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We propose the two-barsdd model to describe theoretically a diffuse regime of the spin-dependent electron
transport in magnetic tunnel junctioitsTJ’s) of the formF/O/F whereF’s are 3 transition metal ferro-
magnetic layers an@® is the insulating spacer. We aim to explain the strong interface sensitivity of the
tunneling properties of MTJ's and investigate the influence of electron scattering at the nonideal interfaces on
the degradation of the tunneling magnetoresistdii®é¢R) magnitude. The generalized Kubo formalism and
the Green’s functions method were used to calculate the conductance of the system. The vertex corrections to
the conductivity were found with the use of “ladder” approximation combined with the coherent-potential
approximation(CPA) that allowed us to consider the case of strong electron scattering. It is shown that the
Ward identity is satisfied in the framework of this approximation that provides the necessary condition for a
conservation of a tunneling current. Based on the known resulebdhitio calculations of the TMR for
ballistic junctions, we assume that exchange split quasides electrons with the density of states being
greater for the majority spin subband give the main contribution to the TMR effect. We show that, due to
interfacial interband scattering, the TMR can be substantially reduced even down to zero value. This is related
to the fact that delocalized quasifree electrons can scatter into the strongly lochéimbdand with the density
of states at the Fermi energy being larger for minority spins compared to majority spins. It is also shown that
spin-flip electron scattering on the surface magnons within the interface leads to a further decrease of the TMR
at finite temperature.
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[. INTRODUCTION tions of the interfaces between the metal and the insulating
layer®!® On the other hand, the first theory suggested by
Magnetic tunnel junctiongMTJ’s) consisting of two fer-  Julliere expresses the TMR ratio in terms of the effective
romagnetic layers separated by the insulating spacer exhilsipin polarizationd®; and P, of two magnetic layers via the
the tunneling magnetoresistance effedIR) when they are  expression TMR-2P,P,/(1+ P4P,), and thus predicts no
switched by applying a magnetic field from the antiparalleldependence of the TMR on the parameters of the barrier. In
to parallel alignment of magnetizations in magnetic layersspite of the fact that Julliere’s formula is widely used for the
The TMR effect was first observed by Julliere in 1978ul-  interpretation of the experimental dété, does not have a
liere found that the tunneling conductance of the trilayerrigorous theoretical foundatiofl. The dependence of the
structure Fe/Ge/Co depended on the angle between magnefiMR magnitude on the parameters of the tunnel barrier and
zations in the Fe and Co layers. The measured amplitude dfie metal/insulator interface was taken into account in the
the TMR in these experiments was 14% at 4.2 K. Only 20subsequent theories. Slonczew$kionsidered a quantum
years later, the large values of TMR at room temperaturenechanical problem of tunneling of a free electron through a
were obtained in magnetic junctions comprising the@l  simple spatially uniform barrier and showed that the TMR
barrier>~* Since that time, there has been a renewed technaatio depends on the height of the potential barrier and on the
logical and fundamental interest to the tunneling phenomeffective mass of the tunneling electron inside the insulator.
enon and during the last decade a lot of experimental antater on, the influence of spin-flip scattering at the interfaces
theoretical papers were published on this tofsee Refs. on temperature and bias-voltage dependences of the TMR
5-9). was investigated by Zhare al'® It was shown that mixing
Experimentally it was observed®that the TMR depends of spin-up and spin-down tunnel channels leads to a decrease
critically on the material of the insulating barrier and on theof the TMR.
conditions of its preparation, in particular on the imperfec- Due to a permanent progress in the development of dif-

0163-1829/2002/66)/06443319)/$20.00 65 064430-1 ©2002 The American Physical Society



D. BAGRETS, A. BAGRETS, A. VEDYAYEV, AND B. DIENY PHYSICAL REVIEW B65 064430

ferent methods ofab initio calculations of the electronic net surface becomes oxidized leading to the formation of
properties of solids, in the last four years the transport prop€oO and CgO, oxides or to the FgO, oxidel® On the
erties of tunnel junctions were investigated using the realistiother hand, with too thick Al film, an excess of Al metal is
band structure of the ferromagnetic layers and the insulatdeft unoxidized. The amorphous barriers, the roughness of
(Refs. 14-2D The systems where the conductance was calthe interface and its structural inhomogeneity make the rig-
culated were ideal epitaxial Fe/ZnSe(6@1) (Ref. 18§ and  orousab initio calculations of the TMR virtually impossible
Fe/MgO/F¢001) tunnel junctions".g'20 For these structures and therefore more simplified models are required to treat the
the electron transport is assumed to be ballistic, i.e., the eledliffuse electron transport in MTJ'’s.
tron momentunk parallel to the ferromagnet/insulator in- In our previous paper we attempted to investigate the
terface is conserved. Experimentally it was also demoninfluence of scattering processes of the electravith and
strated recently by Heinriclet al?! that Fe/MgO/FE&01)  without spin-flip at the interfaces on the TMR using a
junctions can be indeed grown by depositing the MgO episimple two-band (spin-up and spin-down free-electron
taxially onto a Fe whisker and then depositing another Fenodel. It was shown that for this simplified model spin-
electrode epitaxially on top of the MgO. The resultsalif =~ conserving scattering may or may not lead to a decrease of
initio calculations showed that tunneling has more complithe TMR depending on the amplitude of the scattering po-
cated behavior than the predictions of the simple barrietential. In this paper, we proceed to study the diffuse electron
model proposed by SlonczewskiThe main conclusions are transport in magnetic tunnel junctions of the fofiO/F
as follows'®!° (i) Tunneling conductance depends stronglywith F's being 3 transition metal electrodes and O being
on the symmetry of the electron states in the ferromagnetithe insulating barrier (AlO3). We use the results @b initio
electrodes and in the insulating layér) The decay rates of calculations to model the band structure of ferromagnetic
evanescent states in the barrier are different for the statesectrodes, namely, the most important feature of these cal-
with different symmetry. The slowest decay rates have theulations that at least two groups of electrons form the total
evanescent states which are compatible vateymmetry.  band structure: the almost freelike spin-up and spin-down
The Bloch states in the metal couple more efficiently throughbands and the narrow strongly exchange split bands. We will
the interface with the decaying states of the same symmetryall the first groups and the second groug electrons and
in the barrier. Therefore, mostly freelikep electrons from  will consider that a periodic part of the-d hybridization
the bands witts character in the ferromagnet give the essen-between bands is taken into account that results in the non-
tial contribution to the tunneling conductandéi) For thin  equivalence of spin-up and spin-dowrbands. The param-
insulating layers the tunneling current in the minority chan-eters of the adopted model can be adjusted to reproduce a
nel is dominated by the interfacial resonance states that givaslue of the TMR observed in the experiments. We assume
rise to “hot spots” for thek-resolved conductance in the that for the case of AD; barrier the exchange splitlike
surface Brillouin zone. The contribution from the resonancequasifree electrons give the main contribution to the TMR
states is substantially suppressed for the thicker barriers sinedfect. In the framework of this simplified model we will be
the Bloch states at “hot spots” have mcharactef® More-  able to investigate in a proper way the influence of electron
over, as it follows from recent discussioffsthe surface scattering at the interfaces on the tunneling conductance.
resonance states are very sensitive to the details of the inter- To describe the nonideal tunnel junction we assume that
face. The asymmetry of the potential barrier and the interfadefects and impurity centefthe Al or O ions, or other arti-
cial roughness considerably reduce the contribution from théicially embedded ionsare randomly distributed within few
surface states to a total conductance. monolayers near thE/O interface. Within the interface, an
Nowadays theb initio calculations of the TMR are pos- electron undergoes scattering when it comes to the defect or
sible only for ballistic junctions such as the above mentionedmpurity center. We take into account these processes assum-
Fe/ZnSe/Fe and Fe/MgO/Fe structures which are characteirg that the hybridization betwees and d bands changes
ized by a small lattice mismatch between the metal and theandomly on the interface because this parameter is the most
insulator, and by the well-defined band structure of the oxidémportant in the adopted model among the other ones, char-
or the semiconductor. In realistic junctions the electron transacterizing the scattering potential. It yields to the possibility
port has a diffuse character, i.e., when the electron crosses slike electrons to scatter into theé subband(and vice
the ferromagnet/insulator interface ks momentum is not versa and thus strongly affects tunneling. To treat the elec-
conserved. FoF/O/F tunnel junctions the most successful tron scattering on the random potential we use the coherent-
material until now has been alumina,&,.2 The ALO; tun-  potential approximatioiCPA) that allows us to consider the
nel barriers are usually fabricated by the natural or plasmaase of strong scatterirfy.We apply the generalized Kubo
oxidation of the Al layer:® The subsequent structural analy- formalism and the Green’s functions method to calculate the
sis, e.g., with the use of the x-ray photoelectron spectroseonductance of the system, and find the vertex corrections to
copy, shows that alumina is amorphous and the obtainethe conductivity with the use of “ladder” approximatith
AlO, tunnel barrier deviates from the ideal ,&;  combined with the CPA. It is shown that the so-called Ward
structure® For a uniform coverage the Al film thickness is identity is satisfied in the framework of this approximation
usually ranged from about 7 to 18 A, depending on a type othat provides the necessary condition for a conservation of a
the ferromagnetic electrodeThere is a small range of Al tunneling current. Note, that if it is not the case, the conclu-
thicknesses that yields to the best TMR ratio for a givensions may be completely misleading. As a result, we show
oxidation condition. When the Al layer is thin, the ferromag- that, due to substantial difference in majority and minodty
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TABLE I. Type and symmetry of the Bloch states with=0 for &
Fe, Co, and Ni for three different crystal fac@s accordance with
Ref. 18. The symmetry of these bands is as follows:, 3, and U Vp
Ay (s,p,d); As and X, (p and d); and A,, A,, 3, and V“’ o 3d
As (d 1d ) -
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FIG. 1. The model potentials describing the propagation of an
electron in the trilayer tunnel junctiof/O/F. The solid line corre-
density of states at the Fermi energy fad 8rromagnetic spond; to the potenti?l)profile eflike elgctrons and the dashed line
metals, the interbang-d scattering on the interface can for d-like electronsV/ %, denote the spln-dependent_band bottoms,
strongly reduce the TMR even down to zero value. In accorYs and_Ud are the b°“°”f‘ andthe top of the _conducpon af‘d valence
dance with results of Zhanet al, 1% it is also shown that the 0ands in the insulator. is the Fermi levelz, is a typical width of
spin-flip scattering of electrons on the surface magnon%he interface(detail description is given in the text
within the interface leads to a further decrease of the TMRhands as-like electrons and will describe them as free elec-
ratio at finite temperature. trons with the effective massig~m, (wherem, is a bare

