u is the rotation angle of the spin-orbit rotatio
Rm i(n̂,u). The effect of FD is to fix u to the valueu0
'104° in the bulk liquid.

There is no conflict betweenFD @Eq. ~43!# and FJ @Eq.
~3!#. Even if Rm i

L,R have their rotation angles fixed tou0 , FJ

depends on their productc i j —also a rotation matrix—and i
can attainall possible values ifn̂L and n̂R are directed prop-
erly. Thusu is not changed fromu0 by the Josephson cou
pling. The same applies to all surface energies below.
therefore assumeFD to be in its minimum everywhere an
study only the position dependence ofn̂(r ), which is known
as the texture.

In the absence of a magnetic field the dominant inter
tion determining the texture near a wall is the surface-dip
interaction

FSD5E
S
d2r @b4~ ŝ•n̂!42b2~ ŝ•n̂!2#, ~44!

whereb2 andb4 are positive coupling constants andŝ is the
surface normal. There are usually many walls with differe
orientations present and therefore there is a conflict betw
their orienting effects. This leads to a gradient~bending! en-
ergy

FG5E d3r FlG1

]Ra i

]r i

]Ra j

]r j
1lG2

]Ra j

]r i

]Ra j

]r i
G , ~45!

which is related to spin currents in the bulk. The gradie
energy also has a surface part

FSG5lSGE
S
d2rŝjRa j

]Ra i

]r i
. ~46!

In the presence of a magnetic field another surface inte
tion becomes important:

FSH52dE
S
d2r ~H•RJ• ŝ!2. ~47!
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There is also a bulk magnetic interaction

FDH52aE d3r ~ n̂•H!2. ~48!

The effect of stationary flow on the texture could be inco
porated by the dipole-velocity interactionFDV , but the flow
velocities in the experiment5 are so small thatFDV is negli-
gible.

The values of the many coefficients appearing above
discussed in Ref. 36 in some detail. However, most of th
have only been evaluated in the Ginzburg-Landau~GL! re-
gion so far. As a byproduct of our calculation of the surfa
order parameter, we can now extend the calculations ofb2 ,
b4 andlSG to all temperatures.

The surface gradient parameter consists of two contri
tions, lSG5lSG

a 12lG2. The contributionlSG
a is equal to

Jy,x
spin/Ly , the current of they-directional spin projection in

the x direction per unit length in they direction (Ly), calcu-
lated for the order parameterD(0). In terms of spin current
densityjg

spin @Eq. ~15!#, it is given by

lSG
a 5E

0

`

dz jy,x
spin(0)~z!. ~49!

Figure 4 gives the temperature dependence of both term
lSG for the cases of a specular and a diffusive wall. Close
Tc all of the parameters vanish linearly inT2Tc . The slopes
of lSG5lSG

a 12lG2 agree with the GL results of Ref. 36 fo
vapor pressure; at low temperatures there is considerable
viation from the linear GL behavior. We have calculated t
results forF1

a50 andF1
a521, the true value at vapor pres

sure probably being somewhere in between. The change
F1

a is rather strong here, sincelSG
a is directly related to the

spin current.
The surface-dipole coupling constantsb2 andb4 are given

by36

b25
5

4
gDE

0

`

dz~D'
2 26D'D i15D i

2!, ~50!

b45
25

8
gDE

0

`

dz~D i2D'!2

at all temperatures. Figure 5 shows these two plotted a
function of T/Tc . Both of them go to zero proportional t
(12T/Tc)

1/2 near Tc . In this region more accurate value
can be obtained from the GL results,36 with which these co-
incide. Becauseb2.2b4 , FSD @Eq. ~44!# favors n̂ perpen-
dicular to the wall. The dependence ofb2 and b4 on F1

a is
much weaker than that oflSG, since the effect of the spin
current comes to play only through the order parameter.
F1

a521 the values tend to be diminished by at most 5
from those shown in Fig. 5.

B. Competing interactions and length scales

In dealing with the pinhole model, we are mostly inte
ested in the behavior of the texture at different magne
0-9
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
fields near a flat surface. In this case there are three rele
contributions to energy~per surface areaL2): ~i! the surface-
dipole energyFSD/L2'b2; ~ii ! the surface-field energy
FSH/L2'dH2, and ~iii ! one related to the bending of th
texture when there is a uniform perturbation at the w
~caused by FSH, for example!, (FG1FDH)/L2

'A65lG2aH2/8}H. All of these have different field depen
dences, but their values turn out to coincide atH'1 mT. It
is seen that at fieldsH& 1 mT the constantFSD always
dominates, and thusn̂ will be aligned perpendicular to th
surface. ForH* 1 mT the dominant surface interaction
FSH, and the local texture is determined by its minima.

The conclusion about the relative magnitudes ofFSD and
FSH is true also in general. However, to determine the text
at the surfaces in more complicated restricted geometries

FIG. 4. Gradient energy parameterslSG
a ~dashed line: specula

wall; dash-dotted line: diffusive wall! and 2lG2 ~solid line! in the
weak coupling approximation. The upper curves are forF1

a50 and
the lower ones forF1

a521. F3
a and higher-order parameters a

assumed to be zero. The unit ise0j0, wheree05\vFN(0)kBTc .

