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The magnetic compound BE&uGe O, has recently been shown to be an essentially two-dimensional spiral
antiferromagnet that exhibits an incommensurate-to-commensurate phase transition when a magnetic field
applied along the axis exceeds a certain critical valtle . The T=0 dynamics is described here in terms of
a continuum field theory in the form of a nonlineamodel. We are thus in a position to carry out a complete
calculation of the low-energy magnon spectrum for any strength of the applied field throughout the phase
transition. In particular, our spin-wave analysis reveals field-induced instabilities at two distinct critical fields
H,; andH, such thatH,;<H.<H,. Hence we predict the existence of an intermediate phase whose detailed
nature is also studied to some extent.
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[. INTRODUCTION where the determination of the magnon spectrum in the low-

A recent experimental investigatibii of the magnetic field spiral phase is reduced to a quasi-one-dimensional
properties of BaCuGeO; in its low-temperature phasé(  (quasi-1D band structure problem that is solved numerically.
<Ty=3.2 K) established the occurrence of spiral antiferro-While an earlier calculatiohof the spectrum ati=0 is con-
magnetic order due to a Dzyaloshinskii-MoriyeDM)  firmed, we are also in a position to analyze existing experi-
anisotropy?>’ A schematic illustration of the spiral abstracted mental data at nonzero field and to predict the results of
from experiment may be found in Fig. 5 of Ref. 1. It was possible future experiments. A by-product of this analysis is
further demonstrated that a Dzyaloshinskii-ype yet another critical fieldd,=1.7 T<H. beyond which the
commensurate-incommensurg@l) phase transition is in- flat spiral ceases to be locally stable. Therefore, the com-
duced by a magnetic field applied along the axis. As the  bined results of Secs. IV and V suggest the existence of an
field approaches a critical valuel,~2 T, the spiral is intermediate phase in the field regidhy <H<H, whose
highly distorted while its periodpitch) grows to infinity. For ~ nature is studied in Sec. VI where we show that a nonflat
H>H, the ground-state configuration is thought to degenerspiral becomes energetically favorable. The main results are
ate into a uniform spin-flop state. This phase transition issSummarized in the concluding Sec. VII, while discussion of
similar to the cholesteric-nematic transition induced by arsome technical issues is relegated to two appendixes.
external magnetic field in liquid crystaist

It is of obvious interest to describe theoretically the mag- Il. LOW-ENERGY DYNAMICS
non excitations measured by inelastic neutron scattéring, ) ) ) ] o
progress has been hindered by the great formal complexity of 1he unit cell of BaCuGeO; is partially illustrated in Fig.
the calculation. Here we explore a new approach in whicht Where we display only the magnetic Cu sites. The lattice
the original discrete system is replaced by a continuum fiel§onstants ar@=b=8.466 A andc=>5.445 A. Since the
theory. We are thus able to carry out a complete calculatioff! atoms form a perfect square lattice within each plane,
of the low-energy excitation spectrum for any strength of theWith lattice constantl=a/ V2~6 A it is also useful to con-
applied field and any direction of spin-wave propagation. InSider the orthogonal axesy, andz obtained from the origi-
addition, our analysis reveals the existence of a new intermelal crystal axes, b, andc by a 45° azimuthal rotation. The
diate phase whose properties we examine and compare wii¢mplete magnetic lattice is formally divided into two sub-
experiment. lattices labeled byA andB because the major spin interaction

In Sec. Il the low-energy dynamics is described in termgPetween nearest in-plane neighbors is antiferromagnetic. In
of a nonlinears model that is compatible with symmetry. In contrast, the interaction between out-of-plane neighbors is
Sec. Il we present a brief demonstration of the conventionaférromagnetic and weakTherefore, the interlayer coupling
Cl transition which will provide the basis for all subsequentis not crucial for our purposes and is thus ignored in the
work. The complete field theory is first applied in Sec. IV for following discussion which concentrates on the 2D spin dy-
an analytical calculation of the field dependence of the magftamics within each layer. -
non spectrum in the high-field commensurate phase. Interest- The space group of this crystal Bgd or P42;m and
ingly, the uniform spin-flop state is shown to be locally imposes significant restrictions on the possible types of spin
stable only foH >H,>H_ where the new critical fieltH, is  interactions. Such symmetry constraints underlie most of the
predicted to be equal to 2.9 T. A first contact with the mea-earlier work~> but were not spelled out in sufficient detail.
sured spectrum is also made in Sec. IV. We have thus found it necessary to carry out afresh a com-

The main thrust of our calculation is presented in Sec. \plete symmetry analysis, including both nearest-neighbor
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FIG. 2. lllustration of the dimerization process on a finite por-

FIG. 1. Partial illustration of the unit cell of BEuGeO, dis- tion of the 2D lattice cut along the ax@sandy. The indicesx and

playing only the magnetiéCu) sites denoted by solid circles. B advancg along the crystal axasandb not shown in Fhis figurc_a. _
The meaning of the Roman labels on bonds connecting NN sites is

(NN) and next-nearest-neighb@KNN) couplings. For the €xplained in the text.

mqment, we rgstrict our e}ttention to NN interactions a”dalong the axes, y, andz Accordingly,Gk|=(GLi|) are 3
write the 2D spin Hamiltonian as the sum of four terms: 5 symmetric matrices, one for each botkll). Again
W=Wie+ Wopy + Wat Wy . 2.1) there exist four distinct such matrices:

Here Kiy 0 O K, 0 K,
G=| 0 Ky K4|, Gy=| 0 Ky 0],
W= & (S S) 2.2 0 Ki Kj Ks 0 Kz
describes the isotropic exchange over NN in-plane bonds, Ki 0 0
denoted bykl), with J,;=J for all such bonds. Similarly, Gu=| 0 K; =Ky,
0 _K4 K3
Wpy = Dy - (S§X 2.3
om= 24 D (SXS) 2.3 K, 0 —-K,
stands for antisymmetric DM anisotropy where the vectors Gy=| O Ki 0 [, (2.6
Dy, assume four distinct values, -K, 0 K;
—De,+D’e;, Dy=De +D’es, which are all expressed in terms of the four scalar parameters
® % ! : © K1, Ky, K3, andK,. The latter may be further restricted by
_ Y _ Y the trace conditiorK,;+K,+K3;=0 because the isotropic
Diy=De&~D"e;, Dv=De,~D’e;, @4 component of the exchange interaction is already accounted
which are distributed over the 2D lattice as shown in Fig. 2for by Eq. (2.2). Finally,
where NN bonds are accordingly labeled by I, 11, I, or IV.
HereD andD' are two independent scalar constants, while W,=— Z (gugH-S) (2.7

e, &, ande; are unit vectors along the y, andz axes of

Fig. 1. It should be noted that tiiecomponents of the DM gescribes the usual Zeeman interaction with an external field
vectors alternate in sign on opposite bonds, a feature thaj
could lead to weak ferromagnetlsm No such alternation oc- The discrete Hamiltonian could be emp|0yed to ana|yze
curs for the in-plane components of the DM vecté2s4)  this system by standard spin-wave techniques, but the calcu-
which are responsible for the observed spiral magnetic orddational burden is rather significant and has so far prevented
or helimagnetism. a complete determination of the magnon spectfuxever-
The third term in Eqg.(2.1) contains all “symmetric” theless, the relevant low-energy dynamics can be efficiently
anisotropies. Since single-ion anisotropy is not possible ircalculated in terms of a continuum field theory which pro-
this spins=1 system, the most general form \bf, is vides a reasonable approximation for,BaGeO, because
the period of the observed spiral is equal to about 37 lattice
Wae E 2 Gi j constants along the direction. A similar approach is often
Ao 2 W(SS+8.S), (29 invoked in the related subject of weak ferromagnetfsh
g and can be implemented by a straightforward step-by-step
where the indices andj are summed over three values cor- procedure  starting from the  original  discrete
responding to the Cartesian components of the spin vectoidamiltonian'*1®
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The first step is to group spins into dimers as shown in 1. .
Fig. 2. Each dimer contains a pair of spins denoted\tand £o=§n2+ h-(nxn),
B and labeled by a common set of sublattice indieesnd 8
that advance along the crystal ax@andb. A more conve- 1 1
nient set of variables is given by the “magnetizatian”and V= =(d;n— e, Xn)2+ = (d,n—\e; X n)?
the “staggered magnetizationt which are defined as 2 2

