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Mechanism of unconventional superconductivity induced by skyrmion excitations
in two-dimensional strongly correlated electron systems
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
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We propose a mechanism of unconventional superconductivity in two-dimensional strongly correlated elec-
tron systems. We consider a two-dimensional Kondo lattice system or double exchange system with spin-orbit
coupling arising from buckling of the plane. We show that a Chern-Simons term is induced for a gauge field
describing the phase fluctuations of the localized spins. Through the induced Chern-Simons term, carriers
behave like skyrmion excitations that lead to a destruction mechanism of magnetic long-range order by carrier
doping. After magnetic long-range order is destroyed by carrier doping, the Chern-Simons term plays a
dominant role and the attractive interaction between skyrmions leads to unconventional superconductivity. For
the case of the ferromagnetic interaction between the localized spins, the symmetry of the Cooper pair isp
wave (px6 ipy). For the case of the antiferromagnetic interaction between the localized spins, the symmetry of
the Cooper pair isd wave (dx22y2). Applications to various systems are discussed, in particular to the high-Tc

cuprates.

DOI: 10.1103/PhysRevB.65.064513 PACS number~s!: 74.20.2z, 74.20.Rp
t
h
ti
th
ic

ay

r
ti
y
h
e

t
e

o
e

o
e
ye
o
la

e
-

-
f
t
o

tic

f
ition
e.
ed
ob-

ho-

tiv-

ve
ry

xt.

al
s in
s

ort-
an-

oles
-
s.
the
I. INTRODUCTION

Since the discovery of high-Tc superconductivity in
cuprates,1 a large number of studies have been invested
uncover its mechanism of superconductivity. Although t
issue is still in controversy, there are some specific proper
concerning the mechanism of superconductivity. First,
high-Tc cuprates show two-dimensional highly anisotrop
behaviors. From their structure, the high-Tc cuprates have a
layered structure of CuO2 planes with several CuO2 layers
sandwiched between insulating layers. Reflecting this l
ered structure, measurements of the resistivity2 and optical
conductivity3,4 show strong anisotropic behaviors. Furthe
more, the electromagnetic properties of the superconduc
state is well described by a Josephson-coupled la
model.5,6 Second, it seems that there is a close relations
between magnetism and superconductivity. In the absenc
carriers, the system is a charge-transfer insulator.7 Due to the
large charge-transfer gap, a localized magnetic momen
produced at each Cu site. These localized magnetic mom
form antiferromagnetic long-range order below Ne´el tem-
perature.~Néel temperature is not equal to zero because
weak interlayer coupling.8! When holes are doped in th
CuO2 plane, they occupy O 2ps orbitals9–12 and destroy an-
tiferromagnetic long-range order. As we increase the h
concentration, Ne´el temperature decreases. Upon furth
doping, the antiferromagnetic long-range order is destro
and the system becomes the superconducting state. Als
the phase of superconductivity, antiferromagnetic corre
tions are observed.13,14

In contrast to conventional BCS superconductivity, sup
conductivity in the high-Tc cuprates is unconventional. Sym
metry of the Cooper pair is nots wave butd wave, or more
precisely,dx22y2-wave.15 The fact that symmetry of the Coo
per pair isd wave, superconductivity occurs in the vicinity o
antiferromagnetic long-range order, and the absence of
isotope effect16 suggests that the underlying mechanism
0163-1829/2002/65~6!/064513~13!/$20.00 65 0645
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the high-Tc cuprates be ascribed to the antiferromagne
correlations.

In addition, the structure of the CuO2 plane seems to play
an important role for the pairing mechanism of high-Tc su-
perconductivity. In La22xSrxCuO4 system, suppression o
superconductivity is observed at a structural phase trans
point from an orthorhombic phase to a tetragonal phas17

Similar suppression of superconductivity, which is induc
by the same kind of structural phase transition, is also
served in La22xBaxCuO4 system aroundx51/8.18 Since
there is buckling of the CuO2 plane in the orthorhombic
phase, the fact that superconductivity occurs in the ort
rhombic phase suggests that buckling of the CuO2 plane
plays a significant role for the occurrence of superconduc
ity.

In order to explain the mechanism of high-Tc supercon-
ductivity in the cuprates, a large number of theories ha
been proposed. Among others, the spin-fluctuation theo19

proposes a pairing mechanism withd-wave symmetry, or
dx22y2 symmetry. For thed-p model, which is believed to
capture the essential properties of the CuO2 plane, the spin-
fluctuation theory predictsdx22y2 pairing betweend-orbital
electrons at Cu sites.20,21 The same kind ofd-wave pairing,
i.e., dx22y2 wave pairing, is discussed in a different conte
In the resonating valence bond~RVB! theory,22,23 spinons
form d-wave pairing.24 However, spinons are charge neutr
quasiparticles and the electric current is carried by holon
the RVB theory. That is,d-wave pairing between spinon
does not lead tod-wave superconductivity by itself. The
d-wave pairing state of spinons rather describes the sh
range antiferromagnetic correlations in the phase without
tiferromagnetic long-range order.25

Although the relationship between these twod-wave pair-
ings has not yet been clear, the fact that the doped h
occupy oxygenp orbitals9–12 and the sign of the Hall coef
ficient is positive26 indicates that carriers are doped hole
We may say that doped holes form the Cooper pair in
©2002 The American Physical Society13-1
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TAKAO MORINARI PHYSICAL REVIEW B 65 064513
superconducting state. What we require to describe highTc
superconductivity is thed-wave pairing mechanism betwee
doped holes.

In this paper, we propose such a mechanism of super
ductivity. We consider a two-dimensional multiband mod
which consists of a carrier system and a localized spin s
tem with strong coupling between them. As a typical can
date of such a system, we consider a Kondo lattice system
a double exchange system. The high-Tc cuprates can be de
scribed as a Kondo lattice system,27,28 where carriers are
doped holes and localized spins are at Cu sites. In orde
take into account the effect of buckling of the plane, w
consider spin-orbit coupling arising from buckling. We sho
that carriers induce frustration in the localized spin system
the presence of spin-orbit coupling through Kondo or Hu
coupling. This frustration effect can be described in terms
skyrmion excitations. The skyrmion excitation is created
each position of the carriers and plays a role of magn
field for the carriers. Because of the magnetic field produ
around a carrier, the Lorentz force acts on another car
Due to this Lorentz force an attractive interaction is induc
between carriers and leads to unconventio
superconductivity.29,30

The outline of this paper is as follows. In Sec. II, w
describe the model and the effect of spin-orbit coupling.
Sec. III, we show the mechanism of superconductivity in
case of ferromagnetic interaction between localized sp
Frustration effect induced by carriers is described as s
mion excitations through a Chern-Simons term for the ga
field which describes the phase fluctuations of the locali
spin system. The fact that carriers behave like skyrmion
citations provides a destruction mechanism of magn
long-range order by carrier doping because the magn
long-range order is destroyed by the skyrmion excitatio
After magnetic long-range order is destroyed by the sk
mion excitations, the Chern-Simons term plays a domin
role and the attractive interaction between skyrmions lead
p-wave superconductivity. In Sec. IV, we show the mech
nism of superconductivity in the case of antiferromagne
interaction between localized spins. In this case, the sym
try of the Cooper pair isd wave, or more preciselydx22y2

wave. We also show that the doping carrier induces me
insulator transition at the magnetic transition point. In Sec
we discuss applications to high-Tc superconductivity and
other systems.