FIG. 5. Surface dipole interaction parametersb2 ~dashed lines!
and b4 ~solid lines! in the weak-coupling approximation and wit
F1

a50. The lower of each pair is for a diffusive wall and the upp
for a specular wall. The unit ofb2 andb4 is gD(kBTc)

2j0.
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gradient energy and other bulk energies have to be m
mized together with the surface energies. The surfaces
then be seen as perturbing the bulk texture which wo
otherwise be uniform. Associated with each hydrostatic
teraction competing with the gradient energy, there is a ch
acteristic length scale that describes the scale on which s
local perturbations from uniformity will decay, or heal.17,37

The stronger the competing interaction, the shorter the
responding healing length. Comparing these healing leng
with the spatial scalel @j0 of the container gives qualitative
information on the form of the texture.

Most importantly, in the presence of a magnetic fieldFDH

andFG define a lengthjH5A65lG2 /(8aH2)}H21.36 Com-
parison ofFD and FG gives another one, the dipole leng
jD5AlG2 /gDD2'10 mm@j0, related to possible perturba
tions of the rotation angleu from its equilibrium valueu0.
As stated above, we assume there is no interaction pre
which could force such perturbations, and thereforejD plays
no role. In any case, for most practical purposesjH ,l @jD ,
and such a perturbation would decay quickly on the sc
of l.

For very small magnetic fieldsjH@ l , andjH is thus also
not a relevant length scale. The only important hydrosta
interactions in this case are the surface-dipole energyFSD
and the gradient energiesFG andFSG. Now the interesting
question is simply whether the walls of the container a
separated by long enough distances forFSD to be essentially
minimized, or small enough distances for no textural var
tion to occur at all—the minimum configuration ofFGtot
5FG1FSG. An elementary estimation of the length scalel
at which there is a transition from one behavior to anot
gives l}lG2 /(b22b4), where the constant of proportiona
ity is of order unity. Sinceb4,b2, we can drop it and define
a surface-dipole lengthjSD[lG2 /b2. Using the numerical
values calculated above, at zero pressure we obtain

jSD5
lG2

b2
'H2.5 mm, T'0

6.8~12T/Tc!
1/2 mm, T'Tc .

~51!

VIII. ISOTEXTURAL JOSEPHSON EFFECT

The Josephson energy@Eq. ~6!# of a pinhole depends non
trivially on three parameters: the phasef and two param-
eters describingc i j 5Rm i

L Rm j
R . In addition there is depen

dence on the surface scattering~diffusive vs specular!, on the
temperatureT/Tc and onW/D. Below we can present only
some representative parts of this parameter space. In
section we plot isotextural current-phase relationships, wh
c i j is assumed constant inJ(f,c i j ). The possiblef depen-
dence ofc i j is considered in Sec. IX.

The pinhole coupling has the maximal symmetry@Eq. ~6!
independently of the shape of the hole as long asW/D50.
In terms of n̂ this means, for example,FJ(f,n̂L,n̂R)
5FJ(f,n̂R,n̂L)5FJ(f,2n̂L,2n̂R), and similarly for the
mass current. The mass current is given in units ofJ0
52m3vFN(0)kBTcAo , whereAo is the total open area o
one or more pinholes. In most cases only the phase dif
ences in the range@0,p# are shown due to the symmetr
0-10
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PINHOLE CALCULATIONS OF THE JOSEPHSON . . . PHYSICAL REVIEW B65 064530
J(2p2f)52J(f). All plots are made forF1
a50. Tests

with F1
a521 show no qualitative differences and at mos

few percent quantitative difference inJ(f) even at the low-
est temperatures.

A. Spin-rotation axes perpendicular to wall

We first study the case where the spin-orbit rotation a
n̂L,R are perpendicular to the intervening thin wall. This sit
ation is realistic if the external magnetic field is sm
enough (H&1 mT) and if there are no other walls with di
ferent orientations nearby. Four differentn̂ configurations are
then possible, namely, the combinationsn̂L,R56 ẑ, whereẑ
is normal to the wall. These give rise to two differe
current-phase relations corresponding to parallel (n̂L5n̂R) or
antiparallel (n̂L52n̂R56 ẑ) situations. The parallel case
actually more general, because then̂ vectors need not be
perpendicular to the wall to still give the sameJ(f).
The current-phase relations are shown in Figs. 6–8 co
sponding to three different surface models.

First we consider the case of constant order parame
Here D(0)( k̂,r ) is not calculated self-consistently using a
boundary condition, but instead is assumed to have its c
stant bulk formD k̂ all the way to the wall~no pair breaking!.
This is the situation discussed by Yip,10 and the current-
phase relations shown in Fig. 6 are exactly the same as
tained by him. The parallel case is well known: the sa
result was first obtained by Kulik and Omel’yanchuk f
microbridges ins-wave superconductors, and it was sub
quently generalized to the case of3He by Kurkijärvi.16 The
feature found by Yip is seen in the antiparallel case. V
close toTc the current-phase relation is sinusoidal, but
temperatures below about 0.5Tc the p state appears
a strong kink and a new zero ofJ(f) develops around
f5p.

