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Intermediate phase in the spiral antiferromagnet Ba2CuGe2O7
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The magnetic compound Ba2CuGe2O7 has recently been shown to be an essentially two-dimensional spiral
antiferromagnet that exhibits an incommensurate-to-commensurate phase transition when a magnetic field
applied along thec axis exceeds a certain critical valueHc . TheT50 dynamics is described here in terms of
a continuum field theory in the form of a nonlinears model. We are thus in a position to carry out a complete
calculation of the low-energy magnon spectrum for any strength of the applied field throughout the phase
transition. In particular, our spin-wave analysis reveals field-induced instabilities at two distinct critical fields
H1 andH2 such thatH1,Hc,H2. Hence we predict the existence of an intermediate phase whose detailed
nature is also studied to some extent.

DOI: 10.1103/PhysRevB.65.064433 PACS number~s!: 75.30.Ds, 75.30.Gw, 75.30.Kz
ro

d
s
e

e
i

a

g

y
ic
e
tio
th
I

m
w

m
n
n
n
or
a
re
lly

a

. V

w-
nal

lly.

ri-
of
is

m-
f an

flat
are
of

ice

ne,

b-
n
. In

s is

the
y-

pin
the

il.
om-
bor
I. INTRODUCTION

A recent experimental investigation1–5 of the magnetic
properties of Ba2CuGe2O7 in its low-temperature phase (T
,TN53.2 K) established the occurrence of spiral antifer
magnetic order due to a Dzyaloshinskii-Moriya~DM!
anisotropy.6,7 A schematic illustration of the spiral abstracte
from experiment may be found in Fig. 5 of Ref. 1. It wa
further demonstrated that a Dzyaloshinskii-typ8

commensurate-incommensurate~CI! phase transition is in-
duced by a magnetic fieldH applied along thec axis. As the
field approaches a critical valueHc'2 T, the spiral is
highly distorted while its period~pitch! grows to infinity. For
H.Hc the ground-state configuration is thought to degen
ate into a uniform spin-flop state. This phase transition
similar to the cholesteric-nematic transition induced by
external magnetic field in liquid crystals.9–11

It is of obvious interest to describe theoretically the ma
non excitations measured by inelastic neutron scattering,5 but
progress has been hindered by the great formal complexit
the calculation. Here we explore a new approach in wh
the original discrete system is replaced by a continuum fi
theory. We are thus able to carry out a complete calcula
of the low-energy excitation spectrum for any strength of
applied field and any direction of spin-wave propagation.
addition, our analysis reveals the existence of a new inter
diate phase whose properties we examine and compare
experiment.

In Sec. II the low-energy dynamics is described in ter
of a nonlinears model that is compatible with symmetry. I
Sec. III we present a brief demonstration of the conventio
CI transition which will provide the basis for all subseque
work. The complete field theory is first applied in Sec. IV f
an analytical calculation of the field dependence of the m
non spectrum in the high-field commensurate phase. Inte
ingly, the uniform spin-flop state is shown to be loca
stable only forH.H2.Hc where the new critical fieldH2 is
predicted to be equal to 2.9 T. A first contact with the me
sured spectrum is also made in Sec. IV.

The main thrust of our calculation is presented in Sec
0163-1829/2002/65~6!/064433~15!/$20.00 65 0644
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where the determination of the magnon spectrum in the lo
field spiral phase is reduced to a quasi-one-dimensio
~quasi-1D! band structure problem that is solved numerica
While an earlier calculation5 of the spectrum atH50 is con-
firmed, we are also in a position to analyze existing expe
mental data at nonzero field and to predict the results
possible future experiments. A by-product of this analysis
yet another critical fieldH151.7 T,Hc beyond which the
flat spiral ceases to be locally stable. Therefore, the co
bined results of Secs. IV and V suggest the existence o
intermediate phase in the field regionH1,H,H2 whose
nature is studied in Sec. VI where we show that a non
spiral becomes energetically favorable. The main results
summarized in the concluding Sec. VII, while discussion
some technical issues is relegated to two appendixes.

II. LOW-ENERGY DYNAMICS

The unit cell of Ba2CuGe2O7 is partially illustrated in Fig.
1 where we display only the magnetic Cu sites. The latt
constants area5b58.466 Å andc55.445 Å. Since the
Cu atoms form a perfect square lattice within each pla
with lattice constantd5a/A2'6 Å, it is also useful to con-
sider the orthogonal axesx, y, andz obtained from the origi-
nal crystal axesa, b, andc by a 45° azimuthal rotation. The
complete magnetic lattice is formally divided into two su
lattices labeled byA andB because the major spin interactio
between nearest in-plane neighbors is antiferromagnetic
contrast, the interaction between out-of-plane neighbor
ferromagnetic and weak.1 Therefore, the interlayer coupling
is not crucial for our purposes and is thus ignored in
following discussion which concentrates on the 2D spin d
namics within each layer.

The space group of this crystal isD2d
3 or P4̄21m and

imposes significant restrictions on the possible types of s
interactions. Such symmetry constraints underlie most of
earlier work1–5 but were not spelled out in sufficient deta
We have thus found it necessary to carry out afresh a c
plete symmetry analysis, including both nearest-neigh
©2002 The American Physical Society33-1
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~NN! and next-nearest-neighbor~NNN! couplings. For the
moment, we restrict our attention to NN interactions a
write the 2D spin Hamiltonian as the sum of four terms:

W5WE1WDM1WA1WZ . ~2.1!

Here

WE5(̂
kl&

Jkl~Sk•Sl ! ~2.2!

describes the isotropic exchange over NN in-plane bon
denoted bŷ kl&, with Jkl5J for all such bonds. Similarly,

WDM5(̂
kl&

Dkl•~Sk3Sl ! ~2.3!

stands for antisymmetric DM anisotropy where the vect
Dkl assume four distinct values,

DI5De21D8e3 , DII 5De11D8e3 ,

DIII 5De22D8e3 , DIV5De12D8e3 , ~2.4!

which are distributed over the 2D lattice as shown in Fig
where NN bonds are accordingly labeled by I, II, III, or IV
HereD andD8 are two independent scalar constants, wh
e1 , e2, ande3 are unit vectors along thex, y, andz axes of
Fig. 1. It should be noted that thez components of the DM
vectors alternate in sign on opposite bonds, a feature
could lead to weak ferromagnetism. No such alternation
curs for the in-plane components of the DM vectors~2.4!
which are responsible for the observed spiral magnetic o
or helimagnetism.

The third term in Eq.~2.1! contains all ‘‘symmetric’’
anisotropies. Since single-ion anisotropy is not possible
this spins5 1

2 system, the most general form ofWA is

WA5
1

2 (̂
kl&

(
i , j

Gkl
i j ~Sk

i Sl
j1Sk

j Sl
i !, ~2.5!

where the indicesi and j are summed over three values co
responding to the Cartesian components of the spin vec

FIG. 1. Partial illustration of the unit cell of Ba2CuGe2O7 dis-
playing only the magnetic~Cu! sites denoted by solid circles.
06443
d

s,

s

2

e

at
c-

er

in

rs

along the axesx, y, and z. Accordingly, Gkl5(Gkl
i j ) are 3

33 symmetric matrices, one for each bond^kl&. Again,
there exist four distinct such matrices:

GI5S K1 0 0

0 K2 K4

0 K4 K3

D , GII 5S K2 0 K4

0 K1 0

K4 0 K3

D ,

GIII 5S K1 0 0

0 K2 2K4

0 2K4 K3

D ,

GIV5S K2 0 2K4

0 K1 0

2K4 0 K3

D , ~2.6!

which are all expressed in terms of the four scalar parame
K1 , K2 , K3, andK4. The latter may be further restricted b
the trace conditionK11K21K350 because the isotropi
component of the exchange interaction is already accou
for by Eq. ~2.2!. Finally,

WZ52(
l

~gmBH•Sl ! ~2.7!

describes the usual Zeeman interaction with an external fi
H.