II. MODEL

We consider a two-dimensional multiband model whi
can be reduced to a model consisting of carriers and lo
ized spins with strong coupling between them. Examples
such a model are the Kondo lattice system and the do
exchange system. In order to include the buckling effect,
introduce spin-orbit coupling arising from it.

A. Hamiltonian

The Hamiltonian of the Kondo-lattice system or th
double exchange system with the spin-orbit coupling te
may be written in the following form:
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H5H01H int1Hso1Hspin. ~2.1!

Here the first term is the kinetic energy term for the carr
system,

H052t(
^ i , j &

~ci
†cj1H.c.!, ~2.2!

where the summation is taken over the nearest-neigh
sites. Carrier operators are represented by a spinor nota

ci
†5~ci↑

† ci↓
† !, cj5S cj↑

cj↓
D . ~2.3!

The second termH int represents Kondo or Hund couplin
between the carrier spinsj and the localized spinSj :

H int52Jc(
j

sj•Sj , ~2.4!

wheresj5
1
2 cj

†scj with the components ofs5(s1 ,s2 ,s3)
being the Pauli spin matrices. We take 1, 2, and 3 for
axes in spin space. We assume thatuJcu is the largest energy
scale in the Hamiltonian~2.1!.

The third termHso in Eq. ~2.1! represents spin-orbit cou
pling arising from buckling,

Hso5 i(
j

(
h5(a,0),(0,a)

cj
†l(h)

•scj 1h1H.c., ~2.5!

where a is the lattice constant and the vectorsl(h)

5(l1
(h) ,l2

(h),0) are proportional to both spin-orbit couplin
ions and the angle of buckling. The simplest example for
spin-orbit coupling term is presented in the appendix of R
31 in which the spin-orbit coupling term for thes and p
orbitals is derived. The spin-orbit coupling terms of the hig
Tc cuprates are shown in Refs. 32–34. For simplicity,
assume the vectorsl(h) for the orthorhombic phase o
YBa2Cu3O72d , that is, l(2a,0)5l(a,0) and l(0,2a)5l(0,a)

with ul(a,0)u5ul(0,a)u[l.
The last termHspin in Eq. ~2.1! represents the interactio

between the localized spins. ForHspin we take the Heisen-
berg Hamiltonian

Hspin5J(
^ i , j &

Si•Sj . ~2.6!

In general, the Dzyaloshinskii-Moriya interaction is induc
between the localized spins when there is spin-orbit coup
like Hso. However, the Dzyaloshinskii-Moriya interactio
does not play an important role in our mechanism of sup
conductivity. We neglect the Dzyaloshinskii-Moriya intera
tion in the following analysis.

B. Effect of spin-orbit coupling

In the last subsection, we have introduced spin-orbit c
pling arising from buckling of the plane. Since this spin-orb
coupling plays an essential role in our mechanism of sup
conductivity, first we need to discuss the effect of spin-or
coupling.
3-2
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MECHANISM OF UNCONVENTIONAL . . . PHYSICAL REVIEW B 65 064513
The effect of the spin-orbit coupling termHso becomes
apparent when we combineHso with the kinetic energy
term H0:

H01Hso5(
i

(
h

@ci
†~2ts01 i l(h)

•s!ci 1h1H.c.#

52At21l2 (
i

(
h

Fci
†expS 2

i

t
l(h)

•sD
3ci 1h1H.c.G , ~2.7!

up to O„(l/t)2
… in the exponential, wheres0 is the unit

matrix in spin space. The factor exp@2(i/t)l(h)
•s# has the

form of a unitary transformation of rotation in spin spac
The axis of rotation is parallel to the vectorl(h) and the
angle of rotation is 2l/t.

The presence of this rotation at every hopping proces
the carriers implies that the carriers introduce disorder in
localized spin system through strong couplingH int between
the carriers and the localized spins. Disorder produced by
carrier hopping processes provides a destruction mecha
of magnetic long-range order in the localized spin system
Secs. III D and IV B we will show that this destructio
mechanism of magnetic long-range order is represente
the effect of skyrmion excitations.

III. FERROMAGNETIC CASE

In order to illustrate the mechanism of superconductiv
we first consider the case of ferromagnetic interaction
tween the localized spins, that is,J,0 in Hspin.

A. Schwinger bosons

We are interested in the mechanism of superconducti
based on the fluctuations of the localized spins. In orde
describe the localized spins, we introduce Schwinger bos
Description of the localized spin system in terms of t
Schwinger bosons has some advantages. First of all,
straightforward to describe the magnetic long-range orde
state. The phase with magnetic long-range order is descr
by Bose-Einstein condensation of Schwinger bosons.35,36An-
other advantage is that we can directly construct rota
matrices for carrier’s spins. Such matrices turn out to
useful for the description of the localized spin-fluctuati
effect on the carriers.

Each localized spin can be described by Schwin
bosons,

Sj5
1

2
~zj↑

† zj↓
† !sS zj↑

zj↓
D . ~3.1!

Here zj s
† and zj s are Schwinger bosons at sitej and obey

boson commutation relations:@zis ,zj s8
†

#5d i j dss8 and

@zis ,zj s8#5@zis
† ,zj s8

†
#50 and the constrain

(szj s
† zj s52S.35,36 In the following, we consider the case o

S51/2 for simplicity. However, it is straightforward to ex
tend the following arguments to general values ofS.
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In terms of Schwinger boson fields, the Hamltonian f
the localized spin system can be written, up to constant te
in the following form:

Hspin52 1
2

uJu(
^ i , j &

Fi j
† Fi j , ~3.2!

where Fi j 5(szis
† zj s . Turning to the path-integral formal

ism, we introduce a Stratonovich-Hubbard fieldQi j andQ̄i j

to decouple the interaction termFi j
† Fi j :

Zspin5E Dz̄DzDlSBDQ̄DQexp~2Sspin!, ~3.3!

where

Sspin5E
0

b

dtH(
j s

z̄j s~]t2 il j
SB!zj s

1
uJu
2 (

^ i , j &
F Q̄i j Qi j 2(

s
~Qi j z̄j szis1Q̄i j z̄iszj s!G J ,

~3.4!

where thet dependence of all fields is implicit andl j
SB is

introduced to impose the constraint(sz̄j szj s51.
Now let us study the localized spin fluctuations. The sp

fluctuations are represented byQi j because we obtain̂Qi j &
5(s^ z̄iszj s& at the saddle point. The spin fluctuationQi j
consists of the phase fluctuations and the amplitude fluc
tions. Since the latter turns out to be a high-energy mode,
focus on the phase fluctuations ofQi j .

The phase fluctuations ofQi j are connected with the loca
gauge transformation ofz̄j s ~or zj s

† ) andzj s at each site. In
fact, Eq.~3.2! is invariant under the local gauge transform
tion zj s→zj sexp(2iuj). In the actionSspin, this gauge trans-
formation involves a transformation in the phase ofQi j .
That is, the transformation in the phase ofQi j can be de-
scribed by a gauge field. Introducing a gauge field and
mean amplitudeQ5^Qi j & and taking a continuum limit, we
may write the actionSspin in the following form:

Sspin5E
0

b

dtE d2r(
s

F z̄s~r ,t!~]t2 iA t
SB2 ilSB!zs~r ,t!

1
uJuQ

2
u~¹2 iASB!zs~r ,t!u2G , ~3.5!

where

A m
SB~r ,t!52 i(

s
z̄s~r ,t!]mzs~r ,t!. ~3.6!

