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We propose a mechanism of unconventional superconductivity in two-dimensional strongly correlated elec-
tron systems. We consider a two-dimensional Kondo lattice system or double exchange system with spin-orbit
coupling arising from buckling of the plane. We show that a Chern-Simons term is induced for a gauge field
describing the phase fluctuations of the localized spins. Through the induced Chern-Simons term, carriers
behave like skyrmion excitations that lead to a destruction mechanism of magnetic long-range order by carrier
doping. After magnetic long-range order is destroyed by carrier doping, the Chern-Simons term plays a
dominant role and the attractive interaction between skyrmions leads to unconventional superconductivity. For
the case of the ferromagnetic interaction between the localized spins, the symmetry of the Coopep pair is
wave (p,*ip,). For the case of the antiferromagnetic interaction between the localized spins, the symmetry of
the Cooper pair isl wave (dy2_,2). Applications to various systems are discussed, in particular to theThigh-

cuprates.
DOI: 10.1103/PhysRevB.65.064513 PACS nuntger74.20-z, 74.20.Rp
[. INTRODUCTION the highT. cuprates be ascribed to the antiferromagnetic
correlations.
Since the discovery of high. superconductivity in In addition, the structure of the Cy@lane seems to play

cuprates, a large number of studies have been invested t@n important role for the pairing mechanism of highsu-
uncover its mechanism of superconductivity. Although theperconductivity. In La_,Sr,CuQ, system, suppression of
issue is still in controversy, there are some specific propertiesuperconductivity is observed at a structural phase transition
concerning the mechanism of superconductivity. First, thepoint from an orthorhombic phase to a tetragonal pHase.
high-T. cuprates show two-dimensional highly anisotropic Similar suppression of superconductivity, which is induced
behaviors. From their structure, the high-cuprates have a by the same kind of structural phase transition, is also ob-
layered structure of CuQplanes with several CuOlayers served in La_,BaCuQ, system aroundx=1/81% Since
sandwiched between insulating layers. Reflecting this laythere is buckling of the CuQplane in the orthorhombic
ered structure, measurements of the resistivétyd optical phase, the fact that superconductivity occurs in the ortho-
conductivity** show strong anisotropic behaviors. Further-rhombic phase suggests that buckling of the guyflane
more, the electromagnetic properties of the superconductinglays a significant role for the occurrence of superconductiv-
state is well described by a Josephson-coupled layeity.
model>® Second, it seems that there is a close relationship In order to explain the mechanism of high-supercon-
between magnetism and superconductivity. In the absence dictivity in the cuprates, a large number of theories have
carriers, the system is a charge-transfer insufaftue to the  been proposed. Among others, the spin-fluctuation tHéory
large charge-transfer gap, a localized magnetic moment igroposes a pairing mechanism withwave symmetry, or
produced at each Cu site. These localized magnetic momenty._,> symmetry. For thed-p model, which is believed to
form antiferromagnetic long-range order beloweNéem-  capture the essential properties of the Guyane, the spin-
perature(Neel temperature is not equal to zero because ofluctuation theory predictsl2_y2 pairing betweerd-orbital
weak interlayer couplin§ When holes are doped in the electrons at Cu sited:?! The same kind ofi-wave pairing,
Cu0, plane, they occupy O, orbitals**and destroy an- i.e., d,2_,2> wave pairing, is discussed in a different context.
tiferromagnetic long-range order. As we increase the holén the resonating valence bor@®VB) theory?>?® spinons
concentration, Nel temperature decreases. Upon furtherform d-wave pairing?* However, spinons are charge neutral
doping, the antiferromagnetic long-range order is destroyeduasiparticles and the electric current is carried by holons in
and the system becomes the superconducting state. Also the RVB theory. That isd-wave pairing between spinons
the phase of superconductivity, antiferromagnetic correladoes not lead tad-wave superconductivity by itself. The
tions are observetf:'* d-wave pairing state of spinons rather describes the short-
In contrast to conventional BCS superconductivity, super+ange antiferromagnetic correlations in the phase without an-
conductivity in the highF, cuprates is unconventional. Sym- tiferromagnetic long-range ord&.
metry of the Cooper pair is nawave butd wave, or more Although the relationship between these tdvavave pair-
precisely,dxz_yz—wave.l5The fact that symmetry of the Coo- ings has not yet been clear, the fact that the doped holes
per pair isd wave, superconductivity occurs in the vicinity of occupy oxygerp orbitals~*? and the sign of the Hall coef-
antiferromagnetic long-range order, and the absence of thicient is positivé® indicates that carriers are doped holes.
isotope effecf suggests that the underlying mechanism of\We may say that doped holes form the Cooper pair in the
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superconducting state. What we require to describe figh- H=Hg+ Hint Hsot Hpin- (2.1
superconductivity is the-wave pairing mechanism between i ) o .
doped holes. Here the first term is the kinetic energy term for the carrier

In this paper, we propose such a mechanism of supercorfyStem,
ductivity. We consider a two-dimensional multiband model
which consists of a carrier system and a localized spin sys- Ho= _tE (c;rcj+H.c.), (2.2)
tem with strong coupling between them. As a typical candi- (N
date of such a system, we consider a Kondo lattice System Qfpere the summation is taken over the nearest-neighbor

a double exchange system. The hiineuprates can be de- gjio5 carrier operators are represented by a spinor notation,
scribed as a Kondo lattice systéft® where carriers are

doped holes and localized spins are at Cu sites. In order to Cit
take into account the effect of buckling of the plane, we cl=(cl <), ¢= o ] (2.3
il

consider spin-orbit coupling arising from buckling. We show
that carriers induce frustration in the localized spin system imrhe second ternH;,, represents Kondo or Hund coupling

the presence of spin-orbit coupling through Kondo or Hundpetween the carrier spiy and the localized spif§; :
coupling. This frustration effect can be described in terms of

skyrmion excitations. The skyrmion excitation is created at

each position of the carriers and plays a role of magnetic Hine= —chj: 55, (2.4
field for the carriers. Because of the magnetic field produced

around a carrier, the Lorentz force acts on another carriewvheres;=3clac; with the components 0= (o1,075,03)
Due to this Lorentz force an attractive interaction is induceddeing the Pauli spin matrices. We take 1, 2, and 3 for the
between carriers and leads to unconventionaBxes in spin space. We assume tdat is the largest energy
superconductivity®° scale in the Hamiltoniaxi2.1).