The discrete Hamiltonian could be employed to analy
this system by standard spin-wave techniques, but the ca
lational burden is rather significant and has so far preven
a complete determination of the magnon spectrum.5 Never-
theless, the relevant low-energy dynamics can be efficie
calculated in terms of a continuum field theory which pr
vides a reasonable approximation for Ba2CuGe2O7 because
the period of the observed spiral is equal to about 37 lat
constants along thex direction. A similar approach is often
invoked in the related subject of weak ferromagnetism12,13

and can be implemented by a straightforward step-by-s
procedure starting from the original discre
Hamiltonian.14,15

FIG. 2. Illustration of the dimerization process on a finite po
tion of the 2D lattice cut along the axesx andy. The indicesa and
b advance along the crystal axesa andb not shown in this figure.
The meaning of the Roman labels on bonds connecting NN site
explained in the text.
3-2
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INTERMEDIATE PHASE IN THE SPIRAL . . . PHYSICAL REVIEW B65 064433
The first step is to group spins into dimers as shown
Fig. 2. Each dimer contains a pair of spins denoted byA and
B and labeled by a common set of sublattice indicesa andb
that advance along the crystal axesa andb. A more conve-
nient set of variables is given by the ‘‘magnetization’’m and
the ‘‘staggered magnetization’’n which are defined as

m5
1

2s
~A1B!, n5

1

2s
~A2B!, ~2.8!

and satisfy the classical constraintsm•n50 and m21n2

51. We also introduce space-time variables according to

h5A2«a, j5A2«b, t52sA2«Jt, ~2.9!

where « is a dimensionless scale whose significance w
become apparent as the discussion progresses. The fin
sult will be stated in terms of the coordinates

x5
j1h

A2
, y5

j2h

A2
, ~2.10!

along thex and y axes of Fig. 1. One should keep in min
that actual distances are given byxd/« and yd/« whered
5a/A2 is the lattice constant of the square lattice formed
the Cu atoms. Finally, we introduce rescaled anisotropy c
stants and magnetic field as

l5
D

«J
, l85

A2D8

«J
, h5

gmBH

2sA2«J
,

k05
2

«2J
~K11K222K3!, ~2.11!

where we display only those combinations of constants
survive in the effective low-energy dynamics. In particul
the constantK4 does not appear to leading order. The furth
notational abbreviations

k5k02l21l82, dz5l8e3 ~2.12!

will prove convenient in all subsequent calculations.
Now, a consistent low-energy expansion is obtained

treatingm as a quantity of order« while n is of order unity.
To leading order, the classical constraints reduce to

m•n50, n251, ~2.13!

m is expressed entirely in terms ofn by

m5
«

2A2
@n3~ ṅ1dz2n3h!#2

«

2
]1n, ~2.14!

and theT50 dynamics of the staggered magnetizationn is
governed by the Lagrangian densityL5L02V where
06443
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L05
1

2
ṅ21h•~n3ṅ!,

V5
1

2
~]1n2le23n!21

1

2
~]2n2le13n!2

1
1

2
kn3

21
1

2
~n•h!21~h3dz!•n. ~2.15!

The overdot denotes differentiation with respect to the ti
variablet, ]1 and]2 are partial derivatives with respect tox
and y, and (n1 ,n2 ,n3) are the Cartesian components ofn
along the axesxyz of Fig. 1. Consistency requires that a
physical predictions derived from Eqs.~2.14! and ~2.15!
must be independent of the specific choice of the scale
rameter«. This fact will be explicitly demonstrated or use
to advantage in the continuation of the paper.

We have further examined possible modifications of
low-energy dynamics due to NNN spin interactions along
diagonals of the Cu plaquettes. Our symmetry analysis
vealed that both antisymmetric~DM! and symmetric
anisotropies are present over NNN bonds and introduc
new set of parameters. Nevertheless, in the continuum li
all new parameters merge with those already present in
Lagrangian~2.15!. The implied remarkable rigidity of the
effective low-energy spin dynamics is obviously due to t
special crystal structure of Ba2CuGe2O7.

In the remainder of this section we make contact with
static energy functional derived by Zheludevet al.,5 re-
stricted toT50, which appears to differ in some respec
from the potentialV of Eq. ~2.15!. First, we note that we
have omitted from the potential some additive fiel
dependent constants which play no role except to relate
energy to the magnetization. The latter will be obtained
Sec. III by a direct application of Eq.~2.14!. A more inter-
esting point concerns the special choice of exchange an
ropy made in Ref. 5, which was suggested by the work
Kaplan16 and Shekhtman, Aharony, and Entin-Wohlman17

and is referred to as the KSEA anisotropy. If the origin
perturbative derivation of the antisymmetric DM interactio7

is carried to second order,17 a symmetric anisotropy result
that is described by a special case of the matrices~2.6! with

K150, K25
D2

2J
,

K35
D82

2J
, K45

DD8

2J
, ~2.16!

in addition to a simple renormalization of the exchange c
stantJ. The parameterk0 of Eq. ~2.11! is then given byk0
5l22l82 and the parameterk of Eq. ~2.12! vanishes. Since
a nonzerok is allowed by symmetry, we shall keep
throughout our theoretical development. However, our
merical demonstrations will also be restricted to the KS
limit ( k50).

Finally, the term (h3dz)•n in the potentialV of Eq.
~2.15! is absent from the energy functional of Zhelud
et al.5 A contribution of that nature is present in the ear
3-3
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work of Andreev and Marchenko12 and plays a significan
role in various aspects of weak ferromagnetism.15 This term
vanishes when the field is applied along thec axis (h3dz
50) and thus does not affect the analysis of the CI tran
tion. However, such a term is important in the case of
in-plane magnetic field which is also of experimen
interest3 and is briefly discussed in the concluding paragra
of Sec. III.

III. GROUND STATE

An important first step in the calculation of theT50 dy-
namics is the search for the classical spin configuration
minimizes the static energy,

W5E V dxdy, ~3.1!

where V is the potential of Eq.~2.15!. For a field applied
along thec axis,h5(0,0,h), the potential is given by

V5
1

2
@~]1n!21~]2n!21g2n3

21l2#

2l@~]1n12]2n2!n32~n1]12n2]2!n3#, ~3.2!

which depends only on the parameterl that measures the
strength of the in-plane component of the DM anisotro
and the combination of parameters

g25k1l21h2 ~3.3!

that includes the external fieldh. A notable feature of the
potential~3.2! is its invariance under the simultaneous tran
formations

x1 iy→~x1 iy !eic0, n11 in2→~n11 in2!e2 ic0.
~3.4!

This is a peculiar realization of U~1! symmetry in that the
usual 2D rotation of spatial coordinates with an anglec0 is
followed by an azimuthal rotation of the staggered magn
zation with an angle2c0.