1 1
1 1 + = kn3+ = (n-h)2+ (hxd,)-n. (2.15
m=o_(A+B), n=5_(A-B), (2.9 2 2
The overdot denotes differentiation with respect to the time
and satisfy the classical constraints-n=0 and m?+ n? variabler, 9, andd, are partial derivatives with respectxo
=1. We also introduce space-time variables according to andy, and (;,n,,n;) are the Cartesian components rof
along the axexyz of Fig. 1. Consistency requires that all
— 2¢ca, = 2e5, =252 Jt, 29 physical 'predlctlons derived fron_1' Eq$2..14) and (2.195
g V2ea ¢ \/—8'8 ’ V2e 29 must be independent of the specific choice of the scale pa-
where ¢ is a dimensionless scale whose significance willlameters. This fact will be explicitly demonstrated or used

become apparent as the discussion progresses. The final f8-a2dvantage in the continuation of the paper.
sult will be stated in terms of the coordinates We have further examined possible modifications of the

low-energy dynamics due to NNN spin interactions along the
diagonals of the Cu plaquettes. Our symmetry analysis re-
_ §+_77 y= 5__77 2.10 vealed that both antisymmetri¢DM) and symmetric
2 V2 ' anisotropies are present over NNN bonds and introduce a
new set of parameters. Nevertheless, in the continuum limit,
along thex andy axes of Fig. 1. One should keep in mind all new parameters merge with those already present in the
that actual distances are given ky/e andyd/e whered  Lagrangian(2.15. The implied remarkable rigidity of the
=al /2 is the lattice constant of the square lattice formed byeffective low-energy spin dynamics is obviously due to the
the Cu atoms. Finally, we introduce rescaled anisotropy conspecial crystal structure of B&uGeO0;.
stants and magnetic field as In the remainder of this section we make contact with the
static energy functional derived by Zheludet al.,’ re-
D /2D’ gusH stricted toT=0, which appears to differ in some respects
A=— N = h= B from the potentialV of Eq. (2.15. First, we note that we
e’ e’ 25\2ed’ have omitted from the potential some additive field-
dependent constants which play no role except to relate the
> energy to the magnetization. The latter will be obtained in
Ko=—= (K1 +Kp—2Ky), (2.11  Sec. lll by a direct application of Eq2.14). A more inter-
e esting point concerns the special choice of exchange anisot-
ropy made in Ref. 5, which was suggested by the work of
where we display only those combinations of constants thakaplant® and Shekhtman, Aharony, and Entin-Wohirhan
survive in the effective low-energy dynamics. In particular,and is referred to as the KSEA anisotropy. If the original
the constanK, does not appear to leading order. The furtherperturbative derivation of the antisymmetric DM interacfion
notational abbreviations is carried to second ordéf,a symmetric anisotropy results
that is described by a special case of the matrige® with

X

Kk=Ko—N2+N'2, d,=\'e (2.12 52
will prove convenient in all subsequent calculations. K1=0, Kz:ﬁ’
Now, a consistent low-energy expansion is obtained by
treatingm as a quantity of ordes while n is of order unity. D2 DD’
To leading order, the classical constraints reduce to Ks:ﬁ' K4:_2J , (2.18
m-n=0, n2=1, (2.13 in addition to a simple renormalization of the exchange con-
stantJ. The parametek, of Eq. (2.1]) is then given byx
m is expressed entirely in terms ofby =\2—\'2 and the parameter of Eq.(2.12 vanishes. Since

a nonzerok is allowed by symmetry, we shall keep it
throughout our theoretical development. However, our nu-
_ & PR (2.14) merical demonstrations will also be restricted to the KSEA
22 20 limit (k=0).
Finally, the term fbXxd,)-n in the potentialV of Eq.
and theT=0 dynamics of the staggered magnetizatiois  (2.195 is absent from the energy functional of Zheludev
governed by the Lagrangian densify= £,—V where et al® A contribution of that nature is present in the early

€

m [nX(n+d,—nxh)]—
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work of Andreev and Marchenkd and plays a significant 1
role in various aspects of weak ferromagnetiStthis term V=5l —\)%+y’cos 6], 3.7
vanishes when the field is applied along thaxis (hxd,
=0) and thus does not affect the analysis of the CI transiwhere the prime denotes differentiation with respect, tand
tion. However, such a term is important in the case of arstationary points of the enerd®.1) satisfy the ordinary dif-
in-plane magnetic field which is also of experimentalferential equation”+ y?cosfsin=0 whose distinct fea-
interest and is briefly discussed in the concluding paragraphture is that it does not depend an A first integral of this
of Sec. IIl. equation is given by’ ?>— y?cog#=C=6* where we antici-
pate the fact that the minimum of the energy is achieved at
Il. GROUND STATE positive integration constai@. Thus the desired solutio®
= 6(x) is given by the implicit equation
An important first step in the calculation of tHe=0 dy-
namics is the search for the classical spin configuration that

6 dd
minimizes the static energy, = fo &%+ y?cogd 38

and is a monotonically increasing function xfThe corre-
W:f V dxdy, (3.1) sponding spin structure repeats itself wheeirs changed by

an amount 7r, i.e., whenx advances by a distance
whereV is the potential of Eq(2.15. For a field applied

along thec axis,h=(0,0h), the potential is given by wl2 de
L=4 3
0 &%+ y*cose

which will be called the period of the spiral. The free param-
eter 6 is determined by the requirement that the average
energy densityv=(1/L) [§Vdx be a minimum, wherd/ is
which depends only on the parameterthat measures the the potential(3.7) calculated for the specific configuration
strength of the in-plane component of the DM anisotropy,(3.8). A direct computation shows that must satisfy the
and the combination of parameters algebraic equation

2_ 2, Rh2 2 (w2
Y =wEATEh 33 ;J 4657+ y2coZo=1, (3.10
that includes the external field. A notable feature of the 0

potential(3.2) is its invariance under the simultaneous trans-and the corresponding energy density is
formations

(3.9
1
V=S 102+ (92n) 2+ yPn5+\7]

—A[(d1n1=daNnp)N3— (N1d1—Nydp)Ng], (3.2

) ) 1
X+iy—(x+iy)e'¥, n;+in,—(n;+in,)e Yo, W=§()\2—52). (3.11)

(3.9
The configuration described above will be referred to as the

This is a peculiar realization of (1) symmetry in that the . oo . -
. ) X . : flat spiral because the staggered magnetization is confined in
usual 2D rotation of spatial coordinates with an angleis the xz plane

followed by an azimuthal rotation of the staggered magneti- It is clear that the roo® of Eq. (3.10 decreases with

zattion with an angle- ;. increasingy. In fact, § vanishes at a critical value of