The self-consistent surface models lead to consider
suppression of the order parameter at the wall. As a co
quence,J(f)’s are different for a specular surface and
diffusive surface, shown in Figs. 7 and 8. Both surface m
els result in qualitatively similarJ(f)’s. The parallel-case
current-phase relations look similar to those by Yip, althou
their critical currents are slightly reduced. A clear differen
is seen in the antiparallel cases: First, the wholeJ(f) ap-
pears to be shifted byp so that the current is mostly negativ
on the phase interval@0,p#. Second,J(f) remains sinu-
soidal down to very low temperatures. An additional ki
begins to form only at around 0.2Tc . Now the kink is also
shifted fromf5p to f50. We continue to call this ap
state because it represents a local minimum ofFJ(f) that is
shifted from the global minimum ofFJ(f) by the phase
differencep.

Figure 9 shows the critical currentsJc and the possible
additional extrema ofJ(f) as a function of temperature. Fo
parallel n̂ vectors such a plot has been published in Ref.
but there the result for a pinhole in a specular wall w
incorrect. Close toTc , Jc(T)}12T/Tc for a constant order
parameter and a specular surface, and for a diffusive
faceJc(T)}(12T/Tc)

2, as expected from previous calcul
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tions.23 The critical current for a constant order parameter
always the highest, and that for a diffusive wall the lowe
For antiparalleln̂ vectors the roles change: the constant or
parameter case has thelowest Jc , due to the strong cancel
lation between different quasiparticle directions, but t
negative extremum aroundf5p is nearly as pronounced a
the positive one. It is clearly visible that the other extrem
appear only at much lower temperatures for diffusive a
specular surfaces.

The dotted lines correspond to the high-temperature
proximations obtained from Eqs.~41! for a diffusive wall,
i.e., (2m3 /\)(a12b) for parallel n̂’s and (2m3 /\)@a
2(7/4)b# for antiparalleln̂’s. These lines follow the correc
critical currents very well down to temperatures aroundT
50.4Tc . The current-phase relations show some deviat
from the sinusoidal form at temperatures above 0.4Tc in
specular and diffusive cases, but the deviation is mu
smaller than for a constant order parameter.

B. Other orientations of spin rotation axes

In order to study other orientations ofn̂L,R we first con-
sider the case of relatively large magnetic fields,H*1 mT.

FIG. 6. Isotextural current-phase relations for a pinhole in a w
with a constant order parameter on both sides. The top panel c
sponds ton̂L5n̂R, and the lower panel ton̂L52n̂R56 ẑ. W/D
50.
0-11
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
The configurations, which minimize the surface magnetic
teractionFSH @Eq. ~47!#, depend on the angleuH betweenH
and the wall normalŝ5 ẑ. Our results, obtained using th
self-consistent order parameter for a specular and a diffu
wall, are qualitatively similar to Ref. 10, but differ in detail
Figure 10 shows the four differentJ(f)’s which are possible
at uH50.45p, corresponding to four differentn̂L,R configu-
rations AA,AB,AC and CD, as defined in Ref. 10. Also
shown is the dependence ofJ(f) on uH , when then̂L,R are
in an AB configuration. ForuH50 the AB configuration
gives the antiparallel case studied above. These shoul
compared with Figs. 4 and 5 of Ref. 10, where the same p
were given for the constant order parameter. It can be s
that p states are not uncommon at low temperat
T'0.1Tc .

For a systematic study it seems to be more economi
specify n̂L,R directly. Let us consider the case where the p
lar angle of n̂L is changed butn̂R is kept constant:n̂L

• ẑ
5coshL, and n̂R5 ẑ. It can be seen in Fig. 11~a! that J(f)
differs essentially from the sinf shape around angleshL

'0.46p. The current is nearly proportional to sin(2f) at

FIG. 7. Isotextural current-phase relations for a pinhole in
specularly scattering wall. The top panel corresponds ton̂L5n̂R and
the lower panel ton̂L52n̂R56 ẑ. F1

a5W/D50.
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hL50.46p, and p states are present in the rangehL

'0.42p . . . 0.50p at temperature 0.4Tc . The top and bot-
tom solid lines in Fig. 11~b! show the extrema ofJ(f) as
functions ofhL. The middle solid line shows the predictio
of the tunneling model. The tunneling model@Eq. ~7!# al-
ways has a sinusoidal isotexturalJ(f)5Jcsinf, whereJc

5(2m3 /\)Ec and Ec5aRmz
L Rmz

R 1b(Rmx
L Rmx

R 1Rmy
L Rmy

R ).
Therefore, it has only a single extremum valueJc ~in the
range 0,f,p). Figure 11~b! shows that thep states
~where two extrema appear! take place around the configu
ration whereJc changes sign by going through zero.