The outline of this paper is as follows. In Sec. Il, we  The third termHg, in Eq. (2.1 represents spin-orbit cou-
describe the model and the effect of spin-orbit coupling. Inpling arising from buckling,
Sec. lll, we show the mechanism of superconductivity in the
case of ferromagnetic interaction between localized spins. Ho—i
Frustration effect induced by carriers is described as skyr- T =(30),(00)
mion excitations through a Chern-Simons term for the gauge ) .
field which describes the phase fluctuations of the localized!nere @ is the lattice constant and the vector”
spin system. The fact that carriers behave like skyrmion ex=(\{” ,\{7,0) are proportional to both spin-orbit coupling
citations provides a destruction mechanism of magneti¢ons and the angle of buckling. The simplest example for the
long-range order by carrier doping because the magnetigPin-orbit coupling term is presented in the appendix of Ref.
long-range order is destroyed by the skyrmion excitations31 in which the spin-orbit coupling term for the and p
After magnetic |ong_range order is destroyed by the Skyr_orbitals is derived. The Spin-orbit COUpling terms of the hlgh'
mion excitations, the Chern-Simons term plays a dominanfc cuprates are shown in Refs. 32—-34. For simplicity, we
role and the attractive interaction between skyrmions leads tgssume the vectora(” for the orthorhombic phase of
p-wave superconductivity. In Sec. IV, we show the mecha-YBa,CsO,_5, that is, A(720=\@0 and (072 = \(02)
nism of superconductivity in the case of antiferromagneticwith INEO[=[\OD]=).
interaction between localized spins. In this case, the symme- The last termHg;, in Eq. (2.1) represents the interaction
try of the Cooper pair il wave, or more preciselijziyz between the localized spins. Fbrspin we take the Heisen-
wave. We also show that the doping carrier induces metalberg Hamiltonian
insulator transition at the magnetic transition point. In Sec. V,
we discuss applications to high- superconductivity and o <
other systems. Hspin J(iE,j) S5 29

cIA®.oc;, ,+Hc, (25

In general, the Dzyaloshinskii-Moriya interaction is induced
between the localized spins when there is spin-orbit coupling
We consider a two-dimensional multiband model whichlike Hg,. However, the Dzyaloshinskii-Moriya interaction
can be reduced to a model consisting of carriers and localdoes not play an important role in our mechanism of super-
ized spins with strong coupling between them. Examples oonductivity. We neglect the Dzyaloshinskii-Moriya interac-

such a model are the Kondo lattice system and the doubléon in the following analysis.
exchange system. In order to include the buckling effect, we
introduce spin-orbit coupling arising from it. B. Effect of spin-orbit coupling

Il. MODEL

In the last subsection, we have introduced spin-orbit cou-
pling arising from buckling of the plane. Since this spin-orbit

The Hamiltonian of the Kondo-lattice system or the coupling plays an essential role in our mechanism of super-
double exchange system with the spin-orbit coupling ternconductivity, first we need to discuss the effect of spin-orbit
may be written in the following form: coupling.

A. Hamiltonian
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The effect of the spin-orbit coupling terid g, becomes In terms of Schwinger boson fields, the Hamltonian for
apparent when we combirté,, with the kinetic energy the localized spin system can be written, up to constant term,
termHg: in the following form:

_ t i\ Hepn= — £]3]> FIF;: 3.2
HO+HSO_E 2 [CI(—IO'O+I)\’7()-)C,+,]+HC] spin 2 <|]> oy .
i n '
. where FiszUzingjU. Turning to the path-integral formal-
— 12422 E 2 cfexd — '_A(y,).a ism, we introduce a Stratonovich-Hubbard fi€} andQ;;
- t to decouple the interaction terﬁijij :

XCiy,tH.C

, 2.7) Zepin= f DzDzD\®DQDQexp —Sgpi), (3.3

up to O((A/t)?) in the exponential, where, is the unit Where
matrix in spin space. The factor gxp(i/)A?- o] has the

form of a unitary transformation of rotation in spin space. g_ . — deT > 7 (9.—iNSByz,
The axis of rotation is parallel to the vectaf” and the o S

Jo

angle of rotation is ®/t.

: . : J| _ _ __
The presence of this rotation at every hopping process of + |_ 0. — 7 7 407 7
the carriers implies that the carriers introduce disorder in the 2 02» Qi Qi g (Quzio2iot QuZioZio) | |-
localized spin system through strong couplidg, between (3.4)

the carriers and the localized spins. Disorder produced by the

carrier hopping processes provides a destruction mechaniswhere ther dependence of all fields is implicit ar‘iqSB is

of magnetic long-range order in the localized spin system. Ifntroduced to impose the constramt,?jgzjg= 1.

Secs. llID and IVB we will show that this destruction  Now let us study the localized spin fluctuations. The spin
meChan|Sm Of magnetIC IF)ng-'range Ol’der IS represented qmctuaﬁons are represented Q{] because we obta|(Q|J>

the effect of skyrmion excitations. =3 (z,Zj,) at the saddle point. The spin fluctuati@;
consists of the phase fluctuations and the amplitude fluctua-
tions. Since the latter turns out to be a high-energy mode, we

In order to illustrate the mechanism of superconductivity,focus on the phase fluctuations @f; . _
we first consider the case of ferromagnetic interaction be- The phase fluctuations @J;; are connected with the local

IIl. FERROMAGNETIC CASE

tween the localized spins, that B<0 in Hgp,. gauge transformation a?w (or z]-TU) andz;,, at each site. In
fact, Eq.(3.2) is invariant under the local gauge transforma-
A. Schwinger bosons tion z;,—z;,exp(—i#). In the actionSgy;,, this gauge trans-

We are interested in the mechanism of superconductivitgrm""_t'On involves a transformation in the phase @f .
based on the fluctuations of the localized spins. In order td hat is, the transformation in the phase @f; can be de-
describe the localized spins, we introduce Schwinger boson§cribed by a gauge field. Introducing a gauge field and the
Description of the localized spin system in terms of theMean amplitud®=(Q;;) and taking a continuum limit, we
Schwinger bosons has some advantages. First of all, it @@y write the actiorSgy, in the following form:
straightforward to describe the magnetic long-range ordered 5

state. The phase with magnetic long-range order is describeds in:f de dzr>
by Bose-Einstein condensation of Schwinger bosorisAn- P Jo -
other advantage is that we can directly construct rotation

