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Tunneling conductance ford-wave superconductors:
Dependence on crystallographic orientation and Fermi surface

P. Pairor and M. B. Walker
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 2 August 2001; published 15 January 2002!

The dependence of theab-plane differential conductance of a normal-metal-insulator-da22b2-wave super-
conductor junction on the superconductor crystal orientation and its Fermi surface is investigated using a
two-dimensional square lattice model. In the tunneling limit, when the orientation is away from$100% and
$110%, the study shows that there are features at other energies in addition to a zero-bias conductance peak and
a shoulderlike feature at the maximum gap. These additional features are found to occur at either the energy
gap of the state with the momentum normal to the surface or the gap of the state with the momentum on the
edge of the surface-adapted Brillouin zone, or at both of the energy gaps, depending on the shape of the Fermi
surface. These considerations show that, in principle, tunneling can be used to determine the energy gap at
wave vectors other than those at which the gap is at a maximum.
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I. INTRODUCTION

Normal-metal-insulator-superconductor~NIS! tunneling
spectroscopy is one of the most powerful tools used to st
the quasiparticle excitations of a superconductor.1,2 It pro-
vided the demonstration of the Bardeen-Cooper-Shrie
~BCS! prediction of the density of states~DOS! of conven-
tional s-wave superconductors as well as the measureme
their superconducting gaps.3 The tunneling conductance o
an isotropics-wave superconductor is approximately propo
tional to its bulk DOS and does not depend on the crysta
graphic orientation of the superconductor.

In the past decade the technique of tunneling spectrosc
has been applied to the study of the quasiparticle excitat
in high-Tc cuprates. The tunneling conductance spectra
these materials show strong dependence on the supe
ductor crystallographic orientation,4–6 which is as expected
for superconductors with an anisotropic gap function. T
tunneling conductances of these superconductors do no
ways reflect the bulk DOS; instead they are closely relate
the local DOS which strongly depends on the surfa
orientation.7 Particularly in ad-wave superconductor, be
cause zero-energy surface bound states8 can be formed for
certain surface orientations due to the change of sign of
gap function, the tunneling conductance curves can conta
peak at zero energy. Zero-bias conductance peaks~ZBCP’s!
have in fact been observed in manyab-plane tunneling ex-
periments of cuprate superconductors.4,9–15The existence of
the ZBCP is one of the strong pieces of evidence sugges
that the pairing symmetry of high-Tc cuprate superconduct
ors is predominantlyd wave.8,16

Quantitatively, one can understand the dependence on
surface orientation of the tunneling conductance of ad-wave
superconductor by using a simple method, the so-ca
Blonder-Tinkham-Klapwijk ~BTK! formalism.17 This for-
malism makes use of the Bogoliubov–de Gennes~BdG!
equation and the scattering method, which was first in
duced to the study of the normal-metal-superconductor in
face by Demers and Griffin.18,19 Tanaka and Kashiwaya20

make use of the formalism, together with a simple assum
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tion that the Fermi surface of ada22b2-wave superconducto
is isotropic, to explain the evolution with the surface orie
tation of the ZBCP in theab-plane tunneling conductanc
spectrum. They found that for$100% surfaces there is no
ZBCP, and for surface orientations away from$100%, the
ZBCP starts to appear. It reaches the biggest width
height when the surface orientation is$110%.

In addition to the ZBCP, a cusplike feature in the tunn
ing conductance spectrum also evolves with the surface
entation. It occurs at the maximum gap for$100% surfaces
and disappears for$110% surfaces~there appears a shoulde
like feature at the maximum gap instead!. For the surfaces in
between$100% and$110%, we find that for the isotropic mode
the cusplike peak appears at the energy gap of the state
the momentum normal to the surface. This finding sugge
the potential of the NIS tunneling spectroscopy as a too
map out the magnitude of ad-wave gap function at differen
points on the Fermi surface. However, because this findin
based on the model that uses the assumption that the F
surface of the superconductor is isotropic, one has to be c
ful in applying the results to high-Tc cuprates. Angle-
resolved photoemission spectroscopy ~ARPES!
measurements21–24show that the Fermi surfaces of these m
terials are far from being isotropic. They are however w
described by a tight-binding model.

In order to better understand the tunneling conducta
spectra of high-Tc cuprates, in this paper we use a latti
model that allows us to mimic the Fermi surfaces of t
superconductors. In particular, we use a two-dimensio
~2D! square lattice model in which the copper oxide plan
of the superconductors are represented by a square la
We apply this model to examine the dependence on the
face orientation of theab-plane tunneling conductance spe
trum of a BCSda22b2-wave superconductor using the BT
formalism.

The outline of this paper is as follows. Before we give t
details of the formalism and results for the 2D lattice mod
we review in the next section the results from the 2D isot
pic model for later comparison. We explain why, in the is
tropic model, the state with the momentum normal to t
surface is the main contributor to the cusplike peak in
©2002 The American Physical Society07-1
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P. PAIROR AND M. B. WALKER PHYSICAL REVIEW B65 064507
tunneling conductance spectrum of the junction with orie
tations away from$100% and $110%. In Sec. III, we describe
briefly the discrete lattice BdG equations and the formali
used to calculate the differential conductance. We also in
duce the use of the surface-adapted Brillouin zone~SABZ! to
obtain the right number of transmitted excitations, the lin
combination of which is the wave function of the superco
ductor. In Sec. IV, we discuss the results from the latt
model. We then draw conclusions in Sec. V.

Throughout this article, we assume a spatially const
da22b2-wave superconducting gap function for simplicit
The self-consistent solution of the gap function will give
correction of the order of the ratio of the maximum gap
the energy bandwidth of the superconductor. We neg
terms of this order in all the calculations in this work.

II. CONDUCTANCE SPECTRA FROM THE ISOTROPIC
MODEL

Before discussing the tunneling conductance spectrum
a normal-metal-insulator-da22b2-wave superconductor~NID!
junction computed for the 2D lattice model, it is useful
consider in more detail the conductance of the 2D isotro
model to give an introduction and later a comparison. Qu
titative calculations of the conductance have in fact alre
been carried out for this model in Ref. 7. Our aim in th
calculation is to look at the individual contributions to th
conductance in more detail, and to show why the cusp
feature occurs at the energy gap of the state with the mom
tum normal to the surface.