The minimization problem was extensively studied in t
earlier work.1–5 Here we briefly describe a slightly simplifie
version of the obtained solution in order to establish con
nient notation for our subsequent dynamical calculations
we invoke the usual spherical parametrization of the u
vectorn defined from

n11 in25sinQeiF, n35cosQ, ~3.5!

the minimum of the energy is sought after in the form of t
1D ansatz

Q5u~x!, F50, ~3.6!

which assumes that the staggered magnetization is con
in thexz plane and depends only on the spatial coordinatx,
modulo a U~1! transformation given by Eq.~3.4!. The poten-
tial ~3.2! then simplifies to
06443
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V5
1

2
@~u82l!21g2cos2u#, ~3.7!

where the prime denotes differentiation with respect tox, and
stationary points of the energy~3.1! satisfy the ordinary dif-
ferential equationu91g2cosu sinu50 whose distinct fea-
ture is that it does not depend onl. A first integral of this
equation is given byu822g2cos2u5C5d2 where we antici-
pate the fact that the minimum of the energy is achieved
positive integration constantC. Thus the desired solutionQ
5u(x) is given by the implicit equation

x5E
0

u dq

Ad21g2cos2q
~3.8!

and is a monotonically increasing function ofx. The corre-
sponding spin structure repeats itself whenu is changed by
an amount 2p, i.e., whenx advances by a distance

L54E
0

p/2 du

Ad21g2cos2u
, ~3.9!

which will be called the period of the spiral. The free para
eter d is determined by the requirement that the avera
energy densityw5(1/L)*0

LVdx be a minimum, whereV is
the potential~3.7! calculated for the specific configuratio
~3.8!. A direct computation shows thatd must satisfy the
algebraic equation

2

pE0

p/2

duAd21g2cos2u5l, ~3.10!

and the corresponding energy density is

w5
1

2
~l22d2!. ~3.11!

The configuration described above will be referred to as
flat spiral because the staggered magnetization is confine
the xz plane.

It is clear that the rootd of Eq. ~3.10! decreases with
increasingg. In fact, d vanishes at a critical value ofg
which is easily calculated by settingd50 in Eq. ~3.10! to
obtaing5gc5lp/2. In view of Eq.~3.3!, the corresponding
critical field is given by

hc5F S p2

4
21Dl22kG1/2

, ~3.12!

and a spiral state is possible only forh,hc . At the critical
point, the energy density~3.11! becomesw5l2/2 and is
equal to the energy of the uniform spin-flop staten
5(1,0,0). The latter is a stationary point of the energy fun
tional for any strength of the applied field and is thought
be the absolute minimum forh.hc . The actual stability of
the spin-flop state forh.hc , and of the spiral state forh
,hc , will be addressed more carefully in Secs. IV and V

Next we calculate the T50 magnetization m
5(m1 ,m2 ,m3) which can be obtained from Eq.~2.14! ap-
3-4
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INTERMEDIATE PHASE IN THE SPIRAL . . . PHYSICAL REVIEW B65 064433
plied for the static configurationn5(sinu,0,cosu) and aver-
aged over the periodL of the spiral. The only term tha
survives in the average is

m35
«h

2A2

1

LE0

L

~12cos2u!dx ~3.13!

and can be expressed in terms of quantities already con
ered, namely,

m35
«h

2A2g2 S g21d22
2pl

L D , h,hc . ~3.14!

For h.hc , the spin-flop staten5(1,0,0) is inserted into Eq
~2.14! to yield after a trivial computation

m35
«h

2A2
, h.hc , ~3.15!

while m150 andm252«l8/2A2. The latter formula is the
only place where the oscillating component of the DM a
isotropy appears and produces a field-independent weak
romagnetic moment along they axis.

In order to make definite quantitative predictions we u
as input5 the spin values51/2, an exchange constantJ
50.96 meV, and a gyromagnetic ratiog5gc52.474 for a
field applied along thec axis. Concerning anisotropy, w
adopt the KSEA limit (k50) and thus the only relevan
parameter isl which may be estimated from the observ
spin rotation by an angleDu[2pz over a distanced
5a/A2 along thex axis. The incommensurability paramet
z is related to the periodL of Eq. ~3.9! by z5«/L, where«
is the scale parameter introduced in Eq.~2.9!. One may ac-
tually choose the free parameter« as «5D/J and thusl
[1 andg25k1l21h2511h2. At zero field, Eq.~3.10! is
applied forl515g to yield d250.531 897 72 and the pe
riod is calculated from Eq.~3.9! asL56.499 451 69. Hence
«5zL50.1774, where we have also used the valuez
50.0273 measured at zero field.5 To summarize, our fina
choice of constants is

k50, l[1,

g2511h2, «5D/J50.1774, ~3.16!

and should be completed with the stipulation that the uni
field (h51) correspond to 2sA2«J/gcmB51.682 T, while
the unit of frequency~energy! is 2sA2«J50.241 meV. The
magnetization per Cu atom is given by Eqs.~3.14! and~3.15!
in units of sgcmB51.237mB . Distance is measured in unit
of d/«533.75 Å.

The constants~3.16! are inserted into Eq.~3.12! to yield a
critical field hc51.21 in rationalized units orHc52.04 T in
physical units. This theoretical prediction is consistent w
experiment and is thought to be a good indication that
KSEA limit (k50) may provide an accurate description
anisotropy.5 Now, Eqs.~3.10! and ~3.9! are applied withl
51 andg2511h2 to yield the rootd5d(h) and the period
L5L(h) at field h. The field dependence of the energy de
06443
id-

-
er-

e

f

e

-

sity computed from Eq.~3.11! for h,hc , and w51/2 for
h.hc , is depicted by a solid line in Fig. 3~a!. Similarly, the
field dependence of the incommensurability parametez
5z(h) is calculated from

z~h!

z~0!
5

L~0!

L~h!
, ~3.17!

wherez(0) andL(0) are the zero-field parameters alrea
discussed, and is depicted by a solid line in Fig. 3~b!. The
results of Fig. 3 will be completed and further discussed
Sec. VI. The same numerical data may be employed in E
~3.14! and ~3.15! to calculate the field dependence of th
magnetization and the corresponding susceptibility.

Finally, we return to the U~1! transformation~3.4! which
may be applied to the special solution~3.6! to yield a family
of degenerate ground-state configurations:

Q5u~x cosc01y sinc0!, F52c0 , ~3.18!

wherec0 is an arbitrary angle. The propagation vector of t
resulting spiral forms an anglec0 with the x axis, while the
normal to the spin plane forms an anglep/22c0 with the
same axis. For the special rotationc05p/4, the magnetic
propagation vector and the normal to the spin plane are
allel ~screw-type spiral!. This symmetry operation is the ba

FIG. 3. T50 theoretical predictions for the field dependence
~a! the energy densityw and ~b! the incommensurability paramete
z. Solid lines correspond to the flat spiral constructed in Sec. III a
dashed lines to the nonflat spiral calculated in Sec. VI. The th
vertical dotted lines indicate the location of the three critical fie
h151.01, hc51.21, andh251.73, measured in units of 1.68 T
Experimental data~open circles! measured atT52.4 K were ex-
tracted from Fig. 4 of Ref. 4.
3-5
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sis for the bisection rule discovered by Zheludevet al.3 when
the external field is applied in a directionperpendicularto
the c axis, at an anglex0 with respect to thex axis. The
normal to the spin plane rotates almost freely to align w
the external field, and thusx05p/22c0, in order to mini-
mize ~eliminate! the positive term (n•h)2 in the potential
~2.15!. The new term (h3dz)•n in the above potential doe
not affect the bisection rule but it does modify the profile
the spiral. For example, when the field is applied along thy
axis (x05p/2, c050, h3dz5l8he1) the staggered magne
tization is again confined in thexz plane but the potentia
~3.7! becomes

V5
1

2
@~u82l!21g2cos2u#1l8h sinu, ~3.19!

where g25k1l2 is now field independent. Nevertheles
the external field reappears in a different form and require
new calculation of the spiral based on Eq.~3.19!. Such a
calculation might actually explain the observed~weak! field
dependence of the magnitude of the magnetic propaga
vector3 and provide an estimate for the strengthl8 ~or D8)
of the oscillating component of the DM anisotropy.