The minimization problem was extensively studied in the =~~~ . . :
; 1-5 : . ; ... which is easily calculated by setting=0 in Eq. (3.10 to
earlier work.~>Here we briefly describe a slightly simplified obtainy= y.= A /2. In view of Eq.(3.3), the corresponding

version of the obtained solution in order to establish conve- ritical field is given b
nient notation for our subsequent dynamical calculations. iF 9 y

we invoke the usual spherical parametrization of the unit 2 12
vectorn defined from hc:[(j —1))\2— k|, (3.12
n;+in,=sin®e'®, n;=cosO, (3.5

and a spiral state is possible only for<h,. At the critical

the minimum of the energy is sought after in the form of theP0INt, the energy density3.11) becomesw=\?/2 and is

1D ansatz equal to the energy of the uniform spin-flop state
=(1,0,0). The latter is a stationary point of the energy func-

O=06(x), D=0, (3.6) tional for any strength of the applied field and is thought to

be the absolute minimum fdr>h,. The actual stability of

which assumes that the staggered magnetization is confinede spin-flop state foh>h., and of the spiral state fdn

in thexz plane and depends only on the spatial coordimate <h., will be addressed more carefully in Secs. IV and V.

modulo a Y1) transformation given by Ed3.4). The poten- Next we calculate the T=0 magnetization m

tial (3.2 then simplifies to =(my,m,,m3) which can be obtained from E¢2.14) ap-
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plied for the static configuration= (sin 6,0,cosf) and aver-
aged over the period of the spiral. The only term that
survives in the average is

(@)

05 |

m3=ﬂEJL(1—cos’-9)dx (3.13 z
2y2LJo

and can be expressed in terms of quantities already consid-
ered, namely,

2T\
( Y2+ 62— —) . h<h, (3.19

m3:

eh :
2\/5’)/2 L . T T T

Forh>h,, the spin-flop state=(1,0,0) is inserted into Eq. )
(2.14) to yield after a trivial computation

eh
22"

while m;=0 andm,=—&\'/2\2. The latter formula is the
only place where the oscillating component of the DM an- f
isotropy appears and produces a field-independent weak fer- :
romagnetic moment along theaxis. 0 ! s

In order to make definite quantitative predictions we use 0 0.5 1 1.5 2
as input the spin values=1/2, an exchange constadt h

=0.96 meV, and a gyromagnetic ratip=g.=2.474 for a FIG. 3. T=0 theoretical predictions for the field dependence of
field applied along thec axis. Concerning anisotropy, We (q) the energy densitw and(b) the incommensurability parameter

adopt the KSEA limit ¢=0) and thus the only relevant ¢ solid lines correspond to the flat spiral constructed in Sec. Il and
parameter is\ which may be estimated from the observeddashed lines to the nonflat spiral calculated in Sec. VI. The three

spin rotation by an angle\9=27{ over a distanced vertical dotted lines indicate the location of the three critical fields

=a/\/2 along thex axis. The incommensurability parameter h;=1.01, h,=1.21, andh,=1.73, measured in units of 1.68 T.

¢ is related to the periotl of Eq. (3.9) by {=¢/L, wheree Experimental datdopen circles measured af =2.4 K were ex-

is the scale parameter introduced in E2.9). One may ac- tracted from Fig. 4 of Ref. 4.

tually choose the free parameteras e=D/J and thusa

=1 andy?= k+\2+h2=1+h2. At zero field, Eq(3.10 is  Sity computed from Eq(3.11) for h<h., andw=1/2 for

applied forh=1=1y to yield §2=0.531897 72 and the pe- h>h,, is depicted by a solid line in Fig.(8. Similarly, the

riod is calculated from Eq(3.9) asL=6.499 451 69. Hence, field dependence of the incommensurability parameter

e={L=0.1774, where we have also used the vale =¢(h) is calculated from

=0.0273 measured at zero fieldlo summarize, our final (h)  L(0)

choice of constants is SANEAE b (3.17

£(0) L(h)

where {(0) andL(0) are the zero-field parameters already
discussed, and is depicted by a solid line in Figo)3The

Y’=1+h% #=D/J=01774, (3.19 results of Fig. 3 will l?e Comp)lleted and further d(ii;cussed in

and should be completed with the stipulation that the unit ofSec. VI. The same numerical data may be employed in Egs.

field (h=1) correspond to &/2¢J/g.uz=1.682 T, while (3.14 a.nd (3.15) to calculate the field depen(_jgr_lce of the

the unit of frequencyenergy is 2sy2eJ=0.241 meV. The Magnetization and the corresponding susceptibility.

My= h>h,, (3.15

&(h)/¢(0)

k=0, \=1,

magnetization per Cu atom is given by E¢&14) and(3.15 Finally, we return to the _UL) tran_sformatio_r(3.4) Whiqh
in units of sg.ug=1.2375 . Distance is measured in units May be applied to the special soluti@6) to yield a family
of d/le=33.75 A. of degenerate ground-state configurations:

The constant$3.16) are inserted into Eq3.12) to yield a
critical field h,=1.21 in rationalized units dd.,=2.04 T in
physical units. This theoretical prediction is consistent withwhere is an arbitrary angle. The propagation vector of the
experiment and is thought to be a good indication that theesulting spiral forms an anghkg, with the x axis, while the
KSEA limit (k=0) may provide an accurate description of normal to the spin plane forms an angié2— s, with the
anisotropy. Now, Egs.(3.10 and (3.9 are applied withx same axis. For the special rotatigipy= /4, the magnetic
=1 andy?=1+h? to yield the roots= §(h) and the period propagation vector and the normal to the spin plane are par-
L=L(h) at fieldh. The field dependence of the energy den-allel (screw-type spiral This symmetry operation is the ba-

O=0(xcosygt+ysingg), DP=—1iy, (3.18
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sis for the bisection rule discovered by Zheludéwal3when  Performing the usual Fourier transformation with frequency

the external field is applied in a directiggerpendicularto  « and wave vectog=(q;,q,) one obtains a homogeneous

the ¢ axis, at an angley, with respect to thex axis. The system whose solution requires that the corresponding deter-

normal to the spin plane rotates almost freely to align withminant vanish. This condition leads to two branches of

the external field, and thugy= 7/2— iy, in order to mini-  eigenfrequencies

mize (eliminate the positive term i§-h)? in the potential »

(2.195. The new term i< d,) - n in the above potential does 1

not affect the bisection rule but it does modify the profile of 0+(Q)=|ai+a5+ E(Vzi Y16\ ;) | L (44

the spiral. For example, when the field is applied alongythe

axis (xo= /2, #,=0, hxd,=\’he,) the staggered magne- Which will be referred to as the optical or acoustical mode,

tization is again confined in thez plane but the potential corresponding to the plus or minus sign, respectively.

(3.7) becomes A notable feature of the calculated dispersions is their
strong anisotropy. In particular, the logvacoustical branch

1 . reads
V= E[(0’ —\)%+y?’cog6]+N\"hsing, (3.19

o-(a)=[ai+(1-4\*?)q3]"? 4.5
where y?>=k+\? is now field independent. Nevertheless, _ _
the external field reappears in a different form and requires 8Nd demonstrates that the spin-wave velocity depends on the
new calculation of the spiral based on E8.19. Such a direction of propagzatlon.zlt also makes it clear that an insta-
calculation might actually explain the observeueak field ~ Pility arises wheny®<4A“. In fact, the complete acoustical
dependence of the magnitude of the magnetic propagatiofieduency of Eq(4.4) becomeszpurely 'maginary Over a non-
vectoP and provide an estimate for the strength(or D) trivial region ing space whery= k+A“+h“<4A~. There-

of the oscillating component of the DM anisotropy. fore, the uniform spin-flop state is unstable forh, where
h2: V3NT—k (46)