The isotropic model makes use of the assumption that
electronic structure of thed-wave superconductor is isotro
pic. The insulating layer of the NID junction in this model
represented by a delta-function potential of strength H.7 The
pairing potential is assumed to be zero in the normal m
and to be spatially constant with ada22b2-wave symmetry in
the superconductor. The geometry of the junction is d
played in Fig. 1. The conductance spectrum of the NID ju
tion is found by using the BTK formula.7,17 This model is
able to capture most of the qualitative characteristics of
tunneling conductance spectrum of ad-wave superconductor

Figure 2~b! shows the plots of normalized conductanc
of four junctions of different surface orientations~see also
Ref. 7!. Each surface orientation is characterized bya, an

FIG. 1. The illustration of the NIS junction used in the isotrop
model. The superconductor crystallographic orientation is cha
terized by a, an angle between thea axis and thex axis. The
insulator is described byd-function potential of strengthH.
D(k)Q(x) is the gap function.Q(x) is a Heaviside-step function.
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angle between thea axis of the superconductor and the su
face normal of the junction@see Fig. 2~a!#. For a50 which
corresponds to a$100% junction, the conductance spectrum
linear at low voltages and peaks at the voltages that co
spond to the maximum energy gap. Fora5p/4 which cor-
responds to a$110% junction, the conductance spectrum co
tains a ZBCP and shoulderlike features at the maximum g
For orientations between$100% and $110%, the conductance
spectrum shows both the ZBCP with the shoulderlike feat
and the cusplike peaks. As indicated by the arrows in F
2~b!, these cusplike peaks do not occur at the voltages
responding to the maximum gap. As mentioned above, th
peaks are in fact at the voltages corresponding to the en
gap of the state whose momentum is perpendicular to
surface.

A. Conductance formula

In the isotropic model, the Fermi surfaces of both t
normal metal and superconductor are assumed to be is
pic. The BdG equations used to describe the system are

c-

FIG. 2. ~a! Schematic illustration of the Fermi surface~dash-
dotted circle! and the gap function used in Ref. 7. The dash
curves represent the gap function when thea axis is along thex axis
and the solid curves when thea axis is tilted with an anglea from
the x axis. u gives the direction of a Fermi wave vector. The g
function can be written as a function of the two angles:D(u,a)
5Dmaxcos@2(u2a)#. ~b! Plots of the conductance vs applied vo
age of four junctions with differenta. The parameters used in thes
plots~following the notation in Ref. 5! areZ51.5 andl51.0. Note
that cusplike peaks~indicated by the arrows! develop ateV5
60.6Dmax for a5tan21(0.5) and ateV560.5Dmax for a5p/6.
7-2
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FIG. 3. The sketches of bulk
quasiparticle energies of the no
mal metal ~a! and the supercon-
ductor ~b! at a givenky5ky

(0) . In
~c!, the Fermi surface of the super
conductor, thea axis of which is
tilted away from thex axis by an
anglea, is shown. The dotted and
solid curves outside the Fermi su
face represent theda22b2-wave
gap function.
2
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U ~x,0,y!5
1

eiq1x1a
0

eiq2x1b
1

e2 iq1x eikyy,

es
a

u-

n
i-
F 2m

D* ~x!
\2

2m
¹21m

G U~x!5EU~x!, ~1!

wherem is the Fermi energy,m is the electron mass,D(x) is
the pairing potential which is taken to be zero on the norm
metal side and spatially constant with ada22b2-wave sym-
metry on the superconducting side, andU(x) is a two-
component wave function, the first and the seco
components of which are equivalent to electronlike and ho
like excitations, respectively.

AssumingU(x) takes the formei (qxx1kyy), we obtain the
bulk excitation energy of the normal metal as

E~qx ,ky!56F \2

2m
~qx

21ky
2!2mG , ~2!

whereqx ,ky arex andy components of a wave vector. No
that the energy is always positive and the plus and mi
signs correspond to the electron and hole energies, res
tively. Figure 3~a! shows the sketch of the quasiparticle e
citation energy in the bulk of the normal metal at a particu
ky

(0) , as indicated in Fig. 3~c!. Treating an injected electro
from the normal-metal side and using the fact thatky is con-
served, we write the wave function on the normal side a
06450
l-
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N S F0G F1G F0G D
~3!

wherea,b are the Andreev and normal reflection amplitud
andq6 satisfy Eq.~2! for electron and hole excitations at
particularky , respectively.q6 are shown pictorially in Fig.
3~a!.

Similarly, the quasiparticle energy in the bulk of the s
perconductor can be shown to be

E~kx ,ky!5Ajk
21Dk

2, ~4!

wherejk is the normal-state energy,

jk5
\2

2m
~kx

21ky
2!2m ~5!

andDk is the gap function,

Dk5
Dmax

kF
2 @~ky

22kx
2!cos~2a!12kxky sin~2a!#, ~6!

wherekF5A2mm/\ is the size of the Fermi wave vector i
the superconductor. Figure 3~b! shows a sketch of the quas
particle energy of the superconductor.
7-3
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P. PAIROR AND M. B. WALKER PHYSICAL REVIEW B65 064507
In general, for the junction orientation away from$100%
and $110%, the magnitudes of the gaps of the states withkx
56k,D6k[D(6k,ky) are not the same~except for ky5
0,kF /A2).

For eachky , in the superconductor there are two tran
mitted excitations for all surface orientations, as depicted
Fig. 3~b!. ~In the lattice model as will be seen later, th
number of the transmitted excitations depends on the sur
orientation as well as the shape of the Fermi surface. It is
always two.! Therefore, the wave function of the superco
ductor is always a superposition of the two excitations,

US~x.0,y!5S c1Fuk1

vk1

Geik1x1c2Fu2k2

v2k2

Ge2 ik2xD eikyy,

~7!

wherec1 ,c2 are the transmission amplitudes,k6 satisfy the
energy Eq.~4! @shown pictorially in Fig. 3~b!#, anduk ,vk are
defined as

uk5
E1jk

AuE1jku21uDku2
,

vk5
Dk

AuE1jku21uDku2
.