IV. SPIN-FLOP PHASE

We now begin to address questions of dynamics base
the complete LagrangianL5L02V of Eq. ~2.15! applied for
a field h5(0,0,h). If we also insert the spherical paramete
~3.5!, we find that

L05
1

2
~Q̇21sin2QḞ2!1h sin2QḞ ~4.1!

and

V5
1

2
@~¹Q!21sin2Q~¹F!21g2cos2Q1l2#

1l@cosQ sinQ~sinF]1F1cosF]2F!

2cosF]1Q1sinF]2Q#, ~4.2!

where¹5(]1 ,]2) is the usual 2D gradient operator, whi
the Laplacian will be denoted in the following byD5]1

2

1]2
2.
We first study the high-field commensurate phaseh

.hc) where the absolute minimum of the classical energ
thought to be the uniform spin-flop staten5(1,0,0) or Q
5p/2 and F50. Small fluctuations around this state a
calculated by introducingQ5p/21 f andF5g in Eqs.~4.1!
and~4.2! and keeping terms that are at most quadratic in
small amplitudes f 5 f (x,y,t) and g5g(x,y,t). Linear
terms do not appear because we are expanding around a
tionary point of the energy functional, whereas constants
total derivatives can be omitted because they do not con
ute to the equations of motion. Thus the corresponding
earized equations are found to be

f̈ 2D f 1g2f 52l]2g, g̈2Dg522l]2f . ~4.3!
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Performing the usual Fourier transformation with frequen
v and wave vectorq5(q1 ,q2) one obtains a homogeneou
system whose solution requires that the corresponding de
minant vanish. This condition leads to two branches
eigenfrequencies

v6~q!5Fq1
21q2

21
1

2
~g26Ag4116l2q2

2!G1/2

, ~4.4!

which will be referred to as the optical or acoustical mod
corresponding to the plus or minus sign, respectively.

A notable feature of the calculated dispersions is th
strong anisotropy. In particular, the low-q acoustical branch
reads

v2~q!'@q1
21~124l2/g2!q2

2#1/2 ~4.5!

and demonstrates that the spin-wave velocity depends on
direction of propagation. It also makes it clear that an ins
bility arises wheng2,4l2. In fact, the complete acoustica
frequency of Eq.~4.4! becomes purely imaginary over a no
trivial region inq space wheng25k1l21h2,4l2. There-
fore, the uniform spin-flop state is unstable forh,h2 where

h25A3l22k ~4.6!

is a new critical field. For our choice of parameters~3.16!,
h25A3 or H251.682A352.91 T. The important conclu
sion is that the spin-flop state is locally stable only forH
.H2.Hc .

It is also interesting to examine the gap of the optic
branch atq50 wherev1(q50)5g5(k1l21h2)1/2. This
result may be used to illustrate our earlier claim concern
the role of the scale parameter«. If we recall the definition of
the rescaled parameters~2.11! and also include the facto
2sA2«J to account for the physical unit of frequency, th
calculated gap is independent of« and is expressed entirel
in terms of constants that appear in the original discr
Hamiltonian of Sec. II. Hence, in the KSEA limit, we fin
that

v1~q50!5@~2sA2D !21~gcmBH !2#1/2, ~4.7!

in agreement with the magnon gap given in Ref. 5. Incid
tally, this special result is the only feature of the spectru
actually calculated in the above reference for nonzero fie

The complete dispersions are illustrated in Fig. 4 forH
53 T, and for spin-wave propagation along thex or y axis.
The anisotropy of the spectrum is made especially appa
by the fact that the dispersion of the acoustical mode
strictly linear in thex direction, but almost ferromagneti
like in the y direction because the chosen field is on
slightly greater than the critical fieldH2'2.9 T. The nu-
merical data for Fig. 4 were obtained from Eq.~4.4! applied
for our choice of units and constants given in Eq.~3.16!.
Thus we setl51 andg2511h2, with h53/1.68251.784,
and also include an overall factor 0.241 meV to account
the physical unit of energy. Finally,Q5«q is the wave vec-
tor defined on the complete square lattice formed by the
atoms within each layer, while relative units are defined fro
3-6
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Q@r.l.u.#5Q/2p5(«/2p)q. Therefore, Eq.~4.4! is applied
with q5(2p/«) Q@r.l.u.#535.418 Q@r.l.u.#.

Unfortunately, there seem to exist no experimental dat
the field regionH*3 T. In fact, the only published data5

were obtained forH52.5 T,H2 and spin-wave propaga
tion along thex axis. For this special direction (q250) the
theoretical dispersions~4.4! do not ‘‘see’’ the instability. One
may then deliberately apply them forH52.5 T and compare
the results to the actual data, as is done in Fig. 5 whe
systematic disagreement is apparent in both dispersion
particular, the numerical fits to the data represented
dashed lines indicate a significant 20% reduction in the m
sured spin-wave velocity, as was already noted in Ref. 5

Of course, our earlier discussion makes it clear that
dispersions~4.4! cannot be applied forH52.5 T because
the corresponding ground state is predicted to be unstabl
best, the fully polarized spin-flop staten5(1,0,0) survives in
the field regionH,H2 as a metastable state thanks to so
small tetragonal anisotropy that may be present in the
crete system3 but drops out of the leading continuum a
proximation. An appealing scenario suggested by our ca
lation is that the system actually enters a differe
~intermediate! phase forH,H2 which consists of some sor
of mixed domains with no definite axis of polarization. Su
a picture could explain the effective reduction of the sp
wave velocity, also taking into account the anisotropy of
acoustical mode.

As mentioned already, the continuum model does not c
tain anisotropies that would necessarily polarize the s
gered magnetization along thex ~or the y) axis. Instead,
there is a family of degenerate spin-flop statesn
5(cosF0,sinF0,0) with the same energy for any consta
angle F0. The corresponding small fluctuations are no
studied by introducingQ5p/21 f and F5F01g in Eqs.
~4.1! and ~4.2!. A short calculation similar to the one pre
sented forF050 leads to the magnon dispersions

v6~q!5Fq21
1

2
@g26Ag4116l2~e•q!2#G1/2

, ~4.8!

FIG. 4. Theoretical magnon dispersions in the spin-flop pha
for spin-wave propagation along thex axis (Q250) and they axis
(Q150).
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wheree5sinF0 e11cosF0 e2 is the unit vector obtained by
rotatinge2 with an angle2F0. The emerging picture is ye
another manifestation of the peculiar nature of the U~1! sym-
metry ~3.4!, in some respects similar to the bisection ru
discussed in the concluding paragraph of Sec. III. In a
case, the main conclusion of the present section pers
namely, the acoustical mode develops maximum instab
along the directione and leads to the same critical field give
earlier in Eq.~4.6!.

The nature of the intermediate phase will be discusse
Sec. VI. The present section is concluded with a word
caution concerning the validity of the continuum approxim
tion at nonzero field, which roughly requires thatgcmBH
!J. This strong inequality becomes increasingly margin
for field strengths in the regionH*H2.

V. SPIRAL PHASE

The calculation of the low-energy magnon spectrum
the spiral phase (h,hc) is significantly more complicated
but the general strategy is identical to that followed in S
IV. Hence we introduce new fields according to

Q5u1 f , F5
g

sinu
, ~5.1!

whereu5u(x) is the profile of the ground-state spiral give
by Eq.~3.8! while f 5 f (x,y,t) andg5g(x,y,t) account for
small fluctuations. The special rescaling chosen in the sec
equation is equivalent to working in arotating frame18

whose third axis is everywhere parallel to the direction of
background staggered magnetizationn5(sinu,0,cosu).

