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Influence of s-d interfacial scattering on the magnetoresistance of magnetic tunnel junctions
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We propose the two-bands-d model to describe theoretically a diffuse regime of the spin-dependent electron
transport in magnetic tunnel junctions~MTJ’s! of the form F/O/F whereF ’s are 3d transition metal ferro-
magnetic layers andO is the insulating spacer. We aim to explain the strong interface sensitivity of the
tunneling properties of MTJ’s and investigate the influence of electron scattering at the nonideal interfaces on
the degradation of the tunneling magnetoresistance~TMR! magnitude. The generalized Kubo formalism and
the Green’s functions method were used to calculate the conductance of the system. The vertex corrections to
the conductivity were found with the use of ‘‘ladder’’ approximation combined with the coherent-potential
approximation~CPA! that allowed us to consider the case of strong electron scattering. It is shown that the
Ward identity is satisfied in the framework of this approximation that provides the necessary condition for a
conservation of a tunneling current. Based on the known results ofab initio calculations of the TMR for
ballistic junctions, we assume that exchange split quasifrees-like electrons with the density of states being
greater for the majority spin subband give the main contribution to the TMR effect. We show that, due to
interfacial interband scattering, the TMR can be substantially reduced even down to zero value. This is related
to the fact that delocalized quasifree electrons can scatter into the strongly localizedd subband with the density
of states at the Fermi energy being larger for minority spins compared to majority spins. It is also shown that
spin-flip electron scattering on the surface magnons within the interface leads to a further decrease of the TMR
at finite temperature.
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I. INTRODUCTION

Magnetic tunnel junctions~MTJ’s! consisting of two fer-
romagnetic layers separated by the insulating spacer ex
the tunneling magnetoresistance effect~TMR! when they are
switched by applying a magnetic field from the antipara
to parallel alignment of magnetizations in magnetic laye
The TMR effect was first observed by Julliere in 1975.1 Jul-
liere found that the tunneling conductance of the trilay
structure Fe/Ge/Co depended on the angle between mag
zations in the Fe and Co layers. The measured amplitud
the TMR in these experiments was 14% at 4.2 K. Only
years later, the large values of TMR at room temperat
were obtained in magnetic junctions comprising the Al2O3
barrier.2–4 Since that time, there has been a renewed tech
logical and fundamental interest to the tunneling pheno
enon and during the last decade a lot of experimental
theoretical papers were published on this topic~see Refs.
5–8!.

Experimentally it was observed5,7,8 that the TMR depends
critically on the material of the insulating barrier and on t
conditions of its preparation, in particular on the imperfe
0163-1829/2002/65~6!/064430~19!/$20.00 65 0644
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tions of the interfaces between the metal and the insula
layer.9,10 On the other hand, the first theory suggested
Julliere expresses the TMR ratio in terms of the effect
spin polarizationsP1 andP2 of two magnetic layers via the
expression TMR52P1P2 /(11P1P2), and thus predicts no
dependence of the TMR on the parameters of the barrie
spite of the fact that Julliere’s formula is widely used for t
interpretation of the experimental data,8 it does not have a
rigorous theoretical foundation.11 The dependence of th
TMR magnitude on the parameters of the tunnel barrier
the metal/insulator interface was taken into account in
subsequent theories. Slonczewski12 considered a quantum
mechanical problem of tunneling of a free electron throug
simple spatially uniform barrier and showed that the TM
ratio depends on the height of the potential barrier and on
effective mass of the tunneling electron inside the insula
Later on, the influence of spin-flip scattering at the interfac
on temperature and bias-voltage dependences of the T
was investigated by Zhanget al.13 It was shown that mixing
of spin-up and spin-down tunnel channels leads to a decr
of the TMR.

Due to a permanent progress in the development of
©2002 The American Physical Society30-1
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ferent methods ofab initio calculations of the electronic
properties of solids, in the last four years the transport pr
erties of tunnel junctions were investigated using the reali
band structure of the ferromagnetic layers and the insul
~Refs. 14–20!. The systems where the conductance was
culated were ideal epitaxial Fe/ZnSe/Fe~001! ~Ref. 18! and
Fe/MgO/Fe~001! tunnel junctions.19,20 For these structure
the electron transport is assumed to be ballistic, i.e., the e
tron momentumki parallel to the ferromagnet/insulator in
terface is conserved. Experimentally it was also dem
strated recently by Heinrichet al.21 that Fe/MgO/Fe~001!
junctions can be indeed grown by depositing the MgO e
taxially onto a Fe whisker and then depositing another
electrode epitaxially on top of the MgO. The results ofab
initio calculations showed that tunneling has more com
cated behavior than the predictions of the simple bar
model proposed by Slonczewski.12 The main conclusions ar
as follows.18,19 ~i! Tunneling conductance depends strong
on the symmetry of the electron states in the ferromagn
electrodes and in the insulating layer.~ii ! The decay rates o
evanescent states in the barrier are different for the st
with different symmetry. The slowest decay rates have
evanescent states which are compatible withs symmetry.
The Bloch states in the metal couple more efficiently throu
the interface with the decaying states of the same symm
in the barrier. Therefore, mostly freelikesp electrons from
the bands withs character in the ferromagnet give the ess
tial contribution to the tunneling conductance.~iii ! For thin
insulating layers the tunneling current in the minority cha
nel is dominated by the interfacial resonance states that g
rise to ‘‘hot spots’’ for theki-resolved conductance in th
surface Brillouin zone. The contribution from the resonan
states is substantially suppressed for the thicker barriers s
the Bloch states at ‘‘hot spots’’ have nos character.19 More-
over, as it follows from recent discussions,22 the surface
resonance states are very sensitive to the details of the i
face. The asymmetry of the potential barrier and the inte
cial roughness considerably reduce the contribution from
surface states to a total conductance.

Nowadays theab initio calculations of the TMR are pos
sible only for ballistic junctions such as the above mention
Fe/ZnSe/Fe and Fe/MgO/Fe structures which are chara
ized by a small lattice mismatch between the metal and
insulator, and by the well-defined band structure of the ox
or the semiconductor. In realistic junctions the electron tra
port has a diffuse character, i.e., when the electron cro
the ferromagnet/insulator interface itski momentum is not
conserved. ForF/O/F tunnel junctions the most successf
material until now has been alumina Al2O3.8 The Al2O3 tun-
nel barriers are usually fabricated by the natural or plas
oxidation of the Al layer.5,8 The subsequent structural anal
sis, e.g., with the use of the x-ray photoelectron spect
copy, shows that alumina is amorphous and the obtai
AlOx tunnel barrier deviates from the ideal Al2O3
structure.10 For a uniform coverage the Al film thickness
usually ranged from about 7 to 18 Å, depending on a type
the ferromagnetic electrode.9 There is a small range of A
thicknesses that yields to the best TMR ratio for a giv
oxidation condition. When the Al layer is thin, the ferroma
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net surface becomes oxidized leading to the formation
CoO and Co3O4 oxides9 or to the Fe3O4 oxide.10 On the
other hand, with too thick Al film, an excess of Al metal
left unoxidized. The amorphous barriers, the roughness
the interface and its structural inhomogeneity make the
orousab initio calculations of the TMR virtually impossible
and therefore more simplified models are required to treat
diffuse electron transport in MTJ’s.

In our previous paper,23 we attempted to investigate th
influence of scattering processes of the electrons~with and
without spin-flip! at the interfaces on the TMR using
simple two-band ~spin-up and spin-down! free-electron
model. It was shown that for this simplified model spi
conserving scattering may or may not lead to a decreas
the TMR depending on the amplitude of the scattering
tential. In this paper, we proceed to study the diffuse elect
transport in magnetic tunnel junctions of the formF/O/F
with F ’s being 3d transition metal electrodes and O bein
the insulating barrier (Al2O3). We use the results ofab initio
calculations to model the band structure of ferromagne
electrodes, namely, the most important feature of these
culations that at least two groups of electrons form the to
band structure: the almost freelike spin-up and spin-do
bands and the narrow strongly exchange split bands. We
call the first groups and the second groupd electrons and
will consider that a periodic part of thes-d hybridization
between bands is taken into account that results in the n
equivalence of spin-up and spin-downs bands. The param
eters of the adopted model can be adjusted to reprodu
value of the TMR observed in the experiments. We assu
that for the case of Al2O3 barrier the exchange splits-like
quasifree electrons give the main contribution to the TM
effect. In the framework of this simplified model we will b
able to investigate in a proper way the influence of elect
scattering at the interfaces on the tunneling conductance

To describe the nonideal tunnel junction we assume
defects and impurity centers~the Al or O ions, or other arti-
ficially embedded ions! are randomly distributed within few
monolayers near theF/O interface. Within the interface, an
electron undergoes scattering when it comes to the defec
impurity center. We take into account these processes ass
ing that the hybridization betweens and d bands changes
randomly on the interface because this parameter is the m
important in the adopted model among the other ones, c
acterizing the scattering potential. It yields to the possibil
of s-like electrons to scatter into thed subband~and vice
versa! and thus strongly affects tunneling. To treat the ele
tron scattering on the random potential we use the coher
potential approximation~CPA! that allows us to consider th
case of strong scattering.24 We apply the generalized Kub
formalism and the Green’s functions method to calculate
conductance of the system, and find the vertex correction
the conductivity with the use of ‘‘ladder’’ approximation25

combined with the CPA. It is shown that the so-called Wa
identity is satisfied in the framework of this approximatio
that provides the necessary condition for a conservation
tunneling current. Note, that if it is not the case, the conc
sions may be completely misleading. As a result, we sh
that, due to substantial difference in majority and minorityd
0-2
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INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
density of states at the Fermi energy for 3d ferromagnetic
metals, the interbands-d scattering on the interface ca
strongly reduce the TMR even down to zero value. In acc
dance with results of Zhanget al.,13 it is also shown that the
spin-flip scattering of electrons on the surface magn
within the interface leads to a further decrease of the TM
ratio at finite temperature.

The paper is organized as follows. In Sec. II we descr
the model Hamiltonian, the calculation of the tunneling co
ductance and vertex corrections. The discussion of the
tained results is presented in Sec. III. Conclusions are in S
IV. The proof of the Ward identity is given in Appendix A
The details of the derivation of the CPA equations are
scribed in Appendix B.

II. THEORETICAL MODEL

A. The Hamiltonian of the system

We will consider a trilayer tunnel junction of the form
F1 /O/F3, whereF1 andF3 are two semi-infinite ferromag
netic layers and O is a dielectric oxide spacer (Al2O3). Our
arguments on behalf of the two-bands-d model which was
briefly described in the introduction are as follows. One
the conclusions ofab initio calculations of the TMR for bal-
listic tunnel junctions18,19 is that the expected spi
dependence of the tunneling current can be deduced from
symmetry of the Bloch states in the ferromagnet at the Fe
energy. Spin-polarized band structure for bcc Fe, fcc Ni, a
fcc Co can be found in Ref. 26. The type and symmetry
the Bloch states for different crystal faces withki50 for Fe,
Co, and Ni are presented in Table I~in accordance with Ref
18!. For example, in case of Fe electrodes, the examina
of the band structure shows that both the majority and
nority bands withs character in@110# and @111# directions
(L1 andS1) cross the Fermi energy. For@100# direction the
band withs symmetry (D1) crosses the Fermi energy in ca
of the majority channel only. The similar analysis can also
performed in case of Ni and Co. Thus one can assume th
the polycrystalline Fe-, Co-, or Ni-based films the states w
s character present for both spin directions and the Bl
states will couple efficiently through theF/O interface with
s states in the insulator and will decay with the equal rate
the barrier region. We will call the electrons from the

TABLE I. Type and symmetry of the Bloch states withki50 for
Fe, Co, and Ni for three different crystal faces~in accordance with
Ref. 18!. The symmetry of these bands is as follows:D1 , S1, and
L1 (s,p,d); D5 and S2 (p and d); and D2 , D28 , S4, and
L3 (d).

