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Tunneling conductance ford-wave superconductors:
Dependence on crystallographic orientation and Fermi surface
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The dependence of theeb-plane differential conductance of a normal-metal-insuldtar-,>-wave super-
conductor junction on the superconductor crystal orientation and its Fermi surface is investigated using a
two-dimensional square lattice model. In the tunneling limit, when the orientation is away{f@gh and
{110}, the study shows that there are features at other energies in addition to a zero-bias conductance peak and
a shoulderlike feature at the maximum gap. These additional features are found to occur at either the energy
gap of the state with the momentum normal to the surface or the gap of the state with the momentum on the
edge of the surface-adapted Brillouin zone, or at both of the energy gaps, depending on the shape of the Fermi
surface. These considerations show that, in principle, tunneling can be used to determine the energy gap at
wave vectors other than those at which the gap is at a maximum.
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[. INTRODUCTION tion that the Fermi surface of&,2_,2-wave superconductor
is isotropic, to explain the evolution with the surface orien-

Normal-metal-insulator-superconductdNIS) tunneling tation of the ZBCP in theab-plane tunneling conductance
spectroscopy is one of the most powerful tools used to studgpectrum. They found that fofl00 surfaces there is no
the quasiparticle excitations of a supercondutfott pro-  ZBCP, and for surface orientations away frgit0Q, the
vided the demonstration of the Bardeen-Cooper-Shrieffe?BCP starts to appear. It reaches the biggest width and
(BCS) prediction of the density of staté®OS) of conven- height when the surface orientation{i1G}. _
tional swave superconductors as well as the measurement of N addition to the ZBCP, a cusplike feature in the tunnel-
their superconducting gapsThe tunneling conductance of N9 conductance spectrum also evolves with the surface ori-

an isotropics-wave superconductor is approximately propor-€ntation. It occurs at the maximum gap 100 surfaces
tional to its bulk DOS and does not depend on the CrYStaIIoi"i‘EE(}j fgSSIJ?gZ?r;;dr%;%rildrrfwagzsétir;:gaaﬂ%eiﬁfs%r?gggédiir-
graphic orientation of the superconductor. I[{S)éet\Neen{loo} and{110;, we find that for the isotropic model
has 'been applied to the study of the gquasiparticle excitatiorf_‘g %Jjﬂ;knetup;aﬁo?ﬁ%el?gstﬁ;tzﬁ rfean c(eerg¥r%:%ir?zj;[:§ iz[gev:'léh
in high-T¢ cuprates. The tunneling conductance spectra of,o yotential of the NIS tunneling spectroscopy as a tool to
these materials show strong qleegnde_nce_ on the Supercqfiay oyt the magnitude ofdiwave gap function at different
ductor crystallographlc_onentahd_‘n, which is as expected 5ints on the Fermi surface. However, because this finding is
for superconductors with an anisotropic gap function. The,ased on the model that uses the assumption that the Fermi
tunneling conductances of these superconductors do not ayrface of the superconductor is isotropic, one has to be care-
ways reflect the bulk DOS; instead they are Closely related tﬂ“ in app|y|ng the results to h|g[’|’.C Cuprates_ Ang|e_
the local DOS which strongly depends on the surfacgesolved photoemission spectroscopy (ARPES
orientation’ Particularly in ad-wave superconductor, be- measurements24show that the Fermi surfaces of these ma-
cause zero-energy surface bound sfatem be formed for terials are far from being isotropic. They are however well
certain surface orientations due to the change of sign of thdescribed by a tight-binding model.
gap function, the tunneling conductance curves can contain a In order to better understand the tunneling conductance
peak at zero energy. Zero-bias conductance p€aREP’S)  spectra of highF. cuprates, in this paper we use a lattice
have in fact been observed in maa¥p-plane tunneling ex- model that allows us to mimic the Fermi surfaces of the
periments of cuprate superconductb?s®The existence of superconductors. In particular, we use a two-dimensional
the ZBCP is one of the strong pieces of evidence suggestin®@D) square lattice model in which the copper oxide planes
that the pairing symmetry of high; cuprate superconduct- of the superconductors are represented by a square lattice.
ors is predominantlyl wave®1® We apply this model to examine the dependence on the sur-
Quantitatively, one can understand the dependence on tHace orientation of thab-plane tunneling conductance spec-
surface orientation of the tunneling conductance diwave  trum of a BCSd,2_p2-wave superconductor using the BTK
superconductor by using a simple method, the so-calleormalism.
Blonder-Tinkham-Klapwijk (BTK) formalism!’ This for- The outline of this paper is as follows. Before we give the
malism makes use of the Bogoliubov—de GeniiB8G) details of the formalism and results for the 2D lattice model,
equation and the scattering method, which was first introwe review in the next section the results from the 2D isotro-
duced to the study of the normal-metal-superconductor intetpic model for later comparison. We explain why, in the iso-
face by Demers and Griffitt!® Tanaka and Kashiwagd tropic model, the state with the momentum normal to the
make use of the formalism, together with a simple assumpsurface is the main contributor to the cusplike peak in the
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tunneling conductance spectrum of the junction with orien- (a)

tations away from{100; and{11G. In Sec. Ill, we describe

briefly the discrete lattice BdG equations and the formalism N s

used to calculate the differential conductance. We also intro- M b

duce the use of the surface-adapted Brillouin z®®BZ) to >

obtain the right number of transmitted excitations, the linear F\d NN

combination of which is the wave function of the supercon- A+ N~

ductor. In Sec. IV, we discuss the results from the lattice s :

model. We then draw conclusions in Sec. V. A A ky
Throughout this article, we assume a spatially constant ¢ K v

d.2_p2-wave superconducting gap function for simplicity. ) -5

The self-consistent solution of the gap function will give a Fenmi surtace \i-"‘,'

correction of the order of the ratio of the maximum gap to AB,0) = Apgx cos[2(8-)] "~ 2