Figure 11~b! shows the extrema at three different tempe
tures. At high temperatures the range wherep states occur is
very narrow. Also, in configurations showing ap state, both
the negative and positive extrema ofJ(f) are much reduced
relative to the maximal critical currents shown in Fig. 9~a!.
Outside of the range whereEc'0, J(f) is nearly sinusoidal
and the critical current is well predicted by the tunneli
model. With decreasing temperature the range of the c
figurations showing ap state widens and the extrema g
larger. These results are not restricted to the case whern̂R

5 ẑ, but are valid for general configurations ofn̂L,R. This can

a FIG. 8. Isotextural current-phase relations for a pinhole in
diffusely scattering wall. The top panel corresponds ton̂L5n̂R and
the lower panel ton̂L52n̂R56 ẑ. F1

a5W/D50.
0-12
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PINHOLE CALCULATIONS OF THE JOSEPHSON . . . PHYSICAL REVIEW B65 064530
be seen as a manifestation of a general difference betw
tunneling junctions and weak links, as discussed in Ref.
In situations where a tunneling supercurrent is prohibited
symmetry, there can still be a small supercurrent flowing i
corresponding weak link, although with some restrictions
the form ofJ(f).

C. NonzeroWÕD

Let us consider quasiparticle scattering inside a pinh
caused by a finite aspect ratioW/D. In a p-wave superfluid
this can lead to a current-phase relationship which is m
complicated than some average of the ones obtained us
tunneling model and direct transmission. Consider a
flected trajectory~Fig. 2! which is transmitted but the mo
mentum direction is nearly reversed. Assume thatn̂L5n̂R. If

FIG. 9. Isotextural critical currents as functions of the tempe
ture. The lines~with and without markers! are theoretical pinhole
results and separate points (3, *) are experimental results~Ref. 5!
with J05213 ng/s~Sec. X!. For theoretical results the upper an
lower panels correspond to parallel and antiparalleln̂ vectors, re-
spectively. For experimental results they correspond to theH andL
states, respectively. The signs (1, 2) denote the negative and pos
tive extrema ofJ(f) that appear in the case of antiparalleln̂’s. The
experiment shows two extrema in bothH andL cases, whose sign
are unknown. The calculations are forF1

a5W/D50.
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the phase differencef is zero, the quasiparticles of3He
effectively ‘‘see’’ a change in the sign of the order parame

D( k̂) along such a trajectory. However, iff is nearp, such
quasiparticles effectively see a constant order parame
This means that the scattering reduces the energy atf5p
relative to the energy atf50. This could work as a mecha
nism for the formation ofp states even when the spin
rotation axes on the two sides are equal. This mechanis
closely related to thep state mechanism of Ref. 10 and th
effects discussed in Ref. 39 forsd contacts.

The effect of the scattering on the current-phase relatio
shown in Fig. 12. The main change is the decrease of
critical current. Contrary to our expectation of forming ap
state, a dip develops atf'p/4 with increasingW/D. How-
ever, this happens only in the region ofW/D where distribu-
tion ~28! has probably ceased to be valid. For smallW/D the
only effect is to reduce the critical current, and the relat

-
FIG. 10. Examples of current-phase relations in a high magn

field. ~a! The four possiblen̂ configurations which result in differen
current-phase relations for magnetic field angleuH50.45p. The
nomenclature follows the definitions of Ref. 10.~b! The effect of
varying uH in the AB configuration. The values ofuH are given in
the legend. The curves are for a pinhole in a diffusive wall atT
50.1Tc , with F1

a5W/D50.
0-13
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
initial decrease does not seem to depend essentially on
temperature. The results for specular scattering are v
similar.

IX. ANISOTEXTURAL JOSEPHSON EFFECT

In Sec. VIII we assumed that then̂ texture remains con
stant when the phase differencef is changed. In this section
we study the anisotextural Josephson effect where the tex
is allowed to change as a function off.11 We demonstrate
the anisotextural effect using a simple model. The poss
existence of either isotextural or anisotextural Josephson
fects in the Berkeley experiment5 is discussed in Sec. X.

A. Phenomenological model

We consider a planar wall separating two half-spaces
3He-B. In the absence of perturbations, the surface inte
tion @Eq. ~44!# fixes a constant texture on both sides. T
orientations on left and right hand sides are denoted byn̂`

L

and n̂`
R , respectively. They both are either parallel or an

parallel to the normalẑ of the wall: n̂`
L 56 ẑ and n̂`

R56 ẑ.
Let us now place a weak link in the wall. The Josephs
coupling energyFJ @Eq. ~3!# may now favor a different ori-
entationn̂L,RÞ6 ẑ at the junction. Such a change is oppos
by a ‘‘rigidity energy,’’ which consists of gradient energy an
possibly other textural energies@Eqs.~43!–~48!#. We model
the rigidity energy by a quadratic form

F rig5gL~hL2h`
L !21gR~hR2h`

R!2. ~52!

FIG. 11. Change of isotextural current-phase relation~a! and
extremal currents~b! as a function ofhL5arccosn̂z

L for n̂R5 ẑ. In
~a! the current-phase relations are shown at intervalsDhL50.02p
at temperature 0.4Tc . In ~b! the extrema ofJ(f) ~top and bottom
curves of each type! are compared with the tunneling model resu
~middle curves! at temperaturesT/Tc50.1, 0.4, and 0.6. The
anglesh0

L andp2h0
L correspond to possible bistable states, as d

cussed in Sec. X A. The figure is calculated for diffuse scatter
andF1

a5W/D50. In the specular case the relative deviation fro
the tunneling model is slightly larger ('20%).
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Here hL,R and h`
L,R are the polar angles ofn̂L,R and n̂`

L,R ,
respectively. In the case of symmetric left and right sides,
stiffness ~or rigidity! parametersgL,R are equal (gL5gR