100 110 111

Fe↑ D1 , D28 , D5 S1 , S3 L1

Fe↓ D2 , D28 , D5 S1 , S3 L1

Co↑ D1 S1

Co↓ D1 , D5 S2 , S4

Ni↑ D1 S1 , S3

Ni↓ D1 , D2 , D5 S1 , S2 L3
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bands ass-like electrons and will describe them as free ele
trons with the effective massms'me ~whereme is a bare
electron mass! and with different Fermi momentaks

F↑ and
ks

F↓ (ks
F↑.ks

F↓) for up and down spins. The idea about
dominant contribution of the mostly itinerant electrons
tunneling was originally proposed by Stearns27 and ex-
plained the positive polarization of the spin-dependent c
rent in the experiments on tunneling with th
superconductors.5 According to estimations of Stearns,27 in
the case of Fe,ks

F↑51.09 Å21, ks
F↓50.42 Å21.

Other more localized bands~compatible withd symme-
try! crossing the Fermi energy also will be described by t
exchange split bands with the isotropic quadratic dispers
law but with larger effective massmd@ms . The Fermi mo-
mentakd

F↑ and kd
F↓ of d-like electrons can be chosen to r

produce the typical for 3d transition metals ratio of the val
ues of spin-up and spin-downd density of states at the Ferm
energy «F , rd

↑(«F):rd
↓(«F);1:10.26,28 In accordance with

the band structure of Fe, Co, and Ni~Refs. 26,28! the narrow
majority and minorityd bands are practically filled. There
fore, the particles with a large effective massmd must be
regarded as holes. The values of the Fermi momenta de
the positions of band bottoms~Fig. 1! Vis

m , Vid
m (a5s,d; i

51,3) with respect to the Fermi energy«F . We note, that the
aim of this work is to calculate the relative change of t
TMR due to scattering. Therefore the proposed mode
rather adequate for this purpose since the scattering rate
pends mostly on the density of states and on the matrix
ments of the scattering potential.

The Al2O3 tunnel barriers obtained by oxidation of the A
film are amorphous.8,10 Concerning thea-Al2O3 crystals, it
is known from the band structure calculations29 that the gap
~which is not direct! between the upper valence band and
conduction band is of the width of'6.29 eV. The disper-
sion law of the lowest conduction band is not isotropic, a
the effective electron masses along the different direction
the Brillouin zone vary from 0.16me to 0.40me with an av-
erage value of about 0.35me .29 This lowest conduction band

FIG. 1. The model potentials describing the propagation of
electron in the trilayer tunnel junctionF/O/F. The solid line corre-
sponds to the potential profile ofs-like electrons and the dashed lin
for d-like electrons.V1(3)a

m(r) denote the spin-dependent band bottom
Us andUd are the bottom and the top of the conduction and vale
bands in the insulator,«F is the Fermi level,z0 is a typical width of
the interface~detail description is given in the text!.
0-3
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is formed by a mixture of Al 3s, O 2s and O 3s orbitals. In
the top of the upper valence band the dispersion curves
very flat, i.e., the effective masses of holes are large as c
pared with the mass of the conduction electrons. At theG
point, the top of the valence band consists of hybridized
2p and Al 3p orbitals. In view of that, one can describe th
conduction and valence bands of the amorphous Al2O3 by
isotropic quadratic laws with effective massesms

0 and mh
0 ,

umh
0u@ms

0 .
Next, thes-like electrons from the ferromagnet can eas

penetrate into the oxide since the lead bands withs character
can couple efficiently withs states in the barrier, and th
tunneling conductance, caused by the specular transmis
of the Bloch waves through the interface, will decay for bo
spin-up and spin-downs channels with the same law a
;exp@22wA(2ms

0/\2)(Us2«F)1k2#, wherew is the width
of a barrier,Us is the bottom of the conduction band, an
k5ki is the electron momentum parallel to theF/O inter-
face. Following MacLarenet al.18 we can suppose thatd-
like electrons from those bands in the ferromagnet w
out s character cannot couple efficiently withs states in
the oxide. Nevertheless, thesed bands have an admixtur
of p symmetry and therefore can couple with the valen
bands of the Al2O3. However, in thed channel the tunnel-
ing conductance due to specular transmission will de
very rapidly with the thicknessw of the barrier, as
;exp@22wA(2mh

0/\2)(«F2Ud)1k2#, because of a large
massmh

0 of holes in the alumina~hereUd is the top of the
upper valence band!. The model potentials describing th
propagation of the electron through a tunnel junction
presented in Fig. 1.

We suppose that the ferromagnet/insulator interfaces
rough and contaminated by impurity ions. The contaminat
of a few metal monolayers close to theF/O interface is
always presents after the oxidation of the Al film. Other im
purities ~e.g., Cr, Ru,30 or Cu ions31! can be artificially in-
serted into the interface. We will characterize these struct
defects by the random potentials, which may be divided i
the spin conserving and the spin-flip parts. Letz15a and
z25b be the positions of interfaces, thexy plane be the
plane parallel to the interface, and thez axis be the axis
perpendicular to the barrier~see Fig. 1!. The Hamiltonian of
the system is written as

Ĥ5Ĥ01Ĥspin-cons1Ĥspin-flip, ~1!

with

Ĥ05(
m

E dr cm
s1~r !F2

\2

2ms~z!
¹21Um

s ~z!Gcm
s ~r !

1(
m

E dr cm
d1~r !F2

\2

2md~z!
¹21Um

d ~z!Gcm
d ~r !,

Ĥspin-cons5 (
a51,2

(
m

(
n
E drd~z2za!d~r2rn

a!gn
a

3@cm
s1~r !cm

d ~r !1cm
d1~r !cm

s ~r !#,
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Ĥspin-flip5 (
a51,2

(
n
E drd~z2za!d~r2rn

a!Jn
a

3@c↑
s1~r !c↓

s~r !Ŝ2~rn
a!1c↓

s1~r !c↑
s~r !Ŝ1~rn

a!#.

Here m5↑,↓ is a spin suffix;cm
s1(r ), cm

d1(r ), andcm
s (r ),

cm
d (r ) are field operators of the creation and annihilation

s- andd-type electrons with the spinm at the pointr ; ms(z)
andmd(z) are the effective masses of electrons and hole
the ferromagnetic layers (ms and md) or in the barrier (ms

0

andmh
0). Um

s (z), Um
d (z) are the spin-dependent steplike p

tentials shown in Fig. 1:

Um
s ~z!5H V1s

m , z,a,

Us , a,z,b,

V3s
m , z.b;

Um
d ~z!5H V1d

m , z,a1z0 ,

Ud , a1z0,z,b2z0 ,

V3d
m , z.b2z0 ,

~2!

whereVis
m , Vid

m ( i 51,3) are the majority (↑) and minority
(↓) band bottoms in the ferromagnet,Us and Ud are the
bottom of the conduction band and the top of the upper
lence band in the insulator. The positions of ‘‘steps’’ for th
potentialUm

d (z) are shifted by a valuez0 with respect to the
pointsz5a andz5b in order to describe the finite thicknes
(;z0) of the interface. The explanation of why it is done
this way is given below in the text.

Ĥspin-consis the spin-conserving part of the Hamiltonia
a51,2 are the interface numbers. To describe the de
structure of the nonidealF/O interface we consider that th
impurity ions and the ions of a ferromagnetic metal cons
tute the more or less random alloy of a typeAxB12x whereA
denotes the ions of the ferromagnet~Fe, Co, or Ni! and B
denotes the impurities. Therefore, we suppose that each
rn

a on the interfacea is characterized by the random param
eter gn

a of s-d hybridization taking two different valuesgA

andgB with the probabilitiesx and (12x), respectively. We
also suppose that a periodic part ofs-d hybridization is taken
into account leading to the nonequivalence of majority a
minority s bands in the ferromagnet.

For the simple two-band tight-binding model of the bina
alloys35 one assumes that~1! parameters«s and«d describ-
ing the positions ofs and d bands on the energy scale a
different for the alloy’s components and~2! also the param-
eter gA(B) of the hybridization betweens and d bands de-
pends on the type of an ion (A or B). In our particular case
one cannot take into account the former effect since the w
defined two types of the electrons will as before exist in
vicinity of the interface and the adopted model of tunneli
will not change significantly. However, the random hybri
ization makes possible the processes of scattering of qu
free s electrons into the localizedd subband and vice vers
and, therefore, can strongly influence on tunneling.
0-4
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INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
Ĥspin-flip is a part of the Hamiltonian describing the spi
flip scattering. We take into account only the spin-flip pr
cesses fors-like electrons since these electrons are itiner
and give the most essential contribution to the tunneling c
rent. OperatorsŜ1(rn

a), Ŝ2(rn
a) are defined as

Ŝ1~rn
a!5

1

A2SN
(

q
eiqrn

a
@bq1•••#,

Ŝ2~rn
a!5

1

A2SN
(

q
eiqrn

a
@bq

11•••#.

Herebq
1 andbq denote the creation and annihilation ope

tors of the surface magnons,N is a number of the lattice site
on the interface,S is a spin value. We used the well-know
representation of the spin operators in terms ofbq and bq

1

and left the first terms of the series.Jn
a is a random exchang

integral which also takes the valuesJA and JB with prob-
abilities x and (12x).

Let us now turn back to the steplike potential ford holes.
As it will be clear from the following consideration, th
amplitude of the effective scattering potential on t
interface (z5a) for s-like electrons @i.e., 2Im Sss(a),
where Sss is the self-energy# is determined by the value
;2x(12x)(gA2gB)2Im Gdd(a), here ImGdd(a) is the
imaginary part of thed-electron Green’s function at the poin
z5a ~density of states!. If one putz050 in Eq.~2!, then the
vertex contribution to the conductivity~that is the contribu-
tion due to tunneling assisted by interfacial scattering! will
be rather small as compared with the contribution due
direct tunneling. This result is not accurate enough and is
sequence of a continual type of the model when one negl
the existence of the atomic lattice and for this reason
self-energy has ad-like behavior on the interface. Howeve
the width z0 of the interfacial layer is about the distanc
between atomic planes or even larger. For the case of
lattice z05a0/2 for @100# direction ~herea0 is a lattice con-
stant!. One can show that for the present model withz050
the imaginary part2Im G0

dd(z5z8) of the unperturbed
d-electron Green’s function@with Sdd(a)50], i.e., density
of states ofd electrons~holes!, has small value at the point o
interface z5a and increases inside theF layer up to the
distance of the order ofz0;a0, and then it oscillates near th
average value which is approximately ten times larger th
2Im G0

dd(a). The period of oscillations is determined bykd
F↑

or kd
F↓ , depending on the electron spin and on the orienta

of magnetization in theF layer. Such a behavior is easil
understood, if one takes into account thatd electrons~holes!
are almost completely reflected on the metal/insulator in
face. Thus, if one shifts the positions of ‘‘steps’’ forUm

d (z)
with respect toUm

s (z) as it is given by Eq.~2!, one can
expect the more effective mechanism of scattering due to
larger value of2Im Gdd, and therefore the model becom
more realistic.
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B. The calculation of the tunneling conductance

To calculate the nonlocal conductivity we apply the Ku
formula of the linear response32 ~it is valid under the small
applied voltage which is much less than the value of
energy gap in the insulator!:

smr~r ,r 8!5
e2

4p\
Sp$^Gmr

R ~r ,r 8!D̂ rD̂ r8Grm
A ~r 8,r !&

1^Gmr
A ~r ,r 8!D̂ rD̂ r8Grm

R ~r 8,r !&%, ~3!

where a matrix operatorD̂ r is defined as

D̂ r5S 1

2ms~z!
¹
↔

r
0

0
1

2md~z!
¹
↔

r

D , ~4!

and ¹
↔

r5( ¹
→

r2 ¹
←

r) is the asymmetric gradient operato
Gmr

R (r ,r 8) andGmr
A (r ,r 8) are the retarded and advanced

32)-matrix Green’s functions~with componentsss, sd, ds,
anddd), m,r5↑,↓ are the spin suffixes, brackets^•••& de-
note the averaging over the configurations and magnon
grees of freedom, the trace~Sp! goes overs andd indices of
the bands. Below, for convenience, it is assumed that\51.
We will recall about\ in the final expressions for the con
ductance.