the energy bandwidth of the superconductor. We neglect

terms of this order in all the calculations in this work. (b) A

,
=
X

~

II. CONDUCTANCE SPECTRA FROM THE ISOTROPIC
MODEL

Before discussing the tunneling conductance spectrum of
a normal-metal-insulatadlz2 _,2-wave superconduct@NID)
junction computed for the 2D lattice model, it is useful to
consider in more detail the conductance of the 2D isotropic
model to give an introduction and later a comparison. Quan-
titative calculations of the conductance have in fact already
been carried out for this model in Ref. 7. Our aim in this 05 ‘ & 0 ' 1 ‘ 2
calculation is to look at the individual contributions to the eV/AL
conductance in more detail, and to show why the cusplike
feature occurs at the energy gap of the state with the momen- FIG. 2. (8) Schematic illustration of the Fermi surfa¢dash-
tum normal to the surface. dotted circlg¢ and the gap function used in Ref. 7. The dashed
The isotropic model makes use of the assumption that theurves represent the gap function whenafeis is along thes axis
electronic structure of the-wave superconductor is isotro- and the solid curves when tigeaxis is tilted with an angler from
pic. The insulating layer of the NID junction in this model is the X axis. ¢ gives the direction of a Fermi wave vector. The gap
represented by a delta-function potential of strengt7n'IH1|e function can be written as a function of the two angIA$.';9,a)
pairing potential is assumed to be zero in the normal metal 2maxC0$2(¢=)]. (b) Plots of the conductance vs applied volt-
and to be spatially constant withdgz_p2-wave symmetry in alge O; fﬁur J.unCtr']onS with d'ﬁerenfi' The pframEte(;:ESEd in these
the superconductor. The geometry of the junction is dis? ots (fo owing the notation in Ref. parez=1.5 anch =1.0. No_te
L . that cusplike peakgindicated by the arrowsdevelop ateV=
played in Fig. 1. The conductance spectrum of the NID JUNC-1 o A for a=tan 1(0.5) and aeV=*0.5A, for a= /6.
. . . 17 . . max max
tion is found by using the BTK formul&!’ This model is
able to capture most of the qualitative characteristics of thengle between tha axis of the superconductor and the sur-
tunneling conductance spectrum of-avave superconductor. face normal of the junctiofisee Fig. 28)]. For «=0 which
Figure 2b) shows the plots of normalized conductancescorresponds to 00 junction, the conductance spectrum is
of four junctions of different surface orientatioisee also linear at low voltages and peaks at the voltages that corre-
Ref. 7). Each surface orientation is characterizeddgyyan ~ spond to the maximum energy gap. Re# =/4 which cor-
responds to 4110 junction, the conductance spectrum con-
y tains a ZBCP and shoulderlike features at the maximum gap.

Normalized Conductance

F
warmm =0
— lanil(f).i)
- /6
1

(N

Hd(x)

2‘%@@ For orientations betweefl00 and {110, the conductance

N

AR)B®X)

N

spectrum shows both the ZBCP with the shoulderlike feature

and the cusplike peaks. As indicated by the arrows in Fig.

2(b), these cusplike peaks do not occur at the voltages cor-
responding to the maximum gap. As mentioned above, these
peaks are in fact at the voltages corresponding to the energy
gap of the state whose momentum is perpendicular to the
surface.

FIG. 1. The illustration of the NIS junction used in the isotropic
model. The superconductor crystallographic orientation is charac-
terized by @, an angle between tha axis and thex axis. The In the isotropic model, the Fermi surfaces of both the
insulator is described bys-function potential of strengthH. normal metal and superconductor are assumed to be isotro-
A(k)®(x) is the gap function®(x) is a Heaviside-step function. pic. The BdG equations used to describe the system are

A. Conductance formula
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FIG. 3. The sketches of bulk
quasiparticle energies of the nor-
mal metal (&) and the supercon-

ductor (b) at a givenk,=k{® . In
(c), the Fermi surface of the super-
conductor, thea axis of which is
tilted away from thex axis by an
anglea, is shown. The dotted and
solid curves outside the Fermi sur-
face represent thed,>_ p2-wave
gap function.

(a) (b)

2

1] 0] . 1 .
UN(x<0,y)=( 0 e'9+*4+a 1 e'9-*+b 0 e"q+">e'kyy,
UX)=EUX), (1 )
A*(x)
2m wherea,b are the Andreev and normal reflection amplitudes
i ) ) . andq. satisfy Eq.(2) for electron and hole excitations at a
where is the Fermi energyniis the electron mass\(x) IS particulark, , respectivelyq.. are shown pictorially in Fig.
the pairing potential which is taken to be zero on the normalgg),
metal side and spatially constant withdgz_,2-wave sym- Similarly, the quasiparticle energy in the bulk of the su-
metry on the superconducting side, abx) is a two- erconductor can be shown to be
component wave function, the first and the secono!3
components of which are equivalent to electronlike and hole- _ [ZA2
like excitations, respectively. . Bk ky) = Veict A @)
AssumingU(x) takes the forme'(@**kY) we obtain the where, is the normal-state energy
bulk excitation energy of the normal metal as k '

ﬁZ
b= (GHK) — (5)

ﬁ2
— 24 12y
E(y k)= | 5 (G2 D) M} @

and A, is the gap function,
whereq, ,k, arex andy components of a wave vector. Note
that the energy is always positive and the plus and minus A
signs correspond to the electron and hole energies, respec- —_maxr 2 2 i
tively. Figure 3a) shows the sketch of the quasiparticle ex- A k2 Lk ~lcos2a) + 2kdky sinze)], - (6)
citation energy in the bulk of the normal metal at a particular
k§,0)’ as indicated in Fig. @). Treating an injected electron wherekg=+2mu/f is the size of the Fermi wave vector in
from the normal-metal side and using the fact thats con-  the superconductor. Figurét8 shows a sketch of the quasi-
served, we write the wave function on the normal side as particle energy of the superconductor.
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In general, for the junction orientation away froft00
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in the normal stattA=0], and the angular brackets indicate

and {110, the magnitudes of the gaps of the states with an average ovek, . Both 1+ A—B andP can be interpreted

=*+k,A. =A(*k,k,) are not the saméexcept fork,=
0ke/\2).

For eachky ,

as the number of the electrons crossing NIS and normal-
metal-insulator-normal-metdNIN) junctions for each inci-

in the superconductor there are two trans-dent electron, respectively. The normal reflection process re-

mitted excitations for all surface orientations, as depicted irfluces the number of the electrons crossing any junction,
Fig. 3b). (In the lattice model as will be seen later, the whereas the Andreev reflection process enhanc@sTius,
number of the transmitted excitations depends on the surfadbe value of #A—B ranges from 0 to 2, whereas that Pf
orientation as well as the shape of the Fermi surface. It is notnges from 0 to 1.

always two) Therefore, the wave function of the supercon-

ductor is always a superposition of the two excitations,

U—k_
e—ik,x eikyy’

Uk

Ky

u
Ug(x>0y)= ( ClLk

}eik+x+ C,
+

()

wherec,,c, are the transmission amplitudds, satisfy the
energy Eq(4) [shown pictorially in Fig. &)], anduy ,v, are
defined as

E+ &

Uk: y
VIE+&J7+]A?