Note thatuuku21uvku251. The amplitudesa, b, c1, andc2
are found by using the matching conditions at the interfa
which are

US~x501!5UN~x502!,

]US

]x U
x501

2
]UN

]x x5025
2mH

\2
US~x501!. ~8!

Because the energies in which we are interested arE
<2Dmax, which are a lot smaller than the Fermi energy,
will neglect the terms of orderO(E/m). Within this approxi-
mationq25q15q andk25k15k, whereq5AqF

22ky
2 and

k5AkF
22ky

2. For simplicity, we takeqF5kF .
We defined a normalized conductance as the ratio of

NIS conductance to the conductance of the same junction
with the superconductor in the normal state, i.e.,

G~eV![
GNIS~eV!

GNIN~eV!
. ~9!

Following the formalism in Ref. 7, we obtain

GNIS~eV!5
e2

h
^11A~ky ,eV!2B~ky ,eV!&ky

, ~10!

GNIN~eV!5
e2

h
^P~ky!&ky

, ~11!

whereA andB are the Andreev and normal reflection pro
abilities, respectively,P[12B is the transmission probabil
ity across the insulating barrier when the superconducto
06450
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in the normal state@A50#, and the angular brackets indica
an average overky . Both 11A2B andP can be interpreted
as the number of the electrons crossing NIS and norm
metal-insulator-normal-metal~NIN! junctions for each inci-
dent electron, respectively. The normal reflection process
duces the number of the electrons crossing any junct
whereas the Andreev reflection process enhances it.25 Thus,
the value of 11A2B ranges from 0 to 2, whereas that ofP
ranges from 0 to 1.

B. Tunneling conductance spectrum for the NID̂210‰ junction

The wave function of the superconductor in the isotro
model is a linear combination of two transmitted excitation
When E,min@ uD2ku,uDku#, both excitations are exponen
tially decaying with the wave vectors6k1 iO(uD6ku/m).
These excitations make up a zero-energy surface bound
on the condition that the signs of both gaps are opposite.8 In
case ofa50, or a$100% interface, the signs of the two gap
are always the same; thus, no zero-energy bound state
formed and there is no ZBCP. The main feature in the c
ductance spectrum in this case is a V-shaped gaplike st
ture which varies linearly at low voltages and peaks at
voltages equivalent to6Dmax. In the case ofa5p/4, or a
$110% interface, the signs of the two gaps of the two exci
tions are different for allky . Thus, zero-energy bound state
exist for all ky and contribute to a ZBCP with shoulderlik
features at the voltages equivalent to6Dmax.

For the junction with 0,a,p/4, only states with some
ky can become zero-energy surface bound states. Spe
cally, the zero-energy bound states are those withky in the
range kF sin(p/42a),ukyu,kF sin(p/41a). The ratio of
the range ofky that gives zero-energy surface bound states
the total number ofky on the Fermi surface is equal t
A2 sin(a). For a $210% surface, which is equivalent toa
5 tan21(0.5), around 63% ofky on the Fermi surface con
tributes to a ZBCP. Figure 4 shows the plots of the two ga
D6k of the two transmitted excitations as a function ofky in
this case.

As shown in Fig. 2~b!, for a5 tan21(0.5) there are sym-
metric cusplike peaks ateV560.60Dmax in the conductance
spectrum. To understand where these peaks come from
consider the functionT(E,ky)[11A(E,ky)2B(E,ky).

First, we discussT(E,ky) for the states withky in the
range that does not provide zero-energy surface bound st
e.g.,ky50, 60.1kF , and60.2kF . As shown in Fig. 5, for
ky50, T(E) is symmetric around zero energy. It contains
U-shaped gaplike feature with sharp peaks atE56D(ky
50)560.60Dmax.

For ky560.1kF , 60.2kF @see Fig. 6~a!#, T(E) is no
longer symmetric. It still has a symmetric U-shaped gapl
feature, but with asymmetric broader shoulders, not as sh
as in the case ofky50. The shoulders are different in heigh
but the same in width~equal to the difference of the magn
tude of the two gapsuDku,uD2ku). The furtherukyu is away
from zero, the flatter and lower the shoulders become@com-
pare Figs. 6~a! and 6~c!#.

Because the conductance can be interpreted as the av
of T(E,ky) over all ky , the ky50 state gives the conduc
7-4
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TUNNELING CONDUCTANCE FORd-WAVE . . . PHYSICAL REVIEW B 65 064507
tance spectrum cusps ateV56D(ky50)56Dmaxcos(2a).
Note that in spite of the asymmetry ofT(E) at eachkyÞ0,
the resulting conductance curve is symmetric. The reaso
that for everyT(E,kyÞ0) there is aT(E,2ky) that has the
counteracting asymmetry, e.g., compare Figs. 6~a! and 6~b!.
When these two add up, they give the symmetric result.

Now considerT(E,ky) in the region ofky for which zero-
energy bound states can be formed. For instance,ky5
60.4kF , 60.6kF . Figure 7 shows plots ofT(E) for these
ky . All plots display symmetric Lorentzian-like peaks ce
tered at zero energy. The peak width is determined by
smaller gap of the two transmitted excitations. At an ene
equal to the larger gap, there is a noticeable feature. Like
states that do not contribute to a ZBCP,T(E,ky) is not sym-

FIG. 4. Plots ofD2k and Dk as a function ofky for an NID
junction with a5tan21(0.5). Only states withkF /A10,ukyu
,3kF /A10 contribute to a ZBCP. The states withky outside this
region give rise to cusplike peaks ateV560.60Dmax. Note that
vF[djk /dkx .

FIG. 5. The plots ofA, B, and T for a5 tan21(0.5) andky

50.
06450
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he

metric. However, for each asymmetricT(E,ky), there is
T(E,2ky) that has the counteracting asymmetry. Thus,
summation of all these pairs leads to symmetry in the c
ductance spectrum.

In summary, the isotropic model gives us relatively simp
predictions for the features of theab-plane tunneling con-
ductance spectrum of ada22b2-wave superconductor. For th
junction with orientation away from$100% and $110%, the
spectrum is symmetric and contains a ZBCP, a shoulder
feature at the maximum gap, and cusplike peaks at the v
ages equivalent to the energy gap of the state with the
mentum normal to the surface.