To calculate the conductivity~3! of the system one has t
find the Green’s function of the Hamiltonian~1!, which can
be found by solving the following system of differentia
equations in the mixed (k,z) representation:33

(
g5s,d

@«dag2Ĥm
ag~z!#Gmk

gb~z,z8!5dabd~z2z8!, ~5!

Ĥm
ag~z!5H 2

1

2ma

]2

]z2
1

k2

2ma
1Um

a~z!J dag1Sm
ag~a!

3d~z2a!1Sm
ag~b!d~z2b!, ~6!

wherek5ki is a projection of the electron momentum on t
xy plane~parallel to theF/O interface!, the Greek indicesa,
b, andg assume valuess andd, m denotes the electron spin
Ĥm

ab(z) is the (232)-matrix linear differential operato
whereSm

ab(a) andSm
ab(b) (a,b5s,d; m5↑,↓) denote the

coherent potentials for spin-up and spin-down electro
which take into account the scattering of the electron
random spin-conserving and spin-flip potentials on the in
faces. They were found with the use of the coherent poten
approximation~CPA!,24 the details of these calculations a
presented in the subsequent Sec. II C and in Appendix B.
operator Ĥm(z) represents the effective single-partic
Hamiltonian of the system which, however, is non-Hermiti
since coherent potentials are imaginary quantities.

In order to solve Eq.~5! for the Green’s functions, we will
follow the procedure described below. First, let us solve
Shrödinger equation with the HamiltonianĤm(z):
0-5



th

l-

in

io
to

:

us

is
a-

n

t

-

nd

es
ne

the
-
ing
ses

D. BAGRETS, A. BAGRETS, A. VEDYAYEV, AND B. DIENY PHYSICAL REVIEW B65 064430
(
b5s,d

@«dab2Ĥm
ab~z!#cb~z!50. ~7!

The solutions of this equation can be easily found since
potentialsUm

a(z) have a steplike form. Let us put«5«F

1 i0, where«F is the Fermi energy, and introduce the fo
lowing notations:

k1s
Fm5A2ms~«F2V1s

m !, k3s
Fm5A2ms~«F2V3s

m !,

k1d
Fm5A2md~«F2V1d

m !, k3d
Fm5A2md~«F2V3d

m !

are Fermi momenta inF1 and F3 ferromagnetic layers for
electrons with the spinm, and

q2s
0 5A2ms

0~Us2«F!, q2d
0 5A2mh

0~Ud2«F!.

Let alsok1
ma5A(k1a

Fm)22k2 and k3
ma5A(k3a

Fm)22k2 be the
components of electron momentum with spinm along thez
axis in F1 and F3 layers, respectively (k is the in-plane
component of the momentum,a is a band index!, and let
q2

a5A(q2a
0 )21k2 be the imaginary electron momentum

the insulating layer.
Further, for convenience, we will omit indicesm andk in

the notation of some functions. Equation~7! has four linear-
independent solutions which we denote as

c i~z!5S c i
s~z!

c i
d~z!

D ~ i 51,2!

and

w i~z!5S w i
s~z!

w i
d~z!

D ~ i 51,2!.

We choose these independent solutions so that two funct
c1(z) andw1(z) would describe two waves corresponding
the s-like electrons, and functionsc2(z) and w2(z) would
correspond to thed-like electrons. Namely, in a layerF1 (z
,a) the solutionsw i(z) have the form

w1~z!5S exp@2 ik1
msz#

0
D z,a, ~8!

w2~z!5S 0

exp@2 ik1
mdz#

D z,a,

and in a layerF3 (z.b) the solutionsc i(z) are

c1~z!5S exp@ ik3
msz#

0
D z.b, ~9!

c2~z!5S 0

exp@ ik3
mdz#

D z.b.

Since«5«F1 i0, then Imki
ma510 (i 51,2; a5s,d). Thus

these solutions satisfy the following boundary conditions

c i~z!→0 if z→1` ~ i 51,2!,
06443
e
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w i~z!→0 if z→2` ~ i 51,2!.

Starting from expressions~8! and ~9!, the solutionsw i(z),
c i(z) can be easily extended in two other layers. Let
introduce the matrices

F~z!5S w1
s~z! w2

s~z!

w1
d~z! w2

d~z!
D ,

C~z!5S c1
s~z! c2

s~z!

c1
d~z! c2

d~z!
D .

The Wronskian of the system~7! is

D5FT~z!D̂zC~z!. ~10!

where the matrix operatorD̂z is defined similar to Eq.~4!,
and the subscriptT denotes the transposition operation. It
known from the theory of differential equations that the m
trix D is a constant since it satisfies the equation]D(z)/]z
50. Taking into account that«5«F1 i0 and Im Sm

ab,0,
the solution of Eq.~5! for the retarded Green’s function ca
be written in the matrix form as

GR~z,z8!5F~z!@DT#21CT~z8! if z,z8, ~11!

GR~z,z8!5C~z!D21FT~z8! if z.z8.

To find the advanced Green’s function, one has to pu«
5«F2 i0 in Eq. ~5! and assume that ImSm

ab.0. Then we
obtain

GA~z,z8!5@GR~z,z8!#* . ~12!

In the expressions~11! and ~12! the Green’s functions de
pend on the in-plane momentumk and on the spinm of the
electron because solutionsc i(z) andw i(z) also depend onm
andk.

Next, one has to find the two-point conductivity~3! of the
system using the Green’s functions~11! and ~12!. For that,
we introduce the current matricesj m

c and j m
w (m5↑,↓) con-

structed with the use of solutionsc i(z) and w i(z), respec-
tively,

j c~z!52 iC†~z!D̂zC~z!, ~13!

j w~z!52 iF†~z!D̂zF~z!.

The total conductance of the systemsmr(z,z8) may be pre-
sented in the usual form as a sum of the ‘‘bubble’’ part a
the vertex corrections~see Fig. 2!:34

smr~z,z8!5dmrsm
0 ~z,z8!1smr

Ga ~z,z8!1smr
Gb ~z,z8!.

~14!

The ‘‘bubble’’ contribution to the conductance describ
direct electron tunneling from the electrode to another o
through the barrier when electron momentum parallel to
F/O interface k5ki is conserved~the specular transmis
sion!. The scattering on the interfaces affects direct tunnel
so that the effective height of the potential barrier increa
0-6
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INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
because the electron also has to pass throughd-like poten-
tials at the pointsz5a andz5b formed by the self-energie
Sm(a) andSm(b). The vertex corrections to the conductan
describe the tunneling assisted by interfacial roughness
that is, the processes when the electron with momentumk
comes to the impurity center on the interface, underg
scattering (k→k8) in another channel withk8Þk, and then
goes away to the electrode or to the barrier.

It also can be shown that the contribution to the tunnel

conductance is negligibly small (;e24q2
s(b2a)) from the dia-

gram containing both vertex partsGa andGb compared with

other contributions that are of the order of;e22q2
s(b2a). The

diagram with verticesGa andGb corresponds to the interfer
ence of waves scattered from both interfaces. Therefore
can neglect this interference term.

Substituting obtained expressions~11!,~12! for the
Green’s functions and using the definition~13! for the cur-
rent matrices, we come to the following results. The anal
cal expression for the ‘‘bubble’’ conductance is given by

sm
0 ~z,z8!52

e2

2p\A (
k

SpH 1

Dm
@ j m

w~z!#T
1

Dm
†

j m
c~z8!J ,

~15!

where it is assumed thatz,z8, Dm is the Wronskian~10! and
A denotes the junction area.

For z,a, z8.b, the vertex corrections from the left an
from the right interfaces can be written as

smr
Ga ~z,z8!52

e2

2p\A2 (
kk8

SpH Lmk
b1b2~z,a!

3Ga
mrS b1 g1

b2 g2
DL

rk8

g1g2~a,z8!J ,

FIG. 2. The diagrammatic representation of the total two-po
nonlocal conductivitysmr(z,z8) as a sum of bubble and verte
parts. Here the full lines correspond to the Green’s functio
GR(z,z8) andGA(z,z8), and wavy lines denote the asymmetric gr

dient operator¹
↔

z of velocity at the pointsz and z8. The shaded
square designates the vertex partGmr at the interface; H.c. denote
the complex conjugate terms.
06443
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smr
Gb ~z,z8!52

e2

2p\A2 (
kk8

SpH Lmk
b1b2~z,b!

3Gb
mrS b1 g1

b2 g2
DL

rk8

g1g2~b,z8!J , ~16!

where summation is also performed over repeating indi
b i ,g i5s,d. HereGa

mr(b2

b1
g2

g1) andGb
mr(b2

b1
g2

g1) are the vertex

parts on the interfacesa and b. Lmk are (232) matrices,
their components are defined by

Lmk
b1b2~z,a!5SpH 1

Dm
j m
wT~z!

1

Dm
† @rm

c~a!#b1b2J , ~17!

Lmk
g1g2~a,z8!5SpH 1

Dm
@rm

wT~a!#g1g2
1

Dm
†

j c~z8!J ,

where @rm
c(a)#b1b2 and @rm

w(a)#g1g2 are density matrices
with the components

@rm
c~a!# ik

b1b25c
i

b1* ~a!ck
b2~a! ~ i ,k5s,d!, ~18!

@rm
w~a!# ik

g1g25w
i

g1* ~a!wk
g2~a! ~ i ,k5s,d!.

The expressions similar to expressions~17! may also be writ-
ten for the matricesLmk(z,b), Lrk(b,z8) and for other po-
sitions of the pointsz, z8 with respect toa andb. The vertex
parts Ga

mr and Gb
mr are calculated in the ‘‘ladder’’

approximation.25 The derivation of the equation forGmr is
presented below in Sec. II D.

We have to note that coherent potentialsSm(a), Sm(b)
calculated in the framework of the CPA and verticesGa

mr ,
Gb

mr calculated in the ‘‘ladder’’ approximation satisfy the s
called Ward identity which in our case, for example, for t
interfacez5a can be written as follows~for details, see Ap-
pendix A!:

Im Sm
b1b2~a!5 (

r5↑,↓
Ga

mrS b1 g1

b2 g2
D 1

A (
k

$Im Grk
g1g2~a!

2G
rk

g1a1* ~a!Grk
g2a2~a!Im Srk

a1a2~a!%. ~19!

Here the summation is also performed over repeating ind
g i anda i . The fulfillment of Eq.~19! provides the necessar
condition of the nondivergence of the current through
tunnel junction

]

]z8
sm

0 ~z,z8!1
]

]z8
(

r5↑,↓
@smr

Ga ~z,z8!1smr
Gb ~z,z8!#50.

~20!

