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Pinhole calculations of the Josephson effect ifHe-B
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We theoretically study the dc Josephson effect between two volumes of supéHieiB. We first discuss
how the calculation of the current-phase relationships is divided into mesoscopic and macroscopic problems.
We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak
link is assumed to be pinhole whose size is small in comparison to the coherence length. We derive a
quasiclassical expression for the coupling energy of a pinhole, also allowing for scattering in the hole. Using
a self-consistent order parameter near a wall, we calculate the current-phase relationships in several cases. In
the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the
oppositeanisotexturalcase the texture changes as a function of the phase difference. For this we have to
consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters.
We analyze the experiments by Marchenlaival, [Phys. Rev. Lett83, 3860(1999], although the assump-
tions of the pinhole model were not quite satisfied there. We find that the obsersedes and bistability can
hardly be explained with the isotextural pinhole model, but a quantitative agreement is achieved with the
anisotextural model.
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[. INTRODUCTION temperaturg and find no sign of such a mechanism in the
Josephson effects in superconducting weak links havéeading order. Therefore, we consider it unlikely that this
been actively studied and applied since the 1960s. By anamechanism could quantitatively explain thestate observed
ogy, similar effects also exist between two volumes of superin *He. What look more promising are theories based on the
fluid connected by a weak link. There has been recen§x 3 matrix structure of the order parameteriide 10111314
brogiess In observing the Josephson effect in superfluigynysyal current-phase relations inle were first calculated
He." In this paper we study superfluitHe, where the Jo- by Monien and Tewordt Their calculation used a very sim-
sephson effect was experimentally confirmed over ten yearSiified one-dimensional Ginzburg-Landau model, and the
ago by Ave_:nel and Varoquaﬁx’f. However, more recent ex- physical relevance of their intermediate branches arafind
periments in Berkeley have raised questfohshich we are ~ remains controversial. The first unambiguous evidence
going to address here. . . of a branch inJ(¢) came from two-dimensional Ginzburg-
Avenel and Varoquaf¢ used a single narrow slit as the d lculation¥ Besides th | f el
weak link in He. They found current-phase relatioisp) Landau calculation - Besides the usual case of para
that are very similar to those seen for tunneling junctions OP/-ectors on the tvyo SldeAS of the junction, this calculation con-
microbridges inswave superconductors. In these systemsoidered also antiparallel vectors, and an unusud(¢) was
the relations are generally close to a sine functidfy) founq only in the latter case. The branchlify) did not yet
c- qualify as am state, however, becaugé(=) was found to

—Jcsing, or slightly tilted from this form. They are chara be negative at the parameter values studied in Ref. 14. More
terized by a single maximum supercurrdgtand a negative . ; T o
y g P 0 d extensive Ginzburg-Landau studies in Ref. 11 found that a

derivative at¢p=m, J’'(7)<0. The experiments at Berkeley ) "
propersr state[J’ () >0] occurs in the case gfarallel n's

used a 6% 65 array of small apertures itHe-B.*° At high ase 1S
temperatured( ) was found to be sinusoidal. At lower tem- through spontaneous symmetry breaking in a sufficiently
peratures a 4 state” developed, where the derivative is 'ar9€ aperture. , ,

The Ginzburg-Landau calculations are applicable to rela-

positive atp~: J'(7)>0. (Here ¢ is defined so that al- PRI
waysJ'(0)>0.) In addition, the weak link could be found in tively large apertures. A tractable opposite limit is a very

two distinct states with different current-phase relations. OngMall aperture, a pinhole. The pinhole model was first stud-
of the “bistable” states had consistently higher critical cur-'€d Py KU':;S and Omelyanchuk for —answave
rents (the H statd than the otherthe L state. Preliminary ~ SuPerconductor In this case, at low temperaturéés) de-

results of7 states and multistability in a single narrow slit Viates considerably from the sine form, but there s o
were also reportefl. state. Kurkijavi considered the same problem e 2® In

Several theories were put forward to explain theseBHe'B the order parameter is always modified near surfaces.
findings’~ It was suggested that the reduction of the Jo_NegIectiAng _this complication, Kurkijai found thatJ(¢) for
sephson coupling due to a finite number of particles can leaBaralleln’s is exactly the same as fsrwave superconduct-

to 7 states in trapped atomic gasésThis suggestion was OrS- Yip gengralized Kurkijai’s calculation to other orien-
extended to*He.”8 In the present paper we do calculations tations of then vectors'® He found ar state for antiparallel

with quasiclassical theory, which is an exact expansion im's, as well as for some more complicated configurations
T./Te (the superfluid transition temperature over the Fermiwhich can occur in a magnetic field=1 mT. We call this
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mechanism of ther stateisotexturalbecause the textuféhe

field n(r)] is kept constant while calculatingy ¢). L
The discussion above concerned a single aperture. There

exist three different suggestions as to howrastate can

appear in an array of apertures. Aveeehl. assumed that if

the individual apertures have a hystereficp), approxi-

mately half of the apertures could be on a different branch

than the others. The net effect would be the formation of a

state? We consider this explanation unlikely, because appar-

ently the apertures in Ref. 5 are not hysteretic, and also be- /

cause it is difficult to understand why exactly half of the

apertures could behave differently. The second alternative is F|G. 1. A weak link between two bulk superfluidsandR. The

that the 7 state appears trivially in a coherent array if an arrows denote thé vector of *He-B. The dashed line divides the

isotexturalm state appears in each of the apertures indepenmuid into a mesoscopic regiofinside and a macroscopic region

dently. The third alternative is aanisotextural = state, (outside.

where then texture changes as a function @f.!' This

mechanism can lead to# state even in the case when the Here A is a real constant, anid,, is a rotation matrix satis-

isotexturalJ(¢) is sinusoidal. - - fying R,iR,;= & . (We shall consistently assume a summa-
The purpose of t_hls paper is to s_tud(/¢>) in “He-B as  tion overx, y, andz for repeated index variablegs, v, i, , «,
completely as possible using the pinhole model. Section llg -, " etc) The rotation-matrix structure ansl are fixed on
starts with a division of the problem into mesoscopic andine scale of the superfluid condensation energy. On this en-
macroscopic aspects, and using symmetry arguments derivegyy scale, statél) remains degenerate with respect to the
general expressions for the Josephson coupling. The MesQ$hases and different rotation®,,; , which are parametrized

copic problem is discussed in the following four sections.Wi,[h an axish and an anglé. The degeneracy with respect
Section 1l introduces the quasiclassical theory and the as, & andR.,. (or equivalently, i, ande) is partly lifted by
ol ’ 1

sumptions relevant for our calculation. The pinhole model is . . AL . L
. . . ; “weaker interactions, which is discussed in detall in Sec. VII.
defined in Sec. IV, and a general pinhole energy functional is . X
Now imagine two bulk volumes ofHe-B connected by a

derived in Sec. V. The propagators are calculated in Sec. VI

and the Josephson energy and the currents are evaluaté}vaeak link; see Fig. 1. We consider the system to consist of a

This corrects the calculations by KUI"k‘i]'f-llG and Yipw by mésoscopic region at the junction and a macroscopic region

using a self-consistently calculated order parameter. We cor?-gtsrf; l—fhfrreeeggrz it;?tk?e Crﬁgzlr?)irc%b lfc \rlgniztrllor;sogllfjhs?r;[zfé
sider both diffuse and specular reflections of quasiparticles a}q 9 P glon,

the wall. We also discuss the case where scattering is presel‘?tr Fh_e h vector in Fig. 1'. The mesoscopic region is.chosen
within the pinhole. sufficiently small so thati) both ¢ andR,,; are effectively

The rest of the paper is devoted to the macroscopic prokcPnstants at the macroscopic-mesoscopic border(iaritie
lem. In Sec. VIl we discuss the interactions that are impor-Veak interactions affecting andR,; can be neglected in
tant on a macroscopic scale. We estimate the length scal%%e_ mesoscopic region. The size of the mesoscopic region is
and evaluate some surface-interaction parameters that ha(gted from below by the condition that the bulk form of
not been calculated before, to our knowledge. In Sec. viierder parametetl) has to be valid in the macroscopic re-
we plot isotextural current-phase relations in different situa91oN- Thus the size of the mesoscopic region has to be large
tions. The anisotextural Josephson effect is discussed in S, comparison to both the superfluid coherence lenggh
IX. The effect is first demonstrated with a simple model.~10 nm and the size of the aperture. The mesoscopic region
Then we estimate the textural rigidity, and calculate currentS@n also be chosen to cover several apertures.
phase relationships for an array of pinholes. Section X |Nhe rotation matrices and the phases on the leftand

is devoted to an analysis of different state models in right (R) sides are generally different. Their valuss at the

the Berkeley experimenit.Section X| finishes with some mflgroscopic-mesoscopic border are denotedRhy and
conclusions. ¢—". The most general form for the Josephson coupling en-
ergy associated with the weak link is given by
Il. SYMMETRY CONSIDERATIONS
Fy=Fy(5 ¢" R RE). 2

The Cooper pairs in superfluidHe are in a relative

p-wave state, and form a spin triplet. This state of affairs isyo\yever, due to global phase invariance there can really be
reflected by thg X3 tgnsor character of the order param_eteromy a dependence on the phase differetice s?— ¢*. In
A,i. The first index inA ,; (greek lettey refers to the spin

\ ; - addition, if we assume the intervening wall to be magneti-
states, and thg second indéatin lettey to the orbital states. 41y inactive, then we should have invariance with respect
In the bulk of He-B the order parameter has the fdfm

to global spin rotations as well. This means that the energy
can only depend on the product of the rotation matrices, or
ALi=R,A expli). (1) the quantitiesy;; =R>;RY;, so that

e
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In order to further determine the functiorfa} (3,6,7) it is
necessary to do a calculation in the mesoscopic region. This

Using the functionalF; [Eq. (3)] one can now calculate js discussed in Secs. IlI—VI.
two conserved currents. First, the mass current through the

aperture is given by

_2mg dF,

T b @

Ill. QUASICLASSICAL THEORY

We use the quasiclassical theory of Fermi liqéids cal-
culateF; [Eqg. (3)] for a pinhole aperture. Here we present
the theory only in the depth needed for the following.