Z,(r, 1) (3,1 ASB=iNSB)zZ,(r,7)

matrices for carrier’s spins. Such matrices turn out to be + @KV—LASB)Z (r,m)|? (3.5
useful for the description of the localized spin-fluctuation 2 7 ' '
effect on the carriers. where
Each localized spin can be described by Schwinger
bosons, -
ASB(r, 1) = =12 2,(r,7)3,2,(r,7). (3.6)

S5z z,»w( Z”). 3D o

Zj Note that Eq.(3.5) is invariant under the gauge transforma-
Here z/, andz, are Schwinger bosons at siteand obey tion:SB 2,(r.7) = 2,(r, e —ie(r,7)], and  AZr,7)
boson commutation relations[zig,z;ro,]=5”-500_, and AR (H7)=3d,0(r,7).
(24,2, ]1=[2],.2] ,]=0 and the constraint
3 ,21,2,= 253> n the following, we consider the case of

jor

S=1/2 for simplicity. However, it is straightforward to ex- The spin fluctuations of the localized spin system affect
tend the following arguments to general valuesSof the carrier system through strong couplidg,. We may say

B. Gauge field description of the strong correlations
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that this strong coupling between the carriers and the localAs a result, the total action may be written in the fol-
ized spins is the origin of strong correlations. In order to takdowing form:
into account this strong correlation effect we rotate the spin

of the carrier so as to be in the direction of the localized spin S=S¢+ Sint+ Sspin

at the same site. Through this transformation, the effect of

the spin fluctuations on the carrier system is described by :JBdTJ' d2r E(r T)G—l({R + AN U(r,7)
coupling to a gauge field. 0 ' oo '

The action of the carrier system with,; is

+2

Z,(r,7)(3,— 1 A3=ixS®)z,(r,7)

B _
Sct Sine= jo dr Ej: CJ(T)(ﬁr_M)Cj(T)+Hc+Hint},

J
(3.7 + ¥|(V—iA3)zg(r,7)|2 ] (3.16
where
Hot Hy= — m 2 z [gjﬂz( r)e‘(”t)"(m"’cj(r) C. Effective action of the gauge field |
iom From Eq.(3.16 we can see that the fluctuations of the

localized spins affect the carrier system through the gauge
+a(7)e(i/t)h(’7). oCj 1 T)]_JCE s(7)-S(7). field A, . Therefore, in order to investigate the effect of the
i spin fluctuations on the carrier system, we need to study the
(3.9 properties of the gauge field,, , that is, we need to calculate

) o o the effective action of the gauge field, . The effective
In order to rotate the carrier's spg in the direction of the  actionS,, consists of two parts:

localized spirS;, we perform the following unitary transfor-

mation: Su=S5+SPN. (3.17)
ci—Uic, EHEUJ , (3.9  HereS{ is the contribution from the carrier system aﬁﬁ?i”
where is that from the localized spin system.

We obtainS5; by integrating out the carrier fields. From

Z -7 N e Egs.(3.14 and(3.15, one can see thai{” plays a role of

Uj=( ”), U,~=( I ”)_ (3.10 the Diracy matrices in 2+1 dimension and, plays a role
—Zj Zj of the Dirac fermion mass. The derivation of the effective

action of the gauge fielt,, is similar to that for massive
- ) "t Dirac fermions in 2-1 dimensior?’~° We find that the
=—(J/4)Zjcjoci. In the hopping term, the following  chern-Simons term for the gauge fielg, is induced (Detail
phase factor is introduced: of the calculation is presented in the Appengikhe induced
— i Chern-Simons term has the following form:
Uj+7IUj:qu—|77'.Aj7,). (311)

If the phase fluctuation; , is sufficiently slowly varying, we c :i_‘9f’3 f 2, 43 3_ 5 A3
can take the continuum limitwe will discuss the validity of 4= 50 ), 47 ) dTATGA T AA). (318
this approximation in Sec. V AThus we obtain

Zj|  Zj

Under these transformationsl;,; is reduced toH;;— H

Here we retain only the third component of the SU(2) gauge
B — e field because it describes the ferromagnetic spin fluctuations
— 2 1
Set Sin= fo de dry(r, )G (kT A w(r.7), of the localized spins. The coefficient of the Chern-Simons

(3.12 term is

wherek,=—id, and A, is the SU(2) gauge field arising

1
o
from the spin fluctuations of the localized spins, 0=7 sgridcA), (3.19

_ a_ _ i with A =\PO\La )\ @0\ 02 Equation(3.19 is the ex-
A a:;,z,sA’*Ua 03,0 .13 pression at zero temperature. For finite temperature, Eq.
(3.19 is slightly modified. However, we can neglect finite
temperature effect as long @J¢|>1.
-1 _ ) The action(3.18 represents the combined effect of the
G (k) =(ik-+ &) oot a(k)- o (319 spin-orbit coupling termH, and the strong-coupling term
with &.=k?/(2m)— u[1/(2m)=t]. Hereg(k) is given by H;.. This effect is qualitatively described in Sec. Il B. That
is, destruction of magnetic long-range order. In the gauge
(3.15 field description, the effect is described by the Chern-Simons
' term for the gauge field.