The new fields~5.1! are introduced in the complete La
grangian given by Eqs.~4.1! and ~4.2! which is then ex-

FIG. 5. Theoretical magnon dispersions~solid lines! in the spin-
flop phase, deliberately applied forH52.5 T,H2. Circles denote
experimental data~Ref. 5! and dashed lines are numerical fits to t
same data.

e,
3-7
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panded to second order inf and g. The required algebra is
lengthy but the final result for the linearized equations
sufficiently simple:

f̈ 2D f 1U1f 52h cosu ġ12l sinu]2g,

g̈2Dg1U2g522h cosu ḟ 22l sinu]2f , ~5.2!

where

U152g2cos~2u!,

U252lAd21g2cos2u22g2cos2u2d2 ~5.3!

are effective potentials that can be calculated for any des
set of parameters, as explained in Sec. III. The general
that the calculation of the spectrum in a spiral antiferrom
net can be reduced to a Schro¨dinger-like problem in a peri-
odic potential is not new,19 but the specific structure of Eqs
~5.2! requires special attention.

We found it instructive to consider first the special case
spin-wave propagation along thex axis (]2f 505]2g) at
zero external field (h50). This is actually the only case fo
which the low-energy spectrum was previously calcula
starting from the discrete Hamiltonian.5 If we further per-
form the temporal Fourier transformation with frequencyv,
Eqs.~5.2! reduce to

2 f 91U1f 5v2f , 2g91U2g5v2g, ~5.4!

where the prime denotes differentiation with respect tox.
Therefore, in this special case, the eigenvalue problem
reduced to two decoupled 1D Schro¨dinger equations of the
standard type with potentialsU1 and U2 calculated at zero
field. Also note that both potentials are periodic functions
2u and thus their period is actuallyL/2 whereL is the period
of the background spiral.

The eigenvalue problems~5.4! are solved in Appendix A.
The numerical procedure yields eigenfrequenciesv5v(q1)
as functions of Bloch momentumq1. The latter can be re
stricted to the zone@22p/L,2p/L#, because the period o
the potentials isL/2, or to the zone@2z,z# in relative units
defined as in Sec. IV. Several low-lying eigenvalues are
lustrated in Fig. 6~a! using a reduced-zone scheme. Solid a
dashed lines correspond to the first and second eigenv
problems in Eq.~5.4! and are superimposed in the sam
graph for convenience. We also find it convenient to refe
the two types of modes as acoustical and optical. In eit
case, there is only one discernible gap that occurs betw
the first and second bands at the zone boundary. The ca
lated boundary gaps are 0.123 meV and 0.049 meV, res
tively, while the absolute gap of the optical mode at the zo
center is 0.170 meV. All of the above theoretical predictio
agree with those obtained in Ref. 5 by a different meth
They also agree with experiment, except for the small~0.049
meV! gap that has not yet been resolved at zero field.

The same results are depicted in Fig. 6~b! using an
extended-zone scheme. In fact, this figure displays two
licas of the acoustical mode centered at6z. The need for
two replicas follows from the structure of dynamic corre
tion functions in the laboratory frame, rather than in the
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tating frame actually used in the calculation of the magn
spectrum.5 Our results in Fig. 6~b! are obviously consisten
with both the experimental and theoretical results obtaine
the above reference at zero field.

We are now in a position to extend the calculation to t
general case of nonzero field and arbitrary direction of sp
wave propagation. The external field enters Eqs.~5.2! in two
distinct ways. First, it affects the structure of the potenti
U1 andU2 because the background spiral is further distort
Second, the field induces first-order time derivatives wh
originate in the ‘‘nonrelativistic’’ term of Eq.~4.1! and
couple the two linear equations~5.2!. Additional coupling
between the two equations appears in the case of arbit
direction of propagation because]2f and]2g no longer van-
ish. Altogether we are faced with a nonstandard eigenva
problem that is also solved in Appendix A.

Here we present explicit results for four typical values
the rationalized fieldh50, 0.3, 0.6, and 0.9 which will be
quoted from now on by their rounded physical valuesH
50, 0.5, 1, and 1.5 T. In Fig. 7 we illustrate the calculat
spectrum for spin-wave propagation along thex axis (q2
50) using a highly reduced-zone scheme. An import
check of consistency is provided by the fact that theH50
results of Fig. 7 agree with those presented earlier in F
6~a!, except that the zone is now reduced down
@2z/2,z/2# for reasons explained in Appendix A. Furthe
more, we no longer employ solid and dashed lines to dis
guish between acoustical and optical modes. Such a dis
tion is nota priori possible in the current algorithm becau
of the coupling~hybridization! of the two types of modes a
nonzero field.

One should keep in mind that the extent of the zo
@2z/2,z/2# slides with the applied field, a feature that is n
apparent in Fig. 7 because the scale of the abscissa is
justed accordingly. The incommensurability parameterz
50.0273 measured atH50 is used as input in our calcula
tion. The calculated values forH50.5, 1, and 1.5 T arez
50.0271, 0.0264, and 0.0245.

At first sight, it would seem difficult to extract usefu

FIG. 6. Magnon spectrum for spin-wave propagation along thx
axis at zero field. Solid and dashed lines distinguish between ac
tical and optical modes.~a! The spectrum in a reduced-zone schem
and ~b! the same spectrum in an extended-zone scheme inclu
two replicas of the acoustical mode centered at6z.
3-8
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INTERMEDIATE PHASE IN THE SPIRAL . . . PHYSICAL REVIEW B65 064433
information from the highly convoluted spectra shown
Fig. 7. Nevertheless, the most vital information concern
the low-energy dynamics is easily abstracted from Fig
because the low-lying bands are clearly segregated. In
ticular, it is still possible to distinguish between the acous
cal and the optical mode, at least in an operational se
Thus we unfold the first six branches back to the zo
@2z,z# and then proceed to the extended-zone schem
Fig. 6~b! including two replicas of the acoustical mode ce
tered at6z. The resulting low-energy spectra are shown
Fig. 8.

TheH50 entry of Fig. 8 is but a magnified version of th
lower-central portion of Fig. 6~b!, as expected. This versio
reveals a certain ‘‘anomaly’’ that is not conspicuous in F
6~b!: namely, a relative crossing between the two modes
narrow region around the zone center. The calculated m
mum splitting of 0.005 meV is within the error margin of th
continuum approximation and, in any case, beyond exp
mental detection. But the resolution of this theoretical cu
osity is interesting: when the direction of spin-wave prop
gation departs slightly from thex axis (q2Þ0) and/or a finite
field is turned on, the crossing points become avoided cr
ings. Therefore, strictly speaking, the solid and dashed li
must be interchanged in the narrow region between the
crossing points. This explains the apparent slight incon
tency in the labeling of the five characteristic points of t

FIG. 7. Magnon spectra for spin-wave propagation along thx
axis, at four values of the applied fieldH, using a highly reduced-
zone scheme.
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spectrum denoted by 1, 2, 3, 4, and 5 in Fig. 8. The cal
lated magnon energies at those points are summarize
Table I.

We now concentrate on the optical mode. The gapE2
50.176 meV calculated at zero field agrees with the m
sured 0.18~1! meV. Our calculation further shows that th
above gap evolves quickly with increasing field to reach
asymptotic value 0.26 meV around which it oscillates mild
The complete optical mode evolves into a snakelike disp
sion with energy values in the range 0.25 meV,E
,0.29 meV. These predictions are generally consistent w
experiment.5 However, some of the finer details deser
closer attention. The calculated energy at point 5 in the sp
trum remains practically constant atE5'0.31 meV forH
&1 T, while a steep crossover takes place for higher fi
values which leads toE5'0.35 meV forH51.5 T. These
predictions are also in agreement with experiment.5 But the

TABLE I. Energy in units of meV at the five characterist
points of the spectrum denoted by 1, 2, 3, 4, and 5 in Fig. 8.