IV. SPIN-FLOP PHASE

We now begin to address questions of dynamics based dﬁ i \r}gw criticgl fieId.\/Ecir our choice Of. paramet¢gslo,
the complete Lagrangiafi=£,—V of Eq.(2.15 applied for N2~ V3 Of H,=1.682)3=2.91 T. The important conclu-
a fieldh=(0,0h). If we also insert the spherical parametersSion is that the spin-flop state is locally stable only fér

(3.5), we find that ZHo>He. . . .
It is also interesting to examine the gap of the optical

1. _ . branch atg=0 wherew_ (q=0)= y=(x+A?+h?)2 This
Eo=§(2+sin2<132)+h sifOd (4.1)  result may be used to illustrate our earlier claim concerning
the role of the scale parameterlf we recall the definition of
and the rescaled paramete(8.11) and also include the factor
2s\/2eJ to account for the physical unit of frequency, the

1 . y ) calculated gap is independent ©fand is expressed entirely
V=5[(VO) +sirf@(VP)?+ y?cosO +\?] in terms of constants that appear in the original discrete
Hamiltonian of Sec. Il. Hence, in the KSEA limit, we find
+A\[cosO sinO(sin®d,P +cosd d,d) that
—COS<I>(91+S|n<I>(92], (42) Q)+(q:O):[(23\/§D)2+(gC,U«BH)z]l/z, (47)

whereV =(dy,d,) is the usual 2D gradient operator, thile in agreement with the magnon gap given in Ref. 5. Inciden-
thezLapIaC|an will be denoted in the following bY=d1 a1y, this special result is the only feature of the spectrum
+ 05 actually calculated in the above reference for nonzero field.
We first study the high-field commensurate phase ( The complete dispersions are illustrated in Fig. 4 ffor

>h.) where the absolute minimum of the classical energy is=3 T, and for spin-wave propagation along ther y axis.
thought to be the uniform spin-flop state=(1,0,0) or®  The anisotropy of the spectrum is made especially apparent
=m/2 and ®=0. Small fluctuations around this state arepy the fact that the dispersion of the acoustical mode is
calculated by introducin@ = 7/2+ f and® =g in Egs.(4.1)  strictly linear in thex direction, but almost ferromagnetic
and(4.2) and keeping terms that are at most quadratic in theike in the y direction because the chosen field is only
small amplitudesf=f(x,y,7) and g=g(x,y,7). Linear slightly greater than the critical fielth,~2.9 T. The nu-
terms do not appear because we are expanding around a staerical data for Fig. 4 were obtained from Hd.4) applied
tionary point of the energy functional, whereas constants anebr our choice of units and constants given in Hg.16).
total derivatives can be omitted because they do not contribfhus we sed =1 andy?=1+h?, with h=3/1.682=1.784,
ute to the equations of motion. Thus the corresponding linand also include an overall factor 0.241 meV to account for
earized equations are found to be the physical unit of energy. Finallp=eq is the wave vec-

) ) tor defined on the complete square lattice formed by the Cu

f—Af+2f=2Nd,g, g—Ag=—2Nd,f. (4.3 atoms within each layer, while relative units are defined from
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FIG. 4. Theoretical magnon dispersions in the spin-flop phase,
for spin-wave propagation along tlxeaxis (Q,=0) and they axis 0 , , ,
(Q;=0). 0 0.02 0.04 0.06 0.08
Q,[r.lul
Qlr.lL.u]=Q/2w=(e/2m)q. Therefore, Eq(4.4) is applied FIG. 5. Theoretical magnon dispersidsslid lineg in the spin-
with q=(27/e) Q[r.l.u.]=35.418 Q[r.l.u.]. flop phase, deliberately applied fef=2.5 T<H,. Circles denote

Unfortunately, there seem to exist no experimental data ixperimental datéRef. 9 and dashed lines are numerical fits to the
the field regionH=3 T. In fact, the only published data same data.
were obtained foH=2.5 T<H, and spin-wave propaga-
tion along thex axis. For this special directiomg=0) the  wheree=sin®,e,;+ cosd,e, is the unit vector obtained by
theoretical dispersiong@.4) do not “see” the instability. One rotatinge, with an angle—®,. The emerging picture is yet
may then deliberately apply them fek=2.5 T and compare another manifestation of the peculiar nature of tH&)dym-
the results to the actual data, as is done in Fig. 5 where @etry (3.4), in some respects similar to the bisection rule
systematic disagreement is apparent in both dispersions. mliscussed in the concluding paragraph of Sec. Ill. In any
particular, the numerical fits to the data represented bygase, the main conclusion of the present section persists:
dashed lines indicate a significant 20% reduction in the meanamely, the acoustical mode develops maximum instability
sured spin-wave velocity, as was already noted in Ref. 5. along the directiore and leads to the same critical field given

Of course, our earlier discussion makes it clear that thearlier in Eq.(4.6).
dispersions(4.4) cannot be applied foH=2.5 T because The nature of the intermediate phase will be discussed in
the corresponding ground state is predicted to be unstable. Aec. VI. The present section is concluded with a word of
best, the fully polarized spin-flop state=(1,0,0) survives in  caution concerning the validity of the continuum approxima-
the field regionH<H, as a metastable state thanks to someion at nonzero field, which roughly requires thgtugH
small tetragonal anisotropy that may be present in the dis<J. This strong inequality becomes increasingly marginal
crete systerhbut drops out of the leading continuum ap- for field strengths in the regiod=H,.
proximation. An appealing scenario suggested by our calcu-
lation is that the system actually enters a different
(intermediatg phase forH <H, which consists of some sort V. SPIRAL PHASE
of mixed domains with no definite axis of polarization. Such  The calculation of the low-energy magnon spectrum in

a picture CQU|d explair_1 th_e effective reductio_n of the spin-ihe spiral phaseh<h,) is significantly more complicated,
wave velocity, also taking into account the anisotropy of they ¢ the general strategy is identical to that followed in Sec.

acoustical mode. , IV. Hence we introduce new fields according to
As mentioned already, the continuum model does not con-

tain anisotropies that would necessarily polarize the stag-
gered magnetization along the (or the y) axis. Instead,
there is a family of degenerate spin-flop states
=(cos®q,sind,,0) with the same energy for any constant

angle &,. The corresponding small fluctuations are now,ynereg= g(x) is the profile of the ground-state spiral given
studied by introducingd = 7T/2+.f an(_j (I) =dy+g in Egs. by Eq.(3.8) while f=f(x,y,7) andg=g(x,y,) account for
(4.1) and (4.2). A short calculation similar to the one pre- gmg| flyctuations. The special rescaling chosen in the second
sented ford,=0 leads to the magnon dispersions equation is equivalent to working in eotating framé®
whose third axis is everywhere parallel to the direction of the
1o background staggered magnetization (sin 6,0,cosb).

1 . - .
—| @+ Z[y?+ /T 160 %(e )2 The new fields(5.1) are introduced in the complete La-
w=(Q)=|a7+ 2[7 =Vyrieieot) . (48 grangian given by Eqgs4.1l) and (4.2) which is then ex-

_ 9
O=0+f, (D__Sinﬁ' (5.2
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panded to second order fnand g. The required algebra is 0.8
lengthy but the final result for the linearized equations is

sufficiently simple:
0.6

f—Af+U;f=2hcosdg+2\ sinha,g,

S
§—Ag+U,g=—2hcoshf—2xsinda,f, (52  E%4T
w

where L. P | . ,

02r Teel_ i -7 4 F W q
U= —»?coq26), \/v
(a) (b)
U,=2\ 6%+ y°cos 0—2y%cos 6— 6° (5.3 0 b —
- 0 ¢ -4, —2( 0 20 4
are effective potentials that can be calculated for any desirec QyIrlul Qy [rlu]

set of parameters, as explained in Sec. lll. The general idea FIG. 6. M trum § . tion alonath
that the calculation of the spectrum in a spiral antiferromag, ot - 'eelq "o and dashed lines distinguish between scous-
net can be reduced to a Schinger-like problem in a peri- ’ g

. L oo tical and optical modega) The spectrum in a reduced-zone scheme
odic poterjtlal IS no_t new; bqt the specific structure of Egs. and (b) the same spectrum in an extended-zone scheme including
(5.2) requires special attention.