5g), but the more general form will be useful later.
The texture is now found by minimizing the free energ

F5FJ~f,n̂L,n̂R!1F rig~ n̂L,n̂R,n̂`
L ,n̂`

R!, ~53!

with respect ton̂L andn̂R. If the stiffness parametersgL,R are
sufficiently small, this will lead to af-dependent texture
This is easiest to see using the tunneling model@Eq. ~7!# for
FJ . If cosf.0, the minimum FJ52(a12b)cosf is
achieved byn̂L5n̂R. In the opposite case cosf,0 the mini-
mumFJ52(a22b)cosf ~assuminga,b) is achieved by
n̂L,R5(7 x̂1 ŷ7A3ẑ)/A5, for example. Neglecting the ri
gidity @Eq. ~52!#, this leads to ap state with a piecewise
sinusoidal current-phase relation

J~f!5H~2m3 /\!~a12b!sinf for cosf.0

~2m3 /\!~a22b!sinf for cosf,0.
~54!

This ideal current-phase relation is smoothed by finitegL,R.
With increasing stiffness, the texture changes less as a f
tion of f, and, for gL,R@a, b, the current-phase relatio
reduces to the isotextural one.

B. Model parameters

Instead of using the tunneling model, we now assume
weak link to consist of an array of pinholes. The phasesf
and n̂L,R are assumed to be constants over the array. Co
quently, we can use the single-pinhole results for current@Eq.
~38!# and coupling energy@Eq. ~40!# simply by replacing the
open areaAo by the total area of the arrayA times k, the
fraction of area occupied by the holes.

We start to estimateg including first only the gradient
energy:

-
g

FIG. 12. Current-phase relations for diffusive scattering in
aperture forT/Tc50.1, F1

a50, andW/D50.0 . . . 0.7 inorder of
decreasing critical current. Then̂ vectors on are parallel on the tw
sides of the junction.
0-14
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F rig5
5

8
lG2E d3r @16~] i n̂ j !~] i n̂ j !

2~A3¹•n̂1A5n̂•¹3n̂!2#. ~55!

This can be obtained from the sum of gradient energies@Eqs.
~46! and ~45!#, assuminglSG54lG2 and lG152lG2; also
see Ref. 37. We shall assume thatn̂ varies only in one plane
the xz plane, for example. This allows one to describen̂ by
its polar angleh alone: n̂5coshẑ1sinhx̂. In addition, we
can assumeh to depend only on the radial directionr from
the center of the aperture array. With these assumptions
energy@Eq. ~55!# on one side simplifies to

F rig
L 5

50p

3
lG2E drr 2~] rh!2. ~56!

This is minimized by a function of the formh(r )5A/r
1C, but to avoid a divergence atr 50, we have to cut off
the integration at somer, for example at the radius of th
arrayR5AA/p. As a result one finds a form@Eq. ~52!# with
the stiffness parameter

g5
50p

3
lG2R. ~57!

The rigidity has also a contribution from the surface-dipo
interaction@Eq. ~44!#. AssumingR!jSD @Eq. ~51!#, it can be
shown that the relative correction to Eq.~57! is small
(Dg/g;R/jSD) and thus can be neglected.

In order to obtain numerical values forg @Eq. ~57!# we
use the Berkeley array, whereR'0.11 mm.5 The tempera-
ture dependence is given bylG2, shown in Fig. 4. The re-
sulting g(T) is plotted in Fig. 3. We use this value as
standard, to which the parametersgL,R used in our calcula-
tions refer. Note that the reference valueg of the rigidity
energy is larger by one order of magnitude thana and b,
which give the magnitude of the Josephson coupling ene
~Fig. 3!.

In order to calculate the current, the free energy@Eq. ~53!#
should be minimized with respect to three angles parame
ing n̂L,R: hL,hR, and the relative azimuthal anglex. The
results of such a minimization forgL5gR50.1g are shown
in Fig. 13. In creating these curves, we proceeded from
to right, using the minimum angles (hL,hR,x) of eachf
step as the initial guess for the next step. The panels on
left are for the parallel case (h`

L 5h`
R50). Forf from 0 to

approximatelyp/2, the vectorsn̂L,R remain exactly perpen
dicular to the wall. At low temperatures, a discontinuo
jump to another branch ofJ(f) occurs at aroundf5p/2,
wheren̂L,R are tilted from their original perpendicular pos
tions. With increasingf there is a jump back from thisp
branch, so that forf.3p/2 the minimum solution again
corresponds to perpendicularn̂’s. The panels on the right ar
for the antiparallel case (h`

L 5p, h`
R50). Here the p

branch, wheren̂’s are tilted, occurs not atf'p but at f
'0. The fact that the curves are not~anti!symmetric with
respect tof5p indicates that the jumps between differe
branches are hysteretic.
06453
he

y

z-

ft

he

We have studied the effect of increasinggL5gR from the
value 0.1g. We find that thep state first disappears in th
antiparallel case and then also in the parallel case. For
ample, thep state in the parallel case@defined as positive
J8(p)# disappears whengL,R'0.2g at T50.4Tc . The aniso-
textural effect on the current-phase relation still continues
to gL,R'0.7g. Since the coupling@Eq. ~40!# scales withAo
5Ak5pR2k and the stiffness@Eq. ~57!# with R, we obtain
the following necessary condition for the appearance op
states in the parallel case at temperaturesT*0.4Tc :

Rk.0.5 mm. ~58!