Ay
V= .
VIE+ &7 +[A

Note that|u,|?+ |v,]?=1. The amplitudes, b, c;, andc,

B. Tunneling conductance spectrum for the NIH210} junction

The wave function of the superconductor in the isotropic
model is a linear combination of two transmitted excitations.
When E<min[|A_,|,|]A|], both excitations are exponen-
tially decaying with the wave vectors k+iO(|A «y|/u).
These excitations make up a zero-energy surface bound state
on the condition that the signs of both gaps are opp8dite.
case ofe=0, or a{100; interface, the signs of the two gaps
are always the same; thus, no zero-energy bound states are
formed and there is no ZBCP. The main feature in the con-
ductance spectrum in this case is a V-shaped gaplike struc-
ture which varies linearly at low voltages and peaks at the
voltages equivalent ta- A .- In the case ofx= /4, or a
{110} interface, the signs of the two gaps of the two excita-
tions are different for alk, . Thus, zero-energy bound states
exist for allk, and contribute to a ZBCP with shoulderlike
features at the voltages equivalentta\ .

are found by using the matching conditions at the interface, For the junction with 8<a< /4, only states with some

which are
Ug(x=0")=Uy(x=0"),
dUs Uy 2mH .
x| +—Wx=07—7Us(X—0 ). 8
x=0

ky, can become zero-energy surface bound states. Specifi-
cally, the zero-energy bound states are those Wjtin the
range K sin(m/4— a) <|k | <kg sin(w/4+ ). The ratio of

the range ok, that gives zero-energy surface bound states to
the total number ofk, on the Fermi surface is equal to
V2 sin(). For a{210 surface, which is equivalent ta

= tan %(0.5), around 63% ok, on the Fermi surface con-

Because the energies in which we are interestedEare tributes to a ZBCP. Figure 4 shows the plots of the two gaps
<2Ana Which are a lot smaller than the Fermi energy, weA .., of the two transmitted excitations as a functionkgfin

will neglect the terms of orde®(E/w). Within this approxi-
mationq_=q,=q andk_=k, =k, whereq= \/qu - kyz and
k= \/kzF— kyz. For simplicity, we takege =k .

this case.
As shown in Fig. ?), for a= tan %(0.5) there are sym-
metric cusplike peaks &V=*=0.6Q\ ., in the conductance

We defined a normalized conductance as the ratio of théPectrum. To understand where these peaks come from, we
NIS conductance to the conductance of the same junction b@onsider the functio (E, k,)=1+A(E ky) —B(E ky).

with the superconductor in the normal state, i.e.,
GN'S(eV)
GNlN(e\/) ’

Following the formalism in Ref. 7, we obtain

G(eV)= 9

2

NIS :e_ _
GV (eV) h<1+A(ky,e\/) B(ky,e\/)>ky, (10

2

G"N(ev)= %(P(ky»ky, (12)

First, we discussT(E,ky) for the states withk, in the
range that does not provide zero-energy surface bound states,
e.g.,ky=0, =0.1kg, and £ 0.Xg . As shown in Fig. 5, for
ky=0, T(E) is symmetric around zero energy. It contains a
U-shaped gaplike feature with sharp peaksEat =A(k,
=0)=*=0.6Q\ jax-

For ky==*0.1kg, *0.X%¢ [see Fig. ], T(E) is no
longer symmetric. It still has a symmetric U-shaped gaplike
feature, but with asymmetric broader shoulders, not as sharp
as in the case dt,=0. The shoulders are different in height
but the same in widtliequal to the difference of the magni-
tude of the two gaps$A|,|A_]). The further|k,| is away
from zero, the flatter and lower the shoulders becdooen-

whereA andB are the Andreev and normal reflection prob- pare Figs. 68 and &c)].

abilities, respectivelyP=1-B is the transmission probabil-

Because the conductance can be interpreted as the average

ity across the insulating barrier when the superconductor isf T(E,k,) over allk,, the k,=0 state gives the conduc-
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zero—energy bound state region zero—energy bound state region (a) . . . . .
! ‘ - k= 0.1k, FTTT \ | .
N\ 08+ ',' I\ -
0.6 TN N A
05 /— Asvi0<0  / \ L [\\ <~ ____ B i
—- Ay vF(—k)>0// \\ | 04 C ( — T‘“A‘B:
<]§ 0 // \ 02 ] -
S // 0 . 44/ 1 ¥—|—"/ ) ] f
; / ) - AL 0 ARTIAL 1 2
o i ® —oak, b Ty o b ]
1 // 08— Y —
\\ //. | ) [ / \\ Py i
K 05 0 ! 06— N pad N
k /k 3NT0 i S
y 04 )’W — T=1+A-B]
FIG. 4. Plots ofA_, and Ay as a function ofk, for an NID 02l .
junction with a=tan 1(0.5). Only states withkF/JTO<\ky\ L ”_k“ _
<3ke//10 contribute to a ZBCP. The states wkl outside this 03 ! _'1 ' o ! ] 2
region give rise to cusplike peaks @¥=*0.60A .. Note that -IA 1 -IA Al 1A,
ve=d& /dk,. ©) 1 . | ——— | .
Lk = 0.2k, Y ]
| i \ —
tance spectrum cusps aV=*A(k,=0)= * A,,C0S(2). i ,/' AN i
Note that in spite of the asymmetry ®{E) at eachk,+ 0, o6 T b T — A —
the resulting conductance curve is symmetric. The reason i i T S B 1
that for everyT(E,k,# 0) there is al(E,—ky) that has the 041 — \ —— A
counteracting asymmetry, e.g., compare Figs) &nd Gb). o2l f _
When these two add up, they give the symmetric result. L *L J J
Now considefT(E,k,) in the region ofk, for which zero- 05 '—"_'i_IAI —iTo IAI¥L ™ n . )
energy bound states can be formed. For instarce; k Tk 5
+0.4kg, *0.6kg. Figure 7 shows plots of (E) for these  (d) 1 P TR — . , .
Ky . All plots display symmetric Lorentzian-like peaks cen- T UTF T
tered at zero energy. The peak width is determined by the °*[ Y N ]
smaller gap of the two transmitted excitations. At an energy o6 i g B Y _
equal to the larger gap, there is a noticeable feature. Like the o B .
states that do not contribute to a ZBARE,k,) is not sym- 04 / T TEl+A-B
021 ‘ _
ky_ 0 0 I . I R N |
2 T T T T ' T ' 2 L Al _lAkE /OAnljfl IA-kll :
L A _
—— B FIG. 6. The plots ofA, B, andT for a=tan }(0.5) at fourk,’s
L5 — T_14+A-B | in the region where zero-energy surface bound states are not

=1A]

—k

FIG. 5. The plots ofA, B, and T for a= tan 1(0.5) andk,
0.

formed. The largest asymmetry Thoccurs when mif{A _,|,|A,|]
<|E|<maq{|A_,|,|A]]. The asymmetry comes frod, notB.

metric. However, for each asymmetrit(E,k,), there is

T(E,—ky) that has the counteracting asymmetry. Thus, the
summation of all these pairs leads to symmetry in the con-
ductance spectrum.