Note thatAi=AiB. The inverse of Green’s function is

Je-
g(k)=2N@0k + 2\Ok — fes :
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For the contribution from the localized spin syst@jﬁ"‘, Before moving on to study the interaction between these
it depends on whether there is magnetic long-range order gkyrmion excitations, we make some comments on the time-
not. In the absence of magnetic long-range or@" may  reversal symmetry. From the coefficient of the Chern-Simons
have a form of the Maxwell term. Since there is an extraterm Eq.(3.19, we see that the Berry phase induced by the
derivative in the Maxwell term compared with the Chern- Chern-Simons gauge flux is®2 Such a Berry phase pre-
Simons term, we expect that the Maxwell term has unimporserves the statistics of particles. By contrast, in the anyon
tant effect for the long-wavelength and low-energy theorySysteni®*°the Berry phase isr/2. The Berry phase of non-
On the other hand, in the presence of magnetic long-rang@teger multiples ofr implies the time-reversal symmetry
order, the gauge fie|d42(:ASB) becomes massive since breaking®® whereas in our case, there is no such implication
Schwinger bosons form Bose-Einstein condensdteat is, ©Of the time-reversal symmetry breaking arising from the

Schwinger bosons are in the Meissner phase with respect B€rry phase. In addition, there is no mean “magnetic” field
the gauge fieldd3 ) as long ag=,s,p,(r,7))=0. On the other hand, since the
"

gauge field describes the localized spin fluctuations, both the

time-reversal symmetry and the parity are broken in the lo-

calized spin system by the presence of the Chern-Simons
Since coupling between the carriers and the localizederm.

spins is made only through the gauge fie&tﬁ, we may

write the effective action of the carrier system in the follow- E. Superconductivity

ing form:

D. Skyrmion excitations

In the phase without magnetic long-range order in the
B _ localized spin system, the Chern-Simons term plays a domi-

Sﬁﬁ:f de d?ry(r,7) nant role in the actiors 4. In this phase, an attractive inter-
0 action is induced between skyrmions. Through this attractive

1 interaction, carriers form the Cooper pair.
07—t iAf+ %( —iV+A32|y(r,7) Intuitively, we can understand the occurrence of an attrac-
tive interaction between skyrmions as follows. As discussed
i0 (s 5 5 5 , in Sec. Il B, the carrier rotates its spin at each hopping pro-
+ ﬂfo de d’r AZ(9,Ay— ayA) +SP". cess due to the spin-orbit coupling tek,. These rotations

of the carrier’'s spin affects the localized spins through the

(3.20 strong-coupling ternH,,;. This effect can be described as

. . . . , . the formation of a spin configuration in the localized spin
From this action, one can derive an important relationship ; . ' : : :
system. This spin configuration carried by each carrier gen-

between the carriers and excitations in the localized spin sys- P e ;
- off - 3 . erates a “magnetic” field around other carriers through the
tem. The variation oB;" with respect taA yields

Berry phase. Therefore when a carrier passes another carrier
with velocity, a Lorentz force acts between them. This Lor-

2 Syp,(r,7)=— i(&an—o’*yA;z’), (3.21) entz force plays a role of pairing interaction.
o 2m Y Now let us go into detail. The Lorentz force is derived

wheres, = +1 ands,=—1. This equation implies that a from minimal coupling between the carriers and the gauge

; 3.

gauge flux is produced at the position of the carrier. Thisﬂeld A
gauge flux corresponds to the skyrmion excitation similar to 1
a topological excitatioht of the nonlinear sigma model or Vint:j d?r=— >, s ut(r) (k- A3+ A3 K) i, (1).
CP! model#247 2m %y

The gauge fluxes produced by each carrier play a role of (3.29
vortices introduced in a BCS superconductor. In a BCS sUgrom Egs.(3.21) and (3.22, we eliminate the gauge field
perconductor, which is Bose-Einstein condensation of C00;43 ypon taking the Coulomb gauge. Thus we obtain
per pairs, disorder is introduced by vortices, or the electro-
magnetic gauge fluxes. As mentioned in Sec. Il A, the 1 " "
magnetic long-range order in the localized spin system is Vim:m . ;k Salsozvklkzck1+q/2,(rlc—k1+q/2,<r2
described by Bose-Einstein condensation of Schwinger 17
bosons. Since the Schwinger bosons couple to the gauge X €+ q2.0,Cky+ g2,y (3.23
field Ai, its gauge fluxes introduce disorder in Bose-
Einstein condensation of Schwinger bosons. This impliegvhere(} is the area of the system and
that disorder is introduced by skyrmion excitations, or carrier
doping through the relationshi(8.21). In the presence of _Ami kyXk;
magnetic long-range order, the skyrmion excitations have an kika™ ‘me |k, — k2|2' (3.29
excitation energy gap. After magnetic long-range order is
destroyed by skyrmion excitations, they become gapless eXequation(3.23 represents the interaction between the carri-
citations and the Chern-Simons term plays a dominant role iers mediated by the gauge fiewi. Note that in this equa-
long-wavelength and low-energy physics. tion no parameters characterizing the skyrmion excita-

X
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tions appear except for the Chern-Simons term coeffidient For the ground state, we obtafn
Furthermore, there is no retardation effect.

Now we may write the effective Hamiltonian for the car- 1 kKA (K = KA« k :
rier system in the following form: Ak=2— f dk’ (?> +f dk’ —I |
mé| Jo = k Ev |k
1 (3.3
H :2 gkclocko’—’— E 2 2 Salsozvklkz . . . .
ko ki#kz o107 In order to solve this nonlinear integral equation, we use an

(3.25 approximation. From the asymptotic behavior of the right-

t ot
xcb el e Crn :
kyoy©—kyop" —karpVkyoy hand side of Eq(3.31), we set?

Here we setg=0 in the interaction term to focus on the

equilibrium state. We investigate the possibility of supercon- Aep(kikg)', for k<K,
ductivity based on the Hamiltonig®.25. For simplicity, we K| Aep(ke/K)', for k>ke. (3.32
analyze the Hamiltonian within a mean-field theory. We in-
troduce the following pairing matrices: Substituting this equation into E¢3.31), we obtaifi?
1 21+1
K = - ’ ’ ’ k (k/k )
7105 () k’(E;ek) ka <C*k a'zck ‘71>’ (326 f F(dk/kp) F
0 VE(K/ke)? = 11+ A%(K/kg)?
1
(AT == > Vel el o) (32D - (K/kg)t=2
2 0 G G0, Okt o) +f (dk/ke) 2 F2 : —— 9.
. — =

In terms of these matrices, we define the mean-field Hamil- F \/[(k/kF) 117+ A%(K/ke)
tonian (3.33