See, for example, Ref. 18. Second, due to the different spin- The central quantity is the quasiclassical propaggtdn
orbit rotation matrices on the two sides, there is also a spifhe stationary case which we are considering this can be
current flowing through the aperture. Likewise, this isyritten asg(k,r,en), wherer denotes a spatial positio,

obtained fromF; by differentiation:

_ dF;
=g o RERR—— (5)
Y aBy tail ] L pR
I(RLR,)
This can be seen by replacing; in (3) by R, R};R,z with
the relative rotationR, ;= 6,45+ €,5,060,, and identifying

spin 2y 19 By
SF ,;=JP"56,+0(562).

The energy and the currents also satisfy some other sy
metry relations. For example, assuming invariance with r

spect to time reversal, we ha¥g(— ¢, ;) =F;( o, ;). As
a consequencé(— ¢, ui))=—I($,;) and IP(— ¢, )
=3¢, i) Also, since the phase factor ei) is de-
fined only modulo 2z, we have Fy(¢+27,i;)

parametrizes a position on the Fermi surface, and
=mkgT(2m+1) are the Matsubara energies. The propagator
is determined by the Eilenberger equation and the normaliza-
tion condition

[iems— 0,91 +ifivek-V,g=0 8)

gg=-1 9

n]E_quation (8) can be interpreted as describing transport of

quasiparticle wave packets which travel on classical trajec-
tories with the Fermi velocity,:vaR. The propagatog as

well as the self-energy(k,r) are 4x4 matrices, reflecting
the spin and particle-hole degrees of freedom of a quasipar-

=F;(¢,¢ij). Here we must keep in mind that in a long ticle; the matrices; (i=1,2,3) are the Pauli matrices in the
junction F; is not a single-valued function. Analogously, particle-hole space.
there is periodicity with respect to the rotation angle, which  The 2x 2 spin blocks ofj can be decomposed into scalar

is automatically contained in the form of E@2), since
RMi(ﬁ,0+ ZW):Rﬂl(ﬁ,g)
The functional form ofF; [Eq. (3)] can be restricted fur-

ther if we assume some additional symmetries. For example,
if the aperture is symmetric under a parity operation, we

have F;(é,4;)=Fi(é,4;;) and thus nypin(¢,l//ji)
=—J"(#,4;). If the aperture has full “orthorhombic”

symmetry 2immm thenF; can only depend on the rotation

matrices throughfy,, iy, andy,,. From here on we fix

the z coordinate to be along the axis of the weak link. Now,

if the twofold rotation symmetry aroundis replaced by a
fourfold symmetry (4hhmnj, then an exchange of,, and
¥,y must not affectr;. Finally, if the rotation symmetry

aroundz is continuousge/mm, the dependence can only be

through¢,, and the invariant combinatiogy,+ i, that is

Fy=Fy(¢,RLRE,+R, RY

my Ty

R.,RY). (6)

Close toT, the amplitudeA of the order paramete(il)
approaches zero, so that we can exp&dAL; A%) in
powers ofA. In order to be consistent with Ed@6), the
leading order term in the expansion must be

Fy=—[aR: RR +B(RE RR

nz' \uz X X

+RL RY )]cose,  (7)

and vector components as
gt+g-o (f+f-o)io,

io,(f+f.0) 9-0.0-0 0,

-

9= , (10

where o=xo;,+yo,+203, ande; (i=1,2,3) are the spin-

space Pauli matrices. The self-enerbys written similarly:
v+v- o A-oio,
11

o=

104" v—o,v-0 0
Here the off-diagonal terms contain thevave pairing inter-

action in the form of the gap vectak ,(k,r)=A,;(r)k;.
This is determined by the self-consistency equation

WkBTE

m

A dQ'ZI ~ A A
— 3f—f(k’,r,em)(k’~k)

|€m| - 4

Al il =0
+ nT:— E
(12)

whereT. is the superfluid transition temperature. This form
is valid in the weak-coupling approximation, where the
quasiparticle-quasiparticle scattering is neglected. The diag-

onal components, » and v, » are the “molecular field” self-
energies arising from redistributions of quasiparticles. The

wherea and 8 are some real-valued phenomenological con-Scalar parametens and v arise in response to mass currents,
stants. In Ref. 11 this was introduced as the Josephson eAnd they turn out to be negligible as will be argued in Sec.
ergy of the tunneling model, but, as the derivation abovdV. The (real-valued vector parameters and» describe the
shows, it is more general. The tunneling barrier fofe was  response to a magnetic field or spin currents. As discussed
first considered in Ref. 20. above, the magnetic field can be neglected in the mesoscopic
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region. In contrast, there are always rather strong spin cur-
rents flowing along surfaces ifHe-B.2?> These have to
be taken into account with the self-consistency relation
(v=—)

ARL (¢ 5

daQe, . . T QE """"""""""""" >

~ K A A ~, . R

w(k,r)=mks TS, jFAa(k-k’)g(k e (13 ARR. £i9
m

e
Here A%(X) =3[ Fa{ 1+ F&/(21+1)] 'P(x), P, are the W<<&

Legendre polynomials, and all terms with evedrop out
dule:to symmetries. h . hvsical .. FIG. 2. The mesoscopic regidfig. 1) for a pinhole. Two qua-
orour purpos?st e most important physical quantities t%iparticle trajectories are shown. The coordinats plotted along
be evaluated frong are the mass supercurrent the straight transmitting trajectory. The arch on the left-hand side of
the pinhole denotes an imaginary surface that is used to close the

dQg. . i ; ; :
Foey — pinhole(Sec. \J. The diameteb of the pinhole and the thickness of
i) 2m3UFN(O)WkBT; f A kg(k.r,em)  (14) the wall W are assumed to be small comparedgo

and the spin supercurrent calculated for a planar waikithout the pinhole. Therds a
d0: correction=D? to ¢, but because of the stationarity of the
jsypi”(r)=ﬁvFN(0)TrkBT2 J 4—7:|zgy(|2,r,€m)- (15 energy functional with respect t@, this affectsF; only in
m

the orderxD% &,, which is negligible for a pinhole. There-
fore we can use the order parameter profiles calculated for a
planar wall.

Determining the suppression of the order paramAteat

. ._the wall is thus the first step needed for our calculation. In
mass of a baréHe atom. The superfluid coherence length is . T
the absence of mass currents and magnetic scattering it is

. _ s
defined by¢o=Avr/(2mKgTc). FOrFy, ve, Te and other sufficient to consider the parametrization
pressure dependent quantities, we use the vapor pressure val-

a_ ~ A~ A~ An ~
ues Whenevgr needed. In BE4.3) z;/ve assumd='=0 for all A(O)(k,z):[AL(Z)ZZJFAH(Z)(XXJFW)] R (16)
odd I=3. Since the parametdf; is not well known, we
usually set it to zero also, but values in the rangé ... 0  where z is perpendicular to the wall. The gap functions

Here N(0)=m* %v¢/(27°43) is the one-spin normal-state
density of states at the Fermi surface, when&=m;(1
+F3/3) is the effective quasiparticle massi; being the

have been tested. A, (2) andA|(z), which are real valued, are calculated self-
consistently as explained in Ref. 22. Fpwe use the “ran-
IV. PINHOLE PROBLEM domly oriented mirror” (ROM) boundary condition at a

specular or a diffusive surfaé® The numerical calculation

of g is described in Sec. VIB. Our results far, (z) and

A (2) are similar to those found previously with ROM and
other surface modef€:2>2628-34 order to incorporate dif-
ferent phases and spin-orbit rotations on the two sides we

Consider the case of a single pinhole in a thin wall sepa
rating two volumes ofHe-B—the situation of Fig. 2. The
hole can be thought of as a pinhdies., “very small”) and
still be treated quasiclassically, if its dimensigdsameterD
and wall thicknessV) satisfy £&o>D, W=\, where\r is

the Fermi wavelength. In additioPHe is in the pure limit, write

where the mean free path of quasiparticles &;,. Usually exp(id;'-)ﬁ L.AOXR,z) for z<0

one further assumes th&V<D, so that scattering in the A(k,z)= ~ N 17)
aperture itself can be neglected. We allow for a firliéD expi pPHR R-AO(k,z) for z>0.

and thus also consider deflected trajectories of the for . . .
shown in Fig. 2. The pinhole limit was first consideredn:]-he thin wall is located _a.2=0 andA® [Eq. (1)] s as-
within the quasiclassical theory by Kulik and Omel’yanchuksumed to be symmetrica,(-2)=4,(2) and 4)(-2)
in the case ofwave superconducting microbridgEsSev- =4(2).

eral previous calculations for the spin-triplet case %tfe

also exist%111623-26Fgr gnother type of quasiclassical Jo- V. ENERGY FUNCTIONAL

sephson model, see Ref. 27. Here we derive a general quasiclassical expression for the

W.h?t r:[nak:as ﬂg plnfh;)r:e cadse attractlvte IS tl;lrc]atself- i Josephson coupling energy in a pinhole. The derivation fol-
consistent calculation of the order parameter in he aperturfy, closely the lines of a quasiclassical treatment of impu-

is needed. More precisely, the leading term in the COUp"ngrities in 3He or superconductofZ® We start from an ex-

energ.yFJ I on the °“§'er of the superﬂwd conden;anon en'pression for the energy differené#)'®' between states with
ergy in the volumeD<&,. This effective volume is large

compared to the volume<D? or WD?) of the pinhole. The ©ON€ impurity and no impurity,V being the impurity
leading term inF; (and thus also the corresponding terms inpotential?1'34 For a small spatial range of, the self-energy
the currents can be computed using [Eq. (11)], that is 3 can be assumed to be unchanged by it, and we oBtain
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1 . . . . . in Egs.(18)—(22). The coupling energy is then equal &2
50%'=— S 1In(= Go 'H2+V)=In(=Gy t+3)]. [Eq. (21)], except for a minus sigrE ;= — 8. The interme-
(18) diateq, is the exact propagator that is calculated for an open
pinhole, and we drop the subindex 1 from here on.