In summary, the isotropic model gives us relatively simple

064507-5

predictions for the features of theeb-plane tunneling con-
ductance spectrum ofdy2_2-wave superconductor. For the

2 junction with orientation away fron{100; and {110}, the
spectrum is symmetric and contains a ZBCP, a shoulderlike
feature at the maximum gap, and cusplike peaks at the volt-
ages equivalent to the energy gap of the state with the mo-
mentum normal to the surface.
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(@) 2_k=0l4kF ! I I l_ /; i yL_, oNo i oSo m
L5 --——— B 1 (a) x [ ] e O O O
e o
Gy * ag
ne 2 -1 0 1 2 -
ne2 -1
[ ] [ ]
() .
b
N
aN
N
. FIG. 8. 2D lattice networks used to represéat {100, (b)
) -1 _|A‘k| 0 |'Ak| il 2 {110}, and (c¢) {210 junctions. The solid, grey, and open circles
A 1Al represent normal-metal, insulator, and superconductor layers, re-
() 2 T T T T T T spectively.a; andb;, wherei is N (normal metal or S (supercon-
-k_v= 0.6k, — A . ducton, are the crystallographic basis vectors.
s B —
- — T=A-B » —t(x,x")  A(x,x") , 12
L _ U(x")=EU(x) 12
1 F—— —_—— ’
[— RN 1\ Do e SR o LAT(XX")  t(x,x")
0.5 - whereU(x) is a two-component wave function andabels
L ¥ J— the ion positions. The summation is carried over the nearest-
0 : L o = L - neighbor sites and may also include next-nearest sites.
- T - lAlkI : On the normal-metal side, there is no gap function, i.e.,
(d) 2 : | : : | : A(x,x")=0, and for simplicity we assume there are only
| k= —0.6k, — A _ nearest-neighbor hoppings, i.e., the only nonzéxox’) are
| U L D B _ t(x,x+ay)=tny>0; t(x,xxby)=t>0. On the supercon-
L — TR ducting side, we define the hopping terms as follot(;x
1 5 P - *ag)=t(x,xxthg)=ts>0; t(X,xxagtbg)=—1t5<0. The
e B NV B gap function on this side is taken to k. 2 wave:
05— - A(X,x*tag)=—A(X,X*=hg) =A.
L vl . Because every lattice system considered here is invariant
o — ' . .
0 . | i I s with respect to a translation parallel to the surface through a
- TN ) N 2 distanceay (a lattice constant of the normal metahe com-
max ponent along the surfacé,) of a momentunk is conserved

FIG. 7. The plots oA, B, andT for a= tan (0.5) at fourk, s within a reciprocal-lattice vector corresponding to the trans-
in the region where zero-energy Andreev bound states can b@tionay=asyh+k*, where{hkO} are integers that specify
formed. The largest asymmetry fhoccurs when mifA_,|,|A,]]  the orientation of the superconductor fop-plane junctions.
<|E|<max{|A_,|,]A]], and it comes fronA only. This range ok, within which the momenturk is conserved

will specify the shape of the SABZ for each surface orienta-
Il 2D LATTICE MODEL AND CONDUCTANCE tion. Because the SABZ has the same area as the bulk BZ,
FORMULA the range ok, has to be 2r\h?+k?/ag long. The surface
states of each surface orientation are basically the superpo-
sitions of the bulk states. The SABZ is used to specify which

In this section, we mtrqducg the .2D-Ia.tt|.ce model. Vvebulk states will contribute to each surface state of that orien-
represent ouab-plane NID junctions with infinite 2D square tation, that is, it is composed of the states of the skpin

lattices. Three examples of different superconductor surfacg . sagz.
orientations are depicted in Fig. 8. Note that for simplicity  From Bloch’s theorem. the eigenstates of Etp) there-

we keep the normal metal oriented in t{#0 direction. fore can be written as
We describe our system by the following 2D discrete .
Bogoliubov—de Gennes equatioiis’ U(x)=emvanuky(n), (13
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k the bulk BZ. The difference in shape of the SABZ has an
impact on the number of the quasiparticle excitations that

3
i 7 make up the wave function of the superconductor.
Writing U';ly(n)=Ce'quaN and substituting it into Eq.

(14), we obtain the normal side bulk quasiparticle energy as

ke E(0,Ky) = = [ ey~ 1~ 2ty COg Gya) — 2t} cogkyan)],
(15
S 5 : where €y is the normal-metal on-site energy ard,|
<lay.
(100) The bulk quasiparticle energy of the superconductor is
ky E(ky ky) = VE+AZ, (16)
3'j F where
4]
% hk,+ Kk, kk,—hk,
& =eg— u—2tg CO§ ——=ag| +co§ ——=a
J L fi=esmu2s Q(m ok S
- 0
’ el [ (0K (0K,
co a
(]]0) S m S
k
y (h—K)k,— (h+k)k, )
i ' ' ] +co as| |, 1
NI T s B
0 / T
( \ — 1k s oa| cod Mtk ) Ko, hk,
=2A|co§ ——=ag| —Cc0§ ——=ag] |,
(18

21
210) and|k, < mVh?+k?/as.
FIG. 9. The SABZ’s for three surface orientatiof$00}, {110}, Now we consider the wave function for each region that
and{210. For each Brillouin zong¢BZ), we draw a Fermi surface satisfies Eq(14). Treating an injected electron from the nor-
that corresponds to a little more than a half-filled band with nearesty 5 side, we write the normal-metal wave functlUny as a

neighbor interactions. summation of three excitations as in the isotropic model

wherem,n are ionic row and column indices as indicated in 0 1
Fig. 8. SubstitutingJ(x) into Eg. (12), we can reduce Eq. UK‘y(nSO)Z eld+ann4 gl |eld-an4pl |eTid+ann,
(12) to a 1D eigenvalue equation 1 0

E Th(n,n")UM(n")=EU"(n) (14) Thex components of the wave vectays satisfy Eq.(15) at

a particulark, .
The wave function of the superconducting region can be

for eachk, . TX(n,n’) is the appropriate (2 2) energy ma- written as

trix between two ions with column indicesandn’. Equa-
tion (14) describes the excitations in the bulk state of each . o
side and also provides us with the matching conditions for Ug(n>0)=2 cug (n), (20
the two wave functions at the interface. m