According to Eq.~20!, the total conductance of the syste
is a constant value. In view of that, we will derive the exa
expression forsmr(z,z8) evaluating the conductance a
pointsz5a20 andz85b10, i.e., at the left and at the righ
sides from the interface. The Wronskian matrixDm and the
current matricesj m

w(z) and j m
c(z8) are expressed in terms o

t

s

0-7
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matricesF(z) and C(z)—these matrices, as follows from
Eq. ~11!, determine the Green’s function. The straightfo
ward evaluation of the conductance according to formu
~15!–~17! leads to the result thatsmr(a,b) is expressed in
on
th

d

s

06443
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terms of the retarded Green’s functions at the points of in
faces Gm(a)5Gm

R(z5z85a) and Gm(b)5Gm
R(z5z85b)

constructed according to Eq.~11!. The explicit form of
Gm(a) in the (k,z) representation is given by the expressi
Gm~a!5S k1
ms

2ms
~ i 2cotanw1

ms!2Sm
ss~a! 2Sm

sd~a!

2Sm
ds~a!

k1
md

2md
@ i 2cotan~k1

dz01w1
md!#2Sm

dd~a!
D 21

, ~21!
r-

e

hin
where

tanw1
ms5

k1
ms

q2
s

ms
0

ms
, tanw1

md5
k1

md

q2
d

mh
0

md
.

A similar expression can be written for the Green’s functi
Gm(b) on the right interface. For that, one has to make
substitutionsk1

ma→k3
ma , Sm

ab(a)→Sm
ab(b), w1

ma→w3
ma in

the expression forGm(a). Herema (a5s,d) andms(h)
0 are

the effective electron~hole! masses in the ferromagnetic an
insulating layers;ki

ma andq2
a ( i 51,3, a5s,d) are the func-

tions onk introduced above in the text after Eq.~7!. Let us
define the ‘‘transport’’ density of states as follows:

Am~a!5Gm
† ~a! j̃ m

wGm~a!,

Am~b!5Gm
† ~b! j̃ m

cGm~b!, ~22!

where

j̃ m
w5S k1

ms

ms

0

0
k1

md

md

D , j̃ m
c5S k3

ms

ms

0

0
k3

md

md

D .

Expression~15! for the ‘‘bubble’’ conductance then read

sm
0 ~a,b!5

e2

2p\A (
k

SpH lb
21S q̂

m
D la

21Am
T~a!

3la
21S q̂

m
D lb

21Am~b!J , ~23!

where

la5S eq2
sz0 0

0 la
dD , la

d5
sin~k1

mdz01w1
md!

sinw1
md

,

lb5S eq2
sz0 0

0 lb
dD , lb

d5
sin~k3

mdz01w3
md!

sinw3
md

,

e

S q̂

m
D 5S q2

s

ms
0

e2q2
sw̃ 0

0
q2

d

mh
0

e2q2
dw̃D ,

and w̃5b2a22z0 is the ‘‘width’’ of the d barrier.
For the vertex correction from the left interface (z5a) we

obtain

smr
Ga ~a,b!52

e2

2p\A2 (
kk8

Lmk
b1b2~a,a!

3Ga
mrS b1 g1

b2 g2
DL

rk8

g1g2~a,b!, ~24!

Lm~a,a!52Am~a!,

Lr~a,b!5Gr
†~a!la

21S q̂

m
D lb

21Ar~b!lb
21S q̂

m
D la

21Gr~a!.

In a similar way, the vertex correction from the right inte
face (z5b) reads

smr
Gb ~a,b!52

e2

2p\A2 (
kk8

Lmk
b1b2~a,b!

3Gb
mrS b1 g1

b2 g2
DL

rk8

g1g2~b,b!, ~25!

Lm~a,b!5Gm
† ~b!lb

21S q̂

m
D la

21Am~a!la
21S q̂

m
D lb

21Gm~b!,

Lr~b,b!52Ar~b!.

Expressions~23!–~25! determine the total conductance of th
system.

C. The CPA equations

The scattering of the electron by random potentials wit
the interface~terms Ĥspin-cons and Ĥspin-flip in the Hamil-
0-8



gy

e

le

th
tia

e

n
d

nd
th
b
ve

n

ti

i-
ne

ring
ged

r

ion
-

the

e

qual
the

he
era-

INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
tonian! is taken into account by introducing the self-ener
operatorsSm

ab(a) and Sm
ab(b) into the effective single-

particle Hamiltonian~6!. To calculate the self-energies w
apply the coherent-potential approximation~CPA!.24,35 Let
us denote ketsug,m,rn

a&5ug,m& ^ urn
a& corresponding to the

Wannier states of the electron on the interfacea (a51,2) at
the given sitern

a in the (x,y) plane, whereg refers to the
states or d and m is the spin. The symbol̂ denotes the
direct product. The problem of finding the single-partic
Green’s functionGmr(r ,r 8) of the many-body Hamiltonian
~1! is reduced to the related single electron problem of
propagation of the electron in a random interfacial poten

V̂5 (
n;a51,2

urn
a&~ v̂n

(el)a 1 v̂n
(sf) a !^rn

au5 (
n;a51,2

urn
a&v̂n

a^rn
au,

where v̂n
a5 v̂n

(el)a 1 v̂n
(sf)a and the summation goes over th

interface numbera and over the sitesn. Here

v̂n
(el)a 5 (

m5↑,↓
gn

a$us,m&^d,mu1ud,m&^s,mu% ~26!

is the random potential ofs-d hybridization associated with
the siten and

v̂n
(sf)a 5Jn

a$us,↑&Ŝ2~rn
a!^s,↓u1us,↓&Ŝ1~rn

a!^s,↑u%
~27!

is the exchangelike interaction with the surface magno
The random quantitiesgn

a andJn
a used here were introduce

in Sec. II A.
Now one can formulate the CPA by the ordinary way a

the only difference with respect to the usual situation of
bulk scattering is that the initial Green’s functions have to
calculated for the trilayer system. We assume that the a
aged propagator of the systemGm

ab(r ,r 8) differs from the
initial Green’s function, corresponding to the Hamiltonia
Ĥ0 @see Eq.~1!#, by the self-energy correction in Eqs.~5!,~6!.
This means that the system behaves as if coherent poten
Sm

ab had been assigned to each site of the interfacea andb.

After the introduction of the effective mediumŜa, each site
rn

a becomes a source of the random potentialûn
a5 v̂n

a2Ŝa.

The single-sitet matrix associated with potentialûn
a is given

by

t̂ n
a5

1

12$v̂n
a2Ŝa%Ĝ~za!

$v̂n
a2Ŝa%, ~28!

whereza5a or b,

Ŝa5 (
m5↑,↓ (

b,g5s,d
ub,m&Sm

bg~za!^g,mu, ~29!

Ĝ~za!5 (
m5↑,↓ (

b,g5s,d
ub,m&Gm

bg~za!^g,mu.

Here
06443
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Gm
bg~za!5E

0

kmax
Gm

ab~za ,k!
kdk

2p
~30!

is the averaged Green’s function at the interfacea which is
expressed viaŜa in accordance with Eq.~21!. The upper
limit kmax is a cutoff of the in-plane momentum which orig
nates from the finite size of the Brillouin zone. For that, o
has to substitute the Brillouin zone’s projection onto (kx ,ky)
plane by a circle of the same square with a radiuskmax. For
the bcc latticekmax52Ap/A2/a0, wherea0 is a lattice con-
stant. The single-sitet matrix ~28! is obviously different for
different sites. At the same time it is supposed that scatte
by the random potential is taken into account in the avera
propagatorĜ(za) by the self-energy operatorŜa. Therefore,
we require that the ensemble average of the single-sitet ma-
trix vanishes, i.e.,

^ t̂ n
a~Ŝa!&5x^ t̂ A

a&b1y^ t̂ B
a&b50. ~31!

Here tA
a and tB

b are the values of the single-sitet matrix
associated with a given siten which is occupied by the
A-type ion ~ferromagnet’s ion! or by theB-type ion ~impu-
rity!, respectively. Bracketŝ•••&b denote the averaging ove
magnon degrees of freedom. Equation~31! is the well-
known self-consistent coherent potential approximat
~CPA! ~Refs. 24,35! that implicitly determines the self
energy operatorŜa. The CPA equations~31! are formulated
for the particular case of electron scattering within theF/O
interface. The straightforward calculations show that
single-sitet matrix t̂ n

a can be represented in the form

t̂ n
a5S t̂ n

a↑~ n̂1! t̂ n
a1~ n̂2!Ŝ2

t̂ n
a2~ n̂1!Ŝ1 t̂ n

a↓~ n̂2!
D ~32!

with respect to spin-up and spin-down subspaces. Heren̂1

5Ŝ1Ŝ2 , n̂25Ŝ2Ŝ1 , and the blockst̂ n
a6 , t̂ n

a↑(↓) are (2

32) matrices, functionally depending onn̂1 and n̂2 , with
the components designated by indices of bandss andd.

To satisfy the condition~31!, one has to consider only th
spin-conserving part of this equation as long as^tn

a6Ŝ7&b

50 since the expression to be averaged contains an une
number of the creation and annihilation operators of
magnons. In order to calculate^tn

a↑(↓)&b we adopted the fur-
ther approximation and assumed that

^tn
a↑~ n̂1!&b5 t̂ n

a↑~n!,

^tn
a↓~ n̂2!&b5 t̂ n

a↓~n!,

where n5n(T) is the average number of magnons at t
given temperature. In other words, we substituted the op
tors n̂6 by its averaged values. The functionn(T) is given
by the familiar expression

n~T!5E d2q

~2p!2

1

ebv(q)21
, ~33!
0-9
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where v(q) is the spectrum of surface magnons. The a
proximation we made to take into account the spin-flip p
cesses is the static approximation for magnons. The ine
ticity of the electron-magnon processes may be taken
account in the energy conservation rule. However, the c
acteristic magnon energy\v0 is much less than the Ferm
energy«F , and in the first approximation one can negle
this energy\v0—it becomes important in the case of fini
voltages when the process of emitting of a magnon by a
electron influences on the form ofI -V dependence. We
therefore, restricted our calculation to the case of small v
age bias with the voltage less than\v0. Within this approxi-
mation, for the system of CPA equations we get

tA
a↑~n!x1tB

a↑~n!y50, ~34!

tA
a↓~n!x1tB

a↓~n!y50.

As long as matricestn
a↑(↓) are (232) blocks, the genera

case Eq.~34! represents the system of two matrix equatio
for eight unknown quantitiesSm

bg(za). The system~34! is
one of the possible forms of the CPA equations. But actu
we used another representation of the CPA which was m
convenient for the numerical implementation. For that
exploited the augmented-space formalism by Mookerje36

and the details are presented in Appendix B.
e

d
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D. The vertex corrections

To find the vertex corrections we used the ‘‘ladder’’ a
proximation combined with the CPA, that was originally pr
posed by Velicky´.25 The diagrammatic representation of th
‘‘ladder’’ approximation is given in Fig. 3. Since the scatte
ing potentials on the different interfaces~at the pointsa and
b) do not correlate with each other, the vertex pa
Ga(b)

mr (b2

b1
g2

g1) can be found independently for each interfa

and we will omit interface suffix in the subsequent expre
sions. LetTmr(b2

b1
g2

g1)5^(tn
a)mr

* b1g1(tn
a)rm

g2b2& be the average

of the product of two randomt matrices over configuration
and magnon distribution, where as beforem,r are spin indi-
ces andb,g are orbital indices. On the diagram in Fig. 3,
is presented by the dashed line. The analytical expression
the correlatorTmr(b2

b1
g2

g1) can be found in accordance wit

the adopted approximate scheme of averaging over the m
non degrees of freedom. Taking into account Eq.~32! we
obtain

FIG. 3. The diagrammatic representation of the equation~see
the text! corresponding to the calculation of the vertex partGmr in
the ladder approximation.
T↑↑S b1 g1

b2 g2
D 5xtA*

↑~n!b1g1tA
↑ ~n!g2b21ytB*

↑~n!b1g1tB
↑ ~n!g2b2,

T↓↓S b1 g1

b2 g2
D 5xtA*

↓~n!b1g1tA
↓ ~n!g2b21ytB*

↓~n!b1g1tB
↓ ~n!g2b2, ~35!