Thus the larger the radiusR of the array and the higher th
ratio of the open areak, the better the chances of realizin
the anisotexturalp state.

It is interesting to compare condition~58! with the
Ginzburg-Landau calculation in a single large hole.11 There
p states could be seen for hole radiiR.5.5jGL . Settingk
51 and extrapolatingjGL(0.4Tc)58.8 nm,36 we have the
condition Rk.0.48mm, in surprising agreement with th
pinhole result above.

C. Asymmetric case

We go slightly beyond the simple model of an infini
planar wall introduced in Sec. IX A. First, we allow th
asymptotic directionsn̂`

L,R to be arbitrary. Second, the stiff
ness coefficientsgL,R can be different. In Fig. 14 we stud
different values ofh`

L while h`
R50, gL50.3g, and gR

5g. Here the extreme curves represent parallel and anti

FIG. 13. Anisotextural current-phaseJ(f) and energy-phase
F(f) relations for bistable statesh`

L 50 @~a! and ~c!# and h`
L 5p

@~b! and ~d!#. The curves correspond to different temperatures
intervals of 0.1Tc . The arrows indicate then̂ orientations in the
zero branch, wheren̂L5n̂`

L and n̂R5n̂`
R . The rigidities on both

sides are equal,gL5gR50.1g and h`
R50. The weak link param-

eters andg ~Fig. 3! are evaluated for the Berkeley array~Sec. X!.
The wall is assumed to be diffusive,F1

a5W/D50.
0-15
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J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530
allel n̂`
L,R . It can be seen that neither of them have ap state

at 0.4Tc and only the parallel case has one at 0.2Tc . How-
ever, at intermediateh`

L the p states still persist in a wide
range ofh`

L . The current-phase relationships are not hys
etic at high temperature, but hysteresis develops at lo
temperatures. Figure 14 should be compared with the co
sponding isotextural Fig. 11. In the isotextural case thep
states occur only in limited range, and there is no hystere

The states withh`
L 5p/26constant are expected to b

degenerate in the absence of the Josephson couplingh`
R

50). The currents and energies for one pair of such bista
states are shown in Fig. 15. The important difference to F
13 is that the curves are smooth and there is no hysteres
the case of parallel and antiparalleln̂`’s the symmetry is
spontaneously broken in thep branch, whereas the tiltedn̂`

L

already breaks the symmetry, and thus thep state can de-
velop continuously.

D. Discussion

The results of Figs. 13–15 contain both the isotextu
and anisotextural mechanisms ofp states. However, practi
cally the same results can be obtained all the way down
T50.4Tc by using the tunneling modelFJ @Eq. ~7!#, which
excludes the isotexturalp state. As discussed above, the tu
neling model fails at high temperatures only if the Joseph
energy is close to zero. The minimization procedure seem
avoid such a situation, and thus the tunneling model give
good description of the anisotextural pinhole array at te
peratures aboveT'0.4Tc .

The relation between our earlier results on the aniso
tural Josephson effect in Ref. 11 and those presented
deserves a comment. First, in Ref. 11 the tunneling mo
was used instead of the general pinhole result. Second
scattering within the hole was partially taken into account
reducing the transmission by the factorp(q) @Eq. ~27!#, but

FIG. 14. AnisotexturalJ(f) for different asymptotic anglesh`
L

at temperatures 0.2Tc ~a! and 0.4Tc ~b!. The other parameters ar
h`

R50, gL50.3g, andgR5g. The different curves correspond t
h`

L at intervals of 0.1p. Other parameters are the same as in F
13.
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the deflected trajectories were completely neglected. Th
the coupling parametersa and b were scaled by differen
factors, which is not possible when using the general pinh
result. Taken together, these explain why Fig. 13 is differ
from Fig. 2 in Ref. 11.

To be accurate, we should add to the preceding calc
tion the effect of the flow in the macroscopic region far aw
from the weak link. Above the phase differencef is defined
between the macroscopic-mesoscopic borders of the
sides~Fig. 1!. The ‘‘true’’ phase difference between the in
finities can be obtained by adding (2m3 /\)J/(pRrs) to f,
where the correction assumes a radial flow outside of
radiusR. Correspondingly the total energy receives an ad
tional contributionJ2/(2pRrs). These rescalings do not a
fect the results qualitatively.

The anisotextural model, as described above, assum
vanishingly small external magnetic field. Qualitatively, it
easy to see what the effect of a strong magnetic field wo
be. In a fieldH@1 mT, the strongest interaction affectin
the texture is the surface-magnetic termFSH @Eq. ~47!#. If the
coupling energy scale is much smaller than this, then
texture will be fixed to some minimum ofFSH, and will not
depend on the phase difference. A strong magnetic fi
therefore suppresses any anisotexturalp state, and only the
isotextural mechanism remains.