The trace operation Tr is defined as The simplest choice for the blocking wall is a specularly
5 scattering surface. It corresponds to a delta-function scatter-
Trl3=kBT2 f d kgTr4|E(k,k,€m), (19) ing pAotentiaIV5(T~ r) for the (infinitesimal piece offlat sur-
m J (2m) facel-r=0 in the limit V—. Thet matrix of this type of

. impurity is of a particularly simple forat-2
where T, denotes the trace of the<dd Nambu matrix=. To purty P Y P

eliminate the logarithm, we may apply some form va the “ EA(R,R',Em)
trick.” 3 We choose to integrate over the strengthVoby o
making the substitutioW—\V, and writing 2vglk- II)\VdAé(ki)’kH,
5Qt°t=1Trf1d—}‘(él—"E—>\\7)1>\\7= 1Trfld—)‘é T 20 R0V 19K )+ 8K Fimp )]
2 Jo N0 P P U (23
(20

wheredA is an area elementE<dA<£3) of the blocking
The latter equality follows from a formal application of the piece of wall with normal. The component ok parallel to
t-matrix equationT,=\V+ T)\él):\“/ and the relationG  this wall is denoted by =k— (k-N)T, andk=k—2(k- N is
=G, +G,T,G,. HereG=(G;1~3—\V) ! gives the full  the mirror-reflected direction. We inseft [Eq. (23)] into
propagator in the presence of an impurity scattering potend(2 [Eq. (21)], and integrate over the blocking surface. Also
tial. The intermediate Green’s functid, corresponds to a Performing thex integration, we find
quasiclassicafj; which has no discontinuity at the impurity. 1 d0:

; ; ) R~ e
Equation(20) is now in a form where the propagator can be F )= — _hUFN(O)WkBTJ dAY, f —|k-1|Tr,
|k|-integrated directly. However, to avoid a divergence in the 2 m 4m

Matsubara summation, we have to subtract from(26) the A A A
2UF|k' Il_V[g(karimplfm)+g(5:rimp1€m)]

normal-state contributiodQN, obtained by settinélzi“ in X In — — ,
Eq. (18). We definesQ = 60— sQN and transform this to 2vglk-1]+2iVr;Sgn(en)
the quasiclassical form (24)

1 dQg (dN_ . . where the normal-state propagatgf=i7;Sgn(e,) was
o= zﬁUFN(O)WkBTEm‘J an o ~ el 91(KiTimp.€m)  ysed. Next we take the limit— and use the general prop-
L R L erties Tgln A=In Det4A and DegAézDeQA Det4I§, noting
X T (KK, €m) = OY (K, Fimp €m) TN (K K, €m) ], (21)  further that Defi 73Sgn(e)]=1. All trajectories that do
) ) ) ) e o~ a ] not pass through the hole in the absence of the blockade can
whererip, is the location of the impurity and (k,k,em) IS pe neglected, and thus the integration over the suracen
the forward-scattering part of thematrix, which is obtained 5 transformed to one over the cross sectignareaA,) of

by solving the hole. This leads to the general pinhole energy functional

Bk K e =N5 (R R +AmN(O) [ S5 ey 1 dQg .
(kK em)=Nv(k, w L sz—onﬁvFN(O)kaT% 2 Ik

XG1(K" Fimpr €m TN (K" K €m).  (22) <
X {In

Energy formula(21) is simpler to use than those in Refs. 32

and 33, since it does not involve an integration avelMore s
. o . ! : wherek,=k-z, the bracketg---) denote an average over
importantly,g, is constant in thex integration.

Now we specialize the above approach to the pinholéhe trajecztoriessat fi>_<edk) that hit theLarea!\0 of the pinho_le
problem. The coupling energl, we wish to know is, by _(AO=7T_D /4 for a circular holg _andO denotes the location
definition, the difference in energies between an open pinimmediately on the left hand side of the hole.
hole and a blocked pinhole. It should be irrelevant how the COUPliNg energy25) depends on the shape of the block-
hole is blocked as long as the transmission of quasiparticled Wall only through the directions of the reflected momenta
is prevented: changing the type of blockage should onl)k=k—2(k-I)l. Because the surface can be chosen in differ-
change some constant terms in the energy, which do ndnt ways, there is a lot of freedom in choosing the reflected
depend on the soft degrees of freedom in Bj). We choose momenta. A particularly simple choice i®troreflection
to block the pinhole by a surface just on the left hand side oﬁ= —k. This can be achieved, for example, by a semispheri-
it (Fig. 2). This surface is now considered as the “impurity” cal blocking surface of radiuR satisfying §,>R>D, cen-

1.0 . A
Dehi[g(k,OLyfm)JrQ(E,OLﬁm)]]>, (29
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tered at the pinhole. This choice can simplify practical cal-wherey=arccos{V/D)tand and, is the polar angle of the
culations considerably, since one can use symmetriegajectory k- 2= cosd).
effectively. After this one may, for example, calculate the —calculatingwy ;. for a general type of ROM surface and
determinant by using Dglg,+g,)=[Dety(—21 a finite ratioW/D is difficult, since one has to consider mul-
+{§11,éz})]1/2- tiple scattering. We shall restrict to a cylindrical aperture and
The choice to block the surface on the left-hand side wa§tart with fully diffusive walls. In this case one can in prin-
arbitrary, and the blocking could equally well be done on theciple expand wy =P (k|K") = [ d?r;Pou{K|r 1) Pin(r1|K")
right hand side. The reason for not blocking in the middle of+ [2r, fd?r P, (K|r,) P(r,|r 1) Pin(r1|k’) +-- -, wherer;

the hole is that there may be scattering taking place thergyarametrizes positions on the surface of the cylinder. For

For example, a quasiparticle may hit the_ wall in§ide of thegiven outcoming directiofk the functionP,,(k|r) gives the
hole and be deflecte@Fig. 2). In general this causasto be

discontinuous at the hole, and in order to give an unambiguqiStribUtion inr for its origin, whereas the functidﬁm(r|I2’)
ous prescription foF ; [Eq’. (25)], one has to specify one of gives the distr_ibutior_1 in inco_ming’, giv_en a position of
the sides. If there is no scaticering in the pinhold/D impactr. The diffuse intermediate scatterings follow a “Mar-
=0), the propagator is continuous and the energy functionelfov'an process, so that the distributidt(r,|r,) is indepen-

can be evaluated in the middle of the hole. In the absence &€t Of the incoming direction. The formal expansion param-
scattering also the average- -) in F, [Eq. (25)] is trivial eter here isV/D, and the first term inv i is of zeroth order

and can be dropped in it, corresponding to only one event. The second term has

Apart from the assumption of a pinhole aperture, energ;?ne intermediate scattering and is thus of first order, and so

functional (25) is very general. Below, we shall apply it for on. In the IimitW/D—>0 only the zeroth-order term remains,
the special case otHe-B. and the functionsP;, and P, are assumed to approach

simple “cosine laws™: Pj,(r|k’)|¥r)-k'| for §(r)-k'<0
VI. PINHOLE CALCULATION andPo(k|r)|k-s(r)| for k-r)>0, wheres(r) is the sur-
_ . face normal at position. Upon normalization and insertion
A. Trajectories into the expansion fowj i, one finds

For the caseN/D=0 and no scatterers localized within o B B
the pinhole, all trajectories hitting the orifice are directly Wi,k =Sin g (Sinxg ks — Xk k COSXi k), (28)
transmitted. For the case of fini®/D we consider a model

where yi i+ is the difference in incoming and outgoing azi-
which is based on the ROM boundary conditfdn. Xkk g going

. muthal angles andd;: is the incoming polar angle. This
The ROM model assumes that the surface consists of Migictribution is largest for angles neag i == and Jg

croscopic pieces of randomly oriented mirrors. Therefore,_ /2, i.e., for scattering into directions close to the plane of

any trajectory hitting the surface is simply deflected into aN+he surface.

other Q|rect|0n ar_1d the phy_5|cal propagator is continuous - g 3 gecond case, consider the possibility of specular scat-
along it. When this process is averaged over a length scale

. . . ", - . . . .
which is large compared to the size of the mirr@fe mirror t¢r|ngh|n thefplnhole. Th_e_n . gfllrecftllona_l quaﬁpac;_ncle.hlt—
size is larger tha\g, but much smaller thaiV, D), one ting the surface at position will reflect into the direction

obtains a probability distribution for the scattering from onek’=k’—2[k"-§(r)]§(r). In this case the previous distribu-
direction to another. Consider a quasiparticle coming out ofion functionsP, Pj,, andP have to be generalized a bit to
the pinhole in directionk. The probability density that it take into account the non-Markovian character of the sczatter—
entered the hole from directidkl can be written as ing, butin the limitW/D -0 no problem§ wil i;lrise. Since
is in the xy plane, we necessarily have z=k’-z, and a
Wi 2 =p(R) 8¢ i +[1— p(R) wi o/ - (26) similar calculation as for the diffusive case gives

~ U inga)—1 9~ Vein v -

Here p(k) is the probability for direct transmission, and Wik = m(sinde) 69— Fi)sin(xi i /2).  (29)
Wi ks is the scattering distribution obtained by averagingmore refined distributions could be obtained by taking into
over the surface of the pinhole which is visible from direc- gccount higher-order terms in the expansion, but doing so
tion k. For givenk the distributions are normalized accord- analytically would be difficult. In Ref. 27 these were briefly
ing to [(dQg /Am)Wi i =1 and [(dQg /Am)wii =1, discussed in the case of a long pore with specular walls.
where the integrals are ovalil directions(backscattering is
also possible For a circularly cylindrical aperture of diam-
eterD in a wall of thicknessWV one finds a simple form for

the transmission functiop(k):

B. Propagator

Here we briefly describe the method used to generate the
propagators. The idea is to calculate the propagators numeri-
cally only for A() [Eq. (16)], and to obtain analytically the

—(y—cosysiny) for 9<arctafD/W) dependence of the true propagator on the soft degrees of
p(h)={ 7 freedom inA [Eq. (17)]. The matching of the left and right
0 for 9>arctafD/W), solutions at the pinhole is most conveniently done with the