L . . . . wo replicas of the acoustical mode centered:
We found it instructive to consider first the special case oft P e

spin-wave propagation along theaxis (9,f=0=d,9) at  tating frame actually used in the calculation of the magnon
zero external fieldl§=0). This is actually the only case for spectrun? Our results in Fig. @) are obviously consistent
which the low-energy spectrum was previously calculatedyith hoth the experimental and theoretical results obtained in
starting from the discrete Hamiltonidnlf we further per- the above reference at zero field.
form the temporal Fourier transformation with frequengey We are now in a position to extend the calculation to the
Egs.(5.2) reduce to general case of nonzero field and arbitrary direction of spin-
" " wave propagation. The external field enters E§<) in two
—fTHUf=0*, —g'tUsg=0’g, (54 distincr: wgtygs. First, it affects the structure oEfE{h()a potentials
where the prime denotes differentiation with respectxto U; andU, because the background spiral is further distorted.
Therefore, in this special case, the eigenvalue problem iSecond, the field induces first-order time derivatives which
reduced to two decoupled 1D Schinger equations of the originate in the “nonrelativistic” term of Eq.(4.1) and
standard type with potentiald; and U, calculated at zero couple the two linear equation®.2). Additional coupling
field. Also note that both potentials are periodic functions ofbetween the two equations appears in the case of arbitrary
26 and thus their period is actually2 wherelL is the period direction of propagation becausgf andd,g no longer van-

of the background spiral. ish. Altogether we are faced with a nonstandard eigenvalue
The eigenvalue problents.4) are solved in Appendix A. ~ problem that is also solved in Appendix A.
The numerical procedure yields eigenfrequeneesw(q;) Here we present explicit results for four typical values of

as functions of Bloch momentumy,. The latter can be re- the rationalized fielch=0, 0.3, 0.6, and 0.9 which will be
stricted to the zong¢—2#/L,27/L], because the period of quoted from now on by their rounded physical valugs
the potentials id./2, or to the zong — ¢,{] in relative units =0, 0.5, 1, and 1.5 T. In Fig. 7 we illustrate the calculated
defined as in Sec. IV. Several low-lying eigenvalues are il-spectrum for spin-wave propagation along theaxis (d,
lustrated in Fig. 63) using a reduced-zone scheme. Solid and=0) using a highly reduced-zone scheme. An important
dashed lines correspond to the first and second eigenvalwheck of consistency is provided by the fact that bhe 0
problems in Eq.(5.4) and are superimposed in the sameresults of Fig. 7 agree with those presented earlier in Fig.
graph for convenience. We also find it convenient to refer tb(a), except that the zone is now reduced down to
the two types of modes as acoustical and optical. In eithel— £/2,£/2] for reasons explained in Appendix A. Further-
case, there is only one discernible gap that occurs betweenore, we no longer employ solid and dashed lines to distin-
the first and second bands at the zone boundary. The calcguish between acoustical and optical modes. Such a distinc-
lated boundary gaps are 0.123 meV and 0.049 meV, respetion is nota priori possible in the current algorithm because
tively, while the absolute gap of the optical mode at the zonef the coupling(hybridization of the two types of modes at
center is 0.170 meV. All of the above theoretical predictionsnonzero field.
agree with those obtained in Ref. 5 by a different method. One should keep in mind that the extent of the zone
They also agree with experiment, except for the siitad49 [ — ¢/2,{/2] slides with the applied field, a feature that is not
meV) gap that has not yet been resolved at zero field. apparent in Fig. 7 because the scale of the abscissa is ad-
The same results are depicted in Figh)6using an justed accordingly. The incommensurability parameger
extended-zone scheme. In fact, this figure displays two rep=0.0273 measured &t =0 is used as input in our calcula-
licas of the acoustical mode centered-af. The need for tion. The calculated values fdd=0.5, 1, and 1.5 T aré
two replicas follows from the structure of dynamic correla- =0.0271, 0.0264, and 0.0245.
tion functions in the laboratory frame, rather than in the ro- At first sight, it would seem difficult to extract useful
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FIG. 7. Magnon spectra for spin-wave propagation alongkthe  FIG. 8. The low-energy spectra of Fig. 7 using an extended-zone

axis, at four values of the applied field, using a highly reduced- scheme as in Fig.(6). The energy values at the five characteristic
zone scheme. spectral points denoted by 1, 2, 3, 4, and 5 are given in Table I.

spectrum denoted by 1, 2, 3, 4, and 5 in Fig. 8. The calcu-

information from the highly convoluted spectra shown inlated magnon energies at those points are summarized in
Fig. 7. Nevertheless, the most vital information concerning.l.able |

the low-energy dyr_1amics is easily abstracted from Fig. 7 We now concentrate on the optical mode. The @
t_’ecaus,e .the .Iow-lylr?g band§ are qlearly segregated. In PAC( 176 meV calculated at zero field agrees with the mea-
ticular, it is still possible to distinguish between the acousti-g,req 0.181) meV. Our calculation further shows that the
cal and the optical mode, at least in an operational sensgyqye gap evolves quickly with increasing field to reach the
Thus we unfold the first six branches back to the zoneysymptotic value 0.26 meV around which it oscillates mildly.
[—¢.{] and then proceed to the extended-zone scheme ofhe complete optical mode evolves into a snakelike disper-
Fig. 6(b) including two replicas of the acoustical mode cen-sjon with energy values in the range 0.25 mel
tered at*{. The resulting low-energy spectra are shown in<(.29 meV. These predictions are generally consistent with
Fig. 8. experiment However, some of the finer details deserve
TheH=0 entry of Fig. 8 is but a magnified version of the closer attention. The calculated energy at point 5 in the spec-
lower-central portion of Fig. @), as expected. This version trum remains practically constant B;~0.31 meV forH
reveals a certain “anomaly” that is not conspicuous in Fig.<1 T, while a steep crossover takes place for higher field
6(b): namely, a relative crossing between the two modes in &alues which leads t&s~0.35 meV forH=1.5 T. These
narrow region around the zone center. The calculated maxpredictions are also in agreement with experinteBut the
mum splitting of 0.005 meV is within the error margin of the
continuum approximation and, in any case, beyond experi- TABLE I. Energy in units of meV at the five characteristic
mental detection. But the resolution of this theoretical curi-Points of the spectrum denoted by 1, 2, 3, 4, and 5 in Fig. 8.
osity is interesting: when the direction of spin-wave propa-

gation departs slightly from theaxis (q,# 0) and/or a finite HT] Es E. Es Es Es

field is turned on, the crossing points become avoided cross-g.0 0.170 0.176 0.266 0.298 0.314
ings. Therefore, strictly speaking, the solid and dashed linesg 5 0.122 0.223 0.276 0.299 0.307
must be interchanged in the narrow region between the two1 .0 0.073 0.265 0.286 0.300 0.305
crossing points. This explains the apparent slight inconsis- 1 5 0.025 0.255 0.285 0.298 0.346

tency in the labeling of the five characteristic points of the
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calculated splittings of the optical dispersioBs;—Ej 0.4
=0.02 meV and 0.06 meV, foH=1 and 1.5 T, disagree
with the measured 0.05 meV and 0.11 meV. It appears that  ,
the observed splittings are better described By—E,
=0.04 meV and 0.09 meV. In fact, the above identification 3%
may not be completely arbitrary. For instance, the lowest 50-2* 2 17
branch in the optical dispersion measured =15 T )
shows a clear local maximum of 0.28 meV at the zone cen-
ter, which agrees with the calculated maximuig,
=0.285 meV at the zone boundarieg rather than the gap H=0
E,=0.255 meV at the zone center. It seems that the lowest 0 -——
branch in the observed optical dispersion fd=1.5 T is
composed of two replicas of the calculated dispersion cen-
tered at+ . On the other hand, experimental dag4 higher
energies not shown in Fig. 8 indicate the appearance of two  0.3f
replicas centered at 2. Unfortunately, we cannot resolve

S L . =
this issue of proper replication of the basic modes because 2
our current formalism does not directly address the relevant i
dynamic correlation functions.