FIG. 6. The plots ofA, B, andT for a5tan21(0.5) at fourky’s
in the region where zero-energy surface bound states are
formed. The largest asymmetry inT occurs when min@ uD2ku,uDku#
,uEu,max@ uD2ku,uDku#. The asymmetry comes fromA, not B.
7-5
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III. 2D LATTICE MODEL AND CONDUCTANCE
FORMULA

In this section, we introduce the 2D lattice model. W
represent ourab-plane NID junctions with infinite 2D squar
lattices. Three examples of different superconductor surf
orientations are depicted in Fig. 8. Note that for simplic
we keep the normal metal oriented in the$100% direction.

We describe our system by the following 2D discre
Bogoliubov–de Gennes equations,26,27

FIG. 7. The plots ofA, B, andT for a5 tan21(0.5) at fourky’s
in the region where zero-energy Andreev bound states can
formed. The largest asymmetry inT occurs when min@ uD2ku,uDku#
,uEu,max@ uD2ku,uDku#, and it comes fromA only.
06450
ce

(
x8

F 2t~x,x8! D~x,x8!

D* ~x,x8! t~x,x8!
GU~x8!5EU~x!, ~12!

whereU(x) is a two-component wave function andx labels
the ion positions. The summation is carried over the near
neighbor sites and may also include next-nearest sites.

On the normal-metal side, there is no gap function, i
D(x,x8)50, and for simplicity we assume there are on
nearest-neighbor hoppings, i.e., the only nonzerot(x,x8) are
t(x,x6aN)5tN.0; t(x,x6bN)5tN8 .0. On the supercon-
ducting side, we define the hopping terms as follows:t(x,x
6aS)5t(x,x6bS)5tS.0; t(x,x6aS6bS)52tS8<0. The
gap function on this side is taken to beda22b2 wave:
D(x,x6aS)52D(x,x6bS)5D.

Because every lattice system considered here is invar
with respect to a translation parallel to the surface throug
distanceaN ~a lattice constant of the normal metal!, the com-
ponent along the surface (ky) of a momentumk is conserved
within a reciprocal-lattice vector corresponding to the tra
lation aN5aSAh21k2, where$hk0% are integers that specify
the orientation of the superconductor forab-plane junctions.
This range ofky within which the momentumk is conserved
will specify the shape of the SABZ for each surface orien
tion. Because the SABZ has the same area as the bulk
the range ofkx has to be 2pAh21k2/aS long. The surface
states of each surface orientation are basically the supe
sitions of the bulk states. The SABZ is used to specify wh
bulk states will contribute to each surface state of that ori
tation, that is, it is composed of the states of the sameky in
that SABZ.

From Bloch’s theorem, the eigenstates of Eq.~12! there-
fore can be written as

U~x!5eimkyaNUky~n!, ~13!

be

FIG. 8. 2D lattice networks used to represent~a! $100%, ~b!
$110%, and ~c! $210% junctions. The solid, grey, and open circle
represent normal-metal, insulator, and superconductor layers
spectively.ai andbi , wherei is N ~normal metal! or S ~supercon-
ductor!, are the crystallographic basis vectors.
7-6
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TUNNELING CONDUCTANCE FORd-WAVE . . . PHYSICAL REVIEW B 65 064507
wherem,n are ionic row and column indices as indicated
Fig. 8. SubstitutingU(x) into Eq. ~12!, we can reduce Eq
~12! to a 1D eigenvalue equation

(
n8

Tky~n,n8!Uky~n8!5EUky~n! ~14!

for eachky . Tky(n,n8) is the appropriate (232) energy ma-
trix between two ions with column indicesn andn8. Equa-
tion ~14! describes the excitations in the bulk state of ea
side and also provides us with the matching conditions
the two wave functions at the interface.

The wave function describing each side of the junction
a linear combination of the appropriate excitations of
same energy andky . The number of the excitations depen
on the shape of Fermi surface and the SABZ. Figure 9 sh
three SABZ’s of the superconductor with different orien
tions. Because we assign the normal side to have a$100%
surface, its SABZ is the same as the bulk BZ, which is
(2p/aN32p/aN) square. The shape of SABZ of the supe
conductor, however, is not always a square. For an$hk0%
interface, the SABZ is a @2p/(aSAh21k2)
32pAh21k2/aS# rectangle, which still has the same area

FIG. 9. The SABZ’s for three surface orientations:$100%, $110%,
and $210%. For each Brillouin zone~BZ!, we draw a Fermi surface
that corresponds to a little more than a half-filled band with near
neighbor interactions.
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the bulk BZ. The difference in shape of the SABZ has
impact on the number of the quasiparticle excitations t
make up the wave function of the superconductor.

Writing UN
ky(n)5CeiqxmaN and substituting it into Eq.

~14!, we obtain the normal side bulk quasiparticle energy

E~qx ,ky!56@eN2m22tN cos~qxaN!22tN8 cos~kyaN!#,
~15!

where eN is the normal-metal on-site energy anduqxu
,p/aN .

The bulk quasiparticle energy of the superconductor is

E~kx ,ky!5Ajk
21Dk

2, ~16!

where

jk5eS2m22tSFcosS hkx1kky

Ah21k2
aSD 1cosS kkx2hky

Ah21k2
aSD G

12tS8FcosS ~h1k!kx1~h2k!ky

Ah21k2
aSD

1cosS ~h2k!kx2~h1k!ky

Ah21k2
aSD G , ~17!

Dk52DFcosS hkx1kky

Ah21k2
aSD 2cosS kkx2hky

Ah21k2
aSD G ,

~18!

and ukxu,pAh21k2/aS .
Now we consider the wave function for each region th

satisfies Eq.~14!. Treating an injected electron from the no
mal side, we write the normal-metal wave functionUN

ky as a
summation of three excitations as in the isotropic model,

UN
ky~n<0!5F1

0Geiq1aNn1aF0

1Geiq2aNn1bF1

0Ge2 iq1aNn.

~19!