The wave function describing each side of the junction iswhere the summation is over all the transmitted quasiparticle
a linear combination of the appropriate excitations of theexcitations and,, is a transmission amplitude. The number
same energy ankl,. The number of the excitations depends of the transmitted excitations depends on the shape of the
on the shape of Fermi surface and the SABZ. Figure 9 showsermi surface as well as the surface orientation. For ex-
three SABZ's of the superconductor with different orienta-ample, a system with £10 surface and a Fermi surface as
tions. Because we assign the normal side to ha¥@0&8  shown in Fig. 9 can have in the normal state four igal-
surface, its SABZ is the same as the bulk BZ, which is aexcitations for somek, on the Fermi surface. This means
(2m/ayXx2m/ay) square. The shape of SABZ of the super-there can be eight qua3|part|cle excitations in the supercon-
conductor, however, is not always a square. For{lakD}  ducting state at thak,; however, only four of them are
interface, the SABZ is a [277/(as\/h2+ kz) transmitted ex0|tat|on$| e., their group velocities are away
X 277'\/h2+ k?/ag] rectangle, which still has the same area asfrom the junction. Each excitation takes the following form:
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Uy= v k
U;V‘m(n)= m eik;]as\/szran, (21) 3F . ; Y T T on
vkr?w
where k,, are thex components of the wave vectors that _'\ Py {
satisfy Eq.(16) (* correspond to either an electronlike or a V=09 AR v.=0
holelike excitation. Each ofa, b and all thec,,, can be found i P 2
as a function oft andk, by matchingU',ily and U‘;y at the 0
interface according to Eq14). Note that because the num- : k
ber of quasiparticle excitations is conserved, all the reflection x
and transmission probabilities will add up to unity. This con- i i )
servation as well as the conservation of the electric current at f
the interface is used as a check of all the numerical calcula- i N© -0. ]
tions in this work.
Following the BTK formalism-’ we obtain the normal- Sl o L L L L4
ized differential conductance at zero temperature as -3 0 3
FIG. 10. Three Fermi levels of the normal metal with
(1+A(ky,eV)—B(ky,eV))i =0.1ty. The parametery, which is defined in the text, specifies
G(eV)= 3 (22)  the Fermi level. Here, we usg andk, in place ofk,ay andk,ay .
(P(ky))i, y y

a function ofk, is featureless, or close to being independent
It is noteworthy that Eq(22) works for both positive and  Of Ky .
negative applied voltage. For the positive applied voltage, For the superconductor, we consider two approximations:
the expressions foa and b are evaluated by assuming an nNearest- and next-nearest neighbor. For the nearest-neighbor
incoming electron as described above. For the negative vol@PProximation, we assign the following parametets: 0,
age, the coefficients are calculated by assuming an incominig=ty=10A 4. The choice of the parametgyin fact does
hole instead. It should be mentioned that becansg, notaffectthe main results of the tunneling conductance spec-
<0.2s in high-T, materialé and because we are interested!ra. as long ass>An,,. For the next-nearest-neighbor ap-
in the energie less than 2,,,,, we ignore all terms of Proximation, we take5=0.45 so as to reproduce qualita-

order O(E/tg) in all the calculations throughout this article. tively the CuQ plane Fermi surface of YB&WO,-; as
This approximation leads tq, =q._=q, whereq satisfies deduced by ARPES measuremeffts: The Fermi surface is

; _ e — ~ characterized by a parametes=(u— €s)/(4tg). Different
:ES%;(lES) W'(TGI)E fgr’ a;ﬂ'?{"' A|I|;g| A|kf“|: therz:(;lkg Sit Fermi surfaces in each approximation are shown in Fig. 11.
9. k= v Sk T Tk K We take the barrier strength on the insulating layer to be
+ W/EZ—AE . zero for simplicity, because even without a potential barrier
" we are still in the tunneling limit with those parameters de-
fined above. That is, the mismatch of the group velocities of

IV. CONDUCTANCE SPECTRA the incoming and transmitted excitations acts as a large ef-
FROM THE 2D LATTICE MODEL fective barrier_

We now examine the effect of the anisotropic Fermi sur-
face on the tunneling spectra of NID junctions using the
lattice model. We will consider both nearest- and next- In this approximation, we consider the case of {a&0
nearest-neighbor approximations. And to ensure that all theurface orientation, as an example of the orientations away
peaks and humps in the conductance spectra come from the
superconductor and not the normal metal, we assign the fol-
lowing properties to the normal metal. We take the normal-
metal crystal to be aligned in a specific orientation, which is
{100.. We also take the energy bandwidth of the normal |
metal to be an order of magnitude larger than that of the | .
superconductor. This describes the situation in most tunnel °f.
ing experiments with higfi-, materials. We let the hopping \
energy along the surface be ten times smaller than that nor
mal to the surfacet(,=0.1ty) and the Fermi surface of the
normal metal is at a half-filled band, which is characterized -3t
by a parametewy=(u—en)/[2(ty+1ty)]=0. (This Fermi
surface is shown as the thickest energy contour line in Fig.
10) These conditions are for simplicity, to ensure that there FIG. 11. (a) Four Fermi levels used in the nearest-neighbor ap-
will be quasiparticles available for tunneling into the super-proximation case antb) in the next-nearest-neighbor approxima-
conductor at alk,, and that the DOS of the normal metal as tion case.

A. Nearest-neighbor interactions
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k.
Whether or not eactyy can be a zero-energy surface

bound state depends on the following conditions. If only two
of the four excitations have re&l , a zero-energy surface
bound state will be formed if the gaps of the two propagating
excitations have opposite signs. In the case in which all four
excitations have reak,, a zero-energy bound state is
formed, when the two excitations with their Fermi velocities
vF:dng/d k, of the same sign have gaps of the same sign

which must be opposite to one of the gaps of the remaining
two excitations. We plot the gaps of the propagating excita-

from {100 and{110}. Both conductance spectra {00} and tions as a function ok, for various Fermi surfaces in Fig.
{110 surfaces are similar to those in the isotropic model;13- The dashed and solid curves in Figs(&313(c) repre-
therefore, we will not discuss them here. sent the gaps as a function &f of the excitations with
Unlike in the isotropic model, th&210 case in the lattice POSitive and negativer , respectively. .
model involves the states which are linear combinations of For @ Fermi surface corresponding to a half-filled band
the four transmitted excitations of the same energy lgnd ~ (vs=0), the states of ak, in the BZ consist of four trans-
This changes the condition in which a zero-energy surfac&itted excitations whosk, are real. However, because the
bound state is formed. As a result, the rangépthat con- condition for a zero-energy surface bound state to be formed
tributes to such bound states varies with the shape of th not met at any,, no such bound states can exist. The
Fermi surface. The isotropic model predicts that the range ofonductance spectrum in this case, therefore, does not con-
k, that contributes to a ZBCP is around 63% of lgjlin a  tain a ZBCP, as shown in Fig. 14. The spectrum is symmetric
BZ. In the lattice model with nearest-neighbor approxima-around zero applied voltage and contains a V-shaped gaplike
tion, this range varies from zero to around 63%. feature that peaks at 0.5QA yax. At €V=*A,,, there are