Note that Eq.~3.5! is invariant under the gauge transform
tion: zs(r ,t)→zs(r ,t)exp@2iu(r ,t)#, and A m

SB(r ,t)
→A m

SB(r ,t)2]mu(r ,t).

B. Gauge field description of the strong correlations

The spin fluctuations of the localized spin system aff
the carrier system through strong couplingH int . We may say
3-3
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TAKAO MORINARI PHYSICAL REVIEW B 65 064513
that this strong coupling between the carriers and the lo
ized spins is the origin of strong correlations. In order to ta
into account this strong correlation effect we rotate the s
of the carrier so as to be in the direction of the localized s
at the same site. Through this transformation, the effec
the spin fluctuations on the carrier system is described
coupling to a gauge field.

The action of the carrier system withH int is

Sc1Sint5E
0

b

dtF(
j

c̄ j~t!~]t2m!cj~t!1Hc1H intG ,
~3.7!

where

Hc1H int52At21l2 (
j

(
h

@ c̄ j 1h~t!e2( i /t)l(h)
•scj~t!

1 c̄ j~t!e( i /t)l(h)
•scj 1h~t!#2Jc(

j
sj~t!•Sj~t!.

~3.8!

In order to rotate the carrier’s spinsj in the direction of the
localized spinSj , we perform the following unitary transfor
mation:

cj→U jcj , c̄ j→ c̄ j Ū j , ~3.9!

where

U j5S zj↑ 2 z̄j↓
zj↓ z̄j↑

D , Ū j5S z̄j↑ z̄j↓
2zj↓ zj↑

D . ~3.10!

Under these transformations,H int is reduced toH int→H int

52(Jc/4)( j c̄ jszcj . In the hopping term, the following
phase factor is introduced:

Ū j 1hU j5exp~2 i h•Aj h!. ~3.11!

If the phase fluctuationAj h is sufficiently slowly varying, we
can take the continuum limit.~We will discuss the validity of
this approximation in Sec. V A.! Thus we obtain

Sc1Sint5E
0

b

dtE d2r c̄~r ,t!G21~$k̂m1Am%!c~r ,t!,

~3.12!

where k̂m52 i ]m and Am is the SU(2) gauge field arisin
from the spin fluctuations of the localized spins,

Am5 (
a51,2,3

A m
a sa52 iŪ ]mU. ~3.13!

Note thatA m
3 5A m

SB. The inverse of Green’s function is

G21~$km%!5~ ikt1jk!s01g~k!•s, ~3.14!

with jk5k2/(2m)2m@1/(2m)[t#. Hereg(k) is given by

g~k!52l(a,0)kx12l(0,a)ky2
Jc

4
ê3 . ~3.15!
06451
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As a result, the total action may be written in the fo
lowing form:

S5Sc1Sint1Sspin

5E
0

b

dtE d2r H c̄~r ,t!G21~$k̂m1Am%!c~r ,t!

1(
s

F z̄s~r ,t!~]t2 iA t
32 ilSB!zs~r ,t!

1
uJuQ

2
u~¹2 iA3!zs~r ,t!u2G J . ~3.16!

C. Effective action of the gauge field

From Eq. ~3.16! we can see that the fluctuations of th
localized spins affect the carrier system through the ga
field Am . Therefore, in order to investigate the effect of t
spin fluctuations on the carrier system, we need to study
properties of the gauge fieldAm , that is, we need to calculat
the effective action of the gauge fieldAm . The effective
actionSA , consists of two parts:

SA5SA
c 1SA

spin. ~3.17!

HereSA
c is the contribution from the carrier system andSA

spin

is that from the localized spin system.
We obtainSA

c by integrating out the carrier fields. From
Eqs.~3.14! and ~3.15!, one can see thatl(h) plays a role of
the Diracg matrices in 211 dimension andJc plays a role
of the Dirac fermion mass. The derivation of the effecti
action of the gauge fieldAm is similar to that for massive
Dirac fermions in 211 dimension.37–40 We find that the
Chern-Simons term for the gauge fieldAm is induced.~Detail
of the calculation is presented in the Appendix.! The induced
Chern-Simons term has the following form:

SA
c 5

iu

2pE0

b

dtE d2rA t
3~]xAy

32]yAx
3!. ~3.18!

Here we retain only the third component of the SU(2) gau
field because it describes the ferromagnetic spin fluctuat
of the localized spins. The coefficient of the Chern-Simo
term is

u5
1

2
sgn~JcL!, ~3.19!

with L5l1
(a,0)l2

(0,a)2l2
(a,0)l1

(0,a) . Equation~3.19! is the ex-
pression at zero temperature. For finite temperature,
~3.19! is slightly modified. However, we can neglect fini
temperature effect as long asbuJcu@1.

The action~3.18! represents the combined effect of th
spin-orbit coupling termHso and the strong-coupling term
H int . This effect is qualitatively described in Sec. II B. Th
is, destruction of magnetic long-range order. In the gau
field description, the effect is described by the Chern-Sim
term for the gauge field.
3-4
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For the contribution from the localized spin systemSA
spin,

it depends on whether there is magnetic long-range orde
not. In the absence of magnetic long-range order,SA

spin may
have a form of the Maxwell term. Since there is an ex
derivative in the Maxwell term compared with the Cher
Simons term, we expect that the Maxwell term has unimp
tant effect for the long-wavelength and low-energy theo
On the other hand, in the presence of magnetic long-ra
order, the gauge fieldA m

3 (5A m
SB) becomes massive sinc

Schwinger bosons form Bose-Einstein condensate.~That is,
Schwinger bosons are in the Meissner phase with respe
the gauge fieldA m

3 .!

D. Skyrmion excitations

Since coupling between the carriers and the locali
spins is made only through the gauge fieldA m

3 , we may
write the effective action of the carrier system in the follo
ing form:

Sc
eff5E

0

b

dtE d2r c̄~r ,t!

3F]t2m1 iA t
31

1

2m
~2 i¹1A3!2Gc~r ,t!

1
iu

2pE0

b

dtE d2rA t
3~]xAy

32]yAx
3!1SA

spin.

~3.20!

From this action, one can derive an important relations
between the carriers and excitations in the localized spin
tem. The variation ofSc

eff with respect toA t
3 yields

(
s

ssrs~r ,t!52
u

2p
~]xA y

32]yA x
3!, ~3.21!

where s↑511 and s↓521. This equation implies that a
gauge flux is produced at the position of the carrier. T
gauge flux corresponds to the skyrmion excitation similar
a topological excitation41 of the nonlinear sigma model o
CP1 model.42–47

The gauge fluxes produced by each carrier play a role
vortices introduced in a BCS superconductor. In a BCS
perconductor, which is Bose-Einstein condensation of C
per pairs, disorder is introduced by vortices, or the elec
magnetic gauge fluxes. As mentioned in Sec. III A, t
magnetic long-range order in the localized spin system
described by Bose-Einstein condensation of Schwin
bosons. Since the Schwinger bosons couple to the ga
field A m

3 , its gauge fluxes introduce disorder in Bos
Einstein condensation of Schwinger bosons. This imp
that disorder is introduced by skyrmion excitations, or carr
doping through the relationship~3.21!. In the presence o
magnetic long-range order, the skyrmion excitations have
excitation energy gap. After magnetic long-range order
destroyed by skyrmion excitations, they become gapless
citations and the Chern-Simons term plays a dominant rol
long-wavelength and low-energy physics.
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Before moving on to study the interaction between the
skyrmion excitations, we make some comments on the tim
reversal symmetry. From the coefficient of the Chern-Simo
term Eq.~3.19!, we see that the Berry phase induced by t
Chern-Simons gauge flux is 2p. Such a Berry phase pre
serves the statistics of particles. By contrast, in the an
system48,49 the Berry phase isp/2. The Berry phase of non
integer multiples ofp implies the time-reversal symmetr
breaking,50 whereas in our case, there is no such implicat
of the time-reversal symmetry breaking arising from t
Berry phase. In addition, there is no mean ‘‘magnetic’’ fie
as long aŝ (sssrs(r ,t)&50. On the other hand, since th
gauge field describes the localized spin fluctuations, both
time-reversal symmetry and the parity are broken in the
calized spin system by the presence of the Chern-Sim
term.