H @T# E1 E2 E3 E4 E5

0.0 0.170 0.176 0.266 0.298 0.314
0.5 0.122 0.223 0.276 0.299 0.307
1.0 0.073 0.265 0.286 0.300 0.305
1.5 0.025 0.255 0.285 0.298 0.346

FIG. 8. The low-energy spectra of Fig. 7 using an extended-z
scheme as in Fig. 6~b!. The energy values at the five characteris
spectral points denoted by 1, 2, 3, 4, and 5 are given in Table
3-9
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calculated splittings of the optical dispersionE52E3

50.02 meV and 0.06 meV, forH51 and 1.5 T, disagree
with the measured 0.05 meV and 0.11 meV. It appears
the observed splittings are better described byE52E2

50.04 meV and 0.09 meV. In fact, the above identificati
may not be completely arbitrary. For instance, the low
branch in the optical dispersion measured forH51.5 T
shows a clear local maximum of 0.28 meV at the zone c
ter, which agrees with the calculated maximumE3

50.285 meV at the zone boundaries6z rather than the gap
E250.255 meV at the zone center. It seems that the low
branch in the observed optical dispersion forH51.5 T is
composed of two replicas of the calculated dispersion c
tered at6z. On the other hand, experimental data5 at higher
energies not shown in Fig. 8 indicate the appearance of
replicas centered at62z. Unfortunately, we cannot resolv
this issue of proper replication of the basic modes beca
our current formalism does not directly address the relev
dynamic correlation functions.

Next we discuss the acoustical mode. Our calculat
shows that the energy at point 4 in the spectra of Fig
remains remarkably stable atE4'0.30 meV for all field val-
ues considered. This feature is also in agreement with exp
ment which indicates only a mild decline from the abo
value with increasing field. Nevertheless, a clear disag
ment occurs in the lowest branch of the acoustical mo
Although explicit data points are not given for this branch
Zheludevet al.,5 the solid lines in their Figs. 6 and 7, and th
corresponding wording in their text, suggest that the low
branch in the measured spectrum is also largely insensitiv
the applied field. In contrast, our calculation predicts a rob
reduction of the energy gapE1 with increasing field~see Fig.
8 and Table I!. The calculated spin-wave velocity is als
reduced, albeit at a slower rate.

The preceding apparent disagreement with experimen
especially important because it is directly related to the is
of local stability of the spiral phase. Indeed, a careful n
merical investigation reveals that the gapE1 vanishes at the
critical field h1'1.01, or H1'1.70 T, while an unstable
mode develops forH.H1. This mode is first detected by th
appearance of areal eigenvalue in the matrixM of Eq. ~A5!,
whenH crossesH1, which corresponds to purely imaginar
frequency. As the field increases beyondH1 the instability
occurs over a nontrivial region inq space. Therefore, the fla
spin spiral constructed in Sec. III is predicted to be loca
stable only forH,H1,Hc .

It is interesting that the experimental work4,5 already pro-
vided evidence for the existence of a critical fieldH1
51.7 T that coincides with our theoretical prediction. Ho
ever, one should also contemplate the possibility that su
coincidence may be fortuitous, in view of the apparent c
tradiction between experimental and theoretical predicti
for the gapE1. In any case, our current result together w
the discussion of Sec. IV clearly suggests the existence o
intermediate phase in the field region 1.7 T,H,2.9 T.
The nature of the intermediate phase is discussed in Sec

In the remainder of this section we take a different vie
of the low-energy magnon spectrum by considering sp
06443
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wave propagation along the normal to the plane of the
spiral. Our algorithm is adapted to this case simply by sett
the Bloch wave numberq150 and calculating frequencies a
functions of the wave numberq2 in the y direction. It is
interesting that no theoretical or experimental results exis
this case even at zero field. Our results are illustrated in
9 for the same set of field values employed in the preced
discussion.

The most stable feature of Fig. 9 is its lowest bran
which exhibitsquadraticdependence onq2 near the origin.
Clearly this branch is the extension of the acoustical disp
sion in they direction originating at its points whereE50.
Therefore, the complete acoustical mode is Goldstone lik
thex direction but ferromagneticlike in they direction. Such
a characteristic anisotropy is in some respects sim
to the situation encountered in the spin-flop phase discus
in Sec. IV.

Higher branches labeled as 1, 2, 3, 4, and 5 in Fig. 9 a
possess a simple interpretation, for they are the extension
the y direction of the special spectral points numbered
cordingly in our earlier Fig. 8. In contrast to the fundamen
ferromagneticlike branch, higher branches evolve vigorou
with the applied field. In particular, branch 1 in Fig. 9
quickly depressed with increasing field to become degene
with the fundamental branch at the critical fieldH1
51.70 T not included in the figure. ForH.H1 this mode
becomes unstable over a nontrivial region of wave numb
around the origin. Of course, this is the instability describ
earlier in the text viewed from a different perspective.

We have thus provided a fairly complete theoretical p

FIG. 9. Magnon spectra for the same field values as in Fig
and 8 but spin-wave propagation along they axis.
3-10
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INTERMEDIATE PHASE IN THE SPIRAL . . . PHYSICAL REVIEW B65 064433
ture of the low-energy magnon spectrum, including pred
tions for which there exist no experimental data at presen
is interesting to see whether or not future experiments co
resolve the apparent discrepancy in the field dependenc
the magnon gapE1 and thus illuminate the important issue
local stability of the spiral phase, as well as confir
the predicted characteristic anisotropy in the low-ene
spectrum.

VI. INTERMEDIATE PHASE

We now focus on the predicted intermediate phase
examine its nature through a direct numerical minimizat
of the complete energy functionalW of Eqs.~3.1! and~3.2!.
The method of calculation is a relaxation algorithm form
lated on the basis of a discretized form of the energy fu
tional defined on a square grid. After long experimentat
with 2D simulations, it progressively became apparent t
the optimal configuration forh.h1 is actually a 1D nonflat
spiral characterized by a staggered magnetization wh
three components are all different than zero.

Therefore, an accurate calculation of the nonflat sp
was eventually obtained by a relaxation algorithm appl
directly to a 1D restriction of the energy functional who
variation leads to the coupled stationary equations

Q91~g22F82!cosQ sinQ522l sin2Q sinFF8

~sin2QF8!852l sin2Q sinFQ8. ~6.1!

These are ordinary differential equations because both a
lar variablesQ and F are assumed to be functions of th
single coordinatex, while the prime again denotes differen
tiation with respect tox. Nevertheless, it does not seem po
sible to obtain analytical solutions of Eqs.~6.1!, except for
the case of the flat spiral (F50) discussed in Sec. III. A
significant obstacle is the fact that the period of the non
spiral is not knowna priori. Hence our numerical solution
was carried out on a periodic 1D grid with specified lengthL,
until a relaxed configuration was obtained with energy d
sity w5w(L). We then variedL to achieve the least possib
energy for each fieldh and the corresponding optimal perio
L5L(h).

An important check of consistency is that the above al
rithm reproduces the results for the flat spiral obtained m
directly in Sec. III, but only whenh,h151.01. Instead, a
nonflat spiral emerges as the optimal solution forh.h1. The
calculated configuration is illustrated in Fig. 10 for a fie
valueh51.21 deliberately chosen to be equal to the criti
field hc of the conventional CI transition. The energy of th
nonflat spiral depicted by a dashed line in Fig. 3~a! is smaller
than the energy of both the flat spiral and the uniform sp
flop state throughout the intermediate regionh1,h,h2. One
should also stress that the nonflat spiral is here predicte
occur for a field applied strictly along thec axis and is not
due to sample misalignment4 or the presence of a transver
magnetic field.20

In a sense, the predicted intermediate phase smooths
the original sharp CI transition. This smoothing is also a
parent in the calculated field dependence of the perioL
06443
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5L(h) which is inserted in Eq.~3.17! to yield the results for
the incommensurability parameter shown by a dashed lin
Fig. 3~b!. The same figure displays experimental data tak
from Ref. 4 where they were analyzed in terms of the co
ventional CI transition based solely on a flat spiral. It shou
be noted that both the measured zero-field incommensur
ity parameterz(0)50.0273 and an experimental critical fiel
Hc52.15 T were used as adjustable parameters in the th
retical analysis of Refs. 4 and 5 to obtain a reasonable ove
fit. Yet the experimental data indicate some smoothing of
CI transition near the critical field. This fact is made appar
in our Fig. 3~b! where theoretical results for both the fl
spiral ~solid line! and the nonflat spiral~dashed line! are
calculated using as input only the zero-field parameters gi
earlier in Eq.~3.16!.