(27)  “multiplication trick.” 222>33There one first calculates two
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unphysical solutiong. andg-. of the Eilenberger equation that also the solutions diverging away from the wall have to
(8), andg is constructed using be calculated. The initial conditions for these were obtained
using the specular reflection or the ROM boundary condi-

[Q<(|’(\1r16m)1é>(k\vr16m)] t|0n . 0 . . .
S (ke G- (K el (30) The functionsg'? can be obtained by using the relations
< 1 Em/rY> 11 Em

a(k,r,en =i Sgr(k,)

Here we denote by. andg- the solutions decaying expo- aQ(k,u,em)=+a0(k,—u,ep),

nentially towards left £= —) and right £= +), respec-

tively, independently of the direction d&f bO(k,u, €m) = —bO(k, —u,€p), (33
We rewrite the propagator componentsgasc+d, g=c¢

+d, f=a+b, andf=a+b andg=c—d, g=c—d, f=a cO(k,u, €)= +cO(k,—u,€n),

—b, andf=a—b. In terms of these, the Eilenberger equa-\hich are based on the symmetry

tion decouples conveniently into three independent blocks of

linear, first-order differential equations which are numeri- A(O)(R u):A(O)(R —u). (34)
cally more convenient to handfThe first task is to find the ' ’

unphysical solutions consisting of componeatd, andc. From the solutiong)'®) for A(®) we obtain the solution§.
For the real-valued order parametAf?), the unphysical for the generald [Eqg. (17)] on thelL side, by forming the
propagator components can be chosen suchalaaitdb are  linear combinations

real andc is purely imaginary. The unphysical block of

equation& then becomes a.=a%cos¢"+ibPsing",

1 —ia(0)gin 4L 0 L
emb+§hvpaua=0, b_=ial’sin¢-+b ’cose-, (35

c.=R:.d9,
1
ema+A©). Imc+ 5 hveayb=0, (3)  The same equations hold on tReside wherl is replaced by
Rand< by >.

1 The phys_ical propagator at the pinhole=(r,=0) can
—»XIm c+ A(O)b+§wa,9u|m c=0. now be obtained using Eg&0), (32), (33), and(35). For the

case of deflected trajectories we have to specify separately
Hereu is the coordinate along an arbitrary trajectoryr,  the momentunk’ on thel side anck on theRside. Only the
+uk, and we fixu=0 at the wall ¢=0). In accordance transmitted trajectorieskgk,>0) need to be considered, and
with Eq. (30), the exponential solutions of Eq&1) which ~ we obtain
go through the pinhole are denoted %’ andg®, respec-

— I .
tively. These are the solutions that are naturally obtained by a i (em) =isg i [C[(IA sin; ¢— B cos; ¢)
integrating from the bulk toward the wall dnandR sides.

) A el ’
Because of symmetries we only need to calcufgfe, and +(iA'sing ¢—B'cos; ¢)Crl,
we do this using fourth-order Runge-Kutta method. We in- .
troduce a shorthand notation for the numerically calculated b;,@,(em):isu,[q (A cos; p—iB sing ¢)
guantities

— (A’ cos; p—iB'sins ¢)Cgl, (36)
Ak, em)=a9(k,u=0,ey),
di i (em)=is; 1 [I(AA"+BB")
B(k,em) =b9(k,u=0,en), (32 }
Xsing—(AB'+A'B)cos¢]di i/ (€m)
C(k,em)=c(k,u=0,ey). _
(K, €m) =0 m) A i e = 5 1.CIXCr,

These were evaluated for several direction& ofvhose po- -
lar anglesd were chosen so that angular integrations in EqgsWhereC,_g=R"“R.C, and primes denote values correspond-
(38) and(40) could be carried out using the Gaussian quadraing to directionk’. The normalization constant is given by
ture, usually with 32 points in the range cds—1...1.

(Due to the symmetry of the integrands, only values Kpr Sk kr(€m) = _Stf(’_ﬁr(em)
>0 actually need to be considered@he number of(posi- . ) )
tive) Matsubara energies,,= mkgT(2m+1) was between =Sgnk,)[—(AA’+BB')

10 to around 100 depending on the temperature. Above we
assumedA(®) and » already to be known. The method for
their self-consistent calculation is the same as above, except (37

X cos¢p+i(A'B+AB’)sing+C| - Cgl.
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For the case of direct transmissidif(: R) these expressions  — R T«
simplify considerably. "‘\\ -
- 5 — 10 ]
C. Currents and coupling energy e ‘\_\
As an application of the above results, consider the Jo-g 4r 7
sephson current in the pinhole. Using the general symmetrie: £ *
for propagators, the mass current dengi#f) can be written 2 3t N .
in terms of Red alone. The total current is then given by 8
Redj i [Eq. (36)] integrated over distributiofR6) of trajec- 2 o T L |
tories: E; b
3 N
dQA,\ 1 L S ~. R >, y 4
J=A,2maueN(0) Tk T, f —k,
m 47 ~-__~_\::.~'=
d0; % 0.2 0.4 T 0.6 0.8 1
XJWWQ,@Redﬁ,w(em)- (38) c

FIG. 3. Temperature dependence of the tunneling model param-
In the case of direct transmission onlyV(D=0 or eterse, B [Eq.(41], andy [Eq.(57)] as calculated for a diffusive
W; i =8 ir), one can apply trigonometric identities to put wall and total open are#,=Ax where, A=3.8x10 ° m*, «

d(lz,O,ém)ZdR,R(Em) in the form ii4;><elt(():"‘ The pressure is 0 baw/D=0, andF2=0 for i
d(k,0,ep) A ,
=Sgr(Rz)% azAOthN(O)kaTf %IKI% %,
" (B2—A?)sin(¢+ o) +2iAB 1 dQ; - (ImC,)?

51 AZSIP[ (gt o))+ B2oZ[ b(p+ 0 0)] B= 5 AchveN(0) mkeT f I k2 o (4D

(39

Figure 3 shows the temperature dependence of the tunnel-
ing parameters for a diffusive wall witA, chosen to match

of Eq. (39) is now equivalent to Eq.1) in Ref. 10, but more L
o+ Z(k the effective ph the total open area of a cohere_nt array of hoIgs_ Wlth dimen-
general. The quantitieg={(k,ey) are the effective phase gjgng as in Ref. 5. Also shown is the textural rigidity param-

differences experienced by quasiparticles with different Spirétery, whose role is to be discussed below in Sec. IX. Close

projections along the axi§, x Cg =A (k)X Ag(k). Inthe  to T, the strength of the coupling, i.e., the parameterand
special case thak is assumed constant, i.e., unsuppressed a8 go as «,B*(1—T/T.)?, whereas the rigidityyo(1
the walls, the Matsubara summation can be done analytically-T/7 ).

whereg(R,em) is defined byC, - Cr=C?cos{. The real part

and one obtains the same r_esult Joas in Ref. 10. _ The Josephson currefiEq. (38)] and energy[Eq. (40)]
For the Josephson coupling enef@g. (25] we find were obtained completely independently. It is essential to
L 40 40 check that they are consistent with each other. One can easily
Fi= Ao eN(0) ke TS J k|RZ|J k! see that the component Bgi: satisfies
2 m A 4
X Wi i {In|si i (€m) 2= IN[4(AA")?]}. (40) 9

1.
Redg i (em) = 58gr(k,)——Inlsi i (em)[?,  (42)

J
In the first term there appears the squared modulus of the ¢
trajectory-invariant normalization constafq. (37)]. The

second term has to be retained to have convergence in ti@d hence the macroscopic current formia. (4)] is ex-
Matsubara summation. actly satisfied. As a further check of the enefgy. (40)] we

Consider, again, the direct-transmission ca#®=0. In  can see that also the spin current forma is satisfied.
the Ginzburg-Landau limif—T, we can verify the phe- USing C[-Cr=R.;R};C/C; the energy[Eq. (40)] is seen
nomenological forniEq. (7)] and calculate the parameters t0 be a function of the product®;;RY; and calculating
and B. In this limit the amplitude ofA is small and, since the spin current from Eq(5) is thus possible. Writing also
|A]?~|C|?=|A?—B?|, we should havéA?—B?|<A%+B?,  [C[XCg],= eaﬁyR;kR;C{(q in the propagator component
A%~B? and|s; ;| >~4A%. It follows that the logarithm in the [Eq. (36)] and using the quasiclassical spin current expres-
first term of Eq.(40) can be expanded to linear order to give sion (15), it can be checked that the result faj"" agrees
Eq. (7), where with the one obtained from E@5).
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VIl. TEXTURAL INTERACTIONS There is also a bulk magnetic interaction

As discussed in Sec. Il, the Josephson effecttte de-
pends on the rotation matric&;% on the two sides of the Fon= —aJ d®(A-H)2. (49)
weak link. These matrices are determined by the competition
of a number of relatively weak bulk and surface interactions,The effect of stationary flow on the texture could be incor-
which lift the degeneracy of th&-phase order parameter porated by the dipole-velocity interactidty,, , but the flow
[Eq. (1)]. The equilibrium configuration is found by mini- velocities in the experimenare so small thaEpy is negli-
mizing a hydrostatic energy functional. We shall present thegible.
hydrostatic theory to the extent needed here. For a recent The values of the many coefficients appearing above are

review, see Ref. 36. discussed in Ref. 36 in some detail. However, most of them
have only been evaluated in the Ginzburg-Landal) re-
A. Interactions and coupling constants gion so far. As a byproduct of our calculation of the surface

order parameter, we can now extend the calculations, of
4 and\ g¢ to all temperatures.
The surface gradient parameter consists of two contribu-
tions, Asg=Aggt+2\g,. The contribution\§s is equal to
2 JJ%ILy, the current of they-directional spin projection in
, (43 thexdirection per unit length in thg direction (,), calcu-
lated for the order parameté®). In terms of spin current
where 6 is the rotation angle of the spin-orbit rotation densityjs"" [Eq. (15)], it is given by
Rm(ﬁ,e). The effect of Fp is to fix @ to the value 6, .
~104° in the bulk liquid. a _ :spin(0)
There is no confl?ct betweeR [Eq. (43)] and F; [Eq. Mo~ fo dzlyx D). 49
(3)]. Even if R;;® have their rotation angles fixed &, F,
depends on their produgt;—also a rotation matrix—and it

- - . L ~ R - _
gﬁn a}ﬁlal:rsle;ll izorf’st'bgﬁgfliedsf;gngngn theg%glsrscﬁs%r?rggu- T, all of the parameters vanish linearly T T,. The slopes
Y- 9 0 by P of A\sg=MA3g+ 2\, agree with the GL results of Ref. 36 for

pling. The same applies to all surface energies below. We ) : :
therefore assumEp to be in its minimum everywhere and vapor pressure; at low temperatures there is considerable de-
D

studv onlv the position dependencerdf). which is known viation from the linear GL behavior. We have calculated the
as tge tezturg P ependencerdf), results forF;=0 andF{= —1, the true value at vapor pres-

In the absence of a magnetic field the dominant interac—Slilre probably being somewhere in between. The change with

tion determining the texture near a wall is the surface-dipole 1. is rather strong here, sinoes is directly related to the

; ; spin current.