The paper is organized as follows. In Sec. Il we describ&jectron magsand with different Fermi momentk' and
the model Hamiltonian, the calculation of the tunneling con-kFl (kKET>KFl) for up and down spins. The idea about a
ductance and vertex corrections. The discussion of the obyominant contribution of the mostly itinerant electrons to
tained results is presented in Sec. lll. Conclusions are in Setunneling was originally proposed by Stedsand ex-

IV. The proof of the Ward identity is given in Appendix A. pjained the positive polarization of the spin-dependent cur-
The details of the derivation of the CPA equations are dejent  in  the experiments on tunneling with the

scribed in Appendix B. superconductors According to estimations of StearfSjn
the case of Fekt'=1.09 A%, kfl=0.42 AL,
Il. THEORETICAL MODEL Other more Iocalizgd bandsompatjble withd symme-
- try) crossing the Fermi energy also will be described by two
A. The Hamiltonian of the system exchange split bands with the isotropic quadratic dispersion

We will consider a trilayer tunnel junction of the form law but with larger effective mass;>ms. The Fermi mo-
F,/OIF,, whereF, andF5 are two semi-infinite ferromag- Mentakg' andkg' of d-like electrons can be chosen to re-
netic layers and O is a dielectric oxide spacer,@y). Our  produce the typical for @ transition metals ratio of the val-
arguments on behalf of the two-basedl model which was ues of spin-up and spin-dowhdensity of states at the Fermi
briefly described in the introduction are as follows. One ofenergy eg, pl(e):py(er)~1:102%?% In accordance with
the conclusions oéb initio calculations of the TMR for bal- the band structure of Fe, Co, and (Refs. 26,28the narrow
listic tunnel junction¥®!® is that the expected spin majority and minorityd bands are practically filled. There-
dependence of the tunneling current can be deduced from ttiere, the particles with a large effective masg must be
symmetry of the Bloch states in the ferromagnet at the Fermiegarded as holes. The values of the Fermi momenta define
energy. Spin-polarized band structure for bcc Fe, fcc Ni, andhe positions of band bottom&ig. 1) Vi, Vi (a=s,d; i
fcc Co can be found in Ref. 26. The type and symmetry of=1,3) with respect to the Fermi energy. We note, that the
the Bloch states for different crystal faces with=0 for Fe,  aim of this work is to calculate the relative change of the
Co, and Ni are presented in Tabl¢im accordance with Ref. TMR due to scattering. Therefore the proposed model is
18). For example, in case of Fe electrodes, the examinatiorather adequate for this purpose since the scattering rate de-
of the band structure shows that both the majority and mipends mostly on the density of states and on the matrix ele-
nority bands withs character in[110] and[111] directions  ments of the scattering potential.

(A, andX,) cross the Fermi energy. Fpt0Q] direction the The AlLO; tunnel barriers obtained by oxidation of the Al
band withs symmetry (A;) crosses the Fermi energy in case film are amorphou&°® Concerning thex-Al,O; crystals, it

of the majority channel only. The similar analysis can also bés known from the band structure calculatihthat the gap
performed in case of Ni and Co. Thus one can assume that ifwhich is not direct between the upper valence band and the
the polycrystalline Fe-, Co-, or Ni-based films the states withconduction band is of the width c£6.29 eV. The disper-

s character present for both spin directions and the Bloclsion law of the lowest conduction band is not isotropic, and
states will couple efficiently through tHe/O interface with  the effective electron masses along the different directions in
s states in the insulator and will decay with the equal rates irthe Brillouin zone vary from 0.1®, to 0.40m, with an av-

the barrier region. We will call the electrons from theseerage value of about 0.8% .%° This lowest conduction band
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is formed by a mixture of Al 8, O 2s and O 3 orbitals. In R e

the top of the upper valence band the dispersion curves aréspin-ip= 212 2 j dro(z—z,)8(p—pn)In

very flat, i.e., the effective masses of holes are large as com- o

pared with the mass of the conduction electrons. Atlhe ST (DG (S (0D + ST (D U(NS. (091,

point, the top of the valence band consists of hybridized O Lo (NIDS-(en) + 417 (N ¢7(1) S (pn)]