E. Superconductivity

In the phase without magnetic long-range order in
localized spin system, the Chern-Simons term plays a do
nant role in the actionSA . In this phase, an attractive inte
action is induced between skyrmions. Through this attrac
interaction, carriers form the Cooper pair.

Intuitively, we can understand the occurrence of an attr
tive interaction between skyrmions as follows. As discuss
in Sec. II B, the carrier rotates its spin at each hopping p
cess due to the spin-orbit coupling termHso. These rotations
of the carrier’s spin affects the localized spins through
strong-coupling termH int . This effect can be described a
the formation of a spin configuration in the localized sp
system. This spin configuration carried by each carrier g
erates a ‘‘magnetic’’ field around other carriers through t
Berry phase. Therefore when a carrier passes another ca
with velocity, a Lorentz force acts between them. This Lo
entz force plays a role of pairing interaction.

Now let us go into detail. The Lorentz force is derive
from minimal coupling between the carriers and the gau
field A m

3 :

Vint5E d2r
1

2m (
s

sscs
†~r !~ k̂•A31A3

• k̂!cs~r !.

~3.22!

From Eqs.~3.21! and ~3.22!, we eliminate the gauge field
A3 upon taking the Coulomb gauge. Thus we obtain

Vint5
1

2V (
k1Þk2 ,q

ss1
ss2

Vk1k2
ck11q/2,s1

† c2k11q/2,s2

†

3c2k21q/2,s2
ck21q/2,s1

, ~3.23!

whereV is the area of the system and

Vk1k2
5

4p i

mu

k13k2

uk12k2u2
. ~3.24!

Equation~3.23! represents the interaction between the ca
ers mediated by the gauge fieldA m

3 . Note that in this equa-
tion no parameters characterizing the skyrmion exc
3-5
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tions appear except for the Chern-Simons term coefficienu.
Furthermore, there is no retardation effect.

Now we may write the effective Hamiltonian for the ca
rier system in the following form:

H5(
ks

jkcks
† cks1

1

2V (
k1Þk2

(
s1s2

ss1
ss2

Vk1k2

3ck1s1

† c2k1s2

† c2k2s2
ck2s1

. ~3.25!

Here we setq50 in the interaction term to focus on th
equilibrium state. We investigate the possibility of superco
ductivity based on the Hamiltonian~3.25!. For simplicity, we
analyze the Hamiltonian within a mean-field theory. We
troduce the following pairing matrices:

Ds1s2

k 5
1

V (
k8(Þk)

Vkk8^c2k8s2
ck8s1

&, ~3.26!

~Dk!s1s2

† 5
1

V (
k8(Þk)

Vk8k^ck8s1

† c2k8s2

† &. ~3.27!

In terms of these matrices, we define the mean-field Ham
tonian

HMF5(
ks

8~jkcks
† cks2jkc2ksc2ks

† !

1 (
ks1s2

8@~Dk!s1s2

† c2ks2
cks1

1Ds1s2

k cks1

† c2ks2

† #.

~3.28!

Here the summation ink space is taken over a half of the fir
Brillouin zone.

For the spin singlet pairing case in whichD↑↓
k 52D↓↑

k

[Dk , the gap equation can be derived by taking the stand
procedure:51

Dk52
1

2V (
k8(Þk)

Vkk8

Dk8

Ek8

tanh
bEk8

2
, ~3.29!

with Ek5Ajk
21uDku2. For the spin triplet pairing case wit

D↑↑
k 5D↓↓

k 50 andD↑↓
k 5D↓↑

k , we obtain the same gap equ
tion ~3.29!. A pairing state withD↑↑

k Þ0 and/orD↓↓
k Þ0 may

be stabilized in the presence of an in-plane magnetic field
at the sample’s boundary. Here we do not consider suc
case.

The gap equation~3.29! is the same as the gap equati
for the composite fermion pairing state at half filled Land
levels.52,53 We apply the same analysis of Ref. 52. We a
sume that the gap functionDk has the following form:52

Dk5Dkexp~2 i l uk!. ~3.30!

After substituting Eq.~3.30! into Eq.~3.29!, we integrate the
angular variableuk using Cauchy’s theorem by takin
exp(luk) as a complex variable. In this calculation, we fin
that the attractive interaction arises only in the case ofl .0.
From the fact that the case ofl ,0 yields a repulsive inter-
action, we may exclude the possibility of a linear combin
tion of components withl .0 andl ,0 in Eq. ~3.30!.
06451
-

-

il-

rd

or
a

-

-

For the ground state, we obtain52

Dk5
1

2mu F E
0

k

dk8
k8Dk8

Ek8
S k8

k D l

1E
k

`

dk8
k8Dk8

Ek8
S k

k8
D l G .

~3.31!

In order to solve this nonlinear integral equation, we use
approximation. From the asymptotic behavior of the rig
hand side of Eq.~3.31!, we set52

Dk5H DeF~k/kF! l , for k,kF ,

DeF~kF /k! l , for k.kF .
~3.32!

Substituting this equation into Eq.~3.31!, we obtain52

E
0

kF
~dk/kF!

~k/kF!2l 11

A@~k/kF!221#21D2~k/kF!2l

1E
kF

`

~dk/kF!
~k/kF!122l

A@~k/kF!221#21D2~k/kF!22l
5u.

~3.33!

The remaining parameterD can be evaluated numericall
from Eq. ~3.33!.53 For eachl we estimate the left-hand sid
of Eq. ~3.33! with varying the value ofD. The point at which
Eq. ~3.33! is satisfied gives the value ofD. From this analy-
sis we find that the largest gap is obtained for the casel
51 and D l 51;3.1. Furthermore, this state has the lowe
ground-state enegy. Therefore the ground state isp-wave su-
perconductivity. From Eq.~3.30!, the symmetry of the Coo-
per pair is px6 ipy . Incidentally, this is the same pairin
state as that proposed in Sr2RuO4.54 However, we cannot
apply our pairing mechanism to this system. We shall disc
this point in Sec. V

IV. ANTIFERROMAGNETIC CASE

Now we study the mechanism of the case of antifer
magnetic coupling between the localized spins. Although
can apply a similar analysis, the antiferromagnetic case
more complicated than the ferromagnetic case because
need to cope with staggered magnetization. That is, we n
to distinguish theA andB sublattices. Fortunately, there is
transformation by which the system is mapped onto a sim
model of Eq.~3.16! in Sec. III. We introduce such a trans
formation and analyze the mechanism of superconducti
through the transformation.