Thex components of the wave vectorsq6 satisfy Eq.~15! at
a particularky .

The wave function of the superconducting region can
written as

US
ky~n.0!5(

m
cmUS

ky ,m
~n!, ~20!

where the summation is over all the transmitted quasipart
excitations andcm is a transmission amplitude. The numb
of the transmitted excitations depends on the shape of
Fermi surface as well as the surface orientation. For
ample, a system with a$210% surface and a Fermi surface a
shown in Fig. 9 can have in the normal state four realkx
excitations for someky on the Fermi surface. This mean
there can be eight quasiparticle excitations in the superc
ducting state at thatky ; however, only four of them are
transmitted excitations~i.e., their group velocities are awa
from the junction!. Each excitation takes the following form

t-
7-7
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US
ky ,m

~n!5F uk
m
6

vk
m
6
Geikm

6aS
Aj 21k2n, ~21!

where km
6 are thex components of the wave vectors th

satisfy Eq.~16! (6 correspond to either an electronlike or
holelike excitation!. Each ofa, b and all thecm can be found
as a function ofE and ky by matchingUN

ky and US
ky at the

interface according to Eq.~14!. Note that because the num
ber of quasiparticle excitations is conserved, all the reflec
and transmission probabilities will add up to unity. This co
servation as well as the conservation of the electric curren
the interface is used as a check of all the numerical calc
tions in this work.

Following the BTK formalism,17 we obtain the normal-
ized differential conductance at zero temperature as

G~eV!5
^11A~ky ,eV!2B~ky ,eV!&ky

^P~ky!&ky

. ~22!

It is noteworthy that Eq.~22! works for both positive and
negative applied voltage. For the positive applied volta
the expressions fora and b are evaluated by assuming a
incoming electron as described above. For the negative v
age, the coefficients are calculated by assuming an incom
hole instead. It should be mentioned that becauseDmax
<0.2tS in high-Tc materials4 and because we are interest
in the energiesE less than 2Dmax, we ignore all terms of
orderO(E/tS) in all the calculations throughout this article
This approximation leads toq15q25q, whereq satisfies
Eq. ~15! with E50, andukm

1u5ukm
2u5ukmu, where allkm sat-

isfy Eq. ~16! for jk50. Also, Dk
m
65Dkm

and jk
m
65

6AE22Dkm

2 .

IV. CONDUCTANCE SPECTRA
FROM THE 2D LATTICE MODEL

We now examine the effect of the anisotropic Fermi s
face on the tunneling spectra of NID junctions using t
lattice model. We will consider both nearest- and ne
nearest-neighbor approximations. And to ensure that all
peaks and humps in the conductance spectra come from
superconductor and not the normal metal, we assign the
lowing properties to the normal metal. We take the norm
metal crystal to be aligned in a specific orientation, which
$100%. We also take the energy bandwidth of the norm
metal to be an order of magnitude larger than that of
superconductor. This describes the situation in most tun
ing experiments with high-Tc materials. We let the hopping
energy along the surface be ten times smaller than that
mal to the surface (tN8 50.1tN) and the Fermi surface of th
normal metal is at a half-filled band, which is characteriz
by a parameternN[(m2eN)/@2(tN1tN8 )#50. ~This Fermi
surface is shown as the thickest energy contour line in F
10.! These conditions are for simplicity, to ensure that th
will be quasiparticles available for tunneling into the sup
conductor at allky , and that the DOS of the normal metal
06450
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a function ofky is featureless, or close to being independe
of ky .

For the superconductor, we consider two approximatio
nearest- and next-nearest neighbor. For the nearest-neig
approximation, we assign the following parameters:tS850,
tS5tN8 510Dmax. The choice of the parametertS in fact does
not affect the main results of the tunneling conductance sp
tra, as long astS@Dmax. For the next-nearest-neighbor a
proximation, we taketS850.45tS so as to reproduce qualita
tively the CuO2 plane Fermi surface of YBa2Cu3O72d as
deduced by ARPES measurements.22–24The Fermi surface is
characterized by a parameternS[(m2eS)/(4tS). Different
Fermi surfaces in each approximation are shown in Fig.

We take the barrier strength on the insulating layer to
zero for simplicity, because even without a potential barr
we are still in the tunneling limit with those parameters d
fined above. That is, the mismatch of the group velocities
the incoming and transmitted excitations acts as a large
fective barrier.

A. Nearest-neighbor interactions

In this approximation, we consider the case of the$210%
surface orientation, as an example of the orientations a

FIG. 10. Three Fermi levels of the normal metal withtN8
50.1tN . The parameternN , which is defined in the text, specifie
the Fermi level. Here, we usekx andky in place ofkxaN andkyaN .

FIG. 11. ~a! Four Fermi levels used in the nearest-neighbor
proximation case and~b! in the next-nearest-neighbor approxim
tion case.
7-8
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from $100% and$110%. Both conductance spectra of$100% and
$110% surfaces are similar to those in the isotropic mod
therefore, we will not discuss them here.

Unlike in the isotropic model, the$210% case in the lattice
model involves the states which are linear combinations
the four transmitted excitations of the same energy andky .
This changes the condition in which a zero-energy surf
bound state is formed. As a result, the range ofky that con-
tributes to such bound states varies with the shape of
Fermi surface. The isotropic model predicts that the rang
ky that contributes to a ZBCP is around 63% of allky in a
BZ. In the lattice model with nearest-neighbor approxim
tion, this range varies from zero to around 63%.

The superconductor wave function of the$210% case is
written as a summation of four transmitted excitations:

US
ky~n.1!5(

j 51

4

cjFukj

vkj

Geik jaSA5n, ~23!

wherekj , j 51 . . . 4 arekx of the wave vectors that satisf
jk50 for eachky . kj are, in general, complex. For instanc
in Fig. 12 the lines ofky52.5 andky50.8 cut the Fermi
surface ofnS520.2 at different numbers of points, whic
represent the real solutions in each case.