T↑↓S b1 g1

b2 g2
D 5xntA*

1~n!b1g1tA
2~n!g2b21yntB*

1~n!b1g1tB
2~n!g2b2,

T↓↑S b1 g1

b2 g2
D 5xntA*

2~n!b1g1tA
1~n!g2b21yntB*

2~n!b1g1tB
1~n!g2b2,
the
or-

ent

n is

l

where tA(B)
↑(↓) (n) and tA(B)

6 (n) are the components of th
single-sitet matrix, Eq.~32!. We also define the operator

Dm
a S b1 g1

b2 g2
D 5

1

A (
k

@Gkm
* b1g1~za!Gkm

b2g2~za!#

2Gm
* b1g1~za!Gm

b2g2~za! ~36!

denoting the propagator of the pair of electrons in the ‘‘la
 -

der’’ equation at the interfaceza . Its definition follows from
the fact that in the diagram representation of the CPA
multiple scattering on the given site is assumed to be inc
porated into the single-sitet matrix tn

a , corresponding to the
single vertex of any diagram. Due to that, the subsequ
sites in the ‘‘ladder’’ diagrammatic equation~Fig. 3! must not
reproduce each other. Therefore, the necessary correctio
subtracted in Eq.~36!. The summation overk goes up to
kmax similar to Eq.~30!. After that definition the analytica
equation for the vertex part reads as
0-10



It
th
se
l

in

sy

is

te

is-
n
s

o

i
n

r-
le
A,
ry
o

ce
a

lo

the

me

de

re-
er

oint

rg-
go-

r

i-

we

INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
GmrS a1 b1

a2 b2
D 5TmrS a1 b1

a2 b2
D 1TmlS a1 g1

a2 g2
D

3DlS g1 d1

g2 d2
DGlrS d1 b1

d2 b2
D . ~37!

Equation~37! is the ordinary system of linear equations.
can be proved that the vertex parts found with the use of
‘‘ladder’’ approximation and self-energies found with the u
of the CPA satisfy the Ward identity~19!, and hence the tota
tunneling current is a constant valuej (z)5 j 0, i.e., it does not
depend onz. The proof of the Ward identity is presented
Appendix A.

III. RESULTS AND DISCUSSION

We considered the case of Fe/Al2O3 /Fe tunnel junction.
The following parameters were chosen to describe the
tem. According to estimations of Stearns,27 for the itinerant
s-like electrons in Fe we setks

F↑51.09 Å21, ks
F↓

50.42 Å21, andms51.0me ~hereme is bare electron mass!.
For the more localizedd electrons~holes!, we put md5
210.0me . The d density of states at the Fermi energy
larger for the minority spin band,26 therefore,kd

F↓.kd
F↑ , and

we put kd
F↑50.45 Å21, kd

F↓51.15 Å21. The values of the
Fermi momenta define the positions of band bottomsV1a

m ,
V3a

m (a5s,d, m5↑,↓) with respect to«F . For d electrons
the Fermi momenta were chosen such a way that the in
face densities of statesrs(d)

m («F)521/pIm Gs(d)
m (za) ~where

za5a,b are the positions of interfaces! comply with the fol-
lowing ratio: rs

↓(↑)(«F):rd
↑(«F):rd

↓(«F);0.1:1:10, which is
the typical situation for the case of 3d transition metals~see,
for an example, the calculations of Tsymbal and Pettifor14!.
We also put the width of the barrierw520 Å, and z0
5a0/2 wherea052.87 Å is a lattice constant for bcc Fe (z0
is a parameter describing the thickness of the interface!.

The main features of the band structure ofa-Al2O3 crys-
tals were briefly presented in Sec. II A. In view of that d
cussion, the following parameters of the model were take
describe the amorphous Al2O3 barrier: the effective masse
of electrons and holes arems

050.4me , mh
05210.0me , the

positions of the conduction band bottom (Us) and the top of
a valence band (Ud) areUs52Ud53.0 eV, i.e., the width
of the band gap is'6.0 eV, and«F is assumed to be a zer
of energy.

In order to illustrate the general formalism presented
the previous sections, let us first consider the case of o
s-d impurity scattering~i.e., T50 and there are no spin-flip
processes! when concentration of impurity ions on the inte
face is (12x)50.5. In this case all formulas have a simp
analytical form. As it was mentioned previously in Sec. II
in the two-band tight-binding model description of a bina
alloy the random variables are diagonal matrix elements
the Hamiltonian «n

s(x), «n
d(x), and gn(x) depending on

whether the siten is occupied by anA or B ion. To be more
precise, one must consider the concentration dependen
these matrix elements. It reflects the fact that their values
modified by the existence of a charge transfer in the al
06443
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Since in the framework of our model we are focusing on
hybridization effects~see Sec. II A for justification of this
approach!, we havegA(x)Þg0

A , gB(x)Þg0
B , whereg0

A and
g0

B are hybridizations of the pure components. Let us assu

for simplicity that in Eq.~B2! g05ḡ5xgA1ygB50. Then
for x50.5 we getgA52gB , and thusg25x(12x)(gA
2gB)2 is the single parameter characterizing the amplitu
of s-d scattering on the interface. The nonzero value ofḡ
will lead to a slight modification of thes- andd-like eigen-
states describings- andd-like electrons in the vicinity of the
interface, and thus will not affect the qualitative results p
sented below. We will omit spin suffixes since we consid
the spin-conserving scattering now. Atx50.5 only diagonal
elements of the self-energy matrixSab in thesd space have
nonzero values. Then the Green’s functions, e.g., at the p
a, become@see Eq.~21!#

Gss~a!5E
0

kmaxH k1
ms

2ms
~ i 2cotanw1

s!2Sm
ss~a!J 21 kdk

2p
,

~38!

Gdd~a!5E
0

kmaxH k1
md

2md
@ i 2cotan~k1

dz01w1
d!#2Sm

dd~a!J 21

3
kdk

2p
,

and CPA equations are written as follows:

Sss5
g2Gdd

11SddGdd
, Sdd5

g2Gss

11SssGss
~39!

which must be solved self-consistently by means of conve
ing iterative procedure. As far as Green functions are dia
nal, one can denoteGab5G(a

a
b
b) and can introduce the

similar notations for quantitiesT andD, defined in Sec. II D.
Then one gets

Tsd5Tds5
g2

u11SddGddu2
5

g2

u11SssGssu2
, ~40!

Tss5Tdd50,

Gss5
Tsd

2 Ddd

12Tsd
2 DssDdd

, Gdd5
Tds

2 Dss

12Tsd
2 DssDdd

,

Gsd5Gds5
Tsd

12Tsd
2 DssDdd

.

Since the mass of holesmh
0 in the insulator is much large

than the electron massms
0 , the exponential factore22q2

d(b2a)

in formulas~23!–~25! for tunneling conductance is neglig
bly small as compared with one fors-like electrons. There-
fore, one may neglect the contribution fromd holes to the
tunneling current. Then for the tunneling conductance
obtain
0-11
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s5 (
m5↑,↓

~sb
m1sGa

mm1sGb

mm!,

where

sb
m5

e2

2p\E0

kmax
Akm

ss ~a!S q2
s

ms
0D 2

Akm
ss ~b!e22q2

sw
kdk

2p

~41!

is the conductance corresponding to the ‘‘bubble’’ diagr
~herew5b2a),

sGa

mm5
e2

2p\ S E
0

kmax
Akm

dd ~a!
kdk

2p DGds
(a)mm

3F E
0

kmax
uGk8m

ss
~a!u2S q2

s

ms
0D 2

Ak8m
ss

~b!e22q2
sw

k8dk8

2p G
1

e2

2p\ S E
0

kmax
Akm

ss ~a!
kdk

2p DGss
(a)mm

3F E
0

kmax
uGk8m

ss
~a!u2S q2

s

ms
0D 2

Ak8m
ss

~b!e22q2
sw

k8dk8

2p G
~42!

is the ‘‘vertex’’ contribution to the conductance on the le
interface, and

sGb

mm5
e2

2p\ S E
0

kmax
Akm

dd ~b!
kdk

2p DGds
(b)mm

3F E
0

kmax
uGk8m

ss
~b!u2S q2

s

ms
0D 2

Ak8m
ss

~a!e22q2
sw

k8dk8

2p G
1

e2

2p\ S E
0

kmax
Akm

ss ~b!
kdk

2p DGss
(b)mm

3F E
0

kmax
uGk8m

ss
~b!u2S q2

s

ms
0D 2

Ak8m
ss

~a!e22q2
sw

k8dk8

2p G
~43!

is the ‘‘vertex’’ contribution to the conductance on the rig
interface. HereAkm

aa are the transport densities of states wh
for the present case on the left interface are given by
expressions

Akm
ss ~a!5

k1
ms/ms

uk1
s~ i 2cotanw1

s!/2ms2Sm
ss~a!u2

, ~44!

Akm
dd ~a!5

k1
md/md

uk1
d@ i 2cotan~k1

dz01w1
d!#/2md2Sm

dd~a!u2

and by analogous expressions in the case of right interfa
We remind the reader that physically the ‘‘bubble’’ term

the total conductance is a contribution to the current due
direct tunneling when the electron momentumk5ki in the
06443
e
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plane of the interface is conserved. Scattering proces
renormalize the ‘‘bubble’’ term with respect to the case
ballistic transport such that the effective ‘‘height’’ of the po
tential barrier seen by electron increases due to self-en
correctionsSm

ss arising on the interfaces. The vertex cont
butions to the conductance describe the tunneling assiste
interfacial scattering—that is the processes of tunneling w
scattering on theF/O interface when the in-plane momen
tum is not conserved, i.e.,k8Þk for the scattered electron
Thus, both momentak and k8 in Eq. ~16! determine the
vertex corrections.

Note also, that both vertex correctionssGa
andsGb

~42!,

~43! consist of two terms with verticesGsd and Gss. The
terms with vertex partGss are contribution to the tunneling
conductance froms-like electrons only. The scattering in th
s channel described bySss ~39! is caused initially bys-d
scattering. The terms withGsd describe either the process o
diffuse scattering ofd-like electron to thes state in theF/O
interface and then tunneling of thes like electron in the bar-
rier, or the process of tunneling of thes electron and then its
scattering tod state in theO/F interface and leaving into the
electrode.

We have calculated the tunneling conductance and
TMR ratio defined as TMR5(sP2sAP)/sAP, where sP
and sAP are the total conductances for the parallel~P! and
antiparallel~AP! alignment of magnetic moments in theF
layers. The CPA equations defining the self-energies w
solved numerically. The validity of the Ward identity, Eq
~19!, was checked after the vertex partsG had been com-
puted at every step for a given value of the parameterg.