2p and Al 3p orbitals. In view of that, one can describe the _ ; : st d+ s

conduction and valence bands of the amorphoufOAlby nge’u T'.l Is a spin suffix;s,"(r), % (r), and %(r),

) . : . : 0 ¢, (r) are field operators of the creation and annihilation of

isotropic quadratic laws with effective masse§ and m;, ® : . N

|m°|>m° s andd-type electrons vylth the spip at the pointr; my(z) .
T\I '[St.h like elect f the f ¢ i andmgy(z) are the effective masses of electrons and holes in

ext, thes-like electrons from the Terromagnet can easily . ferromagnetic layeran(g andmy) or in the barrier (ng

penetrate into the oxide since the lead bands witharacter 0 s d ¢ .
can couple efficiently withs states in the barrier, and the andmy). U,(2), U,(2) are the spin-dependent steplike po-
6ﬂnt|als shown in Fig. 1:

tunneling conductance, caused by the specular transmissi
of the Bloch waves through the interface, will decay for both

spin-up and spin-dowrs channels with the same law as Vis, z<a,
~exf —2w\/(2m3/72) (Us—eg) + «2], wherew is the width US(z)={ Us, a<z<b
of a barrier,Us is the bottom of the conduction band, and ~ > ’
k=K is the electron momentum parallel to tkéO inter-
face. Following MacLareret al'® we can suppose that
like electrons from those bands in the ferromagnet with- V&, z<a+zg,
out s character cannot couple efficiently with states in g
the oxide. Nevertheless, thesebands have an admixture UL(2)=y Ug, atzy<z<b-2z, (2
of p symmetry and therefore can couple with the valence V&, z>b-—1z,,

bands of the AIO;. However, in thed channel the tunnel-

ing conductance due to specular transmission will decaVvhereV{;, VA (i=1,3) are the majority {) and minority
very rapidly with the thicknessw of the barrier, as (1) band bottoms in the ferromagndt,, and U4 are the
~exf —2wy(2my/7i%) (g —Ugq) + «°], because of a large pottom of the conduction band and the top of the upper va-
massmj of holes in the aluminghereUy is the top of the  lence band in the insulator. The positions of “steps” for the
upper valence bandThe model potentials describing the potentialUS(z) are shifted by a value, with respect to the
propagation of the electron through a tunnel junction argyointsz=a andz="b in order to describe the finite thickness

presented in Fig. 1. . _ (~z,) of the interface. The explanation of why it is done in
We suppose that the ferromagnet/insulator interfaces amgis way is given below in the text.

rough and contaminated by impurity ions. The contamination A
of a few metal monolayers close to tl& O interface is
always presents after the oxidation of the Al film. Other im-
purities (e.g., Cr, RUX or Cu ions?) can be artificially in-
serted into the interface. We will characterize these structur
defects by the random potentials, which may be divided int
the spin conserving and the spin-flip parts. lzg&=a and
Z,=b be the positions of interfaces, they plane be the
plane parallel to the interface, and tkeaxis be the axis
perpendicular to the barrig¢see Fig. 1L The Hamiltonian of
the system is written as

V&, z>b;

spin-consIS the spin-conserving part of the Hamiltonian,
a=1,2 are the interface numbers. To describe the defect
structure of the nonidedt/O interface we consider that the
impurity ions and the ions of a ferromagnetic metal consti-
3Ute the more or less random alloy of a typgB, _, whereA
QYenotes the ions of the ferromagri€e, Co, or Nj and B
denotes the impurities. Therefore, we suppose that each site
py on the interfacer is characterized by the random param-
eter yy of s-d hybridization taking two different valueg,
and yg with the probabilitiesx and (1-x), respectively. We
also suppose that a periodic partsedl hybridization is taken
N OO ~ into account leading to the nonequivalence of majority and
H=Ho+Haspin-const Hpin-fip: @ minority s bands in ?he ferromagnqet. oty
with For the simple two-band tight-binding model of the binary
alloys® one assumes thal) parameters:; and 4 describ-
ing the positions ok and d bands on the energy scale are
w;(r) different for the alloy’s components arid) also the param-
eter yA(® of the hybridization betwees and d bands de-
pends on the type of an ioA(or B). In our particular case,
wi(r), one cannot take into account the former effect since the well-
defined two types of the electrons will as before exist in the
vicinity of the interface and the adopted model of tunneling

Hspin—consz 2‘12 2 En: J' dré(z—z,)8(p—p%)y° will not change significantly. However, the random hybrid-
a=12 pn

2

2my(2)

2
Vi+U3(2)

Ho=2> jdr v (n)
o

ﬁ2
2my(2)

+§M: fdr w5 () V2+U(2)

ization makes possible the processes of scattering of quasi-
o g s s free s electrons into the localized subband and vice versa
XLy (D () + ¢, (N)d(n], and, therefore, can strongly influence on tunneling.
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|2|spin_ﬂip is a part of the Hamiltonian describing the spin- B. The calculation of the tunneling conductance

flip scattering. We take into account only the spin-flip pro-  To calculate the nonlocal conductivity we apply the Kubo
cesses fos-like electrons since these electrons are itineranformula of the linear respon¥e(it is valid under the small

and give the most essential contribution to the tunneling curapplied voltage which is much less than the value of the

rent. Operator$* (p%), S (p%) are defined as energy gap in the insulator
2
’ e R NA R A ’
) 1 o T (1T )=m8p{<GMP(r,r )D,D/ G, (r',1))
Si(pp)= =2 e%¥n[by+--], .
V2SN q +(G%,(r,r" DD GR (1)}, 3)
where a matrix operatdd, is defined as
. 1 a
S (p%= —— earnpt+...17. 1 =
(h)= g2 €*ba+ -] v, 0
2my(2)
I‘: 1 1 (4)
Here b; andb, denote the creation and annihilation opera- 0 —V,
tors of the surface magnons,is a number of the lattice sites 2my(2)
on the interfaceSis a spin value. We used the well-known N -

-
representation of the spin operators in termsbgfandb,  and V,=(V,—V,) is the asymmetric gradient operator,
and left the first terms of the serie is a random exchange Gh,(r.r') andG/ (r,r’) are the retarded and advanced (2
integral which also takes the valudg and Jg with prob- X 2)-matrix Green's functionéwith componentss, sd, ds,
abilities x and (1—x). anddd), u,p=1,| are the spin suffixes, brackefs- - ) de-

Let us now turn back to the steplike potential tbholes. ~ note the averaging over the configurations and magnon de-

As it will be clear from the following consideration, the grees of freedom, the tra¢8p) goes overs andd indices of
amplitude of the effective scattering potential on thethe bands. Below, for convenience, it is assumed ahatl .

interface g=a) for slike electrons[i.e., —Im3%Ya), We will recall abouts in the final expressions for the con-
where 35 is the self-energlyis determined by the value ductance.
~—=x(1=x)(ya— yg)?Im GY(a), here ImGYa) is the To calculate the conductivit{8) of the system one has to

imaginary part of thel-electron Green'’s function at the point find the Green’s function of the Hamiltonida), which can
z=a (density of states If one putz,=0 in Eq.(2), then the be found by solving the following system of differential
vertex contribution to the conductivitithat is the contribu- €quations in the mixeds(,z) representatiori’

tion due to tunneling assisted by interfacial scatteriwgl

be rather small as compared with the contribution due to > [séaV—H”(z)]GV'B(z,z’)z5a55(z—z’), (5)
direct tunneling. This result is not accurate enough and isthe ~ y=sd # e

sequence of a continual type of the model when one neglects

the existence of the atomic lattice and for this reason the . 1 #  k?