FIG. 12. The SABZ for the$210% case. The contour lines insid
the BZ represent Fermi surfaces as parametrized by differentnS .
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Whether or not eachUS
ky can be a zero-energy surfac

bound state depends on the following conditions. If only tw
of the four excitations have realkx , a zero-energy surface
bound state will be formed if the gaps of the two propagat
excitations have opposite signs. In the case in which all f
excitations have realkx , a zero-energy bound state
formed, when the two excitations with their Fermi velociti
vF5djkF

/dkx of the same sign have gaps of the same s

which must be opposite to one of the gaps of the remain
two excitations. We plot the gaps of the propagating exc
tions as a function ofky for various Fermi surfaces in Fig
13. The dashed and solid curves in Figs. 13~a!–13~c! repre-
sent the gaps as a function ofky of the excitations with
positive and negativevF , respectively.

For a Fermi surface corresponding to a half-filled ba
(nS50), the states of allky in the BZ consist of four trans-
mitted excitations whosekx are real. However, because th
condition for a zero-energy surface bound state to be form
is not met at anyky , no such bound states can exist. T
conductance spectrum in this case, therefore, does not
tain a ZBCP, as shown in Fig. 14. The spectrum is symme
around zero applied voltage and contains a V-shaped gap
feature that peaks at60.50Dmax. At eV56Dmax, there are
also less prominent features, shown in the right inset of F
14. The disappearance of the ZBCP in the half-filled ba
case is consistent with the calculated local DOS of a 132
zigzag surface in Ref. 27.

To understand why the$210% tunneling conductance spec
trum from the lattice model peaks at60.50Dmax, consider
again the plots of the functionT(E) for variousky . For ky
50, there are only two values of the gaps: 0.50Dmax and
Dmax @see Fig. 13~a!#. The plot of T(E) at this ky shows
symmetry around zero energy. It peaks at its maximum va
at E560.50Dmax. There is no feature atDmax because the
excitations having this value of the gap have zero Fe
-

d
er
y

t

ve
FIG. 13. Plots of the gap func
tions for propagating excitations
in three cases:nS50, 20.2, and
20.6. FornS50, there are no re-
gions in which zero-energy boun
states exist. The region gets bigg
when the Fermi surface is awa
from nS50. The shadowed region
is the region where only two ou
of four excitations, which make
up zero-energy bound states, ha
real kx .
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velocities. ForkyÞ0, the functionT(E) is no longer sym-
metric. It still contains a symmetric U-shaped gaplike fe
ture, but with asymmetric shoulders. The width of t
U-shaped feature is governed by the minimum magnit
among the four gaps. Also, as depicted in Figs. 15~b!–15~e!,
there are four distinct features at energies equal to the m
nitudes of the four gaps at that particularky .

Because the normalized tunneling conductance is b
cally a summation of functionsT(E,ky) over all ky in the
SABZ, the resulting conductance curve of this case conta
a V-shaped gaplike feature~due to the average of differen
U-shaped features over allky) that peaks at voltage
6D(ky50)560.50Dmax and has no ZBCP. Note that eve
though eachT(E,kyÞ0) is asymmetric, the resulting con
ductance spectrum in this case is still symmetric because
eachT(E,kyÞ0) there is aT(E,ky2p) that has a counter
acting asymmetry@compare Figs. 15~b! and 15~e!, as well as
15~c! and 15~d!#. In fact, the case of the half-filled ban
proves to have special symmetry, i.e., it sits at the van H
singularity which is a symmetric DOS point in the norm
state. The number of the filled states~electron states! is ex-
actly the same as that of the empty states~hole states!. For
any other case, which is not a half-filled band and in wh
the states are composed of four excitations with realkx , for
anyT(E,ky) there will no longer exist a counteracting asym
metricT(E,ky8), and this will lead to an asymmetric condu
tance spectrum.

For a Fermi surface withnS520.2, some states consist o
four excitations with realkx , whereas the rest are the sum
mations of four excitations, only two of which having re
kx . The region ofky that gives zero-energy surface bou
states is indicated by the arrows in Fig. 13~b!. The region is
also divided into two groups:

1. The region in whichky gives the states that are mad
up of four real-kx excitations. This region is in the unsha
owed areas.

2. The region in whichky gives the states that are mad
up of four excitations, only two of which having realkx .
This region is in the shadowed areas.

FIG. 14. Tunneling conductance spectrum of an NID$210% junc-
tion with the superconductor having a half-filling Fermi surface~the
left inset!. The right inset is an enlarged plot at the voltages n
Dmax. Note that the cusplike peaks are not at6Dmax.
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The region ofky that provides zero-energy surface bou
states in this case is around 25% of allky in the BZ. There-
fore, in addition to a V-shaped gaplike feature which is s
apparent, the tunneling conductance spectrum contain
ZBCP as shown in Fig. 16. Although the position of th
gaplike peaks are symmetric in energy~at 60.52Dmax) their
heights and shapes are asymmetric. The energy 0.52Dmax is
in fact the value of the gap of the state withky50, the same
as in the case ofnS50.

For the states withky in the region where the states a
made up of four excitations, only two of which having re

r

FIG. 15. Plots ofA(E), B(E), andT(E) in a $210% case with a
half-filled band at various values ofky .
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TUNNELING CONDUCTANCE FORd-WAVE . . . PHYSICAL REVIEW B 65 064507
kx , T(E,ky) behaves as in the isotropic model. That
T(E,ky) of these states has a counteracting asymmetr
T(E,2ky). Thus, they are not responsible for the asymme
in the conductance spectrum.

Figure 17 displays a few plots ofT(E) as well asA(E)
andB(E) for the states which consist of four real-kx excita-
tions and cannot become zero-energy bound states.T(E) in
this case shows a U-shaped gaplike feature with the as
metric peaks at an energy slightly below the smallest va
of the four gaps for thatky . These new features imply that a
Andreev bound state is formed at this energy. However, t
are averaged out overky and do not stand out in the condu
tance spectrum. As indicated by the arrows in Fig. 17, at
energies equal to all four values of the gap function a
certainky , there appear features inT(E,ky). It should also
be noted that for states withky in this region,T(E,ky) no
longer has a counteracting asymmetricT(E) at any otherky .
Therefore, these states contribute to the asymmetry in
conductance spectrum.