The results are presented in Figs. 4–7. In Fig. 4
‘‘bubble’’ ~41! and the ‘‘vertex’’ ~42!,~43! contributions to
the conductance for spin-up and spin-down channels
shown for the parallel~P! alignment of magnetic moments a

FIG. 4. Bubble and vertex contributions to the tunneling co
ductance~in the unitse2/2p\ per unit square 1 Å2) for the parallel
~P! alignment of magnetic moments in the ferromagnetic layers a
function of the scattering parameterg on the interface in the ab
sence of spin-flip processes. The parameters of the model ares-like
electrons: k↑

Fs51.09 Å21, k↓
Fs50.42 Å21, ms51.0, ms

050.4;
d-like holes:k↑

F d50.5 Å21, k↓
F d51.4 Å21, md5mh

05210.0, the
height of the potential barrierUs52Ud53.0 eV, the width of the
barrier w520 Å, the concentration of Fe ions on the interfacex
50.5.
0-12
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INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
a function of the scattering parameterg on the interface.~We
remind the reader that up to now only the spin-conserv
scattering is considered.! As it was mentioned previously
scattering suppresses the ‘‘bubble’’ conductance, and he
s↑↑

0 ands↓↓
0 are decreasing functions ong. The contribution

from the ‘‘bubble’’ part is larger for the majority spin (↑)
channel sincek↑

Fs.k↓
Fs . On the contrary, the contributio

from the vertex corrections dominates for the minority sp
(↓) channel — that behavior can be understood as follow

First, at smallg2 the imaginary part of the self-energ
Sss, which describes the scattering ofs electrons, behaves a
Im S↑(↓)

ss ;pg2r↑(↓)
d («F) @see Eq.~39!#, wherer↑(↓)

d («F) are
spin-up~down! d density of states on the interface. As far
r↓

d(«F) is of the order of magnitude greater thanr↑
d(«F), the

scattering fors-like itinerant electrons from minority spin
band (↓) is more effective than for the majority spin (↑)
electrons. The more effective scattering of spin-downs elec-
trons leads to the predominance of the minority spin con
bution with vertex partGss

↓ over the majority spin contribu

FIG. 5. Bubble and vertex contributions to the tunneling co
ductance~in the unitse2/2p\ per unit square 1 Å2) for the anti-
parallel ~AP! alignment of magnetic moments as a function of t
scattering parameterg on the interface in the absence of spin-fl
processes. Parameters of the model are the same as in Fig. 4

FIG. 6. The tunneling conductances of the individual spin ch
nels~in the unitse2/2p\ per unit square 1 Å2) for the parallel~P!
and antiparallel~AP! alignment of magnetic moments as the fun
tion of the scattering parameterg on the interface in the absence
spin-flip processes. The parameters are the same as in Fig. 4.
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tion with vertexGss
↑ , since at smallg, Gss

↑(↓);g4D↑(↓)
dd and

D↓
dd@D↑

dd , thereforeGss
↓ @Gss

↑ . Second, the transport densi
of statesAdd(a) @Eq. ~44!# which determines the partial con
ductance due to mixing ofs andd channels in the interface
~terms with Gsd) is also larger for minority spin channe
Thus, the combination of these factors results in dominat
of the vertex contribution to the conductance from the m
nority spin channel. The results of calculations also show
that thess contribution to the vertex correctionssG

ss ~terms
with verticesGss) was much less than thesd contribution
sG

sd ~terms withGsd).
The bubble and vertex contributions to the conducta

~which are the same for spin-up and spin-down channels! for
the antiparallel~AP! alignment of moments as a function o
g are presented in Fig. 5. The total conductances forP and
AP configurations are shown in Fig. 6. Finally, in Fig. 7 th
TMR ratio (sP2sAP)/sAP as a function of scattering pa
rameterg is shown. When the amplitude of scattering
negligibly small (g50), we have positive value of the TMR
.24% — that is the result of Slonczewski’s theory12 under
the chosen parameters fors-like electrons. With increasingg
the TMR amplitude is monotonically decreasing and can
come even negative ifg.gc'0.16 eV.

To understand qualitatively the obtained results, cond
tance and magnetoresistance can be rewritten in the ge
approximate form

sP'~r1
s↑!21~r1

s↓!21r3
d↑G̃sd

↑ r1
s↑1r3

d↓G̃sd
↓ r1

s↓ ,

sAP'2r1
s↑r1

s↓1r3
d↑G̃sd

↑ r1
s↓1r3

d↓G̃sd
↓ r1

s↑ ,

Ds5sP2sAP'~r1
s↑2r1

s↓!2

1~r1
s↑2r1

s↓!~r3
d↑G̃sd

↑ 2r3
d↓G̃sd

↓ !, ~45!

where we took into account thatsG
ss!sG

sd , and for high and
thick enough barrier the main contribution to the tunneli
conductance is due to electrons with momentum almost

pendicular to the barrier~factors e22q2
sw). Consequently,

r1
s↑(↓) are the quasi-one-dimensionals density of states nea

FIG. 7. The tunneling magnetoresistance~TMR! as a function of
the scattering parameterg in the case of only elastic scattering o
the interfaces. The parameters are the same as in Fig. 4.
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the interface, andr3
d↑(↓) are the corresponding three

dimensionald density of states. TheG̃ are renormalized ver
tex corrections. In expression~45! for Ds, the first term due
to direct tunneling is always positive. Concerning the seco
term, r1

s↑.r1
s↓ sincekF

s↑.kF
s↓ , but r3

d↓@r3
d↑ and, therefore,

this term is negative. This contribution decreases the mag
toresistance when scattering parameterg becomes larger. At
g.gc the sd contribution overlaps the contribution toDs
from the ss channel, and we have TMR,0. Thus, the in-
verse TMR ratio arisen in our model is caused by extrem
strong scattering of negatively polarizedd-like electrons
~which give the indirect contribution to the tunneling cu
rent! to thes band on the interface.

The parameterg determining the amplitude ofs-d scat-
tering on the interface is defined asg25x(12x)(gA2gB)2.
One can regard the difference between hybridizationsgA
2gB as approximately a constant value for given const
ents. However, (12x) is a concentration of impurity centers
and thusg is a measure of the imperfection of theF/O
interface. The proposed model, therefore, explains qua
tively the strong interface sensitivity of the tunneling ma
netoresistance effect.5,7,8 According to Heine’s discussion o
the hybridization in transition metals,37 the hybridization
constants are from about 1.0 to 3.0 eV for different eleme
One can assume that the difference (gA2gB) is of the order
of magnitude smaller and, therefore, the critical value
scattering parametergc.0.16 eV that we obtained is mor
or less realistic.

The strong reduction of the TMR due to nonideal stru
ture of the metal/insulator interfaces is a well-known obs
vation. The oxidation of a thin Al layer leads to the undes
able oxidation of few metal monolayers close to theF/O
interface and thus to the formation ofF-O oxides@Fe3O4,10

CoO, and Co3O4 ~Ref. 9!#—that reduces the TMR.10,9On the
other hand, if the too thick Al layer is not oxidized com
pletely, the contamination of the interface by Al ions al
reduces the TMR.9,10 The dependence of the TMR vs th
thickness of the Al overlayer has, therefore, a maximum
the best TMR values achieved by Moodera’s group lie in
range 10–16 Å.9

The contamination of theF/O interface by OH ions in the
early experiments by Merservey and Tedrow on tunnel
with the superconductors5 led to the small measured value
of a spin polarizationP for Ni and Gd. The contamination
was due to oxidizing of the Al films in the laboratory air. Th
improved technique of samples preparation in a pure oxy
increased the values ofP for Ni and Gd, and for some rare
earth metals.5,7

In a recent work by LeClairet al.30 the strong suppressio
of magnetoresistance was observed in Co/Al2O3/Co tunnel
junctions with a very thin Cr interfacial layer. It was foun
that the TMR decayed exponentially on the Cr interlay
thickness with a length scale;1 Å ~approximately 0.5
monolayers!. With the addition of only 3 Å Cr ('1.5 mono-
layers! the reduced TMR was only 10% of the initial valu
for a control junction. LeClairet al.30 presented some qual
tative arguments that the suppression of a spin polariza
~and, hence, the reduction of TMR! was due to more strongly
06443
d

e-

ly

-

a-
-

s.

f

-
r-
-

d
e

g

n

r

n

suppression of majoritys-p density of states compared wit
minority spins caused by the resonant scattering of majo
spin sp-electrons with the Crd states. From the point o
view of our model, we can explain the strong degradation
the TMR by the strong electron scattering within the inter
cial Co-Cr alloy that is formed under the preparation of e
tremely thin (;1 monolayer! Cr interlayer.

We have also calculated the temperature dependenc
the TMR taking into account spin-flip scattering in additio
to s-d impurity scattering as it is described in detail in Sec
II C and II D. For that, the average magnon numbern(T)
~33! as a function of the temperature was found in analo
with Debye’s treatment of phonons using the similar a
proach that was proposed by Zhanget al.13 The magnon dis-
persion relation in Eq.~33! was replaced by simple isotropi
parabolic spectrum

vq5EmS q

kmax
D 2

,

wherekmax is the equivalent radius of the two-dimension
Brillouin zone @see Eq.~30!#, and Em is related to Curie
temperatureTc and in the mean-field approximation is give
by Em53kBTc /(S11). For the chosen model of the dispe
sion relationwq , one has to overcome the divergence on
lower limit of the integral in Eq.~33!. Therefore, one mus
introduce a lower wavelength cutoffEc .13 Physically, it may
represent a finite coherence length due to interfacial rou
ness. In our calculation we have taken the same parame
that were used by Zhanget al.13 for the analysis of the zero
bias anomalyS53/2, kBTc5110 meV, andEc54 meV.
Then, for the temperature range within the room value,
have

n~T!52
1

2 S kBT

Em
D ln~12e2Ec /kBT!.

We have putx550%, JA52.0 eV ~for Fe atoms! and JB
50 eV, i.e., it is supposed that spin-flip process is possib
if an electron scatters on the Fe ion. The TMR vs the sc
tering parameterg at different temperaturesT54.2, 77, 210,
and 300 K are plotted in Fig. 8. In Fig. 9 the temperatu

FIG. 8. The TMR for different temperatures as a function of t
scattering parameterg.
0-14
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INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
dependence of the resistance for theP and AP configuration
of magnetizations is presented for the same parameters
g50. The results show that the TMR ratio decreases w
increasing of the temperature. Moreover, the resistancesRP
andRAP of the structure for both configurationsP and AP are
also decreasing when temperature increases — that is in
qualitative agreement with experimental data@e.g., see Fig.
4~b! in Ref. 38#. The physical mechanism of this effect
related with the excitation of spin-flip processes in the s
tem. Due to these processes, the new channels of ele
scattering appear which are frozen at zero temperature
the result, the conductance of the system increases for boP
and AP configurations and, therefore, the resistance dr
The spin-flip processes mix the spin-up and spin-down ch
nels. Therefore, the relative difference of the resistances
creases at different configurations and the TMR decrea
with increasing of temperature.