self-energy has @-like behavior on the interface. However, ~ H."(2)=} =5 E”LmjL UL(2) 6*7+377(a)
the width z, of the interfacial layer is about the distance “ “

between atomic planes or even larger. For the case of bcc ><5(z—a)+2zy(b)5(z—b), (6)

lattice zg=a/2 for [100] direction (hereay is a lattice con- ) o

stan}. One can show that for the present model vagh-0 ~ Wherex=Kkj is a projection of the electron momentum on the
the imaginary part—Imng(z=z’) of the unperturbed XY plane(parallel to theF/O interface, the Greek |nd|cesy,_
d-electron Green’s functiofwith 399(a)=0], i.e., density ,{3 andy assume valuesandd, u denotes the electron spin.
of states ofl electrongholeg, has small value at the point of HzB(Z) is the (2X2)-matrix linear differential operator
interface z=a and increases inside tHe layer up to the WhereEij(a) andEff”(b) (a,B=s,d; u=1,|) denote the
distance of the order af,~ a,, and then it oscillates near the coherent potentials for spin-up and spin-down electrons
average value which is approximately ten times larger thanwhich take into account the scattering of the electron by
—Im ng(a), The period of oscillations is determined k)S/T random spin-conserving and spin-flip potentials on the inter-
or kgi , depending on the electron spin and on the orientatiofiaces. They were found with the use of the coherent potential
of magnetization in thé layer. Such a behavior is easily approximation(CPA),** the details of these calculations are
understood, if one takes into account tdatlectronstholeg ~ Presented in the subsequent Sec. I C and in Appendix B. The
are almost completely reflected on the metal/insulator intereperator H «(2) represents the effective single-particle
face. Thus, if one shifts the positions of “steps” fbjﬁ(z) Hamiltonian of the system which, however, is non-Hermitian
with respect tOU;(Z) as it is given by Eq.2), one can Since coherent potentials are imaginary quantities.

expect the more effective mechanism of scattering due to the In order to solve Eq(5) for the Green's functions, we will
larger value of—Im G%9, and therefore the model becomes follow the procedure described below. First, let us solve the

more realistic. Shralinger equation with the HamiltonidﬁM(z):
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¢i(2)—0 if z——-o (i=1,2.

Starting from expression&) and (9), the solutionse;(z),

The solutions of this equation can be easily found since thi(2) can Ee easily extended in two other layers. Let us
potentialsU¢(z) have a steplike form. Let us put=eg Introduce the matrices
+i0, wheregg is the Fermi energy, and introduce the fol- ((P?_(Z) ‘PS(Z))

B;gd [e8*P—A%(2)]y(2)=0. 7

lowing notations: O(2)=| 4 d
?1(2)  ¢3(2)

kiéu: Vzms(SF_V/iLs)a kgéL: Vzms(sF_VéLs)r
Yi(2) ¥3(2)
Kid=v2my(sp—Vig), kai'=2my(se—V4y) ‘P(Z):(lﬂg(z) lﬂg(z))'

are Fermi momenta ifr; and F5 ferromagnetic layers for  Tne \wronskian of the systei) is
electrons with the spim, and

qgs: Vzmg(Us_SF), qu: Vzmg(ud_sF)-

where the matrix operatdd, is defined similar to Eq(4)
pa_ [ Fm2_ 2 pa_ [ Fm2_ 2 z !
Let alsoky ™= y(ki,)"— «” and k™= (ksy)"— & be the 54 the subscrigt denotes the transposition operation. It is
components of electron momentum with spinalong thez

CE . X ) known from the theory of differential equations that the ma-
axis in F, and F layers, respectively K is the in-plane iy A js a constant since it satisfies the equatidn(z)/Jz

A=dT(2)D,¥(2). (10)

component of the momentuna; is a band index and let =0. Taking into account that=g.+i0 and Im 3 %<0,
q2= V(an?zJ”‘z be the imaginary electron momentum in {he solution of Eq(5) for the retarded Green’s function can
the insulating layer. be written in the matrix form as

Further, for convenience, we will omit indicgsand « in
the notation of some functions. Equatié® has four linear- GR(z,z)=®(9)[AT] W T(2) if z<Z', (12)
independent solutions which we denote as

GR(z,z) =V (2)A" DT () if z>7'.

(z
zpi(z):( d/;( )) (i=1,2 To find the advanced Green’s function, one has to gut
¢i(2) =gg—i0 in EqQ. (5) and assume that Inifjﬁ>0. Then we
and obtain
©3(2) GA(z,2')=[GR(z,2")]*. (12)
¢i(2)= o%(2) (1=1.2. In the expression$ll) and (12) the Green’s functions de-

pend on the in-plane momentuknand on the spin of the

We choose these independent solutions so that two functiongectron because solutions(z) and¢;(z) also depend op
1(2) andg4(z) would describe two waves corresponding to gnd «.

the slike electrons, and functiong,(z) and ¢,(z) would Next, one has to find the two-point conductivi) of the
correspond to the-like electrons. Namely, in a layé¥, (z = system using the Green’s functiofisl) and (12). For that,
<a) the solutionsp;(z) have the form we introduce the current matric¢$ andj¢ (u=1,]) con-
) structed with the use of solutiong(z) and ¢;(z), respec-
exd —ik{°z] tively !
¢1(2)= 0 z<a, (8 ’
j"2)=-iv'(2)D,¥(2), (13
0
‘DZ(Z):(exq—ikffdz]) =8 j“(2)==107(2)D,®(2).

The total conductance of the system),(z,z') may be pre-
sented in the usual form as a sum of the “bubble” part and
the vertex correctionésee Fig. 234

and in a layef=; (z>b) the solutionsy;(z) are

- (ex;{ik’gsz] ) ©
lzbl Z)= 7> y
0 O'M)(Z,Z')I5#p0'2(2,2’)+0'll;2(2,2')+0‘£2(Z,Z').
(14
0
— > . “ ” H H H
o(2) (exr[ikg‘dz]) z>Db The “bubble” contribution to the conductance describes

direct electron tunneling from the electrode to another one

Sincee =g+i0, then Imk**=+0 (i=1,2; a=s,d). Thus through the barrier when electron momentum parallel to the
these solutions satisfy the following boundary conditions: F/O interface k=k; is conserved(the specular transmis-

sion). The scattering on the interfaces affects direct tunneling

Pi(2)—0 if z—+o (i=1,2), so that the effective height of the potential barrier increases

064430-6
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R 2
Gy Ay By A, o-rb(Z,Z’)Z __*® 2 Sp[ ABlBZ(Z,b)
o, @z) = + 5 me 27hAZ oo pK
) ’ g = s o B v
Gﬁ 2 2 Xl—‘,gp 1 I)Ayl?lz(b,z,)}, (16)
B2 v2) P
A, B A, where summation is also performed over repeating indices
A — upB1 M upB1 Y1
+ + [hel Bivi=s.d. HereI'y?(;> ') andI'"(,;> %) are the vertex
z 7 parts on the interfacea andb. A, are (2<2) matrices,