Figure 18 depicts example plots ofA(E), B(E), and
T(E) of the states that consist of four real-kx excitations and
contribute to ZBCP’s. For these states, there are inT(E)
Lorentzian-like peaks at zero energy as well as features
curring at four energies equal to the four gaps, as indica
by the arrows. For the energy between the smallest and
biggest energy gaps,T(E,ky) shows the biggest asymmetr
and does not have a counteracting asymmetricT(E) at any
otherky . Therefore, these states also contribute to the as
metry in the tunneling conductance spectrum.

For comparison with thenS520.2 case, we show th
conductance curve for the case ofnS50.2 in Fig. 19. The
curve is a mirror image of thenS520.2 case with respect to
zero applied voltage. The V-shaped gaplike feature pe
around60.52Dmax, which is the magnitude of the gap func
tion at ky56p.

For the system withnS that provides only two real-kx
transmitted excitations for allky , e.g.,nS520.6, T(E,ky),

FIG. 16. The tunneling conductance spectrum of an NID$210%
junction with the superconductor having anS520.2 Fermi surface
~the upper left inset!. The lower insets are enlarged plots at t
voltages nearDmax.
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A(E,ky), B(E,ky), and the conductance spectrum have sim
lar characteristics as those in the isotropic model. The c
ductance spectrum of thenS520.6 case are displayed i
Fig. 20. The V-shaped gaplike feature is not as prominen
in the previous cases. It peaks around60.57Dmax, which is
the magnitude of the gap function atky50.

The tunneling conductance spectra in the$210% case de-
pend on the shape of the Fermi surface. Different band st
tures produce different ranges ofky that allow zero-energy
surface bound states in a SABZ. For a half-filled band, s
bound states do not exist and therefore there is no ZBC
the tunneling conductance spectrum. Away from a half-fill
band the range ofky that can give zero-energy bound stat
starts to grow and approaches the corresponding range in
isotropic model. Different Fermi surfaces also cause differ
ranges ofky that allow the states, which are made up of fo
real-kx excitations. These states are responsible for the as
metry in the conductance spectrum except for a system
half-filled band.

As predicted in the isotropic model, the gaplike feature
an NID$210% junction peaks at60.60Dmax. In the lattice
model, the positions of these peaks are at6D(ky50) for the
systems with less than half-filled bands (nS,0) and at

FIG. 17. Plots ofA(E), B(E), andT(E) for the states that are
not zero-energy bound states in a$210% case fornS520.2 and the
states that contain all four excitations with realkx . The arrows
mark all the values of the gap for eachky . The dashed arrows
indicate the extra features occurring at the energies slightly be
the smallest gap.
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P. PAIROR AND M. B. WALKER PHYSICAL REVIEW B65 064507
6D(ky56p) for those with more than half-filled band
(nS.0). The value of these gaps ranges from~0.50 to
0.60!Dmax. As the shape of the Fermi surface approache
circle, i.e.,nS→61, the peak positions approach the isotr
pic model prediction~see Fig. 21!.

B. Next-nearest-neighbor interactions

In this section we include the next-nearest-neighbor in
actions in the calculation, in order to mimic the Fermi s

FIG. 18. Plots ofA(E), B(E), andT(E) for zero-energy bound
states in a$210% case fornS520.2 and for the states that contain a
four excitations with realkx . The arrows mark all the values of th
gap at eachky .

FIG. 19. The conductance spectrum of an NID$210% junction
with the superconductor having anS50.2 Fermi surface~the left
inset!. The right inset shows the plots of gaps of all propagat
excitations as functions ofky . The regions bounded by the arrow
are those where the zero-energy bound states can be formed
dotted areas are those in which zero-energy bound states are
posed of four excitations, only two of which having realkx . The
rest of the areas bounded by the arrows are those in which
bound states are composed of four real-kx excitations.
06450
a
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face of YBCO. We consider two cases:$110% and$210%. The
$100% case is again similar to that in the isotropic model.
the$110% case for some Fermi surfaces in this approximati
the number of the transmitted excitations is four, the same
in the $210% case in the nearest-neighbor approximation. T
can lead to the states of someky not contributing to a ZBCP.
This fact is not expected in the isotropic model which p
dicts all states in the$110% case contribute to a ZBCP. As wil
be discussed below, these nonbound states are compos
four real-kx excitations and thus cause a small asymmetry
the tunneling conductance. For the$210% case, the depen
dence of the conductance spectrum on the band struc
remains strong upon the addition of next-nearest-neigh
effects. For some bands, the spectra show two extra feat
that appear at the positions closely related toD(ky50) and
D(ky5p).

he
m-

he

FIG. 20. Tunneling conductance spectrum of an NID$210% junc-
tion with the superconductor having anS520.6 Fermi surface~the
lower left inset!. The gaplike feature peaks ateV560.57Dmax.
The upper right inset displays an enlargement of the conducta
curve around the maximum gap.

FIG. 21. The plot of the peak position of the gaplike featu
occurs in the conductance spectrum of an NID$210% junction as a
function of Fermi level.
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1. The $110% case

The structure of the wave function of the superconduc
with the$110% interface in the next-nearest-neighbor appro
mation is similar to that of the$210% case in the nearest
neighbor case, only with more symmetry. That is, the sup
conductor wave function is a linear combination of fo
transmitted excitations as in Eq.~23! but with k152k4 and
k252k3 in the case where allkj , j 51•••4 are real~also
uDk1

u5uDk4
u and uDk2

u5uDk3
u), and with k152k2 in the

case where only two ofkj are real~also uDk1
u5uDk2

u). Four

Fermi surfaces in a$110% surface-adapted BZ are plotted
Fig. 22.

As in the$210% case with the nearest-neighbor approxim
tion, for someky the states are the superposition of fo
transmitted excitations, all of which have realkx , and for
otherky they are the superposition of four excitations, on
two of which have realkx . Only the latter states can satis
the zero-energy surface bound-state condition. Particula
for nS,0, ky with ukyu,ky* [2 cos21@(tS/2tS8)(1
2A114nStS8/tS)# can provide zero-energy surface bou
states, butky out of this range cannot. FornS.0, there are
no states that are composed of four real-kx excitations. Thus,
all ky can provide zero-energy surface bound states.