In order to estimate the critical field, we equate t
change in magnetic surface energyDFSH'dAH2 at the junc-
tion with the gain of energyDE between thep state and ‘‘0
branch’’ at f5p. Thus Hc'ADE/(dA). For the Berkeley
array5 DE can be estimated from the energy-phase graph
Figs. 13 and 15 or from the experiments. AtT'0.45Tc the
values are on the order ofDE'0.1 . . . 0.5 aJ,which yields
the order of magnitudeHc'10 . . . 50 mT.

. FIG. 15. AnisotexturalJ(f) and F(f) for bistable statesh`
L

50.3p @~a! and~c!# andh`
L 50.7p @~b! and~d!#. The textures have

different rigiditiesgL50.3g, gR5g, andh`
R50. Other parameters

are the same as in Fig. 13.
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X. ANALYSIS OF THE BERKELEY EXPERIMENT

We now turn to an analysis of the Berkeley experimen5

There the weak link consists of a square array of 65365
holes. They were etched in a 50-nm-thick silicon chip with
hole spacing of 3mm, making the area of the array 19
3195 mm2. The holes were nominally squares of 10
3100 nm2. However, flow resistance measurements in
normal state seem to indicate somewhat larger aperture
1153115 nm2,40 and these larger values are used in all n
merical estimates in this paper. A sketch of the experime
cell is shown in Fig. 16. The scattering properties of3He
quasiparticles from the silicon chip are not known, but m
surfaces are generally believed to be diffusively scatter
The magnetic field is believed to be small,H!1 mT, and
the pressure is 0 bar. We further assume the system to b
thermal equilibrium.

The central experimental findings are the bistability a
the existence ofp states.5 Bistability means that the system
can randomly choose between two alternative states, cha
terized by high~H! and low ~L! critical currents. Both of
these states showp states. The measured extremal curre
are plotted in Fig. 9.

There are two major difficulties in applying the theo
presented in this paper to the Berkeley experiment. F
sincej0577 nm, the holes are too large to be pinholes. Al
the holes are too small for the Ginzburg-Landau calculati
to be reliable.14,11 We use the pinhole model because mo
accurate calculations would be much more demand
Moreover, due to the approximate nature of our pinhole c
culations for finite aspect ratioW/D, we will only use the
pinhole theory in the limitW/D50, although experimentally
W/D'0.4. Another reason for usingW/D50 is that the
measured critical currents are clearly larger than calcula
for pinholes withW/D50.4 ~Sec. VIII C!. The second major
difficulty is that the cell is complicated, and its dimensio
are on the same order of magnitude asjSD @Eq. ~51!#. Instead
of a proper calculation of the texture, we will make som
simple estimates and introduce one adjustable paramete

A. Isotextural Josephson effect

Here we consider the case where the Josephson cou
can be considered as a weak perturbation, which does
affect the texture on either side of the weak link. For a sm
magnetic field, the dominant orienting effect onn̂ comes
from the surface-dipole energy@Eq. ~44!#. In region ~a! of
Fig. 16 this clearly favors the uniform texturen̂56 ẑ, where
z is along the axis of the cell. The situation is more comp
cated on the other side of the junction. The axial orientat
is preferred in the wide cylindrical region~d!. The narrow
cylindrical region~e! favors n̂' ẑ. The tendencies from re
gions ~d! and ~e! compete in region~c! below the chip, and
affect the texture in the window region~b!. Let us assume
that the minimization of textural energies@Eqs. ~43!–~48!#
favors at the junction a particular orientation ofn̂L5n̂0

L with
polar angleh0

L . Then there must be a degenerate textu
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state withn̂L52n̂0
L , which corresponds to the polar ang

hL5p2h0
L . There can be additional degeneracy with r

spect to the azimuthal angle.
When we add the pinhole Josephson coupling, the deg

erate states above give rise to precisely two different curr
phase relationships ifh0

LÞp/2. These two are obtained b
studying configurations withhL5h0

L andhL5p2h0
L with a

fixed n̂R5 ẑ. Configurations of this kind are studied in Fig
11. They can in principle explain both the bistability and t
existence ofp states. Quantitative comparison with expe
ment gives, however, very poor agreement. The problem i
fit the four experimental points in Fig. 9 at any temperatu
with the four extrema in Fig. 11~b! at anglesh0

L and p
2h0

L usingh0
L as a fitting parameter. One such constructi

at T50.4Tc is shown by dashed lines in Fig. 11~b!. In that
case, one finds theL state with ap state, but then nop state
appears in theH state, and all currents are more than by
factor of 2 too small. Alternatively, if one tries to fit th
critical current in theH state, one has to approach the para
and antiparallel states, where nop states appear at this tem
perature~Figs. 7–9!.

B. Anisotextural Josephson effect

For the anisotextural Josephson effect we have to ca
late the rigidity energy@Eq. ~52!#. The region~a! is much
thinner thanjSD, and therefore we have to consider a tw
dimensional texture instead of the 3D texture studies in S
IX B. In the present case the surface interaction is importa
We find thatgR is proportional tolG2h/ ln(AhjSD/R) instead
of lG2R @Eq. ~57!#, but these two happen to be of the sam
order of magnitude. Thus the texture in region~a! is rather
stiff, and we assumegR'g.