Next we discuss the acoustical mode. Our calculation g1}
shows that the energy at point 4 in the spectra of Fig. 8

01r 1T

0.4

0.2r

remains remarkably stable B;~0.30 meV for all field val- =1t R=1sT
ues considered. This feature is also in agreement with experi- %, &' P 008 —008 T 008
ment which indicates only a mild decline from the above Q,rlul Q,[rlul

value with increasing field. Nevertheless, a clear disagree-
ment occurs in the lowest branch of the acoustical mode. FIG. 9. Magnon spectra for the same field values as in Figs. 7
Although explicit data points are not given for this branch byand 8 but spin-wave propagation along hexis.
Zheludevet al.”’ the solid lines in their Figs. 6 and 7, and the
corresponding wording in their text, suggest that the lowesivave propagation along the normal to the plane of the flat
branch in the measured spectrum is also largely insensitive tepiral. Our algorithm is adapted to this case simply by setting
the applied field. In contrast, our calculation predicts a robusthe Bloch wave numbeg; =0 and calculating frequencies as
reduction of the energy ge, with increasing fieldsee Fig.  functions of the wave numbeg, in the y direction. It is
8 and Table ). The calculated spin-wave velocity is also interesting that no theoretical or experimental results exist in
reduced, albeit at a slower rate. this case even at zero field. Our results are illustrated in Fig.
The preceding apparent disagreement with experiment ig for the same set of field values employed in the preceding
especially important because it is directly related to the issuéiscussion.
of local stability of the spiral phase. Indeed, a careful nu- The most stable feature of Fig. 9 is its lowest branch
merical investigation reveals that the gép vanishes at the which exhibitsquadratic dependence og, near the origin.
critical field h;~1.01, orH;~1.70 T, while an unstable Clearly this branch is the extension of the acoustical disper-
mode develops foH>H;. This mode is first detected by the sion in they direction originating at its points wheig=0.
appearance of eeal eigenvalue in the matriM of Eq. (A5),  Therefore, the complete acoustical mode is Goldstone like in
whenH crossedH,, which corresponds to purely imaginary the x direction but ferromagneticlike in thedirection. Such
frequency. As the field increases beyoHd the instability —a characteristic anisotropy is in some respects similar
occurs over a nontrivial region ig space. Therefore, the flat to the situation encountered in the spin-flop phase discussed
spin spiral constructed in Sec. Il is predicted to be locallyin Sec. IV.
stable only forH<H;<H.. Higher branches labeled as 1, 2, 3, 4, and 5 in Fig. 9 also
It is interesting that the experimental wérkalready pro-  possess a simple interpretation, for they are the extensions in
vided evidence for the existence of a critical field,  they direction of the special spectral points numbered ac-
=1.7 T that coincides with our theoretical prediction. How- cordingly in our earlier Fig. 8. In contrast to the fundamental
ever, one should also contemplate the possibility that such ferromagneticlike branch, higher branches evolve vigorously
coincidence may be fortuitous, in view of the apparent conwith the applied field. In particular, branch 1 in Fig. 9 is
tradiction between experimental and theoretical predictiongjuickly depressed with increasing field to become degenerate
for the gapE;. In any case, our current result together withwith the fundamental branch at the critical field,
the discussion of Sec. IV clearly suggests the existence of an 1.70 T not included in the figure. F&t>H, this mode
intermediate phase in the field region 1. KH<2.9 T. becomes unstable over a nontrivial region of wave numbers
The nature of the intermediate phase is discussed in Sec. Varound the origin. Of course, this is the instability described
In the remainder of this section we take a different viewearlier in the text viewed from a different perspective.
of the low-energy magnon spectrum by considering spin- We have thus provided a fairly complete theoretical pic-
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1

ture of the low-energy magnon spectrum, including predic-
tions for which there exist no experimental data at present. It
is interesting to see whether or not future experiments coulc
resolve the apparent discrepancy in the field dependence ¢
the magnon gag, and thus illuminate the important issue of .
local stability of the spiral phase, as well as confirm
the predicted characteristic anisotropy in the low-energy
spectrum.

tion

1Za

o

VI. INTERMEDIATE PHASE

gered magnet

g

We now focus on the predicted intermediate phase ancg
examine its nature through a direct numerical minimization“
of the complete energy function® of Egs.(3.1) and(3.2).

The method of calculation is a relaxation algorithm formu-
lated on the basis of a discretized form of the energy func-
tional defined on a square grid. After long experimentation
with 2D simulations, it progressively became apparent that
the optimal configuration foh>h, is actually a 1D nonflat _ _
spiral characterized by a staggered magnetization whose FIG. 10. Profile of the nonflat spiral fon=1.21. The three
three components are all different than zero. curves correspond to the three components of the staggered magne-

Therefore, an accurate calculation of the nonflat spiralZ22ion N1, N2, andns. The calculated period is=38.84.
was eventually obtained by a relaxation algorithm apphed_L(h) which is inserted in Eq(3.17) to yield the results for

Sgﬁgt:zﬁei‘ dlsDtor?ﬁtemc:g?nggcfj tsr][gti%rrllearr?/yegjt?;ttilgr?sal Whoseth_e incommensurabili_ty parameter shown _by a dashed line in
Fig. 3(b). The same figure displays experimental data taken
from Ref. 4 where they were analyzed in terms of the con-
ventional ClI transition based solely on a flat spiral. It should
be noted that both the measured zero-field incommensurabil-
ity parameter/(0)=0.0273 and an experimental critical field
These are ordinary differential equations because both angwt_=2.15 T were used as adjustable parameters in the theo-
lar variables® and ® are assumed to be functions of the retical analysis of Refs. 4 and 5 to obtain a reasonable overall
single coordinate, while the prime again denotes differen- fit. Yet the experimental data indicate some smoothing of the
tiation with respect tox. Nevertheless, it does not seem pos-Cl transition near the critical field. This fact is made apparent
sible to obtain analytical solutions of Eq®%.1), except for in our Fig. 3b) where theoretical results for both the flat
the case of the flat spirald{=0) discussed in Sec. Ill. A spiral (solid line) and the nonflat spira(dashed ling are
significant obstacle is the fact that the period of the nonflatalculated using as input only the zero-field parameters given
spiral is not knowna priori. Hence our numerical solution earlier in Eq.(3.16).
was carried out on a periodic 1D grid with specified length Nevertheless, the results of Figh3cannot be interpreted
until a relaxed configuration was obtained with energy denas unambiguous evidence for the existence of an intermedi-
sity w=w(L). We then varied. to achieve the least possible ate phase, especially because the experimental data were
energy for each fielth and the corresponding optimal period taken at the relatively high temperatufe=2.4 K. It is fea-
L=L(h). sible that theT=0 theoretical predictions could be further
An important check of consistency is that the above algofocused by invoking deviation from KSEA anisotropy that is
rithm reproduces the results for the flat spiral obtained moreallowed by symmetry—i.e., by repeating the calculation for
directly in Sec. Ill, but only wherh<h,=1.01. Instead, a nonzero values of the free parameteiOne should also keep
nonflat spiral emerges as the optimal solutionHorh,;. The  in mind that a completely accurate description of the Cl tran-
calculated configuration is illustrated in Fig. 10 for a field sition may not be attainable within the classical approxima-
valueh=1.21 deliberately chosen to be equal to the criticaltion.