B % their components are defined by

FIG. 2. The diagrammatic representation of the total two-point 1
nonlocal conductivityo,,(z,z') as a sum of bubble and vertex Aﬁlﬁz(z,a)zs;){—jﬂ(z)
parts. Here the full lines correspond to the Green's functions mx
GR(z,2') andG{_“}(z,z’), and wavy lines denote the asymmetric gra-
dient operatorV , of velocity at the pointsz andz’. The shaded Y172 N 1 oT 1 s
square designates the vertex pt¥ at the interface; H.c. denotes A(a,z')=S A_[p“ (a)]nva_TJ ()¢,
the complex conjugate terms. " Iz

where [p!(a)]#1#2 and [p¢(a)]712 are density matrices

because the electron also has to pass throijke poten-  With the components
tials at the pointg=a andz=b formed by the self-energies

1

A [pﬁ(a)]ﬁlﬁz], 17

T
o

BY .
3 ,(a) andX ,(b). The vertex corrections to the conductance [pl@ 2=yl 1@y @) (ik=sd), (189
describe the tunneling assisted by interfacial roughness — .
that is, the processes when the electron with momentum [pf(a) i7k172:¢i71(a)¢z2(a) (i,k=s,d).

comes to the impurity center on the interface, undergoes ) o ) )
scattering — «') in another channel witlt’ # «, and then ~ The expressions similar to expressi¢hg) may also be writ-
goes away to the electrode or to the barrier. ten for the matrices\ ,,(z,b), A,.(b,2") and for other po-

It also can be shown that the contribution to the tunnelingSitic:nslf’i:he pginltﬂs;z;pz’ with reTpelc'E[ t((:ja and ti.hThe IVZr(;eX
. - . arts an are calculated iIn e “ladder”
conductance is negligibly smale~4%(~®) from the dia- b a b

= 2" approximatiorf> The derivation of the equation fdP*” is
gram containing both vertex parig, andI’, compared with presented below in Sec. I1D.

other contributions that are of the order-oe 29~ The We have to note that coherent potentigls(a), = ,(b)
diagram with verticed™, andT'y, corresponds to the interfer- calculated in the framework of the CPA and vertide¥’
ence of waves scattered from both interfaces. Therefore, \NP/GP calculated in the “ladder” approximation Satisfy the so-
can neglect this interference term. called Ward identity which in our case, for example, for the

Substituting obtained expressionéll),(12) for the jnterfacez=a can be written as follow&or details, see Ap-
Green’s functions and using the definitighd) for the cur-  pendix A):
rent matrices, we come to the following results. The analyti-
cal expression for the “bubble” conductance is given by 1

im35Pa)= 3 rgp(ﬁl P2 S imera)

p=T.1 B2 72
e? 1 1 _aned Y2a2 arap
0 N T rie T_ = iy G p (a)G p (a)ImE o (a)} (19)
o,(22)= 5 ; SP{ A#[JM(Z)] N 1.2, e P P o
u (15) Here the summation is also performed over repeating indices

v; anda; . The fulfillment of Eq.(19) provides the necessary
condition of the nondivergence of the current through the
where it is assumed that<z’, A, is the Wronskiar{10) and tunnel junction

A denotes the junction area.

For z<a, z’'>b, the vertex corrections from the left and I o / J r , r -
from the right interfaces can be written as EU”(Z'Z HE p;,i [U"“;(Z'Z HU"Z(Z’Z =0
(20)
2 According to Eq(20), the total conductance of the system
0'/112(2'2/) - - > Sp{ Aﬁlfz(z,a) is a constant value. In view of that, we will derive the exact
2mhAT k! expression foro,,(z,z") evaluating the conductance at
pointsz=a—0 andz’'=b+0, i.e., at the left and at the right
N P yl)A”,yz(a,z’)], sides from the interface. The Wronskian matiy and the
B2 2] P* current matriceg (2) andjﬁ(z’) are expressed in terms of

064430-7
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matrices®(z) and ¥ (z)—these matrices, as follows from terms of the retarded Green’s functions at the points of inter-
Eq. (11), determine the Green's function. The straightfor-faces G,(a)=G}(z=2'=a) and G,(b)=G}(z=2'=b)
ward evaluation of the conductance according to formulagonstructed according to Eq11). The explicit form of
(15—(17) leads to the result that,, (a,b) is expressed in G, (a) in the (x,z) representation is given by the expression

k’fs sd o
5 (i—cotangt®) —X3%a) —3.(a)
S
G,(a)= d e : (21)
~3%%a) 3y L1~ cotart kizo+ @5 1-3%%a)
|
where Q> e
R — e 02w 0
t ms kTS mg t nd ké-’dd mg ( q ) = mg
an¢l =, anq)l :—d—. E - d 1]
qg Ms dz Mgy 0 %e—ng\l
my

A similar expression can be written for the Green’s function
G,(b) on the rLght mierfagg. For th:;iﬂt, one ha}ls to nlake the ndw=b—a— 22, is the “width” of the d barrier.
substitutionski“— k5, %:%(a)—~2."(b), ¢ —><g§ n For the vertex correction from the left interface<(a) we
the expression foG ,(a). Herem, (a=s,d) andmgy,) are  gptain

the effective electroithole) masses in the ferromagnetic and

insulating layersk* andq5 (i=1,3, a=s,d) are the func- .

tions onk introduced above in the text after E). Let us o, (ab)=—

> ABP2(a,a)

2 ’
define the “transport” density of states as follows: 2mhA” i
- B1 71
A (2)=GL(a)]G,(a), XU 5 A @b (24
A(b)=G(b)]%G,(b), (22) Au(a,a)=—A(a),
where N -
40 4], - 49y, -
s s Ap(a,b)=G;(a)xa1<E)>\b1Ap(b)>\b1(E)>\alep(a).
21 0 = 0
~o_| Ms ~y_| Ms In a similar way, the vertex correction from the right inter-
V= . kud | V= . ked | face z=b) reads
ma ms .
| o.2(a,b) =~ > APY2(a,b)
Expression(15) for the “bubble” conductance then reads e 2whA% o M-
0(ab)e e? 3 BTN e P 71)/\’”2@ b) (25)
O'#(a, )—m . S )\b E )\a Aﬂ(a) b :32 Yo pK’ e
_fa) - fal. - fa) -
XAt a)xblAM(b)], (23) Aﬂ(a,b)zGL(b))\b1(E)AalAM(a))\al(a>)\b1Gﬂ(b),
h _
where A, (b,b)=—A,(b).
%% 0 sin(k‘fdzo+ <P’fd) Expression$23)—(25) determine the total conductance of the
Na= gl NeE—— system.
0 A singf

C. The CPA equations

The scattering of the electron by random potentials within

S : d d
)\b_(eqzzo 0) d:sm(kg‘ Zo+ @49
' a0 : - A . .

singg the interface (terms H gpin.cons aNd Hgpingip in the Hamil-

0 ¢
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tonian is taken into account by introducing the self-energy

operatorsizﬁ(a) and Ezﬁ(b) into the effective single-
particle Hamiltonian(6). To calculate the self-energies we
apply the coherent-potential approximati¢é@PA).?4%° Let
us denote ketby,u,pr)=|v,1)®|pf) corresponding to the
Wannier states of the electron on the interfacd «=1,2) at
the given sitep; in the (X,y) plane, wherey refers to the
states or d and u is the spin. The symbok denotes the