Interaction . . .
The surface-dipole coupling constabtsandb, are given

by*®

The most important hydrostatic energy term arises fro
the dipole-dipole interaction between the nuclear magnetic
moments,

1+ 0
Z Cos

FD: SgDAzf d3r

Figure 4 gives the temperature dependence of both terms of
N\ g for the cases of a specular and a diffusive wall. Close to

Fso= f Prlba(s:n)* ~by(s:0)7], (44)

5 ©
N _ N bzzngf dz(AT—6A, A|+5A7), (50)
whereb, andb, are positive coupling constants asis the 0
surface normal. There are usually many walls with different
orientations present and therefore there is a conflict between

25 0
[ _ 2
their orienting effects. This leads to a gradiéioénding en- bs= 8 gDJO dz(Aj—AL)
(1-T/Ty)Y2 nearT,. In this region more accurate values

ergy
FG: f d3r
o _ _ ~ can be obtained from the GL resuffswith which these co-
which is related to spin currents in the bulk. The gradient,qiqe. Becausd,>2b,, Fsp [Eq. (44)] favors h perpen-
energy also has a surface part dicular to the wall. The dependence Inf andb, on F2 is
JR.. much weaker than that ofsg, since the effect of the spin
FSG:)\SGJ dzrgj Ry o (46) current comes to play only through the order parameter. For
S ari Fi=—1 the values tend to be diminished by at most 5%

at all temperatures. Figure 5 shows these two plotted as a
function of T/T.. Both of them go to zero proportional to

ai aj

. R Ry Ret| e
Gl ari (er G2 ary  odr ’ ( )

In the presence of a magnetic field another surface interacﬁom those shown in Fig. 5.

tion becomes important:
B. Competing interactions and length scales

FSH:_dJ d2r(H-R-92 (47) In dealing with the pinhole model, we are mostly inter-
s ested in the behavior of the texture at different magnetic
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0asF ---__ ] — xas('a‘ specular | gradient energy and other bulk energies have to be mini-
_______ AR 2 di mized together with the surface energies. The surfaces can
~ . - hgg diffuse . .
03l e N then be seen as perturbing the bulk texture which would
G2 otherwise be uniform. Associated with each hydrostatic in-
0.25" teraction competing with the gradient energy, there is a char-
wf ToITTIa-ol acteristic length scale that describes the scale on which such
S o == v 1 local perturbations from uniformity will d hedi®’
5 O S, NN p uniformity will decay, or ;
& N . The stronger the competing interaction, the shorter the cor-
0.15¢ N ] responding healing length. Comparing these healing lengths
with the spatial scale> & of the container gives qualitative
017 NN 1 information on the form of the texture.
0.05- IO | Most importantly, in the presence of a magnetic fiElg,
' NN andF¢ define a length,, = 65\ g, /(8aH?) cH .36 Com-
0 . . . . N parison ofFy and Fg gives another one, the dipole length
0 0.2 04 . 08 0.8 T &5=\\ga/gpA%~10 um>&,, related to possible perturba-

[+

tions of the rotation angl® from its equilibrium valued,.

As stated above, we assume there is no interaction present
which could force such perturbations, and therefyelays

no role. In any case, for most practical purpoggs!>é&p,

and such a perturbation would decay quickly on the scale
of I.

For very small magnetic field§,>1, and§ is thus also
fields near a flat surface. In this case there are three relevanot a relevant length scale. The only important hydrostatic
contributions to energyper surface ared?): (i) the surface- interactions in this case are the surface-dipole enérgy
dipole energyFsp/L?~b,; (ii) the surface-field energy and the gradient energiég; andFsg. Now the interesting
Fsu/L?~dH?, and (i) one related to the bending of the question is simply whether the walls of the container are
texture when there is a uniform perturbation at the wallseparated by long enough distancesFgp to be essentially
(caused by Fgy, for example, (Fg+Fpy)/L2 minimized, or small enough distances for no textural varia-
~ 65\ g,aH%/8%H. All of these have different field depen- tion to occur at all—the minimum configuration &g

FIG. 4. Gradient energy parametex§s (dashed line: specular
wall; dash-dotted line: diffusive walland 2\, (solid line) in the
weak coupling approximation. The upper curves areHp=0 and
the lower ones folFi=—1. F§ and higher-order parameters are
assumed to be zero. The unitégéy, whereey=rAveN(0)kgT, .

dences, but their values turn out to coincideHat 1 mT. It

is seen that at fieldsl<= 1 mT the constantgp always
dominates, and thus will be aligned perpendicular to the
surface. FoH= 1 mT the dominant surface interaction is

Fsy, and the local texture is determined by its minima.
The conclusion about the relative magnitudes$-gf, and

=Fg+Fgs. An elementary estimation of the length schle
at which there is a transition from one behavior to another
giveslo\g,/(b,—b,), where the constant of proportional-
ity is of order unity. Sincé,<b,, we can drop it and define

a surface-dipole lengttésp=A\g,/b,. Using the numerical
values calculated above, at zero pressure we obtain

Fsyis true also in general. However, to determine the texture

at the surfaces in more complicated restricted geometries, the Ngz 2.5 mm, T~0

o | | | =, ~leg1-TIT) 2 mm, T~T,. Y
Tl --- b,
60} \x\ — b, VIII. ISOTEXTURAL JOSEPHSON EFFECT
0l \\\ The Josephson enerfig. (6)] of a pinhole depends non-
oF T T e trivially on three parameters: the phageand two param-
= 1ol Tl . | eters describingj;;=R;R%;. In addition there is depen-
52 Tl AN dence on the surface scatterififfusive vs specular on the
2 3l RN \\ i temperaturel /T, and onW/D. Below we can present only
N RS ' some representative parts of this parameter space. In this
< ool N o section we plot isotextural current-phase relationships, where
\ ;j is assumed constant (¢, ;). The possiblep depen-
1ol . \‘_ dence ofij;; is considered in Sec. IX.
The pinhole coupling has the maximal symmédteg. (6)
0 . . . . independently of the shape of the hole as long\d® =0.
0 0.2 0.4 0.6 0.8 1

In terms of A this means, for exampleF,(#,n" AR)
=F,(¢,ARAY)=F,;(¢,—n",—n%), and similarly for the
FIG. 5. Surface dipole interaction parametbgs(dashed lines ~Mass current. The mass current is given in unitsJgf
andb, (solid lineg in the weak-coupling approximation and with =2mMzveN(0)kg T A,, whereA, is the total open area of
F2=0. The lower of each pair is for a diffusive wall and the upper one or more pinholes. In most cases only the phase differ-
for a specular wall. The unit df, andb, is gp(kgT.)%&o. ences in the rangg0,7] are shown due to the symmetry

T
c
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J(2m—¢)=—J3(¢). All plots are made forF{=0. Tests 1.4 : :
with F§=—1 show no qualitative differences and at most a =>=> 7Te=0.1
few percent quantitative difference #{¢) even at the low- 1.2 constant op 0.2
est temperatures. 3
r 0.4
A. Spin-rotation axes perpendicular to wall 0.8} 0.5

We first study the case where the spin-orbit rotation axes 0.6
n-R are perpendicular to the intervening thin wall. This situ- 0.6 0.7
ation is realistic if the external magnetic field is small
enough H=<1 mT) and if there are no other walls with dif- 041 0.8
ferent orientations nearby. Four differentonfigurations are 0.2k 0.9
then possible, namely, the combinatiais®= +Zz, wherez
is normal to the wall. These give rise to two different 0 : . . .
current-phase relations corresponding to parafieHnR) or 0 0.2 0.4 o/ 0.6 0.8 1
antiparallel = —AR= +2) situations. The parallel case is 0.05
actually more general, because thevectors need not be ' 7-/7-0'=0.1 <=
perpendicular to the wall to still give the samK ). 0.2} 1
The current-phase relations are shown in Figs. 6—-8 corre- constant op
sponding to three different surface models. 0.15f

First we consider the case of constant order parameter. oAl
Here A©)(Kk,r) is not calculated self-consistently using any ~°
boundary condition, but instead is assumed to have its con- 0.05
stant bulk formAk all the way to the wal(no pair breaking ,,
This is the situation discussed by Yip,and the current- 0
phase relations shown in Fig. 6 are exactly the same as ob- _g g5}
tained by him. The parallel case is well known: the same
result was first obtained by Kulik and Omel'yanchuk for ~ -0.1p
microbridges ins-wave superconductors, and it was subse- ‘ . ‘ .
quently generalized to the case #fle by Kurkijavi.'® The - 015 0.2 0.4 0.6 0.8 1
feature found by Yip is seen in the antiparallel case. Very o/n

close toT, the current-phase relation is sinusoidal, but at

temperatures below about U5 the = state appears: FIG. 6. Isotextural current-phase relations for a pinhole in a wall
a strong kink and a new zero d(¢) develops around. with a constant order parameter on both sides. The top panel corre-
b= sponds tont=nAR, and the lower panel ta-=—AR=+2 W/D