h=1.21

0

0"+ (y?—®d'?)cosO sin® = — 2\ sifO sindd’

(SiPOd ')’ =2\ sirf® sin®O’. (6.2

field h. of the conventional CI transition. The energy of the
nonflat spiral depicted by a dashed line in Figa)3s smaller

The nonflat spiral exists as a stationary point of the energy
functional throughout the intermediate phase and degener-

than the energy of both the flat spiral and the uniform spin-ates into a uniform spin-flop state polarized along ytexis

flop state throughout the intermediate regigrh<h,. One

near the upper critical fieltl,=1.73. Actually, our calcula-

should also stress that the nonflat spiral is here predicted ton was not pushed all the way to the critical figid be-

occur for a field applied strictly along theaxis and is not
due to sample misalignménar the presence of a transverse
magnetic field°

cause of numerical difficulties that occur as the period grows
to infinity. The theoretical analysis should be completed with
a detailed study of the stability and dynamics of the nonflat

In a sense, the predicted intermediate phase smooths ospiral within the full 2D context, in a manner analogous to
the original sharp CI transition. This smoothing is also ap-our treatment of the flat spiral in Sec. V. The required com-

parent in the calculated field dependence of the petiod

putational effort is too great to be included in the present
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paper, especially because the profile of the nonflat spiral istraightforward extension of the methods developed in Sec.
obtained numerically through the relaxation algorithm. A fu- V.
ture analysis could, in principle, reveal the existence of yet Finally, we must comment on the two basic approxima-
another critical field within the intermediate region, beyondtions made in the present work. The adopted classical ap-
which the nonflat spiral may cease to be locally stable. It iroach is equivalent to the usual semiclassical approximation
thus important to also examine the nature of instability at theobtained by the Fexpansion restricted to leading order. The
upper critical fieldh,, as discussed further in Appendix B. Omitted quantuntanharmonig corrections are not negligible
The configuration of Fig. 10 may be viewed as a conical this 2D problem but are _offset in part by the_fapt that the
spiral that nutates around theaxis. It is interesting that a input parameters are consistently estimated within the clas-

simple conical spiral without nutation had been discussed @ approximatiori- One should also question the validity

theoretically in connection with the cholesteric-nematic tran-Of the continuum approximation whose relative accuracy can

sition in liquid crystal$!® but has not yet been observed betro_ughtly est;rr?ated froms ~0f'03 att Z€ro f'?ld' bll"t may i
experimentally because its realization requires an anom eleriorate inh the presence of a strong external magnetic
lously small bend modulu$. In contrast, the parameters of ield. Incidentally, the corresponding parameten a typical

Ba,CuGe0; favor the occurrence of the currently predicted weak ferromagnet such as an orthoferrite (YgEQr a high-
in?érme(ﬁat; phase. yp T, superconductor (L#uQy) is at least one order of mag-

nitude smaller. In any case, the physical picture derived is
sufficiently complete to provide a basis for a meaningful

discussion of further refinements.
VII. CONCLUSION

We have presented a field theoretical description of the ACKNOWLEDGMENTS
low-energy dynamics in the spiral antiferromagnet -
Ba,CuGe0,. We have thus been able to calculate the low- W?t th«?nk AS I?_ogdr?nov f]ﬁ)r br'?g'g? Rets. 2?. and 21 to
energy magnon spectrum for any strength of the applied figl@ur atention, . frachanas for vaiuable suggestions concern-
and any direction of spin-wave propagation. In this respectIng the eigenvalue problems. studied in the pregent paper, and
the present work significantly extends the results of Ref. éVI Marder for a careful reading of the manuscript. The work
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where the spectrum was calculated only at zero field and foﬁaS suppor
propagation along the direction of the spiral. Therefore, ou H-00-00177-08 by a TMR program (ERBFMRXCT-

theoretical results are relevant for the analysis of experimen960085’ and by VEGA 1/7473/20.

tal data obtained for nonzero field, which were previously _
analyzed mostly in terms of empirical formulas. APPENDIX A: EIGENVALUE PROBLEMS

An interesting by-product of this detailed spin-wave The eigenvalue problemi.4) were solved numerically,
analysis is the identification of the two new critical fields ~ 5g explained here for the first equation. Taking into account

andH, and a corresponding prediction of an intermediateinat the period of the potential I/2, the Bloch representa-
phase that does not seem to be inconsistent with availablg,y of the wave function reads

experimental data. The apparent discrepancy in the field de-

pendence of the magnon g&p pointed out in Sec. V needs _ *

to be clarified, but could be due to poor experimental reso- f(x)=€9 > f.expli4nmx/L) (A1)
lution at this rather low energy scal8.1 meV or less The =

field dependence of the incommensurability parameter disand the wave equation becomes

cussed in Sec. VI could be rectified by invoking a slight

deviation from the KSEA limit that is allowed by symmetry. ) )
Susceptibility dath taken atT=2 K display a rounded (qu+4nm/L) fn+m;% Uin-mfm=0n,  (A2)
maximum which could be explained as a finite-temperature

effect but does noa priori exclude an intermediate phase. where the Fourier coefficients of the potential are given by
Furthermore, the set of data for the magnon dispersion dis- 5 (L

cussed in connection with Fig. 5 is too limited to provide a _‘ .

clear picture. Therefore, a clear identification or disproof of Uin= Lf_mexp( Hanmx/L)Us[ 6(x)Jdx

the intermediate phase may require additional experimental

[

work guided by the theoretical predictions of the present _ 4j7r/2 anm 0 U,(e)de A3
paper. L), ©° LX()\/m' (A3)

On the other hand, it is desirable to carry out a complete
theoretical analysis of the stability and dynamics of the in-Here we use the fact that, is an even function of or x,
termediate phase along the lines outlined in Sec. VI. A reandx=x(6) is given by the integral3.8). Thus the last step
lated project is to extend our approach to the case of a fieldf Eq. (A3) is in effect a double integral that is computed by
applied in a direction perpendicular to thexis® The field-  an adaptive Newton-Cotes algorithm. The eigenvalue equa-
dependent modifications of the spiral can be computed on thiion (A2) is then solved by diagonalizing the finite matrix
basis of Eq.(3.19, and a corresponding calculation of the that results from a restriction of the indicesandn to the
low-energy magnon spectrum can be carried out by anterval[ —N,N] whereN can be as low as 20. To be sure,
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TABLE Il. Fourier coefficients of the potentiald; andU, at  where q; is now restricted to the zong— /L, w/L] or
zero field. The table should be completed with the symmetry relaf — /2 /2] in relative units, whiley, is unrestricted because
tionsU; _pn=U;, andU; _n=Uy,. the spiral depends only an Accordingly, the Fourier coef-
ficients of the potential are given by

n Ul,n U2,n

0 0.13034455 0.531897 72 U1n=3f CO{Zn_wX( ) Ui(6)do @

1 —0.49358342 —0.24049378 Lo L \/m

2 —0.064 610 30 —0.047902 38

3 —0.00637043 —0.00527215 which differs from Eq.(A3) only in that the full periodL,

4 —0.000558 33 —0.000486 14 instead ofL/2, is employed. As a result, odd coefficients in
5 —0.000045 88 —0.000041 13 Eq. (A7) vanish, while the collection of even coefficients
6 —0.00000362 —0.000003 31 coincides with that obtained from E@A3). The operatoD,

7 —0.000 000 28 —0.000 000 26 is treated in exactly the same way replacthgwith U,. On

8 —0.000 00002 —0.000 000 02 the other hand, the operat@r;=2\sin6d, in Eq. (A5) is

replaced by 2q,S where S is an antisymmetric matrix
whosenth codiagonal has all its elements equal to

only the first few Fourier coefficients of the potentia and

U, are important, as demonstrated in Table Il using as input s, ZJW |2nm (0 singdo A8)
fi - - = sin X ,
the zero-field parameters quoted in Sec. Ill. The numerical LJo L 57+ 42co20

procedure just described yields eigenfrequenciesw(q;)

as functions of Bloch momentunp, that can be restricted to  andD,=2h cosé is replaced by BC whereC is a symmet-

the zone[ —2x/L,2x/L] or to[—¢,{] in relative units de-  ric matrix whosenth codiagonal has all its elements equal to
fined as in Sec. IV.