In order to analyze the other side (L), we first consider a
conical region between two radii,R1 andR2. Otherwise, we

FIG. 16. Part of the experimental cell in Ref. 5. Most of th
structure has rotation symmetry around the vertical axis. The ‘‘p
box’’ ~a! between two flexible membranes~diameter 1.27 cm, dis-
tanceh50.14 mm! forms a volume that is connected to the rest
3He volume only through the weak link. The weak link is made
a silicon chip attached to the lower membrane. The chip ish2

50.5 mm thick and has a square window opening from 2
3250 mm2 to some 0.9530.95 mm2 at the lower chip surface. The
figure is based on a drawing supplied by S. Pereverzev.
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use the same approximations as for the half space in
IX B. We obtain the rigidity energy

F rig
(122)5

50p

3
lG2~12cosu!

R1R2

R22R1
@h~R1!2h~R2!#2,

~59!

whereu is the opening angle of the cone. This reduces to
previous result@Eq. ~57!# in the limits u5p/2 andR25`.
We now consider the regions~b! and~c! as three consecutiv
conical regions. The middle one corresponds to the con
region of the chip withu5uw'38°, and the two others hav
u5p/2. We neglect the effect of regions~d! and ~e!, and
assume that region~c! extends to infinity. For the combine
stiffness of these regions we obtain the estimate

gL'
50p

3
lG2F 1

R
1

cosuw

12cosuw
S 1

R1
2

1

R2
D G21

, ~60!

whereR1 andR2 are the radii of the inner and outer edges
the conical region measured from the weak link. Substitut
the numerical values we findgL'0.31g, where g is the
half-space value@Eq. ~57!#. Thus this side is considerabl
softer than the other.

The calculations for the present parameters were alre
been done in Sec. IX C. The results are presented in Fig
for different anglesh`

L . A representative pair of bistabl
states is presented in Fig. 15. The calculated current-p
relations are very similar to those found experimentally.5 The
p states are present in both bistable states. The critical
rent in theH state~identified withh`

L '0.3p) is very close.
Some differences can be resolved. For example, thep state
is too strong in the theoreticalH state, and the critical curren
in the theoreticalL state is slightly too large. The only fitting
parameter here is the textural angleh`

L , and it can be seen
from Fig. 14 thath`

L 5(0.560.2)p roughly represents the
best overall fit to the experiments.5 Taking into account tha
the experimental apertures are not pinholes and that only
fitting parameter is involved, the agreement between
anisotextural theory and the experiment is amazingly go

The anisotextural Josephson model gives several pre
tions that can be tested experimentally. The shape of
current-phase relationship crucially depends on the num
of parallel apertures and on their spacing. It depends on
geometry of the cell surrounding the weak link. It also d
pends on the magnetic field. Furthermore, the current-ph
relationships become hysteretic at low temperatures.
these dependences are either absent or very different in
isotextural model. The dependences can be quantitatively
tracted from the theory presented above.

None of the predictions have yet been studied experim
tally, possibly excluding the hysteresis. The first paper4 re-
ported a discontinuous jump to thep branch at low tempera
ture 0.28Tc . A later paper5 reported continuous curren
phase relationships but only at higher temperatu
.0.45Tc . However, there was a change in the experimen
setup between these observations, which may have affe
the results. The hysteresis should also show up as additi
dissipation, but no detailed theory yet exists.41
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XI. CONCLUSIONS

We have presented a fairly complete study of the dc
sephson effect in3He-B using the pinhole model. We hav
derived a general energy functional for the pinhole coupl
energy. A computer program has been constructed to ca
late the energy and the currents, and we have plotted iso
tural current-phase relationships for various cases. Bes
the mass current there is also a spin current, but that has
been examined in this work. However, in contrast to m
pinhole calculations, we have also considered a finite as
ratio of the hole, although no extensive studies have b
made due to the approximate nature of the model. In ad
tion, we have calculated some surface parameters of3He-B.

We have also studied the anisotextural Josephson ef
The previous tunneling model calculations have been ge
alized to arrays of pinholes. General conditions for the ani
textural effect have been discussed. It has been found tha
anisotextural Josephson effect depends sensitively on pa
eters like the dimensions and the number of holes, the
rounding geometry, and the magnetic field.

The theory has been applied to explain the experime
observations made at Berkeley. We have compared the
periment with both isotextural and anisotextural mode
Both mechanisms can in principle explain the bistability a
thep states. In quantitative comparisons there is one adj
able parameter describing the texture. Comparison with
isotextural pinhole model gives poor agreement, but go
agreement is obtained with the anisotextural model. Furt
experiments should be made to confirm the identification
the anisotextural Josephson effect.

Quasiclassical calculations of a finite-size aperture
needed for a better theoretical understanding. One of the
sues to be addressed is the effect of the aspect ratioW/D.
Afinite hole with finiteW/D may be best approximated by
pinhole usingW/D50 instead of the exact value. If so, th
would explain why our best fit with the Berkeley exper
ments is obtained with that choice.

Experiments on the Josephson effect in3He-B have also
been done using a single aperture.6 Both p states and multi-
stability are observed. The pinhole theory can hardly be
plied to this case, because the aperture is much larger
the coherence lengthj0. Also, the distinction between iso
textural and anisotextural effects is not well defined for
single aperture. The Ginzburg-Landau calculations should
more accurate here, but unfortunately they have been d
systematically only for paralleln̂’s.11
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