As in the ferromagnetic case, we introduce Schwing
bosons and rotate the carrier’s spins so that each of them
the direction of the localized spin at the same site. The ro
tions are performed by the following transformations:

H ci→Uici ~ i PA!,

cj→U j~2 is2!cj ~ j PB!.
~4.1!

The definition ofUl is given by Eq.~3.10!. Note that the
matrix
3-6
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U j~2 is2!5S 2 z̄j↓ 2zj↑

z̄j↑ 2zj↓
D ~4.2!

can be derived from the matrixU j by the transformation

H zj↑ → 2 z̄j↓ ,

zj↓ → z̄j↑.
~4.3!

If we do the same transformation inSj5
1
2 z̄jsz, we obtain

Sj→2 1
2 z̄jsz. Thus in Eq.~4.1! the presence of the factor

(2 is2) at theB sublattice implies that the carrier’s spin is
the direction of the staggered component of the locali
spins.

In order to eliminate the factor (2 is2), we perform the
following transformation at theB sublattice:

cj5 is2c̃ j ~ j PB!. ~4.4!

By this transformation, we obtain

Sc1Sint5E
0

b

dtE d2r c̄̃~r ,t!G21~$k̂m1Am%!c̃~r ,t!,

~4.5!

whereG21($km%) is given by Eq.~3.14!. This action has the
same form as the action of the ferromagnetic case,
~3.12!. Therefore the same Chern-Simons term is induced
integrating out the carrier fields. However, we need to p
form the inverse transformation of Eq.~4.4! when we study
the symmetry of the Cooper pair because the transforma
~4.4! affects the order parameter of the Cooper pair. Furth
more, the action of the localized spin system, of course,
fers from the action of the ferromagnetic case. In particu
the relevant gauge field component is different from t
case.

A. Action of the localized spin system

In order to identify which component ofA m
a is connected

with the antiferromagnetic spin fluctuations, we calculate
action of the localized spin system. In terms of t
Schwinger bosons, the Hamiltonian is written as, up to c
stant,

Hspin5
J

2 (
i PA

(
h5(6a,0),(0,6a)

(
s1 ,s2

zis1

† zis2
zi 1h,s2

† zi 1h,s1
.

~4.6!

To write this Hamiltonian in a tractable way, we perform t
following transformation at theB sublattice:35

H zj↑ → 2zj↓ ,

zj↓ → zj↑ .
~4.7!

Turning to the path-integral formalism, we obtainZspin

5*Dz̄DzDlSBexp(2Sspin), where
06451
d

q.
y

r-

n
r-
f-
r,
t

e

-

Sspin5E
0

b

dtF(
l

(
s

z̄ls~]t1l l
SB!zls

2
J

2 (
i PA

(
h

(
s1s2

z̄i 1h ,s1
z̄is1

zis2
zi 1h ,s2G ,

~4.8!

where thet dependence of all fields is implicit. In order t
decouple the interaction term, we introduce Stratonovi
Hubbard fields Qi ,i 1h and Q̄i ,i 1h : Zspin

5*Dz̄DzDlSBDQ̄DQexp(2Sspin),

Sspin5E
0

b

dtF(
l

(
s

z̄ls~]t1l l
SB!zls

1
J

2 (
i PA

(
h

Q̄i ,i 1hQi ,i 1h

2
J

2 (
i PA

(
h

(
s

~Qi ,i 1hz̄i 1hs ,z̄is

1Q̄i ,i 1hziszi 1h ,s!G . ~4.9!

The spin fluctuation fieldQi ,i 1h consists of the phase fluc
tuations and the amplitude fluctuations. The latter is irr
evant for our analysis as it is in Sec. III. The phase fluct
tions are connected with a gauge invariance of Schwin
bosons.55 We include these phase fluctuation degrees of fr
dom later by imposing the gauge invariance.

We set Qi ,i 1h5uQi ,i 1hu5Q5const and l l
SB5lSB

5const. Then, the action is diagonalized ink space. Intro-
ducing the following fields:

zks5
1

2
@~zks1zk1Q,s!1~ z̄2ks2 z̄2k1Q,s!#, ~4.10!

Jks5
1

2
@~zks1zk1Q,s!2~ z̄2ks2 z̄2k1Q,s!#, ~4.11!

with Q5(p/a,p/a), the action is written in terms of thes
fields as

Sspin5(
ivn

(
k

8 (
s

@2 ivn~J̄kszks1 z̄ksJks!

1~lSB1ek!z̄kszks1~lSB2ek!J̄ksJks#,

~4.12!

whereek522JQ@cos(kxa)1cos(kya)# and the summation in
k space is taken over a half of the first Brillouin zone. O
can see that the mass ofJks is lSB12JQ, which is larger
than the mass ofzks , lSB22JQ.55 Furthermore, the mass o
Jks is nonvanishing whereas the mass ofzks is identically
zero in the ordered phase. Therefore we can safely integ
out Jks and we obtain
3-7
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Sspin5(
k

(
s

F2
~ ivn!2

lSB2ek
1lSB1ekG z̄kszks . ~4.13!

Taking the continuum limit and recovering the gauge
variance of the Schwinger bosons, we obtain

Sspin5
2

gE0

bcsw
dx0E d2x(

s
F u~]m1 iA m

SB!zsu21
Dsw

2

csw
2

uzsu2G ,

~4.14!

where g54A2a, Dsw5AlSB
2 24J2Q2, csw5A2JQa, and

x05cswt. In these parameters we setlSB52JQ except for
Dsw. Equation ~4.14! is invariant under the gaug
transformation,55

z~r ,t!→z~r ,t!exp@ iu~r ,t!#, ~4.15!

A m
SB~r ,t!→A m

SB~r ,t!2]mu~r ,t!. ~4.16!

This gauge transformation corresponds to

H zi → ziexp~ iu i ! ~ i PA!,

zj → zjexp~2 iu j ! ~ j PB!,
~4.17!

because if we take the set of~even,even! and ~odd,odd! for
the A sublattice, then

H z ls5zls for l PA,

z ls5 z̄ls for l PB.
~4.18!

This equation is verified as follows:

z ls5
1

N ( 8
k

zksexp~ ik•Rl !

5
1

2N ( 8
k

zkseik•Rl~11e2 iQ•Rl !

1
1

2N ( 8
k

z̄2kseik•Rl~12e2 iQ•Rl !. ~4.19!

Since the gauge field is connected with the phase fluc
tions ofQi ,i 1h , the gauge fieldA m

SB has the following form:

A m
SB52 i(

s
z̄s~x!]mzs~x!. ~4.20!

In order to find the relationship betweenA m
SB and Am , we

write Am in terms of z ls and z̄ ls . Thus we findA15
2ASB. From the gauge invariance of the Schwinger boso
one can see that there is a correspondence betweenA t

1 and
A t

SB. ThereforeA m
1 is connected with the antiferromagnet

spin fluctuations.
As a result, we may write the effective action in the fo

lowing form:
06451
-

a-

s,

S5Sc1Sspin1SCS

5E
0

b

dtE d2r c̄̃~r ,t!

3F]t1 iA t
12m1

1

2m
~2 i¹1A1!2G c̃~r ,t!

1
2

gE d3x(
s

F u~]m1 iA m
1 !zs~x!u21

Dsw
2

csw
2

uzs~x!u2G
2

iu

2pE0

b

dtE d2rA t
1~]xAy

12]yAx
1!. ~4.21!