IV. CONCLUSIONS

In conclusion, we would like to outline the main resu
obtained in the present work. Based on the analysis of
band structure of 3d ferromagnetic metals and Al2O3 crys-
tals and on the results ofab initio calculations of the mag
netoresistance for epitaxial tunnel junctions, we built on
adaptation of the simplified two-bands-d model to treat the
diffuse electron transport in the nonidealF/O/F magnetic
tunnel junctions. We had modeled the roughF/O interface
by the random binary alloy that is formed from the ions
the ferromagnet and impurities~e.g., the Al or O ions!, and
assumed that the main mechanism of electron scatterin
the interface which substantially affects tunneling is thes-d
scattering. We used the Kubo formalism to calculate the t
neling conductance and found the vertex corrections to c
ductivity with the use of the ‘‘ladder’’ approximation com
bined with the CPA. The obtained results show that in
case of strong electron scattering within the interfacial al
the vertex corrections give the essential contribution to
tunneling conductance. We proved that adopted approxi
tions lead to the physically correct results, namely, the n
local conductivity tensor is a constant function and, the

FIG. 9. The temperature dependence of the resistance forP and
AP configurations of the magnetic moments atg50 andx550%.
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fore, a tunneling current is conserved. We showed t
interfacial interband scattering substantially reduces a va
of the TMR, which can become even negative in the case
extremely strong scattering. The reason for the suppres
of the magnetoresistance is the indirect contribution of ne
tively polarizedd-like electrons to the tunneling current du
to strong scattering to thes band on the interface. It is als
shown that spin-flip electron scattering on the surface m
nons within the interface leads to a further decrease of
TMR at finite temperature. Thus, in the framework of t
proposed model, we are able to explain qualitatively
strong interface sensitivity of the tunneling properties tha
observed in the experiments.
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APPENDIX A: WARD IDENTITY

In this appendix we briefly describe how to obtain E
~19! ~Ward identity!, and using a simple example we wi
show how this identity can be proved. Starting from Eq.~20!,
one first has to compute the derivation of the ‘‘bubble’’ co
ductivity. Assuming, that the self-energySm

ab is symmetric
with respect to the rearrangement of band indices, i.e.,Sm

ab

5Sm
ba , and using the fact that functionsc i

a(z8) are the so-
lutions of the Schro¨dinger equation~7!, for the derivation of
the current matrix we obtain

]

]z8
j m
c~z8!5 (

ab5s,d
2 ImSm

ab~z8!@rm
c~z8!#ab,

where

Sm
ab~z8!5Sm

ab~a!d~z82a!1Sm
ab~b!d~z82b!,

and the matrix@rm
c(z8)#ab is defined by Eq.~18!. Then, from

Eqs.~15!,~17! we have

]

]z8
sm

0 ~z,z8!52
e2

2p\A (
k

(
ab5s,d

@2 ImSm
ab~a!

3d~z82a!Lmk
ab~z,a!

12 ImSm
ab~b!d~z82b!Lmk

ab~z,b!#.

~A1!

To proceed further, let us compute the derivation of the v
tex correction to conductivity. The initial expression for th
matrix Lmk ~see diagram in Fig. 2! is written as

Lmk
g1g2~a,z8!5 (

a5s,d
Gmk

* g1a
~a,z8!

¹
↔

z8
2ima

Gmk
ag2~z8,a!.
0-15
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Taking into account that the Green’s functions are the so
tion of Eq. ~5!, we obtain

]

]z8
Lmk

g1g2~a,z8!

522d~z82a!Im Gmk
g1g2~a!

12 (
ab5s,d

Im Sm
ab~a!Gmk

* ag1~a!Gmk
bg2~a!d~z82a!.

Substituting the obtained expression to formula~16! for the
vertex correction, we get

]

]z8
smr

Ga ~z,z8!5
e2

2p\A2 (
kk8

2d~z82a!Lmk
b1b2~z,a!

3GmrS b1 g1

b2 g2
D @ Im G

rk8

g1g2~a!

2Im Sr
a1a2~a!G

rk8
* a1g1~a!G

rk8

a2g2~a!#.

~A2!

The summation here is also performed over indicesa i , b i ,
andg i . A similar expression can be written for the derivatio
of the vertex correctionsmr

Gb (z,z8) at interfacez5b. From
Eqs.~A1! and ~A2! one can obtain the final expression~19!
for the Ward identity.

Let us prove the identity for the simple case of onlys-d
scattering, when there are no spin-flip processes, anx
50.5. This situation was considered in Sec. III, and th
were introduced the notationsGab , Tab , and Dab (ab
5s,d) for the components of the (232) matriciesG, T, and
D. Within these notations, the identity~19!, which has to be
proved, can be written as

Im Saa5 (
b5s,d

GabF Im Gbb2
1

S (
k

uGk
bbu2Im SbbG .

Here we omitted spin suffixes, all values associated ei
with the interfacea or b, Gbb andGab are defined by Eqs
~38!,~39!. From Eqs.~36!,~37! it follows that

Daa5
1

A (
k

uGk
aau22uGaau2, G215T212D.

Using these expressions, Ward identity can be written in
form

Im Gaa2 (
b5s,d

$@T21#ab1dabuGaau2%Im Sbb50.

Using Eq.~40!, we then can find that

Im Sss5
1

Den
~ uGddu2Im Gss1g22u11SssGssu2Im Gdd!,

Im Sdd5
1

Den
~ uGssu2Im Gdd1g22u11SddGddu2Im Gss!,

where
06443
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Den5uGssu2uGddu22g24u11SssGssu4.

The same expessions for ImSss and ImSdd follow directly
from the CPA equations~39!—that finishes the proof.

APPENDIX B: THE DERIVATION OF THE CPA
EQUATIONS

In this appendix we will derive the CPA equations for o
particular case using the augmented-space forma
~ASF!.36 As was described previously, we assume theF/O
interface to be a random binary alloy of the typeAxB12x ,
whereA are ions of the ferromagnet andB are impurities.
Following the ASF, we associate each random variablegn

a

and Jn
a with the self-conjugate operatorsg̃ and J̃, respec-

tively, which are determined in the auxiliary two
dimensional vector spaceF such a way, that the spectrum o
these operators coincides with the set of possible value
random variables. For the sake of clarity, hereafter, the t
is ascribed to any operator acting on the auxiliary space.
also define the orthonormalized basisus&, wheres5A or B,
which are eigenvectors ofg̃ and J̃, so that

g̃uA&5gAuA&, J̃uA&5JAuA&,

g̃uB&5gBuB&, J̃uB&5JBuB&. ~B1!

According to that definition,g̃ and J̃ commutate with each
other. Let now f (gn

a ,Jn
a) be a function or an operator o

random variablesgn
a andJn

a . Then, the operator in the aux

iliary spaceF, associated with functionf, is defined asf̃
5 f (g̃,J̃) and according to Eq.~B1!, e.g.,^Au f̃ uA& is a value
of f, if the siten is occupied by an ion A. One can introduc
another orthonormal basis inF

u0&5AxuA&1AyuB&, u1&5AyuA&2AxuB&,

so that the operatorsg̃ and J̃ in this representation are writ
ten as

g̃5S g0 g

g g1
D , J̃5S J0 d

d J1
D . ~B2!

Herex andy are the concentration ofA-type ions~ferromag-
net’s ions! andB-type ions~impurities! on the interface, re-
spectively, and

g05xgA1ygB , g15ygA1xgB ,

g5Axy~gA2gB!, J05xJA1yJB ,

J15yJA1xJB , d5Axy~JA2JB!.

Then one can prove that the average value off is given by
f̄ 5^0u f̃ u0&. Together with Eq.~B2! this property is the way
to evaluate the average of any given operator, depending
the random variables, and we can apply this method to a
age thet matrix ~28!.

Following the general scheme of the ASF, outlined abo
the random effective potentialûn

a5 v̂n
a2Ŝa is associated
0-16
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with the operatorŨ2S̃ acting in the augmented vector spa
F ^ L, whereL denotes the four-dimensional space of orbi
(s,d) and spin (↑,↓) electron degrees of freedom. In acco
dance with Eqs.~26!, ~27!, and ~B2! this operator has the
form

Ũ2S̃5S Û02Ŝ D̂

D̂ Û12Ŝ
D

5S ĝ01 Ĵ0v̂2Ŝ ĝ1 d̂ v̂

ĝ1 d̂ v̂ ĝ11 Ĵ1v̂2Ŝ
D ~B3!

where Ŝ is defined by Eq.~29!, operatorsĝ ( i ) are defined
similar to Eq.~26!, and other operators are given by

v̂5u↑&Ŝ2~rn
a!^↓u1u↓&Ŝ1~rn

a!^↑u,

d̂5dus&^su, Ĵi5Ji us&^su ~ i 50,1!.

Let us also introduce the nonrandom averaged propag
acting in the augmented space

G̃5S Ĝ 0

0 Ĝ
D ,

and associated with potentialŨ ~B3! the augmented scatte
ing t matrix

t̃ 5~Ũ2S̃ !
1

12G̃~Ũ2S̃ !
5S t̂00 t̂01

t̂10 t̂11
D . ~B4!

Its projection onto the zero-levelu0& of the augmented spac
t̂005^0u t̃ u0& coincides with the average from the ‘‘physica
randomt matrix ~28!. The subsequent averaging over ma
non degrees of freedom̂t00&b must vanish due to condition
~34!.

To proceed further, let us introduce the electron propa
tor Ĝ1

Ĝ15
1

Ĝ212~Û12Ŝ !
5S Ĝ1

↑ Ĝ1
1

Ĝ1
2 Ĝ1

↓ D ,

which is associated with the ‘‘propagation’’ of an electron
the first level of the augmented space in the potentialÛ1

2Ŝ. Taking into account the explicit form ofÛ12Ŝ with
respect to spin-up and spin-down subspaces

Û12Ŝ5S ĝ12Ŝ↑ Ĵ1Ŝ2

Ĵ1Ŝ1 ĝ12Ŝ↓D ,

where operatorsĝ1 and Ĵ1 are

ĝ15g1$us&^du1ud&^su%,

Ĵ15J1us&^su, ~B5!

one gets
06443
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Ĝ1
↑5@12Ĝ↑~ ĝ12S↑1 Ĵ1n̂1ĝ1

↓Ĵ1!#21Ĝ↑,

Ĝ1
↓5@12Ĝ↓~ ĝ12S↓1 Ĵ1n̂2ĝ1

↑Ĵ1!#21Ĝ↓, ~B6!

Ĝ1
15Ĝ1

↑Ĵ1Ŝ2ĝ1
↓ , Ĝ1

25Ĝ1
↓Ĵ1Ŝ1ĝ1

↑ ,

where

ĝ1
↑(↓)5@12Ĝ↑(↓)~ ĝ12Ŝ↑(↓)!#21Ĝ↑(↓),

andn̂15Ŝ2Ŝ1 , n̂25Ŝ1Ŝ2 . The physical meaning of thes
formulas is rather transparent. The Green’s functiong1

↑(↓)

corresponds to the propagation of the electron in a spin c
serving part of the potentialÛ12Ŝ which is ĝ12Ŝ↑(↓),
while Ĝ1

↑(↓) corresponds to scattering on the potentialĝ1

2Ŝ↑(↓)1 Ĵ1n̂6ĝ1
↓(↑)Ĵ1, renormalized with respect to th

spin-conserving potential due to the interaction with surfa
magnons on the interface.

Coming back to the evaluation of scattering matrix e
ment t̂00, let us introduce the ‘‘denominator’’D̃, correspond-
ing to the whole augmented potentialŨ2S̃

D̃5
1

12G̃~Ũ2S̃ !
5S D̂00 D̂01

D̂10 D̂11
D .

Again, using the technique of the inversion of a matrix in t
block form and taking into account the elementsŨ ~B3! with
respect to the auxiliary spaceF, the blocks ofD̃ can be
expressed in terms of the propagatorĜ1 as follows:

D̂005@12Ĝ~Û02Ŝ1D̂Ĝ1D̂ !#21,

D̂105Ĝ1D̂D̂00, D̂015Ĝ0D̂D̂1 , ~B7!

D̂115~11Ĝ0D̂Ĝ1D̂ !D̂00,

where we define the propagatorĜ0,

Ĝ05@12Ĝ~Û02Ŝ1D̂Ĝ1D̂ !#21Ĝ5S Ĝ0
↑ Ĝ0

1

Ĝ0
2 Ĝ0

↓ D ,

corresponding to the propagation of the electron in the eff
tive potentialŴ2Ŝ, where

Ŵ5Û01D̂Ĝ1D̂5S ŵ↑ Ĵ1Ŝ2

Ĵ2Ŝ1 ŵ↓ D . ~B8!