The superconductor wave function of tf210 case is also less prominent features, shown in the right inset of Fig.
written as a summation of four transmitted excitations: ~ 14. The disappearance of the ZBCP in the half-filled band
case is consistent with the calculated local DOS of>a21

FIG. 12. The SABZ for th§210 case. The contour lines inside
the BZ represent Fermi surfaces as parametrized by differgnt

4 ukj
Ug(n>1)=2 ¢
=1 Uk

eikjasv“gn, (23)

zigzag surface in Ref. 27.
To understand why thf210 tunneling conductance spec-
trum from the lattice model peaks &t0.5Q\ .., consider

again the plots of the functio(E) for variousk, . Fork,
wherek;,j=1...4 arek, of the wave vectors that satisfy =0, there are only two values of the gaps: Q3@ and
=0 for eachk, . k; are, in general, complex. For instance, A, [see Fig. 18)]. The plot of T(E) at this k, shows
in Fig. 12 the lines ofk,=2.5 andk,=0.8 cut the Fermi symmetry around zero energy. It peaks at its maximum value
surface ofvg=—0.2 at different numbers of points, which at E=+0.50A 5. There is no feature ak,,, because the
represent the real solutions in each case. excitations having this value of the gap have zero Fermi

P
o

-
-

h e | &
R T x FIG. 13. Plots of the gap func-
3 _‘|\\ ,,/’//_ ) tions for propagating excitations
-15 . t10 i 15 in three casesrg=0, —0.2, and
zero—energy unda states are in these regions —0.6. Foryszo, there are no re-
\,<>_>, ﬁ). gions in which zero-energy bound
= H ST A t states exist. The region gets bigger
- N -l ‘TB I \ H when the Fermi surface is away
05 05 ‘: : : \:‘ from vs=0. The shadowed region
i [ B l/ I “ is the region where only two out
o 0 1 of four excitations, which make
= | /1 : Ik- up zero-energy bound states, have
-05 -05H| |
Y 4I// I : :} realk, .
b LS AL | L 1 |
4 02 -0 4 2 -1 0 1 2 3
— = Alv.>0] k, — = Alv,>0] k, — = Alv,>0] k,
— Alv. <0 — Alv,<0] — Alv,<0]
(a) Vg = 0 (b) Vg = -0.2 (©) Vg = -0.6
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FIG. 14. Tunneling conductance spectrum of an {10} junc-
tion with the superconductor having a half-filling Fermi surféibe
left inse). The right inset is an enlarged plot at the voltages near
Amax- Note that the cusplike peaks are nottaf . T (c) k 05 T ‘ |
velocities. Fork,# 0, the functionT(E) is no longer sym- o y _________ ' & e B :
metric. It still contains a symmetric U-shaped gaplike fea- ¢ s ‘
ture, but with asymmetric shoulders. The width of the ,
U-shaped feature is governed by the minimum magnitude
among the four gaps. Also, as depicted in Figgb1-515e), e
there are four distinct features at energies equal to the mag 0f
nitudes of the four gaps at that particulgr.

Because the normalized tunneling conductance is basi 1
cally a summation of function3(E,k,) over allk, in the 08
SABZ, the resulting conductance curve of this case contains
a V-shaped gaplike featur@lue to the average of different
U-shaped features over ak,) that peaks at voltages °*
*A(ky=0)=*0.50 . and has no ZBCP. Note that even o2
though eachTl(E,k,#0) is asymmetric, the resulting con-
ductance spectrum in this case is still symmetric because fo -
eachT(E,k,#0) there is al(E,k,— ) that has a counter-
acting asymmetrycompare Figs. 1®) and 1%e), as well as
15(c) and 1%d)]. In fact, the case of the half-filed band ©8
proves to have special symmetry, i.e., it sits at the van Hove, ¢
singularity which is a symmetric DOS point in the normal
state. The number of the filled stat@dectron statesis ex-
actly the same as that of the empty statesle states For 0.2
any other case, which is not a half-filled band and in which .
the states are composed of four excitations with kgalfor * . * E/Z rroa 2
anyT(E,ky) there will no longer exist a counteracting asym- e
metricT(E,k)’,), and this will lead to an asymmetric conduc-  FIG. 15. Plots ofA(E), B(E), andT(E) in a {210 case with a
tance spectrum. half-filled band at various values &, .

For a Fermi surface withhg= — 0.2, some states consist of
four excitations with reak,, whereas the rest are the sum-  The region ofk, that provides zero-energy surface bound
mations of four excitations, only two of which having real states in this case is around 25% of lgJlin the BZ. There-
ky. The region ofk, that gives zero-energy surface boundfore, in addition to a V-shaped gaplike feature which is still
states is indicated by the arrows in Fig.(A8 The region is apparent, the tunneling conductance spectrum contains a
also divided into two groups: ZBCP as shown in Fig. 16. Although the position of the

1. The region in whictk, gives the states that are made gaplike peaks are symmetric in ener@ =0.52A 5, their
up of four realk, excitations. This region is in the unshad- heights and shapes are asymmetric. The energyA@,5ds

X

owed areas. in fact the value of the gap of the state wij=0, the same
2. The region in whiclk, gives the states that are made as in the case ofs=0.

up of four excitations, only two of which having reky. For the states witlk, in the region where the states are

This region is in the shadowed areas. made up of four excitations, only two of which having real
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FIG. 16. The tunneling conductance spectrum of an {10} |
junction with the superconductor havingig= —0.2 Fermi surface 12 ; e A = - : ; 2
(the upper left inse¢t The lower insets are enlarged plots at the foN s 1

voltages nean . 0sHC) k_y =1in L — A .
R /7 e BT B ,,,,,,,,,, e |
; ; : o 0 / N — T=1+A-B

ke, T(Eky) behaves as in the isotropic model. That is, ¥ 3

T(E,k,) of these states has a counteracting asymmetry tc4
T(E,—ky). Thus, they are not responsible for the asymmetry
in the conductance spectrum. I

Figure 17 displays a few plots af(E) as well asA(E) 5 !
andB(E) for the states which consist of four rdgl-excita- 2 - At 0 rr 2