B. Skyrmion excitations

As discussed in Sec. III D, carriers are connected w
skyrmion excitations in the localized spin system through
Chern-Simons term. However, the connection is slightly d
ferent from the ferromagnetic case because the spin fluc
tions are described by the gauge fieldA m

1 instead ofA m
3 . If

we take the 1-axis for the quantization axis in sp
space, the relationship between the carrier and the skyrm
excitation is

(
s

ssc̄̃s~r ,t!c̃s~r ,t!52
u

2p
~]xA y

12]yA x
1!.

~4.22!

Contrary to the ferromagnetic case, a significant feat
appears for the antiferromagnetic case, that is, a pinn
mechanism of carriers in the antiferromagnetic long-ran
ordered phase. This can be seen as follows. The relation
~4.22! is obtained after the transformation~4.4!. In order to
capture the proper nature of skyrmion excitations, we m
go back to the frame before the transformation~4.4!. Per-
forming the inverse transformation of Eq.~4.4! at theB sub-
lattice, we find that an additional sign change is broug
about in the left-hand side of Eq.~4.22!, that is, a skyrmion
~antiskyrmion! excitation transformed into an antiskyrmio
~skyrmion! excitation. Therefore skyrmions or antiskyrmion
cannot move to the nearest-neighbor sites as long as the
antiferromagnetic long-range order and skyrmion excitatio
have a gap. This suggests an insulating behavior of the
riers in the antiferromagnetic long-range ordered phase.

Although this is a new feature which appears in the an
ferromagnetic case, the destruction mechanism of magn
long-range order is the same as that discussed in Sec. I
Antiferromagnetic long-range order is destroyed by carr
doping because carriers behave like skyrmion excitatio
After antiferromagnetic long-range order is destroyed, sk
mion excitations become gapless excitations. The Che
Simons term plays a dominant role and the attractive in
action between skyrmions leads to superconductivity.

C. Superconductivity

Now we investigate the property of superconductivity.
order to identify the symmetry of the Cooper pair, we need
3-8
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perform the inverse transformation of Eq.~4.4!. However,
since the calculation of the pairing matrix is much easier
the system after the transformation~4.4!, we investigate the
pairing matrix through the transformation~4.4!. If the B sub-
lattice consists of the sites with~even,odd! or ~odd,even!,
then the transformation~4.4! is written in k space as

ck2ck1Q5 is2~ c̃k2 c̃k1Q!. ~4.23!

Since there is no change at theA sublattice, that is,ck
1ck1Q5 c̃k1 c̃k1Q , we obtain

ck5
1

2
@~s01 is2!c̃k1~s02 is2!c̃k1Q#, ~4.24!

ck1Q5
1

2
@~s02 is2!c̃k1~s01 is2!c̃k1Q#. ~4.25!

In order to apply the analysis done in Sec. III E, we ne
to introduce the following fields:

S c̃k↑

c̃k↓
D 5

1

A2
S 1 1

1 21D S x̃k↑

x̃k↓
D , ~4.26!

because in Eq.~4.22! we take the 1-axis for the quantizatio
axis in spin space. In terms of these fieldsx̃ks , the spin
singlet order parameter is written as

^c2k↓ck↑2c2k↑ck↓&5
1

2
@^x̃2k↓x̃k↑2x̃2k↑x̃k↓&

1^x̃2k1Q↓x̃k1Q↑2x̃2k1Q↑x̃k1Q↓&#.

~4.27!

For the spin singlet pairing state, the gap functionDk is
given by

Dk5~D̃k
(1)1D̃k

(1)!/2, ~4.28!

where D̃k
(1) is the gap function for ^x̃2k↓x̃k↑&

52^x̃2k↑x̃k↓& and D̃k
(2) is that for ^x̃2k1Q↓x̃k1Q↑&

52^x̃2k1Q↑x̃k1Q↓&. In the continuum limit,D̃k
(1) satisfies,

at T50,

D̃k
(1)5

1

2V (
k8(Þk)

Vkk8

D̃k
(1)

Ek8
(1) , ~4.29!

whereEk
(1)5Ajk

21uD̃k
(1)u2. On the other hand,D̃k

(2) satisfies

D̃k
(2)52

1

2V (
k8(Þk)

Vkk8

D̃k
(2)

Ek8
(2) , ~4.30!

whereEk
(2)5Ajk

21uD̃k
(2)u2. The minus sign in the right-han

side of Eq.~4.30! comes from the sign change in minim
coupling to the gauge field. The minimal-coupling term
derived from $]Am

GK.E.
21 ($k̂m1Am%)uAm50 ,Am%, where

GK.E.
21 ($km%) represents the kinetic energy part of the inve

of Green’s functionG21($km%). In the lattice system, the
06451
r

d

e

displacement ofQ in k space yields the sign change becau
22t @cos (kx1Qx) a1cos (ky1Qy) a#512t (coskxa1coskya).
This sign change affects the interaction term through
minimal coupling term. Equation~4.30! is understood to be
the equation obtained after taking the continuum limit.

The analysis of Eqs.~4.29! and ~4.30! parallels that in
Sec. III E. So we also take Eq.~3.30! for the form of D̃k

(1)

andD̃k
(2) . From Eqs.~4.29! and~4.30!, we see thatD̃k

(1) and

D̃k
(2) have opposite chirality. For the case of the spin sing

pairing, u l u takes the valuesu l u52,4,6, . . . . From the same
analysis done in Sec. III E, we find that the pairing state w
the lowest energy isu l u52, or d wave. The pairing function
is given by

Dk5D̃k@exp~2iuk!1exp~22iuk!#/2

5D̃k~cos2uk2sin2uk!, ~4.31!

whereD̃k5D̃ẽF(k, /k.)2 with D̃;1.3. Here ifk is smaller
than kF then k,5k and k.5kF and vice versa. From Eq
~4.31!, we see that the precise symmetry of the Cooper p
is dx22y2.

For the spin triplet pairing case, we find thatD↑↑
k 5D↓↓

k

50 and D↑↓
k 5D↓↑

k }sinuk . In the d-vector notation of the

triplet pairing state,56 this is written asdk5kyê3. From the
analysis of the Ginzburg-Landau free energy54 within the
two-dimensional representation in which the basis states

$kxê3 ,kyê3%, one can see that the free energy of this pair
state is higher than that ofdk5(kx6 iky)ê3. This suggests
that the pairing state withdk5kyê3 is not stabilized and we
can exclude the possiblity of the spin triplet pairing state

From the above analysis, we may conclude that the s
metry of the Cooper pair isd wave, or more preciselydx22y2

wave. This is the same pairing state as that of the highTc
superconductors.

V. DISCUSSION

In this section, we discuss the condition for that t
Chern-Simons term is induced and applications to the hi
Tc cuprates and other systems.

A. Condition for the Chern-Simons term

The derivation of the Chern-Simons term is based on
continuum approximation. This approximation is justifie
when the length scale of the gauge field is relatively lar
than the length scale determined by spin-orbit coupling.
first discuss the validity of this assumption.

As we have shown in Sec. II B, the effect of spin-orb
coupling is to rotate the carrier’s spin at every hopping p
cess. The angle of this rotation is 2l/t([uso) for the nearest-
neighbor hopping. On the other hand, the length scale of
gauge field is determined by the fluctuations of the spin s
tem through Eq.~3.13!. This length scale is given by
\csw/(pDsw) from the analysis of the Schwinger bosons a
it is translated into the fluctuation angle of the localiz
spins. For the nearest-neighbor sites, the fluctuation ang
3-9
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;a/(\csw/pDsw)5pDsw/(\csw/a). In order to apply the
continuum approximation to the gauge field, this fluctuat
angle should be smaller thanuso52l/t, that is,

2l

t
@

pDsw

~\csw/a!
. ~5.1!