H 22, + B + The remaining parametek can be evaluated numerically
MF™ & (£KCkoCko ™ EkC—koCoks) from Eq. (3.33.>° For eachl we estimate the left-hand side
of Eg. (3.33 with varying the value ofA. The point at which
e ket K ot Eqg. (3.33 is satisfied gives the value &. From this analy-
+k0§1:(rz [(A%)6,5,C—ka,Cko, T 010,80, C-kor, ) sis we find that the largest gap is obtained for the cade of
=1 andA'='~3.1. Furthermore, this state has the lowest
(3.28 ground-state enegy. Therefore the ground stagevigve su-
Here the summation ik space is taken over a half of the first perconductivity. From Eq(3.30), the symmetry of the Coo-
Brillouin zone. per pair isp,*ipy. Incidentally, this is the same pairing
For the spin singlet pairing case in whiQH;l:—A‘jT state as that proposed in,&u0,.>* However, we cannot
=A,, the gap equation can be derived by taking the standardpply our pairing mechanism to this system. We shall discuss
procedure! this point in Sec. V

1

Ay E,
T D ka/—ktanh'sz , (3.29 IV. ANTIFERROMAGNETIC CASE

Ak:
k' (#K) Ey

Now we study the mechanism of the case of antiferro-
with E,= \/§2k+ |A|2. For the spin triplet pairing case with magnetic coupling between the localized spins. Although we
ALT(T:ATLZO andAiT(L:AIIT , we obtain the same gap equa- can apply a similar analysis, the antiferromagnetic case is
tion (3.29. A pairing state withA'T‘ﬂéO and/orA‘fﬁtO may Mmore complicated than the ferromagnetic case because we
be stabilized in the presence of an in-plane magnetic field opeed to cope with staggered magnetization. That is, we need
case. transformation by which the system is mapped onto a similar
for the composite fermion pairing state at half filled Landauformation and analyze the mechanism of superconductivity
levels®2%3 We apply the same analysis of Ref. 52. We as-through the transformation.

sume that the gap functioh, has the following forn?? As in the ferromagnetic case, we introduce Schwinger
_ bosons and rotate the carrier’s spins so that each of them is in
Ag=Aexp(—il Oy). (3.30 the direction of the localized spin at the same site. The rota-

After substituting Eq(3.30 into Eq.(3.29, we integrate the tions are performed by the following transformations:
angular variable 6, using Cauchy’s theorem by taking )

exp(6,) as a complex variable. In this calculation, we find ci—Uici (ieA),

that the attractive interaction arises only in the case>od. ci—Uj(—igyc; (jeB).
From the fact that the case b0 yields a repulsive inter-

action, we may exclude the possibility of a linear combina-The definition ofU, is given by Eq.(3.10. Note that the
tion of components with>0 andl <0 in Eq.(3.30. matrix

(4.2)
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_; -7 B —
Uj(_i(fz):( _Jl ”) (42) SSpin:fO dr| 2| ; ZIo—(aT+)\ISB)Z|U
Zjp T2y
; . J — _
can be derived from the matrid; by the transformation ~3 EA 2 0%2 Zispro,Zic Zioy it oy
Ziy — —; ) (4.8
l Tt w3
Zj| = Zj- where ther dependence of all fields is implicit. In order to
_ — _ decouple the interaction term, we introduce Stratonovich-

If we do the same transformation B =37z;0z, we obtain  ppard fields Qi and Qisy: Zepin

Sj—>—%zj oz. Thus in Eq.(4.1) the presence of the factor =fD?DZD>\SBD6DQeXp(—Ss )
(—io,) at theB sublattice implies that the carrier’s spin is in P
the direction of the staggered component of the localized 8
spins. Sspin:f drl

In order to eliminate the factor<io,), we perform the 0
following transformation at th@® sublattice:

El E ?I(r( &T+ )\ISB)ZI o

J _
T +§.2 > Qi sQiisy
cj=io.ci (jeB). (4.9 i‘eA 5

‘] —_— R

By this transformation, we obtain _EEA S Qs
ie n o

B — . 5 B
Sc+$nt: fo de d2rlﬁ(l’,T)Gfl({kM-FAM})l//(I',T), +Qi,i+nziozi+77!0') . (49)

(4.5
1 . , i The spin fluctuation field); ; , ,, consists of the phase fluc-
whereG™"({k,}) is given by Eq(3.14). This action has the {ations and the amplitude fluctuations. The latter is irrel-
same form as the action of the ferromagnetic case, EGyant for our analysis as it is in Sec. Ill. The phase fluctua-
(3.12. Therefore the same Chern-Simons term is induced byions are connected with a gauge invariance of Schwinger

integrating out the carrier fields. However, we need to perypsons®® We include these phase fluctuation degrees of free-
form the inverse transformation of E¢t.4) when we study  gom later by imposing the gauge invariance.

the symmetry of the Cooper pair because the transformation e get Qii+,=|Qii:,/]=Q=const and )\ISB:)\SB
(4.4) affects the order parameter of the Cooper pair. Further—_ const. Then, Ythg action I’g diagonalizedkirspace. Intro-
more, the action of the localized spin system, of course, dif'ducing the following fields:

fers from the action of the ferromagnetic case. In particular,

the relevant gauge field component is different from that 1 - o
case. gkazz[(zka+zk+Q,o’)+(Z—k¢T—Z—k+Q,o')]y (41@

A. Action of the localized spin system 1
In order to identify which component o2 is connected Ekozz[(zka—'— Z+Q,0) ~(Z-ko—Z-k+Q0) ], (41D
with the antiferromagnetic spin fluctuations, we calculate the

action of the localized spin system. In terms of theyith Q=(n/a,m/a), the action is written in terms of these
Schwinger bosons, the Hamiltonian is written as, up to conyig|ds as

stant,
H _J t t SSpin:_z Ek: 2 [_iwn(Ek0§k0+ gkﬂ'EkO')
72 S (2 (0 ) oy 1T n O o 7
(4.6 + (N st €k) Lkolkot (NsB™ € E ko Bkl
To write this Hamiltonian in a tractable way, we perform the (4.12

following transformation at th& sublattice® o
g wheree, = —2JQ[ cosk,a)+cosk,a)] and the summation in

k space is taken over a half of the first Brillouin zone. One
(4.7) can see that the mass &, is Asg+2JQ, which is larger
Z, — zj;. than the mass afy, , Asg— 2JQ.%° Furthermore, the mass of
E\. is nonvanishing whereas the mass{gf is identically
Turning to the path-integral formalism, we obtaifis;i,  zero in the ordered phase. Therefore we can safely integrate
= [ DzDzD\Bexp(— Sy, Where out =, and we obtain