PHYSICAL REVIEW B65 064430

GBV _meaxGaB kdk 30
W (22)= . Cn (2o, 0)5— (30

is the averaged Green’s function at the interfacevhich is
expressed vi& ® in accordance with Eq(21). The upper
limit kmayis a cutoff of the in-plane momentum which origi-

nates from the finite size of the Brillouin zone. For that, one
has to substitute the Brillouin zone’s projection onkg )

direct product. The problem of finding the single-particle plane by a circle of the same square with a radipg,. For
Green's functionG,,,(r,r’) of the many-body Hamiltonian  the pec latticex = 27/ V2/a,, Wherea, is a lattice con-
(1) is reduced to the related single electron problem of thestant. The single-site matrix (28) is obviously different for
propagation of the electron in a random interfacial potentialyjtferent sites. At the same time it is supposed that scattering

- 3

na=1,

, o @+ 0P ) (pil =n_212 lomvnipnl,

whereo =0 +5 Y and the summation goes over the

interface number and over the sitea. Here

v :M;H ye{|s,u)(d, | +|d,u)(s,ul}  (26)

is the random potential af-d hybridization associated with
the siten and

o0 =318, 1)S_(pp)(s, L+, 1)S: (pf)(s, 1]}
27

is the exchangelike interaction with the surface magnon

The random quantitieg;, andJ; used here were introduced
in Sec. Il A.

Now one can formulate the CPA by the ordinary way and
the only difference with respect to the usual situation of the n
bulk scattering is that the initial Green’s functions have to be n
calculated for the trilayer system. We assume that the aver-

aged propagator of the syste@ﬁﬁ(r,r’) differs from the

initial Green’s function, corresponding to the Hamiltonian

H, [see Eq(1)], by the self-energy correction in Ed$),(6).

This means that the system behaves as if coherent potenti

Eff had been assigned to each site of the intertaaedb.

After the introduction of the effective mediutn®, each site
p% becomes a source of the random potentigF o2 — 3.

The single-sitéd matrix associated with potenti&ﬁ is given
by

-~ 1 -~ 4
th= — == 24, 28
I os396) N 2
wherez,=a or b,
Se= 2 X BmE@) (vl (29
w=T1,l By=sd

G(z)= 2 2 |B.m)CE (z)(y.nl.
P A=

Here

by the random potential is taken into account in the averaged
propagatoiG(z,,) by the self-energy operatdr®. Therefore,
we require that the ensemble average of the single-sita-
trix vanishes, i.e.,

(TE)=x(tDp+ y(t)p=0. (31)
Here ts and t5 are the values of the single-sitematrix
associated with a given site which is occupied by the
A-type ion (ferromagnet’s ioh or by the B-type ion (impu-
rity), respectively. Brackets - - ), denote the averaging over
magnon degrees of freedom. Equati(8dl) is the well-
known self-consistent coherent potential approximation
(CPA) (Refs. 24,35 that implicitly determines the self-

energy operatok, ®. The CPA equationg31) are formulated

gor the particular case of electron scattering within E/®©

Interface. The straightforward calculations show that the
single-sitet matrixfﬁ can be represented in the form

te"(n_)S_

tat(no)

te'(n.)

ta (n)S,

(32

with respect to spin-up and spin-down subspaces. IHere
=8,5_, n_=8_S,, and the blockst®*, t¢') are (2
% 2) matrices, functionally depending an. andn_, with

%Se components designated by indices of bamédadd.

To satisfy the conditiori31), one has to consider only the

spin-conserving part of this equation as Iong(&%té;)b

=0 since the expression to be averaged contains an unequal
number of the creation and annihilation operators of the
magnons. In order to calculate®' "), we adopted the fur-
ther approximation and assumed that

()=t (n),

(ta'(n_))p=17'(n),
wheren=n(T) is the average number of magnons at the
given temperature. In other words, we substituted the opera-

torsn. by its averaged values. The functioT) is given
by the familiar expression

n(T)ZJ

d?q 1

_— 33
(2m)? ePe@—1 33
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where w(q) is the spectrum of surface magnons. The ap- ay By ay; By Y, 8, B,
proximation we made to take into account the spin-flip pro- '

-
. . . . . ] 1
cesses is the static approximation for magnons. The inelas- / _— ];p : + ]’17\ . D)\ /
==

ticity of the electron-magnon processes may be taken into
account in the energy conservation rule. However, the char-a2 B,
acteristic magnon energyw, is much less than the Fermi

energyeg, and in the first approximation one can neglect gig. 3. The diagrammatic representation of the equatie
this energyf wg—it becomes important in the case of finite the tex) corresponding to the calculation of the vertex gat in
voltages when the process of emitting of a magnon by a hohe ladder approximation.
electron influences on the form dfV dependence. We,
therefore, restricted our calculation to the case of small volt-
age bias with the voltage less thaw,. Within this approxi-
mation, for the system of CPA equations we get To find the vertex corrections we used the “ladder” ap-
proximation combined with the CPA, that was originally pro-
posed by Velicky’® The diagrammatic representation of the
“ladder” approximation is given in Fig. 3. Since the scatter-
ta'(n)x+tg'(n)y=0, (34 ing potentials on the different interfacéast the pointsa and
b) do not correlate with each other, the vertex parts

rg{b)(g; 12) can be found independently for each interface

and we will omit interface suffix in the subsequent expres-
sions. LetT’“’(g; z;)z((tﬁ);flyl(tﬁ);iﬁz) be the average
As long as matrices?®'(") are (2<2) blocks, the general of the product of two randorhmatrices over configurations
case Eq(34) represents the system of two matrix equationsand magnon distribution, where as befarg are spin indi-

for eight unknown quantitieg?”(z,). The system(34) is ~ ces ands,y are orbital indices. On the diagram in Fig. 3, it
one of the possible forms of the CPA equations. But actuallyS presented by the dashed line. The analytical expression for

we used another representation of the CPA which was mor#e correlatorT#? (ﬁi 75) can be found in accordance with

convenient for the numerical implementation. For that wethe adopted approximate scheme of averaging over the mag-
exploited the augmented-space formalism by Mooke?ﬁee, non degrees of freedom. Taking into account E2P) we
and the details are presented in Appendix B. obtain

D. The vertex corrections

t¥h(n)x+t2'(n)y=0.