This is the condition of taking the continuum limit for th
gauge field.

The condition~5.1! is satisfied as long as sufficient ma
netic correlations are preserved, or the gap of spin-wave
citations is relatively small. Note that the condition~5.1! is
just for the localized spin system. It only provides the co
dition for the existence of the Chern-Simons term. Althou
our mechanism of superconductivity is based on the prese
of the Chern-Simons term, the superconducting state d
not rely on directly the value of spin-orbit couplingl. In
fact, the gap of superconductivity is independent of the
rameterl as shown in Secs. III E and IV C.

B. High-Tc cuprates

As we have discussed in Introduction, the high-Tc cu-
prates can be described as the Kondo lattice system. In
dition, buckling seems to play an important role concern
the occurrence of superconductivity. If buckling and the p
rameters characterizing the localized spin system fulfill
condition ~5.1!, then the Chern-Simons term is induced.

If we can apply our mechanism to the high-Tc cuprates,
then it describes the underdoped region. Because the un
doped region is close to the antiferromagnetic long-ra
ordered phase. Such a phase is properly described by
Schwinger bosons. However, in the optimal doped reg
and the overdoped region of the high-Tc cuprates the local-
ized spin system is much more disordered than in the un
doped region.

In order to describe strongly disordered regions,
Schwinger bosons are not appropriate fields. The descrip
in terms of Fermionic fields is more suitable than t
Bosonic description of the localized spin system. The
scription by Fermionic fields instead of the Schwing
bosons corresponds to describe the Cu site degrees of
dom by fermion fields. Such Fermionic degrees of freed
may be observed by angle-resolved photoemission spec
copy experiments~ARPES!.

It should be noted that the antiferromagnetic correlat
described in terms of fermion fields has the form of the s
glet pairing between the fermions, because the order par
eter for the antiferromagnetic correlationsQi ,i 1h in the
Schwinger boson system is replaced by^ f i↑ f j↓2 f i↓ f j↑&
[ f i j , in terms of the fermion fieldsf is . In deriving this
relationship we need to go back to the original system be
the transformation of Eq.~4.7! and we use the constrain
(s f is

† f is51. This correlation is similar to that characteriz
the RVB state.25 From the mean-field analysis, we find th
f i j showsdx22y2 symmetry.24 Although thisdx22y2 symme-
try is the same as that of the Cooper pair of holes, th
have completely different origins and must be discus
independently.
06451
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Now we discuss some properties of the superconduc
state. In our mechanism, there is a characteristic excitat
Because of the transformation~4.23!, two components of
Cooper pairs appears:̂x̃2k↓x̃k↑& and ^x̃2k1Q↓x̃k1Q↑&.
Therefore there is an excitation between them that cre
one quasihole in the one component of the Cooper pairs
one quasiparticle in the other with the momentumQ
5(p/a,p/a) and the energy 2D̃kF

. Such an excitation can
be detected by inelastic neutron scattering. This excita
may be identified with the 41-meV peak observed by
neutron experiments.57

In addition, it should be stressed that the strength of
spin-orbit coupling does not affect the transition temperat
of superconductivity as long as the condition for the prese
of the Chern-Simons term is satisfied, as discussed in the
subsection.

Buckling affects superconductivity not through the sp
orbit coupling term but through the Fermi energy because
superconducting gap is proportional to the Fermi energy
we increase the angle of buckling, then the hopping am
tudet in the plane may be reduced. Such a reduction lead
decrease of the Fermi energy. Therefore if we increase
angle of buckling, the transition temperature is rather
duced. This is consistent with the experiments.58

C. Double exchange systems

Our mechanism can be applied to the double excha
system. However, in application to that system the followi
conditions should be satisfied. First, we must detect su
conductivity in the region where the antiferromagnetic c
relation between the core spins are preserved. That is,
carrier number must be small. Whereas the region in wh
the ferromagnetic correlation between the core spins do
nates, we cannot apply our mechanism. Second, we req
the system with the layered structure and buckling of
planes. Although La222xSr112xMn2O7 is a layered double
exchange system, thex50.3 compound shows ferromagnet
correlation.59 If the compound with buckling and smallx in
which the sample shows antiferromagnetic correlation is p
vided, dx22y2 superconductivity based on our mechanis
will be realized.

D. Other systems

From the symmetry of the Cooper pair in Sec. III E, o
might think of the application to Sr2RuO4. However, the
magnetism relevant to this system is itinerant ferrom
netism. In fact, all of the relevantd orbitalsdxy , dyz , anddzx
form conduction bands and the Fermi surface of them
observed by the de Haas–van Alphen effect.60 In such a sys-
tem, we can not expect the formation of the localized sp
Therefore we cannot apply our mechanism to Sr2RuO4.

For the application of the mechanism of Sec. III to re
materials, we require a ferromagnetic superexchange inte
tion between the localized spins. In order to produce suc
superexchange interaction, we need at least three kind
ions or multiband structure for the magnetic ions to con
tute the conduction layers. Furthermore, of course, we n
buckling of the planes.
3-10
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At present, it seems that there is no material with all
these properties. However, if such a system exists, then
can expect higher superconductiving transition tempera
than the high-Tc cuprates. Because the gap is larger than t
of the antiferromagnetic case within the analysis in which
long-range Coulomb interaction is neglected.
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APPENDIX: INDUCED CHERN-SIMONS TERM

In this Appendix, we derive the effective action for th
gauge field arising from the carrier system. Integrating
the carrier fields from the action~3.12!, we obtain the effec-
tive actionSA

c :

SA
c 52Tr$ ln@G21~ k̂m1Am!#2 ln@G21~ k̂m!#%. ~A1!

We expand this action with respect toAm as SA
c 5S(2)

1S(3)1•••, where

S(2)5
1

2
TrFG

1

2 H ]G21

] k̂m

,AmJ G
1

2 H ]G21

] k̂n

,AnJ G ,

~A2!

S(3)52
1

3
TrFG

1

2 H ]G21

] k̂m

,AmJ G
1

2 H ]G21

] k̂n

,AnJ
3G

1

2 H ]G21

] k̂l

,AnJ G . ~A3!

In order to calculateS(2), we apply the derivative
expansion technique. To illustrate this technique,
us consider a simple one-dimensional examp
J5Tr@V1( k̂)F1(x)V2( k̂)F2(x)#, where k̂52 i ]x and Vj ( k̂)
andF j (x) are functions ofk̂ andx, respectively. Inserting the
identities*dxux&^xu51̂ and(kuk&^ku51̂, we obtain

J5E dx(
k

^xuV1~ k̂!F1~x!uk&V2~k!F2~x!^kux&

5E dx(
k

F2~x!V2~k! (
n50

` V1
(n)~0!

n!
^xuk̂nF1~x!uk&^kux&

5E dx(
k

F2~x!V2~k! (
n50

` V1
(n)~0!

n!

3 (
m50

n
n! ~2 i !m

m! ~n2m!!
F1

(m)~x!kn2m^xuk&^kux&
06451
f
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t
:

5
1

L (
k

V1~k!V2~k!E dxF1~x!F2~x!

2
i

2L (
k

FV18~k!V2~k!E dxF18~x!F2~x!

1V1~k!V28~k!E dxF1~x!F28~x!G
2

1

2L (
k

V19~k!V2~k!E dxF19~x!F2~x!1••• .