Nevertheless, the results of Fig. 3~b! cannot be interpreted
as unambiguous evidence for the existence of an interm
ate phase, especially because the experimental data
taken at the relatively high temperatureT52.4 K. It is fea-
sible that theT50 theoretical predictions could be furthe
focused by invoking deviation from KSEA anisotropy that
allowed by symmetry—i.e., by repeating the calculation
nonzero values of the free parameterk. One should also keep
in mind that a completely accurate description of the CI tra
sition may not be attainable within the classical approxim
tion.

The nonflat spiral exists as a stationary point of the ene
functional throughout the intermediate phase and dege
ates into a uniform spin-flop state polarized along they axis
near the upper critical fieldh251.73. Actually, our calcula-
tion was not pushed all the way to the critical fieldh2 be-
cause of numerical difficulties that occur as the period gro
to infinity. The theoretical analysis should be completed w
a detailed study of the stability and dynamics of the non
spiral within the full 2D context, in a manner analogous
our treatment of the flat spiral in Sec. V. The required co
putational effort is too great to be included in the pres

FIG. 10. Profile of the nonflat spiral forh51.21. The three
curves correspond to the three components of the staggered m
tization n1 , n2, andn3. The calculated period isL58.84.
3-11
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paper, especially because the profile of the nonflat spira
obtained numerically through the relaxation algorithm. A f
ture analysis could, in principle, reveal the existence of
another critical field within the intermediate region, beyo
which the nonflat spiral may cease to be locally stable. I
thus important to also examine the nature of instability at
upper critical fieldh2, as discussed further in Appendix B.

The configuration of Fig. 10 may be viewed as a coni
spiral that nutates around they axis. It is interesting that a
simple conical spiral without nutation had been discus
theoretically in connection with the cholesteric-nematic tra
sition in liquid crystals9,10 but has not yet been observe
experimentally because its realization requires an ano
lously small bend modulus.11 In contrast, the parameters o
Ba2CuGe2O7 favor the occurrence of the currently predict
intermediate phase.

VII. CONCLUSION

We have presented a field theoretical description of
low-energy dynamics in the spiral antiferromagn
Ba2CuGe2O7. We have thus been able to calculate the lo
energy magnon spectrum for any strength of the applied fi
and any direction of spin-wave propagation. In this resp
the present work significantly extends the results of Re
where the spectrum was calculated only at zero field and
propagation along the direction of the spiral. Therefore,
theoretical results are relevant for the analysis of experim
tal data obtained for nonzero field, which were previou
analyzed mostly in terms of empirical formulas.

An interesting by-product of this detailed spin-wa
analysis is the identification of the two new critical fieldsH1
and H2 and a corresponding prediction of an intermedi
phase that does not seem to be inconsistent with avail
experimental data. The apparent discrepancy in the field
pendence of the magnon gapE1 pointed out in Sec. V need
to be clarified, but could be due to poor experimental re
lution at this rather low energy scale~0.1 meV or less!. The
field dependence of the incommensurability parameter
cussed in Sec. VI could be rectified by invoking a slig
deviation from the KSEA limit that is allowed by symmetr
Susceptibility data4 taken at T52 K display a rounded
maximum which could be explained as a finite-temperat
effect but does nota priori exclude an intermediate phas
Furthermore, the set of data for the magnon dispersion
cussed in connection with Fig. 5 is too limited to provide
clear picture. Therefore, a clear identification or disproof
the intermediate phase may require additional experime
work guided by the theoretical predictions of the pres
paper.

On the other hand, it is desirable to carry out a compl
theoretical analysis of the stability and dynamics of the
termediate phase along the lines outlined in Sec. VI. A
lated project is to extend our approach to the case of a fi
applied in a direction perpendicular to thec axis.3 The field-
dependent modifications of the spiral can be computed on
basis of Eq.~3.19!, and a corresponding calculation of th
low-energy magnon spectrum can be carried out by
06443
is
-
t

s
e

l

d
-

a-

e
t
-
ld
t,
5
or
r

n-
y

e
le
e-

-

s-
t

e

s-

f
al
t

e
-
-
ld

he

a

straightforward extension of the methods developed in S
V.

Finally, we must comment on the two basic approxim
tions made in the present work. The adopted classical
proach is equivalent to the usual semiclassical approxima
obtained by the 1/s expansion restricted to leading order. Th
omitted quantum~anharmonic! corrections are not negligible
in this 2D problem but are offset in part by the fact that t
input parameters are consistently estimated within the c
sical approximation.1–5 One should also question the validit
of the continuum approximation whose relative accuracy
be roughly estimated from«2'0.03 at zero field, but may
deteriorate in the presence of a strong external magn
field. Incidentally, the corresponding parameter« in a typical
weak ferromagnet such as an orthoferrite (YFeO3) or a high-
Tc superconductor (La2CuO4) is at least one order of mag
nitude smaller. In any case, the physical picture derived
sufficiently complete to provide a basis for a meaning
discussion of further refinements.
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APPENDIX A: EIGENVALUE PROBLEMS

The eigenvalue problems~5.4! were solved numerically,
as explained here for the first equation. Taking into acco
that the period of the potential isL/2, the Bloch representa
tion of the wave function reads

f ~x!5eiq1x (
n52`

`

f nexp~ i4npx/L ! ~A1!

and the wave equation becomes

~q114np/L !2f n1 (
m52`

`

U1,n2mf m5v2f n , ~A2!

where the Fourier coefficients of the potential are given b

U1,n5
2

LE2L/4

L/4

exp~2 i4npx/L !U1@u~x!#dx

5
4

LE0

p/2

cosF4np

L
x~u!G U1~u!du

Ad21g2cos2u
. ~A3!

Here we use the fact thatU1 is an even function ofu or x,
andx5x(u) is given by the integral~3.8!. Thus the last step
of Eq. ~A3! is in effect a double integral that is computed b
an adaptive Newton-Cotes algorithm. The eigenvalue eq
tion ~A2! is then solved by diagonalizing the finite matr
that results from a restriction of the indicesm and n to the
interval @2N,N# whereN can be as low as 20. To be sur
3-12
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only the first few Fourier coefficients of the potentialU1 and
U2 are important, as demonstrated in Table II using as in
the zero-field parameters quoted in Sec. III. The numer
procedure just described yields eigenfrequenciesv5v(q1)
as functions of Bloch momentumq1 that can be restricted to
the zone@22p/L,2p/L# or to @2z,z# in relative units de-
fined as in Sec. IV.

We now turn to the general case of nonzero field a
arbitrary direction of spin-wave propagation. We first rewr
Eqs. ~5.2! in a form that contains only first-order time de
rivatives. Hence we treatu5 ḟ and v5ġ as independen
fields and introduce the four-component spinorX defined
from X T5( f ,g,u,v). Then Eqs.~5.2! read

Ẋ5MX, ~A4!

whereM is the differential operator:

M5F 0 0 I 0

0 0 0 I

2D1 D3 0 D4

2D3 2D2 2D4 0

G . ~A5!