The potentialŴ can be regarded as a renormalization of t
‘‘virtual’’ crystal potential Û0 of the zero level of the aug
mented space, representing the average of the random p
tial on a site. The renormalization comes from the ‘‘intera
tion’’ D̂ in the auxiliary space with the first level, bein
described by the propagatorĜ1. Using the explicit form of
D̂,
0-17
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D̂5S ĝ d̂Ŝ2

d̂Ŝ1 ĝ
D ,

one can write down the elementsŵ↑(↓) and Ĵ6 :

ŵ↑(↓)5ĝ01ĝĜ1
↑(↓)ĝ1ĝĜ1

↑(↓)Ĵ1n̂6ĝ1
↓(↑)d̂

1 d̂Ĝ1
↓(↑)Ĵ1n̂6ĝ1

↑(↓)ĝ1 d̂n̂6Ĝ1
↓(↑)d̂, ~B9!

Ĵ65 Ĵ01ĝĜ1
↑(↓)d̂1ĝĜ1

↑(↓)Ĵ1ĝ1
↓(↑)ĝ1 d̂Ĝ1

↓(↑)Ĵ1n̂6ĝ1
↑(↓)d̂

1 d̂Ĝ1
↓(↑)ĝ. ~B10!

One can regardŵ↑(↓) as the effective spin-conserving pote
tial, taking into account the effects of a disorder, andĴ6 —
as the renormalized electron-magnon interaction. Finally,
simple algebra using Eqs.~B3!,~B7!, yields

t̂005^0u~Ũ2S̃ !D̃u0&5~Ŵ2Ŝ !@12Ĝ~Ŵ2Ŝ !#21

5S t̂0
↑ t̂0

1Ŝ2

t̂0
2Ŝ1 t̂0

↓ D .

Thus, we have obtained the logical result, that thet matrix,
averaged over configurations, corresponds to scattering
the effective potentialŴ2Ŝ.

To evaluate the spin-conservingt̂0
↑(↓) and spin-flip t̂0

6

parts of scattering matrix, we introduce the propagators

ĝ0
↑(↓)5@12Ĝ↑(↓)~ŵ↑(↓)2Ŝ↑(↓)!#21Ĝ↑(↓), ~B11!

corresponding to the potentialsŵ↑↓2S↑↓ and define the
‘‘denominator’’

D̂05@12Ĝ~Ŵ2Ŝ !#215S D̂0
↑ D̂0

1

D̂0
2 D̂0

↓ D
related with the effective potentialŴ2Ŝ. The elements of
D̂0 and propagatorĜ0 can be expressed viaĝ0

↑(↓) using the

form of potentialŴ ~B8!, namely,

Ĝ0
↑5@12Ĝ↑~ŵ↑2S↑1 Ĵ1n̂1ĝ0

↓Ĵ2!#21Ĝ↑,

Ĝ0
↓5@12Ĝ↓~ŵ↓2S↓1 Ĵ2n̂2ĝ0

↑Ĵ1!#21Ĝ↓,

Ĝ0
15Ĝ0

↑Ĵ1Ŝ2g0
↓ , Ĝ0

25Ĝ0
↓Ĵ2Ŝ1g0

↑ , ~B12!
ys
.
J.
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D̂0
↑5@12Ĝ↑~ŵ↑2Ŝ↑1 Ĵ1n̂1ĝ0

↓Ĵ2!#21,

D̂0
↓5@12Ĝ↓~ŵ↓2Ŝ↓1 Ĵ2n̂2ĝ0

↑Ĵ1!#21,

D̂0
15Ĝ0

↑Ĵ1Ŝ2d0
↓ , D̂0

25Ĝ0
↓Ĵ2Ŝ1d0

↑ , ~B13!

where denominatorsd0
↑(↓) are given by

d̂0
↑(↓)5@12Ĝ↑(↓)~ŵ↑(↓)2Ŝ↑(↓)!#21.

Now, using Eqs.~B12! and~B13! and taking into account the
obvious relationt̂005(Ŵ2Ŝ)D̂0, one finds

t̂0
↑5~ŵ↑2Ŝ↑1 Ĵ1n̂1ĝ0

↓Ĵ2!D̂0
↑ ,

t̂0
↓5~ŵ↓2Ŝ↓1 Ĵ2n̂2ĝ0

↑Ĵ1!D̂0
↓ ,

t̂0
15d̂0

↑TĴ1D̂0
↓ , t̂0

25d̂0
↓TĴ2D̂0

↑ . ~B14!

According to the ASF,Ĝ0
↑(↓) and t̂0

↑(↓) represent the configu
rationally averaged quantities, and after the averaging o
magnon degrees of freedom one must get^Ĝ0

↑(↓)&b5Ĝ↑(↓)

and ^ t̂0
↑(↓)&b50. It means that due to the CPA sel

consistency conditions the averaged scatteringt matrix must
vanish and averaged electron propagator has to be equ
the effective Green’s function~21!, determined by the self-
energy operatorŜ. Carrying out the averaging procedu
over magnon degrees of freedom the similar way as it w
proposed earlier in Sec. II C, it is possible to satisfy both
these conditions if one assumes that

Ŝ↑5ŵ↑~n!1 Ĵ1~n!nĝ0
↓~n!Ĵ2~n!, ~B15!

Ŝ↓5ŵ↓~n!1 Ĵ2~n!nĝ0
↑~n!Ĵ1~n!.

We have pointed out the explicit dependence of matri
ŵ↑(↓)(n), Ĵ6(n) and ĝ0

↑(↓)(n) on the average magnon num
bern @Eq. ~33!#. This dependence is assumed to be the sa
as it comes from the initial definition of operatorsŵ↑(↓), Ĵ6 ,
andĝ0

↑(↓) as functions onn̂6 @Eqs.~B9!–~B11!#, which is the
consequence of the adopted approximate averaging pr
dure. The matricesŵ↑(↓), Ĵ6 and ĝ0

↑(↓) functionally depend
on S↑(↓). Due to that, the system~B15! represents the alter
native to Eq.~34! form of the CPA conditions and it can b
simply solved by means of successive numerical iteratio
K.
aw,
1M. Julliere, Phys. Lett.54A, 225 ~1975!.
2J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Ph

Rev. Lett.74, 3273 ~1995!; J. S. Moodera and L. R. Kinder, J
Appl. Phys.79, 4724~1996!; J. S. Moodera, J. Nowak, and R.
M. van de Veerdonk, Phys. Rev. Lett.80, 2941~1998!.

3T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater.139, L231
~1995!; N. Tezuka and T. Miyazaki, J. Appl. Phys.79, 6262
.
~1996!; T. Miyazaki, S. Kumagai, and T. Yaoi,ibid. 81, 3753
~1997!.

4W. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley,
P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. W. Sh
and G. Xiao, J. Appl. Phys.81, 3741~1997!.

5R. Meservey and P. M. Tedrow, Phys. Rep.238, 173 ~1994!.
6S. Zhang and P. M. Levy, Eur. Phys. J. B10, 599 ~1999!.
0-18



los

pp

l.

ys

r

.

s

en

in
in

V.

ys.

f

de

de

B.

.

INFLUENCE OFs-d INTERFACIAL SCATTERING ON . . . PHYSICAL REVIEW B65 064430
7J. S. Moodera and G. Mathon, J. Magn. Magn. Mater.200, 248
~1999!.

8J. S. Moodera, T. H. Kim, C. Tanaka, and C. H. de Groot, Phi
Mag. B 80, 195 ~2000!.

9J. S. Moodera, E. F. Gallagher, K. Robinson, and J. Nowak, A
Phys. Lett.70, 3050~1997!.

10T. Mitsuzuka, K. Matsuda, A. Kamijo, and H. Tsuge, J. App
Phys.85, 5807~1999!.

11J. M. MacLaren, X. G. Zhang, and W. H. Butler, Phys. Rev. B56,
11 827~1997!.

12J. C. Slonczewski, Phys. Rev. B39, 6995~1989!.
13S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin, Ph

Rev. Lett.79, 3744~1997!.
14E. Yu. Tsymbal and D. G. Pettifor, J. Phys.: Condens. Matte9,

L411 ~1997!.
15J. Mathon, Phys. Rev. B56, 11 810~1997!.
16W. H. Butler, X. G. Zhang, X. Wang, J. V. Ek, and J. M

MacLaren, J. Appl. Phys.81, 5518~1997!; J. M. MacLaren, W.
H. Butler, and X. G. Zhang,ibid. 83, 6521~1998!.

17I. I. Oleinik, E. Yu. Tsymbal, and D. G. Pettifor, Phys. Rev. B62,
3952 ~2000!.

18J. M. MacLaren, X. G. Zhang, W. H. Butler, and X. Wang, Phy
Rev. B59, 5470~1999!.

19W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. MacLar
Phys. Rev. B63, 054416~2001!.

20J. Mathon and A. Umerski, Phys. Rev. B63, 220403~R! ~2001!.
21T. L. Monchesky, A. Enders, R. Urban, J. F. Cochran, B. He

rich, W. Wulfhekel, M. Klaua, F. Zavaliche, and J. Kirschner,
The Physics of Low Dimensions, edited by Jose Luis Moran
Lopez ~Plenum, New York, 2000!.
06443
.

l.

.

.

,

-

22O. Wunnicke, N. Papanikolaou, R. Zeller, P. H. Dederichs,
Drchal, and J. Kudrnovsky~unpublished!; M. Zwierzycki, K.
Xia, P. H. Kelly, G. E. Bauer, and I. Turek~unpublished!.

23A. Vedyayev, N. Ryzhanova, R. Vlutters, and B. Dieny, Europh
Lett. 46, 808 ~1998!.

24P. Soven, Phys. Rev.156, 809 ~1967!.
25B. Velicky, Phys. Rev.184, 614 ~1969!.
26V. L. Moruzzi, J. F. Janak, and A. R. Williams,Calculated Elec-

tronic Properties of Metals~Pergamon, New York, 1978!.
27M. B. Stearns, J. Magn. Magn. Mater.5, 167 ~1977!.
28D. A. Papaconstantopoulos,Handbook of the Band Structure o

Elemental Solids~Plenum, New York, 1986!.
29Y. N. Xu and W. Y. Ching, Phys. Rev. B43, 4461~1991!.
30P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, and W. J. M.

Jonge, Phys. Rev. Lett.86, 1066~2001!.
31P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van

Veerdonk, and W. J. M. de Jonge, Phys. Rev. Lett.84, 2933
~2000!.

32R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II.
Nonequilibrium Statistical Mechanics~Springer, Berlin, 1985!.

33A. Vedyayev, N. Ryzhanova, C. Lacroix, L. Giacomoni, and
Dieny, Europhys. Lett.39, 219 ~1997!.

34P. M. Levy, H. E. Camblong, and S. Zhang, J. Appl. Phys.75,
7076 ~1994!; P. M. Levy, Solid State Phys.47, 367 ~1994!.

35H. Ehrenreich, Solid State Phys.31, 149 ~1976!.
36A. Mookerjee, J. Phys. C6, L205, 1340~1973!.
37V. Heine, Phys. Rev.153, 673 ~1966!.
38Yu Lu, X. W. Li, Gang Xiao, R. A. Altman, W. J. Gallagher, A

Marley, K. Roche, and S. Parkin, J. Appl. Phys.83, 6515~1998!.
0-19