~A4!

In the second term in the last line we have taken into acco
the term obtained by the partial integral. Applying this d
rivative expansion and retaining the most dominant term
long-wavelength and low-energy physics, the actionS(2) is
evaluated as

S(2)5
i

4p (
a

(
mnl

I mnl
aa E

0

b

dtE d2rA m
a ]nA l

a , ~A5!

where

I mnl
aa 5

p

2V (
k

trFGH ]G21

]km
,saJ G

]G21

]kn
GH ]G21

]kl
,saJ G .

~A6!

Here the trace is taken over spin space. All functionsI mnl
aa

can be calculated in a similar way. For example,I xyt
11 is given

by

I xyt
11 52p~l1

(a,0)l2
(0,a)2l2

(a,0)l1
(0,a)!JcK. ~A7!

In deriving this equation, we have taken into account anot
choice ofla

(h) connecting coordinate space with spin spa
In Eq. ~A7!, K is given by

K5
1

V (
k

1

@~ ikt1jk!
22ug~k!u2#2

5E d2k

~2p!2 F f 8~jk1ug~k!u!1 f 8~jk2ug~k!u!

4ug~k!u2

1
f ~jk2ug~k!u!2 f ~jk1ug~k!u!

4ug~k!u3
G . ~A8!

In the limit of buJcu→`, this equation is reduced to

K5
1

8pluJcu
tanh

buJcu
8

. ~A9!

ThusS(2) has the form of the Chern-Simons term,

SCS
(2)52

iu

2pE0

b

dtE d2r @A t
1~]xA y

12]yA x
1!

1A t
2~]xA y

22]yA x
2!#. ~A10!

The coefficient of the Chern-Simons term is given by
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u5
1

2
sgn~JcL!tanh

buJcu
8

, ~A11!

with L5l1
(a,0)l2

(0,a)2l2
(a,0)l1

(0,a) .
From similar calculations, we find thatS(3) has a form of

a non-Abelian Chern-Simons term,

SCS
(3)5

iu

p E
0

b

dtE d2rA t
3~A x

1A y
22A x

2A y
1!. ~A12!

This non-Abelian Chern-Simons term can be reduced to
Abelian Chern-Simons term upon using the curl-free con
tion, 2(A x

1A y
22A x

2A y
1)5]xA y

32]yA x
3 :
re

y,

et

a,

i,

et

e

.C
pp
,

s,
H.

,
lli

.D

a

.
K
T.

ki

06451
n
i-

SCS
(3)5

iu

2pE0

b

dtE d2rA t
3~]xA y

32]yA x
3!. ~A13!

As a result, we may write the effective action for th
gauge field arising form the carrier system in the followi
form:

SA
c 5

iu

2pE0

b

dtE d2r @A t
3~]xA y

32]yA x
3!

2A t
1~]xA y

12]yA x
1!2A t

2~]xA y
22]yA x

2!#.

~A14!
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9N. Nücker, J. Fink, J.C. Fuggle, P.J. Durham, and W.M. Temm
man, Phys. Rev. B37, 5158~1988!.

10C.T. Chen, F. Sette, Y. Ma, M.S. Hybertsen, E.B. Stechel, W.M
Foulkes, M. Schluter, S.-W. Cheong, A.S. Cooper, L.W. Ru
Jr., B. Batlogg, Y.L. Soo, Z.H. Ming A. Krol, and Y.H. Kao
Phys. Rev. Lett.66, 104 ~1991!.

11P. Kuiper, G. Kruizinga, J. Ghijsen, M. Grioni, P.J.W. Weij
F.M.F. de Groot, G.A. Sawatzky, H. Verweij, L.F. Feiner, and
Petersen, Phys. Rev. B38, 6483~1988!.

12A. Bianconi, M. De Santis, A. Di Cicco, A.M. Flank, A. Fontaine
P. Lagarde, H. Katayama-Yoshida, A. Kotani, and A. Marce
Phys. Rev. B38, 7196~1988!.

13C.H. Pennington, D.J. Durand, C.P. Slichter, J.P. Rice, E
Bukowski, and D.M. Ginsberg, Phys. Rev. B39, 274 ~1989!; Y.
Kitaoka, K. Fujiwara, K. Ishida, S. Ohsugi, and K. Asayam
Suppl. Prog. Theor. Phys.101, 371 ~1990!.

14R.J. Birgeneau, D.R. Gabbe, H.P. Jenssen, M.A. Kastner, P.J
cone, and T.R. Thurston, G. Shirane, Y. Endoh, M. Sato,
Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and
Murakami, Phys. Rev. B38, 6614~1988!.

15See, for example, D.J. Van Harlingen, Rev. Mod. Phys.67, 515
~1995!.

16H.J. Bornemann, D.E. Morris, and H.B. Liu, Physica C182, 132
~1991!.

17H. Takagi, R.J. Cava, M. Marezio, B. Batlogg, J.J. Krajews
t.

t.

r-

.
,

,

.

,

Pi-
.

,

W.F. Peck, Jr., P. Bordet, and D.E. Cox, Phys. Rev. Lett.68,
3777 ~1992!.

18A.R. Moodenbaugh, Youwen Xu, M. Suenaga, T.J. Folkerts, a
R.N. Shelto, Phys. Rev. B38, 4596~1988!.

19For a review, see T. Moriya and K. Ueda, Adv. Phys.49, 555
~2000!.

20T. Takimoto and T. Moriya, J. Phys. Soc. Jpn.66, 2459~1997!.
21S. Koikegami, S. Fujimoto, and K. Yamda, J. Phys. Soc. Jpn.66,

1438 ~1997!.
22P.W. Anderson, Science235, 1196~1987!.
23N Nagaosa and P.A. Lee, Phys. Rev. Lett.64, 2450~1990!; P.A.

Lee and N. Nagaosa, Phys. Rev. B46, 5621~1992!.
24G. Kotliar and J. Liu, Phys. Rev. B38, 5142~1988!.
25P.W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Phys. Rev. L

58, 2790~1987!.
26H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Toku

Phys. Rev. B40, 2254~1989!.
27M. Imada, N. Nagaosa, and Y. Hatsugai, J. Phys. Soc. Jpn.57,

2901 ~1988!.
28H. Matsukawa and H. Fukuyama, J. Phys. Soc. Jpn.58, 2845

~1989!; 58, 3687~1989!.
29T. Morinari, J. Phys. Soc. Jpn.70, 1472~2001!.
30T. Morinari, Phys. Rev. B64, 012510~2001!.
31T. Ando, Phys. Rev. B40, 5325~1989!.
32N.E. Bonesteel, T.M. Rice, and F.C. Zhang, Phys. Rev. Lett.68,

2684 ~1992!; N.E. Bonesteel, Phys. Rev. B47, 11 302~1993!.
33L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. R

Lett. 69, 836 ~1992!.
34W. Koshibae, Y. Ohta, and S. Maekawa, Phys. Rev. B47, 3391

~1993!.
35D.P. Arovas and A. Auerbach, Phys. Rev. B38, 316 ~1988!.
36A. Auerbach, Interacting Electrons and Quantum Magnetis

~Springer-Verlag, New York, 1994!.
37A.N. Redlich, Phys. Rev. D29, 2366~1984!; R. Jackiw,ibid. 29,

2375 ~1984!; A.J. Niemi and G.W. Semenoff, Phys. Rev. Le
51, 2077~1983!.
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