. ) E/A
tions and cannot become zero-energy bound st@ids) in A

this case shows a U-shaped gaplike feature with the asym- g 17, piots ofA(E), B(E), andT(E) for the states that are
metric peaks at an energy slightly below the smallest valugot zero-energy bound states i{21.0} case forvs= —0.2 and the

of the four gaps for thakt, . These new features imply that an states that contain all four excitations with régl. The arrows
Andreev bound state is formed at this energy. However, theyhark all the values of the gap for eatl). The dashed arrows

are averaged out ovér, and do not stand out in the conduc- indicate the extra features occurring at the energies slightly below
tance spectrum. As indicated by the arrows in Fig. 17, at thehe smallest gap.

energies equal to all four values of the gap function at a

certaink, , there appear features M(E,k,). It should also  A(E k), B(E, k), and the conductance spectrum have simi-
be noted that for states witk, in this region, T(E,k,) no lar characteristics as those in the isotropic model. The con-

0.2

longer has a counteracting asymmefi{€) at any othek, . ductance spectrum of thes=—0.6 case are displayed in

Therefore, these states contribute to the asymmetry in thEig. 20. The V-shaped gaplike feature is not as prominent as

conductance spectrum. in the previous cases. It peaks arouh@®.57A .., which is
Figure 18 depicts example plots #(E), B(E), and the magnitude of the gap function laj=0.

T(E) of the states that consist of four rdglexcitations and The tunneling conductance spectra in {840 case de-

contribute to ZBCP’s. For these states, there ard (k) pend on the shape of the Fermi surface. Different band struc-
Lorentzian-like peaks at zero energy as well as features ogures produce different ranges kf that allow zero-energy
curring at four energies equal to the four gaps, as indicatedurface bound states in a SABZ. For a half-filled band, such
by the arrows. For the energy between the smallest and thgound states do not exist and therefore there is no ZBCP in
biggest energy gapd,(E,k,) shows the biggest asymmetry the tunneling conductance spectrum. Away from a half-filled
and does not have a counteracting asymméi(ig) at any  band the range df, that can give zero-energy bound states
otherk, . Therefore, these states also contribute to the asymstarts to grow and approaches the corresponding range in the
metry in the tunneling conductance spectrum. isotropic model. Different Fermi surfaces also cause different

For comparison with thess=—0.2 case, we show the ranges ok, that allow the states, which are made up of four
conductance curve for the case ®§=0.2 in Fig. 19. The realk, excitations. These states are responsible for the asym-
curve is a mirror image of thes= —0.2 case with respect to metry in the conductance spectrum except for a system of a
zero applied voltage. The V-shaped gaplike feature peakisalf-filled band.
around=0.52A .., Which is the magnitude of the gap func-  As predicted in the isotropic model, the gaplike feature of
tion atk,==* . an NID{210 junction peaks att0.6Q\ 4. In the lattice

For the system withvg that provides only two redd; model, the positions of these peaks arecdt(k,=0) for the
transmitted excitations for aky, e.g.,vs=—0.6, T(E k), systems with less than half-filled bandgs&0) and at
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FIG. 20. Tunneling conductance spectrum of an {0} junc-
FIG. 18. Plots ofA(E), B(E), andT(E) for zero-energy bound tion with th.e superconductpr havingrg= — 0.6 Fermi surfacéthe
states in 4210 case forvg= — 0.2 and for the states that contain all lower left insel. The gaplike feature peaks at/==0.57A .

four excitations with reak, . The arrows mark all the values of the The upper right inset displays an enlargement of the conductance
gap at eackk, . curve around the maximum gap.

*A(ky==m) for those with more than half-filled bands face of YBCO. We consider two casg410 and{210}. The
(vs>0). The value of these gaps ranges frah50 to {100 case is again similar to that in the isotropic model. In
0.60A ,ax- As the shape of the Fermi surface approaches ¢he{110 case for some Fermi surfaces in this approximation,
circle, i.e.,vs— =1, the peak positions approach the isotro-the number of the transmitted excitations is four, the same as
pic model predictionsee Fig. 21 in the{210 case in the nearest-neighbor approximation. This
can lead to the states of sorkgnot contributing to a ZBCP.
B. Next-nearest-neighbor interactions This fact is not expected in the isotropic model which pre-
In this section we include the next-nearest-neighbor interdicts all states in thel10 case contribute to a ZBCP. As will
actions in the calculation, in order to mimic the Fermi sur-P€ discussed below, these nonbound states are composed of
four realk, excitations and thus cause a small asymmetry in

2 T

Normalized Conductance

0.5

-2

-1

0

. Tk " | I pury the tunneling conductance. For tf210} case, the depen-
' \ ) NI dence of the conductance spectrum on the band structure
3 O'K\ ~— P S remains strong upon the addition of next-nearest-neighbor
u ; . :

effects. For some bands, the spectra show two extra features
that appear at the positions closely related\{g,=0) and
A(ky=).

0.62 . | T T T T T

/ as predicted by isotropic model \

,- ‘max )
>~
n
4
T

I

i

(=Y
T

Applied Voltage /A

X

FIG. 19. The conductance spectrum of an KD junction
with the superconductor having &=0.2 Fermi surfacdthe left
inse). The right inset shows the plots of gaps of all propagating
excitations as functions df, . The regions bounded by the arrows
are those where the zero-energy bound states can be formed. Tt
dotted areas are those in which zero-energy bound states are com-
posed of four excitations, only two of which having rdgl. The

Gap-like peak position (units of A

0.54 —

e

1%

©
T

0.5

half~filled

FIG.

-0.5 0 0.5 1

Fermi level parameter (VS)

21. The plot of the peak position of the gaplike feature

rest of the areas bounded by the arrows are those in which theccurs in the conductance spectrum of an {8} junction as a

bound states are composed of four reakexcitations.
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FIG. 22. The SABZ for thd110; case. The contour lines inside
the BZ represent Fermi surfaces parametrized by different values ol

Vs.