Here D152D1U1 , D252D1U2 , D352lsinu]2, D4
52h cosu, andI is the unit operator. The chief advantage
M is that it does not contain time derivatives. A superfic
disadvantage is thatM is not a Hermitian operator. In fac
Eq. ~A4! suggests that the eigenvalues ofM are purely
imaginary and come in pairs6 iv where v is the desired
physical frequency. A real eigenvalue inM would correspond
to purely imaginary physical frequency and thus indicate
stability of the ground-state spiral. All of these features
explicitly realized in the following numerical calculation.

Our task is then to construct a matrix representation of
differential operatorM. Attention should be paid to the fac
that the Bloch theorem must now be applied with the f
periodL of the spiral because of those terms in Eq.~A5! that
are proportional to cosu and sinu. Hence the operatorD1
52D1U1 is replaced by a matrix (D1,nm) with elements

D1,nm5@~q112np/L !21q2
2#dnm1U1,n2m , ~A6!

TABLE II. Fourier coefficients of the potentialsU1 and U2 at
zero field. The table should be completed with the symmetry r
tions U1,2n5U1,n andU2,2n5U2,n .

n U1,n U2,n

0 0.130 344 55 0.531 897 72
1 20.493 583 42 20.240 493 78
2 20.064 610 30 20.047 902 38
3 20.006 370 43 20.005 272 15
4 20.000 558 33 20.000 486 14
5 20.000 045 88 20.000 041 13
6 20.000 003 62 20.000 003 31
7 20.000 000 28 20.000 000 26
8 20.000 000 02 20.000 000 02
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where q1 is now restricted to the zone@2p/L,p/L# or
@2z/2,z/2# in relative units, whileq2 is unrestricted becaus
the spiral depends only onx. Accordingly, the Fourier coef-
ficients of the potential are given by

U1,n5
2

LE0

p

cosF2np

L
x~u!G U1~u!du

Ad21g2cos2u
, ~A7!

which differs from Eq.~A3! only in that the full periodL,
instead ofL/2, is employed. As a result, odd coefficients
Eq. ~A7! vanish, while the collection of even coefficien
coincides with that obtained from Eq.~A3!. The operatorD2
is treated in exactly the same way replacingU1 with U2. On
the other hand, the operatorD352lsinu]2 in Eq. ~A5! is
replaced by 2lq2S where S is an antisymmetric matrix
whosenth codiagonal has all its elements equal to

Sn5
2

LE0

p

sinF2np

L
x~u!G sinudu

Ad21g2cos2u
, ~A8!

andD452h cosu is replaced by 2hC whereC is a symmet-
ric matrix whosenth codiagonal has all its elements equal

Cn5
2

LE0

p

cosF2np

L
x~u!G cosudu

Ad21g2cos2u
. ~A9!

An interesting fact is that bothSn andCn vanish for evenn.
The most important terms are those withn561, whereas
higher-order terms account for distortion of the spiral fro
its ideal shapeu5lx. Such a distortion occurs even at ze
field in the presence of KSEA anisotropy.

A finite-matrix representation of the differential operat
M is then obtained by restricting the indicesm andn to the
finite interval@2N,N# whereN may again be chosen as lo
as 20. The resulting nonsymmetric 4(2N11)34(2N11)
matrix is diagonalized numerically to yield eigenvalues th
are indeed purely imaginary and come in pairs6 iv where
v5v(q1 ,q2) is the sought after physical frequency. W
have thus obtained a number of results using as input
spiral parametersl51, g2511h2, d5d(h), andL5L(h)
calculated for each fieldh as explained in Sec. III. The nu
merical burden is insignificant and can be carried out int
actively. Explicit results are discussed in Sec. V.

APPENDIX B: VORTEX STATES

In the original picture of the CI transition8 the high-field
commensurate phase is rendered unstable through dom
wall nucleation at the critical fieldhc to become a spira
phase forh,hc . The instability at the higher fieldh2.hc
suggested by the spin-wave analysis of Sec. IV is clea
caused by 2D fluctuations. Therefore, it is conceivable t
the uniform spin-flop phase is actually destabilized by nuc
ation of 2D vortices rather than 1D domain walls, as adv
cated by Bogdanovet al.21 in a number of related models.

We thus search for genuinely 2D stationary points of
static energy that are compatible with U~1! symmetry. First,
we introduce the usual polar coordinates (r ,c) from

-

3-13
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x5
r

g
cosc, y5

r

g
sinc, ~B1!

where the overall rescaling by the constantg will simplify
subsequent calculations. A configuration that is strictly
variant under the U~1! transformation~3.4! reads

Q5u~r !, F52c, ~B2!

where the minus sign in the second equation is again du
the peculiar nature of U~1! symmetry in the present problem
Under normal circumstances, e.g., an isotropic antiferrom
net in an external field,14 both choicesF5c and F52c
are compatible with axial symmetry and are referred to
vortex and antivortex. Here only antivortices are possi
within the axially symmetric ansatz but will be called vort
ces for brevity.

When the ansatz~B2! is introduced in the potentialV of
Eq. ~4.2! the corresponding total energyW5*Vdxdy reads

W5pE
0

`

rdr F S du

dr D
2

1
sin2u

r 2
1cos2u

2nS du

dr
1

cosu sinu

r D G , ~B3!

wheren52l/g is the only relevant parameter in this stat
calculation. Also note that we have dropped the additive c
stant terml2/2 from the potential~4.2! and thus the energy
of the uniform spin-flop state is set equal to zero. Variation
the energy functional~B3! with respect to the unknown am
plitude u(r ) leads to the ordinary differential equation

r
d2u

dr2
1

du

dr
1S r 2

1

r D cosu sinu5n sin2u, ~B4!

which reduces to the familiar equation for ordinary spin v
tices in the extreme limitn50. For nÞ0, solutions of Eq.
~B4! exhibit slow decay at large distances, namely,

u~r !'
p

2
2

n

r
1•••, ~B5!

which turns into exponential decay forn50. Explicit solu-
tions were obtained by a straightforward relaxation algorit
and are illustrated in Fig. 11 for three characteristic values
the parametern50, 1, and 2.

One may restrict the integral in Eq.~B3! to the finite
range 0,r ,R and examine its behavior for largeR. A short
calculation taking into account the asymptotic expans
~B5! leads to
i

06443
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n

W5p~12n2!ln R1finite terms, ~B6!

and thus the energy exhibits the familiar logarithmic div
gence. This asymptotic result demonstrates the crucial
played by the parametern. For n,1, the energy of a single
vortex is greater than the energy of the uniform spin-fl
state by a logarithmically divergent quantity. This is t
usual situation encountered in the case of ordinary vort
(n50). The vortex energy is finite forn51 and becomes
again logarithmically divergent butnegativefor n.1. The
special pointn52l/g51 leads to the same critical fieldh2
given earlier in Eq.~4.6!.

Therefore, forh,h2, the energy of the uniform spin-flop
state can be lowered by vortex nucleation. Because of
logarithmic dependence of the energy on the size of the
tem, it is clear that a single vortex cannot by itself produc
thermodynamically significant effect. Instead, one should
pect that a large number of vortices is created forh,h2,
probably in the form of a vortex lattice.21 We have actually
performed several numerical experiments using the full
relaxation algorithm described in the beginning of Sec.
Although we have already obtained some ‘‘spectacular’’ p
tures indicating the formation of a vortex lattice, we have n
yet been able to lower its energy below that of the non
spiral. It appears that the complete~2D! energy functional
displays glassy behavior in the intermediate region, wh
may lead to several nearly degenerate local minima.

FIG. 11. The vortex profilen35cosu for three values of the
parametern50, 1, and 2, including the critical valuen51.
-
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