B1 7

TTT(
Bz o

) =xtx!(n)P1nt)(n) 2P+ ytE T (n)Arrith(n)72P2,
1 Pi m *LenyBiritd (n) 728 * L) BLritl (n) v28
T o =Xty (n)PL7t,(n) 2 24 ytg * (n) 171t (n) 7272, (35

B1 7
Bz o

B1
Bo

T”( )=xnt’;+(n)5171t;(n)72ﬁ2+ynt’é+(n)E171tB_(n)7252,

Y1
TU( , ) :Xntzi(n)lsl'yltx(n)VZBZ—i—yntgi(n)ﬁl'}’ltg(n)}/gﬁzl
2

where tL((lB))(n) and tAi(B)(n) are the components of the der”equation at the interface, . Its definition follows from
single-sitet matrix, Eq.(32). We also define the operator  the fact that in the diagram representation of the CPA the
multiple scattering on the given site is assumed to be incor-
porated into the single-sitematrix t;, corresponding to the
_ 1 E [G*Bm(z )Gﬁm(z ) single vertex of any diagram. Due to that, the subsequent
A< K @ kg AT sites in the “ladder” diagrammatic equatigRig. 3) must not
reproduce each other. Therefore, the necessary correction is
—G*P11(2,)GP2(2,) (36)  subtracted in Eq(36). The summation ovek goes up to
a . Kmax Similar to Eq.(30). After that definition the analytical
denoting the propagator of the pair of electrons in the “lad-equation for the vertex part reads as

Da(ﬁl V1
B2 72

064430-10



INFLUENCE OFs-d INTERFACIAL SCATTERING ON.. .. PHYSICAL REVIEW B65 064430

FMP( a ,31) T (al ,31) T
a B lay, B lay v
Y1 61 " o1 PBi1 yg are hybridizations of the pure components. Let us assume
Yo &, r S PBo) G for simplicity that in Eq.(B2) yo=y=Xya+tYyys=0. Then

for x=0.5 we gety,=—1vg, and thusy?=x(1—x)(ya
Equation(37) is the ordinary system of linear equations. It — yg)? is the single parameter characterizing the amplitude
can be proved that the vertex parts found with the use of thgf 5.g scattering on the interface. The nonzero valueyof
“ladder” approximation and self-energies found with the useyj|| lead to a slight modification of the- and d-like eigen-
of the CPA satisfy the Ward identit19), and hence the total  states describing andd-like electrons in the vicinity of the
tunneling current is a constant valj@) =jo, i.e., it does not  jnterface, and thus will not affect the qualitative results pre-
depend ore. The proof of the Ward identity is presented in sented below. We will omit spin suffixes since we consider
Appendix A. the spin-conserving scattering now. A& 0.5 only diagonal

elements of the self-energy mati@x*? in the sd space have

I1l. RESULTS AND DISCUSSION nonzero values. Then the Green’s functions, e.g., at the point
a, becomegsee Eq(21)]

hybridization effects(see Sec. Il A for justification of this

a 71) Since in the framework of our model we are focusing on the
approach, we haveya(x)# vy, vs(X)# v5, Whereys and

We considered the case of Fej@/Fe tunnel junction.
The following parameters were chosen to describe the sys-
tem. According to estimations of Steaffisfor the itinerant Gss(a)=f
slike electrons in Fe we setki'=1.09 A%, KkE! 0
=0.42 A andm¢=1.0m, (herem, is bare electron mass
For the more Iocalize_dj electrons(holeg, we p_ut mg= Koo k,fd -1
—10.0m¢. The(_JI de.nsrcy. of states at the Fermi energy is Gdd(a)=J (—[i —cotar(ktljzo+cp‘j)]—2id(a)}
larger for the minority spin bantf, thereforek'>k!, and o (2mg
we putki'=0.45 A1 k'=1.15 A% The values of the dk
Fermi momenta define the positions of band bottors, ><2—,
V4, (a=s,d, u=1,|) with respect tae . Ford electrons m
the Fermi momenta were chosen such a way that the inteand CPA equations are written as follows:
face densities of statggq)(e¢) = — 1/mIm G§4)(z,) (Where

z,=a,b are the positions of interfacesomply with the fol- - y>Gdd u Y Che

lowing ratio: p.7(ef):pli(er):pl(er) ~0.1:1:10, which is D T 14> ddgdd’ T li3sge
the typical situation for the case ofi3ransition metalgsee,
for an example, the calculations of Tsymbal and Pettfjor ~which must be solved self-consistently by means of converg-
We also put the width of the barrien=20 A, andz, ing iterative procedure. As far as Green functions are diago-
=ay/2 wherea,=2.87 A is a lattice constant for bcc Fey( nal, one can denot& ,z=T'(j g) and can introduce the
is a parameter describing the thickness of the intejface  similar notations for quantitie andD, defined in Sec. II D.

The main features of the band structureaefl,O;5 crys-  Then one gets
tals were briefly presented in Sec. Il A. In view of that dis-
cussion, the following parameters of the model were taken to Y Y2
describe the amorphous A, barrier: the effective masses Tsg=Tys= ddm~ddiz cosg2’
of electrons and holes are)=0.4m,, md=—10.0m,, the [1+2%6H* [1+256G°
positions of the conduction band bottotdd) and the top of
a valence bandy,) areUs=—-U4=3.0 eV, i.e., the width
of the band gap is=6.0 eV, ands¢ is assumed to be a zero
of energy. T2D" TgsD*®

. . . re———  TI,=—

In order to illustrate the general formalism presented in S$ 1 _T2 psspdd’ dd 1—T2 psspdd’
the previous sections, let us first consider the case of only sd sd
s-d impurity scattering(i.e., T=0 and there are no spin-flip T
processeswhen concentration of impurity ions on the inter- Fsd:Fds:—Sd-
face is (1-x)=0.5. In this case all formulas have a simple 1-TZ,DsDY
analytical form. As it was mentioned previously in Sec. Il A, 0. ) )
in the two-band tight-binding model description of a binary Since the mass of holesy, in the insulator is mucf; larger
alloy the random variables are diagonal matrix elements ofnan the electron mass; , the exponential factag ™ 242(°~2)
the Hamiltoniane3(x), sﬂ(x), and y,(x) depending on in formulas(23)—(25) for tunneling conductance is negligi-
whether the siten is occupied by am\ or B ion. To be more  bly small as compared with one faflike electrons. There-
precise, one must consider the concentration dependence faffe, one may neglect the contribution fromnholes to the
these matrix elements. It reflects the fact that their values areinneling current. Then for the tunneling conductance we
modified by the existence of a charge transfer in the alloyobtain

kmax

kys o wss | Txdk
[z—mso—cotangol)—zﬂ(a) o
(39)

(39

(40)

Tss=Tqa=0,
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E by gt o 2.5x10™"
o= ontor”"+o , _ L N A
=1 (76 o o, 2 ) P configuration
N 13
[= 2x10
=)
where el
2 8 1.5x10%F
2 S
€ Kmax dz s, kdk Q :
T ss 1z ss —2q,w [&]
0T 2mh fo A""(a)( m? Acu(bre 27 S 1x10™k
S et
@4y 3
5x107
is the conductance corresponding to the “bubble” diagram §
(herew=b—a), 0.00 . .
5 q 0.00 0.05 0.10 0.15 0.20 0.25
e Kmax KUK eV
B Add (5 r@uu ¥
I T 2k fo "'“( ) 29 | Us o )
FIG. 4. Bubble and vertex contributions to the tunneling con-
p s\ 2 "di’ ductancein the unitse?/274 per unit square 1 A for the parallel
max _ss 2 gz ss —ogsw K ; ; ; ;
X |GK' (a)| — ASS (b)e 292V —— (P) alignment of magnetic moments in the ferromagnetic layers as a
0 # mg " 2m function of the scattering parametgron the interface in the ab-
5 sence of spin-flip processes. The parameters of the modellidee
" jkmaxAss(a)Kd" [(@ue electrons: kf°=1.09 A%, ki5=0.42 Al mg=1.0, m?=0.4;
2whi\ Jo T 2w | SS d-iike holeskf =05 A%, kT 9=1.4 A" my=mp=-10.0, the
5 height of the potential barridgd ;= —U4=3.0 eV, the width of the
Kmax s 5 qg <s ot K'dk’ barrierw=20 A, the concentration of Fe ions on the interface
X f |GK,M(a)| —| A (ble aw =0.5.
0 mg