The plots ofA(E), B(E), andT(E) at a givenky , which
either do or do not give zero-energy bound states are
played in Fig. 23.T(E) for the states composed of four rea
kx excitations, which cannot form zero-energy surface bou
states, shows a U-shaped gaplike feature which peaks a
energy slightly below the smaller gap@see Figs. 23~c! and
23~d!#. These peaks inT(E) again imply the presence of
resonant Andreev bound state at this energy. These fea
however do not show up in the conductance spectrum
cause they are averaged out overky . The functionT(E) of
these states also exhibits asymmetry especially at ene
between the two gaps. These states therefore contribu
the asymmetry in the conductance spectrum. The degre
the asymmetry varies with the number of states compose
four real-kx excitations in the SABZ. The most asymmetr
conductance spectrum belongs to the system withnS5
20.45 @see Fig. 24~a!#. As depicted in Fig. 24, the main

FIG. 22. The SABZ for the$110% case. The contour lines insid
the BZ represent Fermi surfaces parametrized by different value
nS .
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features of the NID$110% conductance are a ZBCP an
shoulderlike features ateV56Dmax.

2. The $210% case

The structure of the wave function that describes the
perconductor in this case is a little more complicated than
all the previous cases. It is a linear combination of six tra
mitted excitations of the same energy andky . Figure 25

of

FIG. 23. ~a! and~b! show the plots ofA(E), B(E), andT(E) of
the states that can become zero-energy bound states.~c! and ~d!
show the plots of the states that cannot be zero-energy bound s
The arrows mark the values of the gap function at a particularky .
We takenS520.3.
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P. PAIROR AND M. B. WALKER PHYSICAL REVIEW B65 064507
shows different Fermi surfaces for the next-nearest-neigh
approximation in a$210% SABZ. The wave function of the
superconductor takes the following form:

FIG. 24. The normalized conductance spectra of an NID$110%
junction for various Fermi surfaces. The upper right inset in e
picture shows the plots of all the gaps of propagating excitatio
The dotted area in the inset is the region in which the states are
zero-energy surface bound states. The upper left inset show
Fermi surface plotted in a$110% SABZ. In ~b!, the lower left inset is
an enlarged plot in the boxed region.
06450
or

US
ky~n.1!5(

j 51

6

cjF ukxj

vkxj

Geikxj
aSA5n. ~24!

Figures 26~a! to 26~d! show the plots ofA(E), B(E), and
T(E) for different ky and Fig. 26~e! shows the plots of the
gaps of all propagating transmitted excitations as functi
of ky for a system withnS520.3. For a system withnS that
provides most states which are composed of six excitatio
more than two of which having realkx , the conductance
spectrum shows asymmetry around zero applied voltage.
a system withnS that always provides only two excitation
with real kx , its spectrum is symmetric.

h
s.
ot

the

FIG. 25. The SABZ for the$210% case. The contour lines insid
the BZ represents Fermi surfaces as parametrized by differentnS .

FIG. 26. The plots ofA(E), B(E), andT(E) at differentky for
nS520.3 are in~a!–~d!. ~e! shows the plot of real energy gaps fo
all propagating excitations as functions ofky . The shadowed area
indicates the region ofky that givesT(E), a Lorentzian peak at zero
energy.
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TUNNELING CONDUCTANCE FORd-WAVE . . . PHYSICAL REVIEW B 65 064507
Figure 27 shows only a few cases of differentnS . These
cases provide the asymmetric conductance spectra~the solid
lines!. Similar to the nearest-neighbor case, the conducta
spectrum of a system withnS50 does not display a ZBCP
For systems with othernS , e.g.,20.2, 20.3, in addition to
a ZBCP, there are four cusplike features symmetric in po
tions. These peaks clearly come from the states withky
50,p ~the thin and thick dashed lines in Fig. 27 respe
tively!.

In summary, for NID$110% junctions with up to next-
nearest-neighbor interactions or NID$210% junctions with
only nearest interactions, the structures of the wave funct

FIG. 27. The plots of the normalized conductance andT(E,ky

50,p) for the systems withnS that give asymmetric spectra. Th
solid arrows indicateD(ky5p) and the dotted arrows indicat
D(ky50).
06450
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are more complicated than those from the isotropic mo
due to the elongated SABZ. Their wave functions are lin
combinations of more than two excitations. The conducta
spectra of these junctions reveal strong dependence on
shape of the Fermi surface. They are asymmetric around
voltage and contain the cusplike features that occur at v
ages other than zero or6Dmax. The asymmetry is caused b
those states that contain more than two excitations that h
real energy gaps~or real kx! except for the case of a$210%
junction with nearest-neighbor interactions and a half-fill
band. The cusplike features in fact occur at the volta
equivalent to the energy gaps of the states that have the
menta perpendicular to the surface and of those that have
momenta on the edges of the SABZ.

We should also qualitatively discuss how the se
consistency of the gap function may influence the positio
of these cusplike features. As shown in Refs. 28 and 29,
the surface orientation away from$100% the gap function is
suppressed over the distance of a few coherence leng
This suppression is expected to effect the width of the ZB
and to cause the peaks other than the ZBCP to move a
away from the positions expected when we assume the
function does not vary spatially.30 The movement in our cas
of the cusplike peaks should be approximately of order of
maximum energy gap over the bandwidth of the superc
ductor times the energy at the position of the peak. T
amount of movement would be very small in most cases
high-Tc materials because their bandwidths are at least
order of magnitude larger than the maximum gap.

V. CONCLUSION

Using a 2D discrete lattice model and the BTK formalis
we have studied the differential conductance spectrum
NID junctions. We examined the dependence of the spect
on both surface orientation and Fermi level of thed-wave
superconductor. The conductance spectrum are shown t
very sensitive to the Fermi surface for interface orientatio
away from $100% and $110%. The conductance spectrum
shows, in addition to a ZBCP, cusplike peaks that occu
the energy gap of the state with its momentum either perp
dicular to the surface, or on the edge of the SABZ. T
presence of these cusplike peaks and our ability to pre
their positions provide us with an opportunity to use dire
tional tunneling spectroscopy as a tool to map out the m
nitude of the energy gap of ad-wave superconductor in th
momentum space.
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