Zjt = T2
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Zl(agka . (4 13

2
wp)
— +)\SB+ €K
B~ €k

(i
As

Taking the continuum limit and recovering the gauge in-
variance of the Schwinger bosons, we obtain

(4.14
where g=42a, Ag,=\23—43°Q?, cq=12JQa, and

Xo=Cgq,7- In these parameters we setz=2JQ except for

_ AZ
(9, +TASP L2+ 14,2

sw

2 (BCsw
Sspinzafo dXOJ dZXE

Agy. Equation (4.14 is invariant under the gauge
transformatior?®
L(ryr)—L(r,mexdif(r,7)], (4.15
SB, SB,
A1) — A, 7)=3d,6(r,7). (4.1
This gauge transformation corresponds to
Zi — Ziexmé’i) (l eA),
. . (4.17
z; — zexp—i6;) (jeB),

because if we take the set @#ven,evenand (odd,odd for
the A sublattice, then

|

This equation is verified as follows:

for l1eA,

| eB.

£|U:Z|g-

glaz;lo' for

(4.18

1 & .
bio=ry % Eko®XRik-R)
=i2' 2, Ri(1+e QR
2N ko

1 — _
+m2 Z_,eFR(1—e Ry (4.19
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S=S;+ Sspin+ Scs
= joﬁdrf d2rg(r, 7)

1 ~
X|a,+iA—u+ ﬁ(—iVJrAl)z}l//(r,T)

AZ
(9, +1AL) L (02+ =14, (X)|2

CSW

2
+—| d3
o] &2

“9 B 2 1 1 1
— 5, ) A | PrALGA- A, (4.21)

B. Skyrmion excitations

As discussed in Sec. Il D, carriers are connected with
skyrmion excitations in the localized spin system through the
Chern-Simons term. However, the connection is slightly dif-
ferent from the ferromagnetic case because the spin fluctua-
tions are described by the gauge field, instead ofA? . If
we take the 1-axis for the quantization axis in spin
space, the relationship between the carrier and the skyrmion
excitation is

= ~ 0
2 S U1 o1 m) = = 5 (0 Ay = 3, A5).

(o8

(4.22

Contrary to the ferromagnetic case, a significant feature
appears for the antiferromagnetic case, that is, a pinning
mechanism of carriers in the antiferromagnetic long-range
ordered phase. This can be seen as follows. The relationship
(4.22 is obtained after the transformati¢#.4). In order to
capture the proper nature of skyrmion excitations, we must
go back to the frame before the transformatidmd). Per-
forming the inverse transformation of E@.4) at theB sub-
lattice, we find that an additional sign change is brought
about in the left-hand side of E4.22), that is, a skyrmion
(antiskyrmion excitation transformed into an antiskyrmion
(skyrmion excitation. Therefore skyrmions or antiskyrmions
cannot move to the nearest-neighbor sites as long as there is
antiferromagnetic long-range order and skyrmion excitations
have a gap. This suggests an insulating behavior of the car-

Since the gauge field is connected with the phase fluctugiers in the antiferromagnetic long-range ordered phase.

tions ofQ; i+ ,, the gauge fieldélf,jB has the following form:

A= =12 £,(X)3,L,(X). (4.20

In order to find the relationship betweemiB and A, , we

write A, in terms of £, and {,. Thus we find A'=
— ASB. From the gauge invariance of the Schwinger boson
one can see that there is a correspondence betwéeand
A2, ThereforeA , is connected with the antiferromagnetic
spin fluctuations.

As a result, we may write the effective action in the fol-
lowing form:

S,

Although this is a new feature which appears in the anti-
ferromagnetic case, the destruction mechanism of magnetic
long-range order is the same as that discussed in Sec. Il D.
Antiferromagnetic long-range order is destroyed by carrier
doping because carriers behave like skyrmion excitations.
After antiferromagnetic long-range order is destroyed, skyr-
mion excitations become gapless excitations. The Chern-
Simons term plays a dominant role and the attractive inter-
action between skyrmions leads to superconductivity.

C. Superconductivity

Now we investigate the property of superconductivity. In
order to identify the symmetry of the Cooper pair, we need to

064513-8
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perform the inverse transformation of E@l.4). However,

PHYSICAL REVIEW B 65 064513

displacement of) in k space yields the sign change because,

since the calculation of the pairing matrix is much easier for— 2t [ cos k,+Q,) a+cos k,+Q,) a]=+2t (cosk,a+ cosk,a).

the system after the transformati¢h4), we investigate the
pairing matrix through the transformatid#.4). If the B sub-
lattice consists of the sites witfeven,odd or (odd,even,
then the transformatiofd.4) is written ink space as

Ck— Ci+ 0= 102(Ck—Cic Q). (4.23

Since there is no change at the sublattice, that iscy
+Ck+Q:Ek+Ek+Q1 we obtain

1 o o
C=5 [(ootios)ct (op—ioy)Ciiql,

(4.24)

1 - -
Ck+Q:§ [(UO_|02)0k+(0'0+|0'2)ck+Q]. (4.25

In order to apply the analysis done in Sec. Il E, we need

to introduce the following fields:

Tyl 11 1 )(}}M)
- = — - , 4.2
(Ckl) \/E 1 -1 Xk| (429

because in Eq4.22 we take the 1-axis for the quantization

axis in spin space. In terms of these fielgg,, the spin
singlet order parameter is written as

1 - - - -
(C_k Cky—CkqCk) )= §[<X—k1XkT — X—Kk1Xk])

+<;(—k+Q1;(k+QT—;(—k+QT;(k+QL>]-
(4.27

For the spin singlet pairing state, the gap functibpis
given by

(4.29
where A{Y is the gap function for (x_y x:)

:_<g—kT}kQ and A is that for <}:k+Q1Xk+QT>

= —(X—k+01Xkro). In the continuum limitA(" satisfies,
X-k+Q1Xk+Q| k

atT=0,

A=(AL+AMD)/2,

1 A

Zf}):— > ka'—k,
20 K’ (#Kk) E(kl/)

(4.29

whereE(N=/¢2+|A|2. On the other hand}(?) satisfies

1 A

RP=——= 3 Vie—gz
20 K’ (#k) Ef(z,)

(4.30

whereE(? = \/£2+|A?)|2. The minus sign in the right-hand
side of EQ.(4.30 comes from the sign change in minimal
coupling to the gauge field. The minimal-coupling term is

derived from {aA#Gg_E({RMvLAM})IAMZO,AM}, where

This sign change affects the interaction term through the
minimal coupling term. Equatio.30 is understood to be
the equation obtained after taking the continuum limit.