The self-consistent surface models lead to considerablgo'

suppression of the order parameter at the wall. As a conséions?® The critical current for a constant order parameter is
quence,J(¢)’s are different for a specular surface and aalways the highest, and that for a diffusive wall the lowest.
diffusive surface, shown in Figs. 7 and 8. Both surface modor antiparalleh vectors the roles change: the constant order
els result in qualitatively similad(¢)’'s. The parallel-case parameter case has tlmvest 1, due to the strong cancel-
current-phase relations look similar to those by Yip, althoughation between different quasiparticle directions, but the
their critical currents are slightly reduced. A clear differencenegative extremum aroungl= 7 is nearly as pronounced as
is seen in the antiparallel cases: First, the whi(lé) ap- the positive one. It is clearly visible that the other extrema
pears to be shifted by so that the current is mostly negative appear only at much lower temperatures for diffusive and
on the phase intervdl0,7]. Second,J(¢) remains sinu- Specular surfaces.

soidal down to very low temperatures. An additional kink ~The dotted lines correspond to the high-temperature ap-
begins to form only at around Or2. Now the kink is also ~Proximations obtained from Eq$41)Afor a diffusive wall,
shifted from ¢=m to $=0. We continue to call this a= -6, (2m3/fi)(a+2p) for parallel n's and (2m3/#i)[a

state because it represents a local minimurf gfip) thatis ~ — (7/4)8] for antiparalleln’s. These lines follow the correct
shifted from the global minimum of ;(¢) by the phase cfitical currents very well down to temperatures around
differencesr. =0.4T.. The current-phase relations show some deviation

Figure 9 shows the critical currenfs and the possible from the sinusoidal form at temperatures aboveTQ.#h
additional extrema of(¢) as a function of temperature. For SPecular and diffusive cases, but the deviation is much
parallel i vectors such a plot has been published in Ref. 245maller than for a constant order parameter.
but there the result for a pinhole in a specular wall was
incorrect. Close td';, J.(T)<1—T/T, for a constant order
parameter and a specular surface, and for a diffusive sur- In order to study other orientations af'R we first con-
faceJ(T)=(1—T/T,)?, as expected from previous calcula- sider the case of relatively large magnetic fieldsz1 mT.

B. Other orientations of spin rotation axes
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FIG. 7. Isotextural current-phase relations for a pinhole in a
specularly scattering wall. The top panel correspondg ten® and
the lower panel tai"= —AR=+2 F}=W/D=0.

FIG. 8. Isotextural current-phase relations for a pinhole in a
diffusely scattering wall. The top panel correspond#ite- AR and
the lower panel ta\-=—AR=+Z2 Fi=W/D=0.

. . o . 7*=0.46w, and m states are present in the rangg
The configurations, which minimize the surface magnetic in-< 427 . .. 0.50r at temperature O%. The top and bot-

teractionF g, [Eq. (47)], depend on the anglé, betweerH  tom solid lines in Fig. 10b) show the extrema of(¢) as
and the wall normab=2. Our results, obtained using the functions of . The middle solid line shows the prediction
self-consistent order parameter for a specular and a diffusivgf the tunneling model. The tunneling moddiq. (7)] al-
wall, are qualitatively similar to Ref. 10, but differ in details. \yays has a sinusoidal isotexturd( ) = J.sin ¢, where J,
Figure 10 shows the four differed{¢)’s which are possible =(2m3/h)E. and E.=aR: RR +B(RERR +RE RR).
_ . . ~L R . - ‘uz tuz XX By Ty

at 6 =0.457, corresponding to four differemt-" configu-  Therefore, it has only a single extremum vallie (in the
rations AA,AB,AC and CD, as defined in Ref. 10. Also range O<¢<). Figure 11b) shows that ther states
shown is the dependence &f) on 6y, when then-R are  (where two extrema appeatake place around the configu-
in an AB configuration. Ford,=0 the AB configuration ration whereJ, changes sign by going through zero.
gives the antiparallel case studied above. These should be Figure 11b) shows the extrema at three different tempera-
compared with Figs. 4 and 5 of Ref. 10, where the same plotgures. At high temperatures the range wherstates occur is
were given for the constant order parameter. It can be seefery narrow. Also, in configurations showingrastate, both
that 7 states are not uncommon at low temperaturethe negative and positive extremalfip) are much reduced
T~0.1T,. relative to the maximal critical currents shown in FigaP®

For a systematic study it seems to be more economic tQutside of the range whefg.~0, J(¢) is nearly sinusoidal
specify A-R directly. Let us consider the case where the po-and the critical current is well predicted by the tunneling
lar angle ofn' is changed bufi® is kept constantn‘-z model. With decreasing temperature the range of the con-
=cosy-, andAR=2. It can be seen in Fig. 14) thatJ(¢) figurations showing ar state widens and the extrema get
differs essentially from the si# shape around angles" larger. These results are not restricted to the case wifere
~0.467. The current is nearly proportional to sigfat =2, but are valid for general configurationsfofR. This can

064530-12



PINHOLE CALCULATIONS OF THE JOSEPHSON ... PHYSICAL REVIEW &5 064530

1.4t ‘ ‘ > ,\: —— const. op
(@) —— specular
1.2r —o— diffusive H
------- o+2p
1k 0.5
-° 0.8r -°
~ ~
=060 e, S =
0.4r
-05
0.2r
0_
-1 . . . .
0 0.2 0.4 T 0.6 0.8 1 0 02 04 06 08 1
0/2n
0.7 oo _ ‘ <\':| = — const, op+ | 0.5
¢ ~o. (b) --- const. op -
0.6 S ~<>\_ —o— specular + H
~. -¢- specular -
0.5- SO —o— diffusive +
Cog T -o- diffusive -
0.4} Ol T So | e diff. |o.-(7/4)B| ||
=~ N
0.3r S
0.2r
0.1r
0_
0 -0.5 = ‘ - -
0 0.2 0.4 0.6 0.8 1
o/ 2r

FIG. 9. Isotextural critical currents as functions of the tempera- ] ] ] ]
ture. The linesiwith and without markepsare theoretical pinhole FIG. 10. Examples of current-phase relations in a high magnetic
with Jo=213 ng/s(Sec. X. For theoretical results the upper and current-phase relations for magnetic field anglg=0.457. The
lower panels correspond to parallel and antipardilelectors, re- nomgnclatgre follows the_ def|r!|t|ons of Ref. 1@) The ef_feCt 9f
spectively. For experimental results they correspond td-tfaadL. ~ Varying 6y in the AB configuration. The values dfy are given in
states, respectively. The signs ( —) denote the negative and posi- the Iegend_. Thg curves are for a pinhole in a diffusive walll at
tive extrema ofl(¢) that appear in the case of antiparafid. The =0.1T;, with F;=W/D=0.
experiment shows two extrema in bdthandL cases, whose signs

are unknown. The calculations are f6f=W/D=0. the phase differenceb is zero, the quasiparticles ofHe

) , ) effectively “see” a change in the sign of the order parameter
be seen as a manifestation of a general difference between y g g P

tunneling junctions and weak links, as discussed in Ref. 384(k).alon.g such a trgjectory. However, df is nearm, such
In situations where a tunneling supercurrent is prohibited hyiuasiparticles effectively see a constant order parameter.
symmetry, there can still be a small supercurrent flowing in al Nis means that the scattering reduces the energj=atr

corresponding weak link, although with some restrictions orfelative to the energy ap=0. This could work as a mecha-
the form ofJ(¢). nism for the formation ofw states even when the spin-

rotation axes on the two sides are equal. This mechanism is
closely related to ther state mechanism of Ref. 10 and the
effects discussed in Ref. 39 fad contacts.

Let us consider quasiparticle scattering inside a pinhole The effect of the scattering on the current-phase relation is
caused by a finite aspect rat/D. In a p-wave superfluid shown in Fig. 12. The main change is the decrease of the
this can lead to a current-phase relationship which is moreritical current. Contrary to our expectation of formingra
complicated than some average of the ones obtained usingstate, a dip develops @t~ /4 with increasingV/D. How-
tunneling model and direct transmission. Consider a deever, this happens only in the region\wfD where distribu-
flected trajectory(Fig. 2) which is transmitted but the mo- tion (28) has probably ceased to be valid. For swéiD the
mentum direction is nearly reversed. Assume fitat AR, If ~ only effect is to reduce the critical current, and the relative

C. NonzeroW/D
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FIG. 11. Change of isotextural current-phase relatianand FIG. 12. Current-phase relations for diffusive scattering in the

extremal currentgb) as a function ofy-=arccosh; for AR=2. In  aperture forT/T,=0.1, F{=0, andW/D=0.0...0.7 inorder of

(a) the current-phase relations are shown at interas =0.02:r decreasing critical current. Thievectors on are parallel on the two
at temperature 0% . In (b) the extrema ofl(¢) (top and bottom  sides of the junction.

curves of each typeare compared with the tunneling model results

(middle curvey at temperaturesT/T,=0.1, 0.4, and 0.6. The Hegre 7]L’R and 77L’R are the polar angles of-R and ﬁL,R,
anglesn_g andm— 75 correspond to possible bistable states, as disyagpactively. In the case of symmetric left and right sides, the
cu(sjsFe;j_l\rJWSDei.OX ,IA the flgureI is calcutlljlted Ifotr dlf;usg icattfe“ngstiffness (or rigidity) parametersy-R are equal §-= R

andr, = —9. In [he specular case the refative deviation from _ v), but the more general form will be useful later.

; S o
the tunneling model is slightly larger{20%). The texture is now found by minimizing the free energy

initial decrease does not seem to depend essgntlally on the F:FJ(d),ﬁL,ﬁR)_i_Frig(ﬁL,ﬁR,ﬁ; AR, (53)
temperature. The results for specular scattering are very
similar.

with respect tai" andnR. If the stiffness parameterg-R are
sufficiently small, this will lead to ap-dependent texture.
IX. ANISOTEXTURAL JOSEPHSON EFFECT This is easiest to see usi_ng the tunneling maéel. (7)] f(_)r
Fj. If cos¢>0, the minimum F;=—(a+2B)cos¢ is
In Sec. VIII we assumed that thetexture remains con- achieved byn-=AR. In the opposite case c@g<0 the mini-
stant when the phase differengeis changed. In this section mumF;=—(a—28)cos¢ (assumingy< B) is achieved by
we study the anisotextural Josephson effect where the textufg-R=(xx+y= \/§§)/\/§, for example. Neglecting the ri-
is allowed to change as a function gf'! We demonstrate gidity [Eq. (52)], this leads to ar state with a piecewise
the anisotextural effect using a simple model. The possiblginusoidal current-phase relation
existence of either isotextural or anisotextural Josephson ef-
fects in the Berkeley experimeris discussed in Sec. X. {(2m3/ﬁ)(a+2ﬁ)sin¢ for cos¢p>0
(2mg/th)(a—2B)sing for cos¢p<<0.