1. The{110 case

The structure of the wave function of the superconductoro'5
with the{110} interface in the next-nearest-neighbor approxi-
mation is similar to that of thg210 case in the nearest-
neighbor case, only with more symmetry. That is, the super- 1
conductor wave function is a linear combination of four
transmitted excitations as in E3) but withk;=—k, and 08
k,=—Kkj in the case where ak;,j=1---4 are real(also
|Ak [=1A,| and [A[=]A ), and withk;=—k; in the 05
case where only two df; are real(also|Ay |=|A[). Four o,

Fermi surfaces in 4110 surface-adapted BZ are plotted in
Fig. 22. 0.2
As in the{210 case with the nearest-neighbor approxima-

tion, for somek, the states are the superposition of four
transmitted excitations, all of which have rdgl, and for 1
otherk, they are the superposition of four excitations, only
two of which have reak, . Only the latter states can satisfy 08
the zero-energy surface bound-state condition. Particularly [
for  wg<0, Kk, with [ky|<kj=2cos[(ts/2tg)(1 )
—1+4vgtd/ts)] can provide zero-energy surface bound 04
states, buk, out of this range cannot. Fars>0, there are i
no states that are composed of four regkxcitations. Thus,
all k, can provide zero-energy surface bound states. 05
The plots ofA(E), B(E), andT(E) at a givenk,, which
either do or do not give zero-energy bound states are dis-
played in Fig. 23T(E) for the states composed of four real- g5 23. (@) and(b) show the plots oA(E), B(E), andT(E) of
k. excitations, which cannot form zero-energy surface bounghe states that can become zero-energy bound stateand (d)
states, shows a U-shaped gaplike feature which peaks at @Row the plots of the states that cannot be zero-energy bound states.
energy slightly below the smaller gdpee Figs. 2@&) and  The arrows mark the values of the gap function at a partidyjar
23(d)]. These peaks i (E) again imply the presence of a We takevs=—0.3.
resonant Andreev bound state at this energy. These features
however do not show up in the conductance spectrum bggatyres of the NIBL10F conductance are a ZBCP and
cause they are averaged out okgr The functionT(E) of  gsnoulderlike features @V= = A .
these states also exhibits asymmetry especially at energies
between the two gaps. These states therefore contribute to
the asymmetry in the conductance spectrum. The degree of 2. The{210Q case
the asymmetry varies with the number of states composed of The structure of the wave function that describes the su-
four realk, excitations in the SABZ. The most asymmetric perconductor in this case is a little more complicated than in
conductance spectrum belongs to the system with all the previous cases. It is a linear combination of six trans-
—0.45[see Fig. 249)]. As depicted in Fig. 24, the main mitted excitations of the same energy akg Figure 25

0.2
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Figures 26a) to 26(d) show the plots oA(E), B(E), and
T(E) for differentk, and Fig. 26e) shows the plots of the
gaps of all propagating transmitted excitations as functions
of k, for a system withws=—0.3. For a system withrg that
provides most states which are composed of six excitations,
more than two of which having red,, the conductance
spectrum shows asymmetry around zero applied voltage. For
a system withvg that always provides only two excitations
with realk,, its spectrum is symmetric.
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FIG. 24. The normalized conductance spectra of an{\D
junction for various Fermi surfaces. The upper right inset in each
picture shows the plots of all the gaps of propagating excitations.
The dotted area in the inset is the region in which the states are no
zero-energy surface bound states. The upper left inset shows th
Fermi surface plotted in €110, SABZ. In (b), the lower left inset is
an enlarged plot in the boxed region.

-1

FIG. 26. The plots oA(E), B(E), andT(E) at differentk, for

) ) ] vs=—0.3 are in(@)—(d). (e) shows the plot of real energy gaps for
ShOWS dlf'fel’ent Fermi SurfaceS fOI’ the next'nearest'ne|ghbq” propagat”']g excitations as functions kgf The shadowed area

approximation in a{210; SABZ. The wave function of the
superconductor takes the following form:
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are more complicated than those from the isotropic model

P —
—

L @ vg=0 o Tk =0) | due to the elongated SABZ. Their wave functions are linear
- T(,iy= n) combinations of more than two excitations. The conductance
L5 —— Normalized dl/dV ™| spectra of these junctions reveal strong dependence on the

shape of the Fermi surface. They are asymmetric around zero
voltage and contain the cusplike features that occur at volt-
ages other than zero drA .. The asymmetry is caused by
those states that contain more than two excitations that have
real energy gapsor realk,) except for the case of £10
junction with nearest-neighbor interactions and a half-filled
band. The cusplike features in fact occur at the voltages
equivalent to the energy gaps of the states that have the mo-
menta perpendicular to the surface and of those that have the
V| momenta on the edges of the SABZ.

| ---- Tk,=0) . We should also qualitatively discuss how the self-

{ —— Tk=m) consistency of the gap function may influence the positions
|

\

T Nomualized AV of these cusplike features. As shown in Refs. 28 and 29, for
the surface orientation away frofd00; the gap function is
suppressed over the distance of a few coherence lengths.
This suppression is expected to effect the width of the ZBCP
and to cause the peaks other than the ZBCP to move a little
away from the positions expected when we assume the gap
NS . function does not vary spatialf. The movement in our case
Nmagos A of the cusplike peaks should be approximately of order of the
-2 - 0 ! 2 maximum energy gap over the bandwidth of the supercon-
. | Applied Voltage /A, ductor times the energy at the position of the peak. This
(©)vg=—-03 0 a_mount of mqvement would be_,- very small in most cases of
T N high-T. materials because their bandwidths are at least an

—_— Tk=m ) . .
| — Nommalized d/dV] order of magnitude larger than the maximum gap.

0.5

V. CONCLUSION

Using a 2D discrete lattice model and the BTK formalism,
we have studied the differential conductance spectrum of
NID junctions. We examined the dependence of the spectrum
on both surface orientation and Fermi level of thevave
superconductor. The conductance spectrum are shown to be

FIG. 27. The plots of the normalized conductance @, k,  Vvery sensitive to the Fermi surface for interface orientations
=0,m) for the systems withvg that give asymmetric spectra. The away from {100 and {110}. The conductance spectrum
solid arrows indicateA(k,=) and the dotted arrows indicate shows, in addition to a ZBCP, cusplike peaks that occur at
A(ky=0). the energy gap of the state with its momentum either perpen-

dicular to the surface, or on the edge of the SABZ. The
presence of these cusplike peaks and our ability to predict

Figure 27 shows only a few cases of different These their positions provide us with an opportunity to use direc-
cases provide the asymmetric conductance spéiteasolid ~ tional tunneling spectroscopy as a tool to map out the mag-
lines). Similar to the nearest-neighbor case, the conductandaitude of the energy gap of @&wave superconductor in the
spectrum of a system withs=0 does not display a ZBCP. Momentum space.

For systems with otherg, e.g.,—0.2, —0.3, in addition to
a ZBCP, there are four cusplike features symmetric in posi-

Applied Voltage /A

tions. These peaks clearly come from the states With ACKNOWLEDGMENTS
=0, (the thin and thick dashed lines in Fig. 27 respec-
tively). We would like to thank the Natural Sciences and Engi-

In summary, for NI@110 junctions with up to next- neering Research Council of Canada for support. P.P. would
nearest-neighbor interactions or NE1G junctions with like to also thank the Royal Thai government for its financial
only nearest interactions, the structures of the wave functionsupport.
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