We now turn to the general case of nonzero field and 27 [2nw cosfd e
arbitrary direction of spin-wave propagation. We first rewrite antf co{ 3 X(0) | == . (A9)
Egs. (5.2 in a form that contains only first-order time de- 0 V6% + y*cos 0

rivatives. Hence we treai=f and v=g as independent an interesting fact is that bots, andC,, vanish for evern.

fields and introduce the four-component spintrdefined  the most important terms are those witk= =1, whereas

from XT=(f,g,u,v). Then Eqs(5.2) read higher-order terms account for distortion of the spiral from
) its ideal shap&=\x. Such a distortion occurs even at zero
X=M4&, (A4)  field in the presence of KSEA anisotropy.

A finite-matrix representation of the differential operator
M is then obtained by restricting the indicesandn to the
finite interval[ —N,N] whereN may again be chosen as low

whereM is the differential operator:

0 0 I 0 as 20. The resulting nonsymmetric N2 1)xX4(2N+1)
0 0 0 I matrix is diagonalized numerically to yield eigenvalues that
M= D D 0 D, | (AS5) are indeed purely imaginary and come in pairsw where
v 4 w=w(q;,9,) is the sought after physical frequency. We
—-D3 -D, -Dy O have thus obtained a number of results using as input the

spiral parameters =1, y>=1+h?, §=48(h), andL=L(h)
calculated for each fielth as explained in Sec. Ill. The nu-
merical burden is insignificant and can be carried out inter-
actively. Explicit results are discussed in Sec. V.

Here D;=—A+U,;, D,=—A+U,, D3=2\sinbd,, D,
=2h cos#, andl is the unit operator. The chief advantage of
M is that it does not contain time derivatives. A superficial
disadvantage is tha¥l is not a Hermitian operator. In fact,
Eqg. (A4) suggests that the eigenvalues Mf are purely
imaginary and come in pairgio wherew is the desired APPENDIX B: VORTEX STATES
physical frequency. A real eigenvalueNhwould correspond In the original picture of the CI transiti8rthe high-field
to purely imaginary physical frequency and thus indicate in.ommensurate phase is rendered unstable through domain-
stability of the ground-state spiral. All of these features are,,5| nucleation at the critical fielh, to become a spiral
explicitly realized in the following numerical calculation. hase forh<h,. The instability at the higher fielth,>h

Our task is then to construct a matrix representation of th uggested bycthe spin-wave analysis of Sec. IV is c?early
differential operatoM. Attention should be paid to the fact .5 sed by 2D fluctuations. Therefore, it is conceivable that
that the Bloch theorem must now be applied with the full e \yniform spin-flop phase is actually destabilized by nucle-
periodL of the spiral because of those terms in B&5) that  41ion of 2D vortices rather than 1D domain walls, as advo-
are proportional to cog and siné. Hence the operatdD;  c4ted by Bogdanoet al? in a number of related models.
=—A+U, is replaced by a matrixl{; ,;m) with elements We thus search for genuinely 2D stationary points of the

y 2 static energy that are compatible wit{1) symmetry. First,
Dipm=[(d1+2n7/L)*+05]6nm+Uip-m, (A6)  we introduce the usual polar coordinatesy) from
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r r 1
X= —COS, = —siny, Bl
5 by 5 ¥ (B1)

where the overall rescaling by the constanwill simplify
subsequent calculations. A configuration that is strictly in-
variant under the (1) transformation(3.4) reads

O=0(r), d=—y, (B2

where the minus sign in the second equation is again due t€’
the peculiar nature of (1) symmetry in the present problem. i 2
Under normal circumstances, e.g., an isotropic antiferromag-
net in an external field? both choicesb= and®=—

are compatible with axial symmetry and are referred to as
vortex and antivortex. Here only antivortices are possible 0
within the axially symmetric ansatz but will be called vorti-
ces for brevity.

When the ansatB?2) is introduced in the potential of 0 10
Eq. (4.2) the corresponding total enerdy= [Vdxdyreads r
» de\2 sirfe FIG. 11. The vortex profilen;=cos@ for three values of the
W= ’7TJ’ rdr (a + > +cog o parametew=0, 1, and 2, including the critical value=1.
0 r
dé cosésing W= 7(1—»?)In R+finite terms, (B6)

and thus the energy exhibits the familiar logarithmic diver-

wherev=2\/v is the only relevant parameter in this static : - :
caloulation. AR;O note tha%lwe have dpropped the additive Ccmgence. This asymptotic result demonstrates the crucial role

stant term\?/2 from the potential4.2) and thus the energy played by the parameter. For v=1, the energy of a single

. ; . L i h h f th if in-fl
of the uniform spin-flop state is set equal to zero. Variation Ofvortex Is greater than the energy of the uniform Spin-flop

: . state by a logarithmically divergent quantity. This is the
th_e energy functiona(B3) W't.h respect to the unkno_wn am- ysual situation encountered in the case of ordinary vortices
plitude 6(r) leads to the ordinary differential equation

(v=0). The vortex energy is finite for=1 and becomes
again logarithmically divergent butegativefor »>1. The
cosé sin 6= v sirf, (B4) special pointv=2\/y=1 leads to the same critical fielt,
given earlier in Eq(4.6).

Therefore, forh<h,, the energy of the uniform spin-flop
state can be lowered by vortex nucleation. Because of the
logarithmic dependence of the energy on the size of the sys-
tem, it is clear that a single vortex cannot by itself produce a
T v thermodynamically significant effect. Instead, one should ex-

or)~5—r+-, (B5)  pect that a large number of vortices is created Herh,,
probably in the form of a vortex lattice.We have actually
which turns into exponential decay for=0. Explicit solu-  performed several numerical experiments using the full 2D
tions were obtained by a straightforward relaxation algorithnrelaxation algorithm described in the beginning of Sec. VI.
and are illustrated in Fig. 11 for three characteristic values ofAlthough we have already obtained some “spectacular” pic-
the parameter=0, 1, and 2. tures indicating the formation of a vortex lattice, we have not

One may restrict the integral in E¢B3) to the finite  yet been able to lower its energy below that of the nonflat
range G6<r <R and examine its behavior for large A short  spiral. It appears that the complet2D) energy functional
calculation taking into account the asymptotic expansiordisplays glassy behavior in the intermediate region, which

r—+

d?6 d0+ 1
drz  dr T

which reduces to the familiar equation for ordinary spin vor-
tices in the extreme limiv=0. For »#0, solutions of Eq.
(B4) exhibit slow decay at large distances, namely,

(B5) leads to may lead to several nearly degenerate local minima.
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