(54)

A. Phenomenological model o o o
his ideal current-phase relation is smoothed by finfte?.

ith increasing stiffness, the texture changes less as a func-
on of ¢, and, fory-R>a, B, the current-phase relation
reduces to the isotextural one.

We consider a planar wall separating two half-spaces
3He-B. In the absence of perturbations, the surface interaqT
tion [Eq. (44)] fixes a constant texture on both sides. The
orientations on left and right hand sides are denotedipy
and R, respectively. They both are either parallel or anti-
parallel to the normak of the wall: A= +Z and A= +2. _ .
Let us now place a weak link in the wall. The Josephson Instead of using the tunneling model, we now assume the
coupling energyF , [Eq. (3)] may now favor a different ori- wealf link to consist of an array of pinholes. The phages
entationAR+ + 2 at the junction. Such a change is Opposedand n-R are assumed to be constants over the array. Conse-
by a “rigidity energy,” which consists of gradient energy and duéntly, we can use the single-pinhole results for cuigqt
possibly other textural energi¢gqs. (43)—(48)]. We model ~ (38)] and coupling energjEq. (40)] simply by replacing the

the rigidity energy by a quadratic form open ared, by the total area of the arrak times «, the
fraction of area occupied by the holes.

We start to estimatey including first only the gradient
Frig= 7" (7= 72)2+ yR(n= 5%)2. (52 energy:

B. Model parameters
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This can be obtained from the sum of gradient enerdiess.
(46) and (45)], assuming\sg=4A g, and Ag;=2\go; also
see Ref. 37. We shall assume thataries only in one plane,
the xz plane, for example. This allows one to describby
its polar angley alone:n=coszz+ sinzX. In addition, we
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can assumey to depend only on the radial directiorfrom —_ <==>
the center of the aperture array. With these assumptions th@, 1
energy[Eg. (55)] on one side simplifies to 3
©
507 c 05
Flﬁg:T)\sz drr2(d, 7). (56) “
L L . 0 0.97¢
This is minimized by a function of the formy(r)=A/r 0 05 10 05 1
+C, but to avoid a divergence at=0, we have to cut off o/2n o/2n
the integration at some, for example at the radius of the
arrayR= A/ . As a result one finds a forfieq. (52)] with FIG. 13. Anisotextural current-phasi¢) and energy-phase
the stiffness parameter F(¢) relations for bistable states.=0 [(a) and(c)] and 7L=
[(b) and (d)]. The curves correspond to different temperatures at
507 intervals of 0.T.. The arrows indicate thé orientations in the
Y= T3~ a2R GD Jero branch, wheré-=n% and AR=n%. The rigidities on both

o o _ sides are equaly*=yR=0.1y and »7=0. The weak link param-

The rigidity has also a contribution from the surface-dipoleeters andy (Fig. 3 are evaluated for the Berkeley arréec. X.
interaction[Eq. (44)]. AssumingR< ésp [Eq. (51)], it can be  The wall is assumed to be diffusivE2=W/D=0.
shown that the relative correction to E¢7) is small
(Ayly~R/ésp) and thus can be neglected. We have studied the effect of increasinl= y® from the

In order to obtain numerical values for [Eq. (57)] we  value 0.1y. We find that ther state first disappears in the
use the Berkeley array, wheR~0.11 mm? The tempera- antiparallel case and then also in the parallel case. For ex-
ture dependence is given Bys,, shown in Fig. 4. The re- ample, ther state in the parallel cagelefined as positive
sulting y(T) is plotted in Fig. 3. We use this value as a J’()] disappears whes-R~0.2y atT=0.4T.. The aniso-
standard, to which the parameteys® used in our calcula- textural effect on the current-phase relation still continues up
tions refer. Note that the reference valyeof the rigidity  to y“'R~0.7y. Since the couplingEq. (40)] scales withA,
energy is larger by one order of magnitude tharand g, =Ak=mR?k and the stiffnes§Eq. (57)] with R, we obtain
which give the magnitude of the Josephson coupling energyhe following necessary condition for the appearancerof
(Fig. 3. states in the parallel case at temperatiies).4T . :

In order to calculate the current, the free endigg. (53)]
should be minimized with respect to three angles parametriz- Rxk>0.5 um. (58

ing "-R: 54, 7R, and the relative azimuthal angje The , _
results of such a minimization fop"= yR=0.1y are shown Thus the larger the radiurR of the array and the higher the

in Fig. 13. In creating these curves, we proceeded from leffatio Of the open area, the better the chances of realizing
to right, using the minimum anglesyt, 7% x) of eachg  the anisotexiurair state.

step as the initial guess for the next step. The panels on the 't IS interesting to compare conditio58) with the
left are for the parallel casert = 73=0). For ¢ from 0 to Ginzburg-Landau calculation in a single large htfi@here

approximatelyr/2, the vectorsi~R remain exactly perpen- m states could be seen for hole rali>5.5, . Settingx

= i = 36

dicular to the wall. At low temperatures, a discontinuous L f?‘f‘d extrapolatlngfe,__(o.ﬂc) . 8'8 nm,” we havg the
) - condition Rk>0.48 um, in surprising agreement with the
jump to another branch af(¢) occurs at arounds= /2, .

~LR ) S . . pinhole result above.
wheren-" are tilted from their original perpendicular posi-
tions. With increasingp there is a jump back from thig
branch, so that forp>3#/2 the minimum solution again
corresponds to perpendiculas. The panels on the right are We go slightly beyond the simple model of an infinite
for the antiparallel case 7t=m, 7%=0). Here thes  planar wall introduced in Sec. IXA. First, we allow the
branch, wherei's are tilted, occurs not ah~ but at¢  asymptotic direction$; " to be arbitrary. Second, the stiff-
~0. The fact that the curves are n@nt)symmetric with  ness coefficients" 'R can be different. In Fig. 14 we study
respect tog= = indicates that the jumps between different different values of7% while »7=0, y-=0.3y, and y®
branches are hysteretic. =v. Here the extreme curves represent parallel and antipar-

C. Asymmetric case
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FIG. 14. Anisotextural( ) for different asymptotic angles: 0 0.5 10 0.5 1
at temperatures 012 (a) and 0.4, (b). The other parameters are o/2xn o/2n

7R=0, y*=0.3y, and yR=1y. The different curves correspond to
75 at intervals of 0.%. Other parameters are the same as in Fig. FIG. 15. Anisotexturall(¢) and F(¢) for bistable statesy-
13. =0.37 [(a) and(c)] and 5 =0.77 [(b) and(d)]. The textures have
different rigiditiesy- = 0.3y, yR=y, ands¥=0. Other parameters
allel ASR. It can be seen that neither of them have atate ~ are the same as in Fig. 13.
at 0.4T; and only the parallel case has one atTQ.2How-
ever, at intermediatey the 7 states still persist in a wide the deflected trajectories were completely neglected. Third,
range of% . The current-phase relationships are not hysterthe coupling parameters and 8 were scaled by different
etic at high temperature, but hysteresis develops at lowefactors, which is not possible when using the general pinhole
temperatures. Figure 14 should be compared with the correesult. Taken together, these explain why Fig. 13 is different
sponding isotextural Fig. 11. In the isotextural case the from Fig. 2 in Ref. 11.
states occur only in limited range, and there is no hysteresis. To be accurate, we should add to the preceding calcula-
The states withy} = /2 constant are expected to be tion the effect of the flow in the macroscopic region far away
degenerate in the absence of the Josephson couptifig ( from the weak link. Above the phase differengds defined
=0). The currents and energies for one pair of such bistablpetween the macroscopic-mesoscopic borders of the two
sta@es are shown in Fig. 15. The important_difference to I_:igsides(pig_ 1). The “true” phase difference between the in-
13 is that the curves are smooth angl there is no hysteresis. ffities can be obtained by addingr@/4)J/(7Rps) to ¢,
the case of parallel and antiparallel’s the symmetry is where the correction assumes a radial flow outside of the
spontaneously broken in the branch, whereas the tiltet. radiusR. Correspondingly the total energy receives an addi-
already breaks the symmetry, and thus thestate can de- tional contribution?/(27Rps). These rescalings do not af-
velop continuously. fect the results qualitatively.
The anisotextural model, as described above, assumes a
D. Discussion vanishingly small external magnetic field. Qualitatively, it is
The results of Figs. 13—15 contain both the isotexturafaSy t0 see what the effect of a strong magnetic field would
and anisotextural mechanisms ofstates. However, practi- P€- In a fieldH>1 mT, the strongest interaction affecting
cally the same results can be obtained all the way down t§he texture is the surface-magnetic tefigy [Eq. (47)]. If the
T=0.4T, by using the tunneling modél, [Eq. (7)], which  coupling energy scale is much smaller than this, then the
excludes the isotexturat state. As discussed above, the tun-texture will be fixed to some minimum &gy, and will not
neling model fails at high temperatures only if the Josephsodlepend on the phase difference. A strong magnetic field
energy is close to zero. The minimization procedure seems terefore suppresses any anisotexturadtate, and only the
avoid such a situation, and thus the tunneling model gives igotextural mechanism remains.
good description of the anisotextural pinhole array at tem- In order to estimate the critical field, we equate the
peratures abov&~0.4T,.. change in magnetic surface enery§ s;,~dAH? at the junc-
The relation between our earlier results on the anisotextion with the gain of energAE between ther state and “0
tural Josephson effect in Ref. 11 and those presented hebganch” at ¢=a. ThusH ~AE/(dA). For the Berkeley
deserves a comment. First, in Ref. 11 the tunneling modehrray’ AE can be estimated from the energy-phase graphs of
was used instead of the general pinhole result. Second, th&gs. 13 and 15 or from the experiments. P#=0.45T the
scattering within the hole was partially taken into account byvalues are on the order &E~0.1. .. 0.5 aJwhich yields
reducing the transmission by the fac(d) [Eq. (27)], but  the order of magnitudel,~10...50 mT.