The analysis of Eqs(4.29 and (4.30 parallels that in

Sec. Il E. So we also take E3.30 for the form of A(")
andA{? . From Egs.(4.29 and(4.30, we see thafA\{") and

A{?) have opposite chirality. For the case of the spin singlet
pairing, || takes the valuefl|=2,4,6 ... . From the same
analysis done in Sec. Il E, we find that the pairing state with
the lowest energy ifl|=2, ord wave. The pairing function

is given by

A=A [ exp(2i 6,) +exp(—2i 6,)]/2

ZZK(COSZQK_SinZHk), (431)

whereA,=Aer(k- /k-)? with A~1.3. Here ifk is smaller
thankg thenk_=k and k. =kg and vice versa. From Eq.
(4.31), we see that the precise symmetry of the Cooper pair
IS dy2_y2.

For the spin triplet pairing case, we find that, =AY,
=0 and A';1=A'fpcsin 0. In the d-vector notation of the
triplet pairing staté® this is written asd,=k,es. From the
analysis of the Ginzburg-Landau free enéfgwithin the
two-dimensional representation in which the basis states are

{k.€3,k,e3}, one can see that the free energy of this pairing
state is higher than that cn‘k=(kxtiky)é3. This suggests

that the pairing state withkzkyé3 is not stabilized and we
can exclude the possiblity of the spin triplet pairing state.

From the above analysis, we may conclude that the sym-
metry of the Cooper pair id wave, or more preciselg,2 2
wave. This is the same pairing state as that of the Righ-
superconductors.

V. DISCUSSION

In this section, we discuss the condition for that the
Chern-Simons term is induced and applications to the high-
T, cuprates and other systems.

A. Condition for the Chern-Simons term

The derivation of the Chern-Simons term is based on the
continuum approximation. This approximation is justified
when the length scale of the gauge field is relatively larger
than the length scale determined by spin-orbit coupling. We
first discuss the validity of this assumption.

As we have shown in Sec. Il B, the effect of spin-orbit
coupling is to rotate the carrier’s spin at every hopping pro-
cess. The angle of this rotation i& &2(= 6, for the nearest-
neighbor hopping. On the other hand, the length scale of the
gauge field is determined by the fluctuations of the spin sys-
tem through Eq.(3.13. This length scale is given by
hcgy/(mAg,) from the analysis of the Schwinger bosons and

Gg_é({kﬂ}) represents the kinetic energy part of the inverseit is translated into the fluctuation angle of the localized
of Green’s functionG‘l({k#}). In the lattice system, the spins. For the nearest-neighbor sites, the fluctuation angle is
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~al(hCgyl TAgy) = mAg,/ (fiCg,/a). In order to apply the Now we discuss some prope.rties of the squrconquc'ging
continuum approximation to the gauge field, this fluctuationstate. In our mechanism, there is a characteristic excitation.
angle should be smaller thah,=2\/t, that is, Because of the transformatio@.23, two components of
Cooper pairs appearsé)(,_kl)_m) and (x—k+o/Xk+01)-
AN TAgy Therefore there is an excitation between them that creates
_—> (5.0 i i i
t ~ (hcg,la) one quasihole in the one component of the Cooper pairs and

one quasiparticle in the other with the momentuin
This is the condition of taking the continuum limit for the =(w/a,w/a) and the energy &_. Such an excitation can

gauge field. be detected by inelastic neutron scattering. This excitation
The condition(5.1) is satisfied as long as sufficient mag- may be identified with the 41-meV peak observed by the

netic correlations are preserved, or the gap of spin-wave eteutron experimenty.

citations is relatively small. Note that the conditi@®l) is In addition, it should be stressed that the strength of the

just for the localized spin system. It only provides the con-spin-orbit coupling does not affect the transition temperature

dition for the existence of the Chern-Simons term. Althoughof superconductivity as long as the condition for the presence

our mechanism of superconductivity is based on the presencg the Chern-Simons term is satisfied, as discussed in the last
of the Chern-Simons term, the superconducting state doe§,psection.

not rely on directly the value of spin-orbit coupling In Buckling affects superconductivity not through the spin-
fact, the gap of superconductivity is independent of the paprbit coupling term but through the Fermi energy because the
rameterh as shown in Secs. Il E and IV C. superconducting gap is proportional to the Fermi energy. If
we increase the angle of buckling, then the hopping ampli-
B. High-T, cuprates tudet in the plane may be reduced. Such a reduction leads to

decrease of the Fermi energy. Therefore if we increase the

As we have dlscyssed n Introduct|on,.the hibh-cu- ngle of buckling, the transition temperature is rather re-
prates can be described as the Kondo lattice system. In ad-