064530-16



PINHOLE CALCULATIONS OF THE JOSEPHSON ... PHYSICAL REVIEW &5 064530

X. ANALYSIS OF THE BERKELEY EXPERIMENT | weak link

It |y
We now turn to an analysis of the Berkeley experintent. | / hﬁ'(%_ ™
There the weak link consists of a square array ok 65 @ @ Smm g 2T
holes. They were etched in a 50-nm-thick silicon chip with a
hole spacing of 3um, making the area of the array 195 K 64 mm 2
X195 um?. The holes were nominally squares of 100
% 100 nnf. However, flow resistance measurements in the ©
normal state seem to indicate somewhat larger apertures ¢ 42 mm
115x 115 nnf,“® and these larger values are used in all nu- 1.7mm
merical estimates in this paper. A sketch of the experimental Lo B

cell is shown in Fig. 16. The scattering properties tfe
guasiparticles from the silicon chip are not known, but most |
surfaces are generally believed to be diffusively scattering. g 16 Part of the experimental cell in Ref. 5. Most of the
The magnetic field is believed to be small<1 mT, and  structure has rotation symmetry around the vertical axis. The “pill-
the pressure is 0 bar. We further assume the system to be Bax” (a) between two flexible membranégiameter 1.27 cm, dis-
thermal equilibrium. tanceh=0.14 mn) forms a volume that is connected to the rest of

The central experimental findings are the bistability and®He volume only through the weak link. The weak link is made in
the existence ofr states. Bistability means that the system @ silicon chip attached to the lower membrane. The chifis
can randomly choose between two alternative states, charag0-> mm thick and has a square window opening from 250
terized by high(H) and low (L) critical currents. Both of X250 m"to some 0.9%0.95 mnt at the lower chip surface. The
these states show states. The measured extremal currentd'9U' IS based on a drawing supplied by S. Pereverzev.
are plotted in Fig. 9.

There are two major difficulties in applying the theory state withAt=—fAg, which corresponds to the polar angle
presented in this paper to the Berkeley experiment. Firstyt=m— 775. There can be additional degeneracy with re-
since&y =77 nm, the holes are too large to be pinholes. Alsospect to the azimuthal angle.
the holes are too small for the Ginzburg-Landau calculations When we add the pinhole Josephson coupling, the degen-
to be reliable*'* We use the pinhole model because moreerate states above give rise to precisely two different current-
accurate calculations would be much more demandingPhase relationships ifg# 7/2. These two are obtained by
Moreover, due to the approximate nature of our pinhole calstudying configurations withy"= 75 and 7-= 7 — 75 with a
culations for finite aspect rativ/D, we will only use the fixed "R=2. Configurations of this kind are studied in Fig.
pinhole theory in the limitW/D =0, although experimentally 11. They can in principle explain both the bistability and the
W/D=~0.4. Another reason for using//D=0 is that the existence ofr states. Quantitative comparison with experi-
measured critical currents are clearly larger than calculatetent gives, however, very poor agreement. The problem is to
for pinholes withw/D = 0.4 (Sec. VIII C). The second major fit the four experimental points in Fig. 9 at any temperature
difficulty is that the cell is complicated, and its dimensionsWith the four extrema in Fig. 1b) at anglesng and =
are on the same order of magnitudetgs [Eq. (51)]. Instead  — 77 Using 75 as a fitting parameter. One such construction
of a proper calculation of the texture, we will make someat T=0.4T is shown by dashed lines in Fig. (4. In that

simple estimates and introduce one adjustable parameter. case, one finds thie state with arr state, but then nar state
appears in théd state, and all currents are more than by a

factor of 2 too small. Alternatively, if one tries to fit the
A. Isotextural Josephson effect critical current in theH state, one has to approach the parallel

. .and antiparallel states, where mostates appear at this tem-
Here we consider the case where the Josephson COUpI”E%rature(Figs 7-9

can be considered as a weak perturbation, which does not
affect the texture on either side of the weak link. For a small
magnetic field, the dominant orienting effect oncomes B. Anisotextural Josephson effect

from the surface-dipole enerdy¥q. (44)]. In region (a) of For the anisotextural Josephson effect we have to calcu-
Fig. 16 this clearly favors the uniform texture= £z, where  |ate the rigidity energyEq. (52)]. The region(a) is much

zis along the axis of the cell. The situation is more compli-thinner thanésp, and therefore we have to consider a two-
cated on the other side of the junction. The axial orientatiorimensional texture instead of the 3D texture studies in Sec.
is preferred in the wide cylindrical regiofd). The narrow |X B. In the present case the surface interaction is important.
cylindrical region(e) favors nLz. The tendencies from re- We find thatyR is proportional tox g,h/In(vVhésy/R) instead
gions(d) and(e) compete in regioric) below the chip, and  of \,R [Eq. (57)], but these two happen to be of the same
affect the texture in the window regiof). Let us assume order of magnitude. Thus the texture in regi@ is rather
that the minimization of textural energi¢ggs. (43—(48)]  stiff, and we assumeR~y.

favors at the junction a particular orientationféf=nnj with In order to analyze the other sidk)( we first consider a
polar anglez;. Then there must be a degenerate texturatonical region between two radR, andR,. Otherwise, we

064530-17



J. K. VILJAS AND E. V. THUNEBERG PHYSICAL REVIEW B65 064530

use the same approximations as for the half space in Sec. XI. CONCLUSIONS
IX B. We obtain the rigidity energy
We have presented a fairly complete study of the dc Jo-
(172)_5077 B R.R, B ) sephson effect ifHe-B using the pinhole model. We have
Frig _T)\Gz(l cosd) RZ—Rl[n(Rl) 7(R2) ], derived a general energy functional for the pinhole coupling
(59 energy. A computer program has been constructed to calcu-
late the energy and the currents, and we have plotted isotex-
whered is the opening angle of the cone. This reduces to theyral current-phase relationships for various cases. Besides
previous resulfEq. (57)] in the limits 6= /2 andR,=.  the mass current there is also a spin current, but that has not
We now consider the regiorib) and(c) as three consecutive peen examined in this work. However, in contrast to most
conical regions. The middle one corresponds to the conicglinpgle calculations, we have also considered a finite aspect
region of the chip with¥=6,,~38°, and the two others have |4iig of the hole, although no extensive studies have been
6=m/2. We neglect the effect of regior(s) and (€), and 546 que to the approximate nature of the model. In addi-
:ﬁ;ﬁg]ses t:fatthr:zgéog) i%)g:r\]/\(/jes é%tgifr:ntlaye. I;(s)trigaeté:omblned tion, we have calculated some surface parameteréetB.
9 We have also studied the anisotextural Josephson effect.
-1 The previous tunneling model calculations have been gener-
, (60 alized to arrays of pinholes. General conditions for the aniso-
textural effect have been discussed. It has been found that the
whereR; andR, are the radii of the inner and outer edges ofanisotextural Josephson effect depends sensitively on param-
the conical region measured from the weak link. Substitutingeters like the dimensions and the number of holes, the sur-
the numerical values we fing-~0.31y, where y is the  rounding geometry, and the magnetic field.
half-space valud¢Eq. (57)]. Thus this side is considerably  The theory has been applied to explain the experimental
softer than the other. observations made at Berkeley. We have compared the ex-
The calculations for the present parameters were alreadyeriment with both isotextural and anisotextural models.
been done in Sec. IX C. The results are presented in Fig. 180th mechanisms can in principle explain the bistability and
for different anglesn. . A representative pair of bistable the 7 states. In quantitative comparisons there is one adjust-
states is presented in Fig. 15. The calculated current-phagghle parameter describing the texture. Comparison with the
relations are very similar to those found experimentayie  isotextural pinhole model gives poor agreement, but good
w states are present in both bistable states. The critical cUggreement is obtained with the anisotextural model. Further

rent in theH state(identified with 7.,~0.3m) is very close.  experiments should be made to confirm the identification of
Some differences can be resolved. For examplesti®tate  the anisotextural Josephson effect.

is too strong in the theoreticél state, and the critical current Quasiclassical calculations of a finite-size aperture are
in the theoretical state is slightly too large. The only fitting  heeded for a better theoretical understanding. One of the is-
parameter here is tLhe textural angje, and it can be seen sues to be addressed is the effect of the aspect VatD.

from Fig. 14 thatz..=(0.5=0.2)m roughly represents the afinite hole with finiteW/D may be best approximated by a
best overall fit to the experimemtslaking into account that pinhole usingW/D =0 instead of the exact value. If so, this
t.h‘? experimental apertures are not pinholes and that only ORGould explain why our best fit with the Berkeley experi-
fitting parameter is involved, the agreement between th?nents is obtained with that choice

anisotextural theory and the experiment is amazingly good. Experiments on the Josephson effecthie-B have also

The anisotextural Josephson model gives several predi%-een done using a single apertfioth - states and multi-

tions that can be tested experimentally. The shape of th bilit b d. The oinhole th hardlv b
current-phase relationship crucially depends on the numb abriity are observed. The pinnole theory can hardly be ap-
lied to this case, because the aperture is much larger than

of parallel apertures and on their spacing. It depends on th S )
geometry of the cell surrounding the weak link. It also de-tN€ coherence lengtky. Also, the distinction between iso-

pends on the magnetic field. Furthermore, the current-pha _xtural and anisotextl_JraI effects is not well _defined for a
relationships become hysteretic at low temperatures. Alpingle aperture. The Ginzburg-Landau calculations should be
these dependences are either absent or very different in tHBOre accurate here, but unfortu?lately they have been done
isotextural model. The dependences can be quantitatively egystematically only for parallei’s.
tracted from the theory presented above.

None of the predictions have yet been studied experimen-

L 507
Y ”T)\Gz

1+ cosf,, (1 1)
R 1-cosh,\R; R,

tally, possibly excluding the hysteresis. The first pAper ACKNOWLEDGMENTS
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