" X ) ' A%Uced. This is consistent with the experimetits.
dition, buckling seems to play an important role concerning
the occurrence of superconductivity. If buckling and the pa-
rameters characterizing the localized spin system fulfill the
condition (5.1), then the Chern-Simons term is induced. Our mechanism can be applied to the double exchange
If we can apply our mechanism to the high-cuprates, ~System. However, in app|!c&}tl0n to that system the following
then it describes the underdoped region. Because the undéionditions should be satisfied. First, we must detect super-
doped region is close to the antiferromagnetic long-rangé&onductivity in the region where the antiferromagnetic cor-
ordered phase. Such a phase is properly described by tﬁglatllon between the core spins are preserved._ Th_at |s,.the
Schwinger bosons. However, in the optimal doped regiorfarrier number must be sr_nall. Whereas the region in Whlch
and the overdoped region of the high-cuprates the local- the ferromagnetic correlation betwegn the core spins doml—
ized spin system is much more disordered than in the undefates, we cannot apply our mechanism. Second, we require
doped region. the system with the layered structure and buckling of the
In order to describe strongly disordered regions, thePlanes. Although La Sr . 2Mny0; is a layered double
Schwinger bosons are not appropriate fields. The descriptiofxchange system, the=0.3 compound shows ferromagnetic
in terms of Fermionic fields is more suitable than thecorrelation” If the compound with buckling and smallin
Bosonic description of the localized spin system. The deWhich the sample shows antiferromagnetic correlation is pro-
scription by Fermionic fields instead of the SchwingerVvided, dy2_,2 superconductivity based on our mechanism
bosons corresponds to describe the Cu site degrees of fre@lll be realized.
dom by fermion fields. Such Fermionic degrees of freedom
may be observed by angle-resolved photoemission spectros- D. Other systems
copy experiment$ARPES. From the symmetry of the Cooper pair in Sec. Il E, one
It should be noted that the antiferromagnetic correlationmight think of the application to $SRuQ,. However, the
described in terms of fermion fields has the form of the sinmagnetism relevant to this system is itinerant ferromag-
glet pairing between the fermions, because the order paranfretism. In fact, all of the relevatorbitalsdy,, dy,, andd,,
eter for the antiferromagnetic correlatiorg; ;. , in the  form conduction bands and the Fermi surface of them are
Schwinger boson system is replaced b, f; —f; f;;)  observed by the de Haas—van Alphen eff@dn such a sys-
=fj;, in terms of the fermion fieldd;,. In deriving this  tem, we can not expect the formation of the localized spins.
relationship we need to go back to the original system beforgherefore we cannot apply our mechanism toRSIO,.
the transformation of Eq(4.7) and we use the constraint  For the application of the mechanism of Sec. Il to real
E,,fiTUfiU= 1. This correlation is similar to that characterizes materials, we require a ferromagnetic superexchange interac-
the RVB staté> From the mean-field analysis, we find that tion between the localized spins. In order to produce such a
fij showsd,z 2 symmetry?* Although thisd,2_y2 symme-  superexchange interaction, we need at least three kinds of
try is the same as that of the Cooper pair of holes, theyons or multiband structure for the magnetic ions to consti-
have completely different origins and must be discussedute the conduction layers. Furthermore, of course, we need
independently. buckling of the planes.

C. Double exchange systems
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At present, it seems that there is no material with all of
these properties. However, if such a system exists, then we

PHYSICAL REVIEW B 65 064513

1
=T 2 Va(k)Va(k) f dXFy(X)F2(x)
can expect higher superconductiving transition temperature
than the hight; cuprates. Because the gap is larger than that i
of the antiferromagnetic case within the analysis in which the o0 Ek: [Vi(k)Vz(k)J dxF1(X)F2(x)
long-range Coulomb interaction is neglected.

FVL(OVK) f dXF1(X)F (%)
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(A4)

In the second term in the last line we have taken into account

the term obtained by the partial integral. Applying this de-
In this Appendix, we derive the effective action for the rivative expansion and retaining the most dominant term in

gauge field arising from the carrier system. Integrating oulong-wavelength and low-energy physics, the act® is

the carrier fields from the actiof8.12), we obtain the effec- evaluated as

tive actionS’:

APPENDIX: INDUCED CHERN-SIMONS TERM

i B
5(2):4_2 z IZ?})\JAO de deriﬁ,,Aa, (A5)

T a pvh

S=—Tr{In[G *(k,+A,)]-IN[G *(k,)]}. (A1)

where
i ' i c —g2)
\JIFVZ(S?ip‘éﬁthr:lésr;eactlon with respect td, as S;=S - T s oo JG-1 G‘?GflG JG-1
’ T ak, 787k, | ak, 78 )
(A6)
! 1)oG71 1)oG™H _ _ _
S )=§Tr G 5| —=AuC 5\ A | Here the trace is taken over spin space. All functioffs,
w K, can be calculated in a similar way. For exampjﬁ%, is given
(A2)
y
o 1 1{sG-2 1(sG-1 Ly r=2m(APONPD NN 3 K. (A7)
S :—§Tr G 2| o T G 2 Ik A, In deriving this equation, we have taken into account another
a ! choice of)\g”) connecting coordinate space with spin space.
1|9G1 In Eqg. (A7), K is given by
XG ;y— A, |- (A3)
2| ok, 1

1
5 . 2 212
In order to calculateS'?), we apply the derivative L arlaton
expansion technique. To illustrate this technique, let d*k | £/ (&t gD+ (&—1lg(k)])
us consider a simple one-dimensional example: =f 4|g(k)|2
g

I=Tr[V1(K)F1(x)Vo(k)F4(x) 1, wherek=—ia, and V;(k)

(2m)?

andF;(x) are functions ok andx, respectively. Inserting the f(&—|g(k)) = f(&+]g(k)])
identities fdx|x)(x| =1 and = ,|k)(k| =1, we obtain + ETE : (A8)
A In the limit of B|J¢|—, this equation is reduced to
1= [ axS VaRIFL 0 IV o0 (k1)
k K= tanit Yl (A9)
“ Vi) 8mA|J] T 8
— n
_J dXEk FZ(X)VZ(k)nZO n! (X[K"F1(x)[K)(k|x) Thus S? has the form of the Chern-Simons term,
= ViV i6 (8
= f xS, Fa00Va(l) S ) S5 f dr f d?rLA XAy~ dyAY)
k n=0 n! mJo
n + A%, AT= 0, AD)]. (A10)

X MF‘f‘”(x)k"*m<x|k><klx>

m=0 m!(n—m)! The coefficient of the Chern-Simons term is given by
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1 J i0 (8
6= Esgr(JcA)tanh'E%, (A11) s<c3g=§ fodr J d?r A%(9,A5-0,A3).  (A13)

i — (@0)y (0a) _y (a,0)y (0.a) . . .
with A=N1"7\5 A LS N As a result, we may write the effective action for the

. . . . 3
From similar calculations, we find th&®) has a form of gauge field arising form the carrier system in the following
a non-Abelian Chern-Simons term, form:

3
S

168 3041 42_ 42 41 i0 (B
;fo de erAT(AXAy—AX.Ay). (A].Z) Silzﬁfo de dzr[-Ai(ﬁxAs_ayAg)

This non-Abelian Chern-Simons term can be reduced to an

! 1_ 1y_ 42 2_ 2
Abelian Chern-Simons term upon using the curl-free condi- A(0x Ay = dyAx) = AZ(9xAy = dyA3) ]

tion, 2(A A~ AZAY) = 9 AS—dy A} (A14)
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