(42)  plane of the interface is conserved. Scattering processes
is the “vertex” contribution to the conductance on the left ren(_)rr_nallze the “bubble” term with r_esp‘fect_to Ehe case of
interface. and ballistic transport such that the effective “height” of the po-

' tential barrier seen by electron increases due to self-energy

2 max corrections? °° arising on the interfaces. The vertex contri-
Uﬁfzm< f Agi(b)ﬁ) I butions to the conductance describe the tunneling assisted by
0 interfacial scattering—that is the processes of tunneling with
Ko Q@ 2 . k'dx’ scattering on thd=/O interface when the in-plane momen-
X f |Gisf (b)|2(_o Aigf (a)e 292" —— tum is not conserved, i.ex’ # k for the scattered electron.
0 . mg a 2 Thus, both momenta and <’ in Eq. (16) determine the
5 . q vertex corrections.
. _( j mpss (b)u)l“g?‘“‘ Note also, that both vertex corrections and oy, (42),
2mh\ Jo w2 (43) consist of two terms with verticeB 4 and I's. The
s\ 2 L terms with vertex part’sg are contribution to the tunneling
y meax|Gs? (b)|2<% ASS (a)efzqng dx conductance frons-like electrons only. The scattering in the
0 e mJ 2@ s channel described b¥.®® (39) is caused initially bys-d
(43) scattering. The terms with 4 describe either the process of

diffuse scattering otl-like electron to thes state in theF/O

is the “vertex” contribution to the conductance on the right interface and then tunneling of tisdike electron in the bar-
interface. Heré\; are the transport densities of states whichrier, or the process of tunneling of tiseelectron and then its
for the present case on the left interface are given by thécattering tad state in theO/F interface and leaving into the

expressions electrode.
We have calculated the tunneling conductance and the
K4SImg TMR ratio defined as TMR (op— oap)/oap, Where op
A% (a)= (44 andop are the total conductances for the para(le] and

Sp: s _N'SS 2’
|Ki(i — cotane})/2ms— 2 % a)| antiparallel (AP) alignment of magnetic moments in tie

layers. The CPA equations defining the self-energies were
ddnn ki myg solved numerically. The validity of the Ward identity, Eq.
Acul@)= |k‘f[i —cotar(k‘l’zo+@‘f)]lZmd—Eﬂd(a)Iz (19), was checked after the vertex paftshad been com-
puted at every step for a given value of the parameter
and by analogous expressions in the case of right interface. The results are presented in Figs. 4-7. In Fig. 4 the
We remind the reader that physically the “bubble” term in “bubble” (41) and the “vertex” (42),(43) contributions to
the total conductance is a contribution to the current due toéhe conductance for spin-up and spin-down channels are
direct tunneling when the electron momentu k| in the  shown for the parallglP) alignment of magnetic moments as
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1.40x10°™% 25

% 1.20x10" AP configuration 20
=} [ L
5 1x10® 15
— - - L
8 gxio™ X 10
[0] 3 5
g  exio™ N %
B - e — O
S  ax1o™p .
-g X vertex P 5t

2x10™" e
8 i 7 10+

0.00 ey . 1 R 1 . 1 N . | . |

0.00 0.05 0.10 0.15 0.20 0.25 -18 00 0.05 0.10 015 0.20 025

s eV Y, eV

FIG. 5. Bubble and vertex contributions to the tunneling con-
ductance(in the unitse?/274 per unit square 1 A for the anti-
parallel (AP) alignment of magnetic moments as a function of the
scattering parametey on the interface in the absence of spin-flip
processes. Parameters of the model are the same as in Fig. 4.

FIG. 7. The tunneling magnetoresistafi€®R) as a function of
the scattering parameterin the case of only elastic scattering on
the interfaces. The parameters are the same as in Fig. 4.

tion with vertexI'l, since at smally, I'{{"~y*D{f, and
D!%>D?, thereforel '} >T'{;. Second, the transport density

f statesAYd(a) [Eq. (44)] which determines the partial con-

uctance due to mixing of andd channels in the interface
é#tharms withT'sg) is also larger for minority spin channel.

us, the combination of these factors results in domination

of the vertex contribution to the conductance from the mi-
nority spin channel. The results of calculations also showed
that thess contribution to the vertex corrections® (terms
with verticesI'sg was much less than thed contribution
o4 (terms withT'gg).

The bubble and vertex contributions to the conductance
(which are the same for spin-up and spin-down chanriets
the antiparallelAP) alignment of moments as a function of
v are presented in Fig. 5. The total conductancesPfand
AP configurations are shown in Fig. 6. Finally, in Fig. 7 the
TMR ratio (cp—oap)/oap @s a function of scattering pa-
rameter y is shown. When the amplitude of scattering is
negligibly small (y=0), we have positive value of the TMR
"=24% — that is the result of Slonczewski’s thetfrynder
the chosen parameters fetike electrons. With increasing
the TMR amplitude is monotonically decreasing and can be-
come even negative > vy.~0.16 eV.

a function of the scattering parameteon the interface(We
remind the reader that up to now only the spin-conservin
scattering is consideredAs it was mentioned previously,
scattering suppresses the “bubble” conductance, and hen
o, ando?), are decreasing functions gn The contribution
from the “bubble” part is larger for the majority spinfj
channel sincek?5> kfs. On the contrary, the contribution
from the vertex corrections dominates for the minority spin
(1) channel — that behavior can be understood as follows
First, at smally? the imaginary part of the self-energy
.55, which describes the scattering®€lectrons, behaves as
Im.E?prwyzp?(U(s,:.) [see Eq(39)], Whe_rep?(u(s,:) are
spin-up(down) d density of states on the interface. As far as
p{(eg) is of the order of magnitude greater thaf(s¢), the
scattering fors-like itinerant electrons from minority spin
band () is more effective than for the majority spir X
electrons. The more effective scattering of spin-daatec-
trons leads to the predominance of the minority spin contri
bution with vertex parll*iS over the majority spin contribu-

2.5x10™

W I To understand qualitatively the obtained results, conduc-
g 2x10" tance and magnetoresistance can be rewritten in the general
g I approximate form
S 15x107°
di dlT
8 ap~(p3)2+(p3) 2+ ps T it +p5'Tigpt',
S 1x0L
S I - d17 d| 7
3 aap=2p3 pT' + 05 Tl +p5' Teept',
T -14
c 5x10
<}
o [ Ao=op—opp=~(p3 —p3")?
0.00 — .
0.00 0.05 0.10 0.15 0.20 0.25 +(pS - Pil)(PgTTld— pgiﬂd). (45)

v, eV
where we took into account thaf< ¢3¢, and for high and

FIG. 6. The tunneling conductances of the individual spin chan-, . . . - .
nels (in the unitse?/2x% per unit square 1 A for the parallelP) thick enough barrier the main contribution to the tunneling

and antiparalle[AP) alignment of magnetic moments as the func- conductance is due to electrons with momentum almost per-

. . — S
tion of the scattering parametgron the interface in the absence of pendicular to the barrietfactors e 292%). Consequently,
spin-flip processes. The parameters are the same as in Fig. 4. pim) are the quasi-one-dimensioratlensity of states near
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the interface, andp$'() are the corresponding three- 5[

dimensional density of states. ThE are renormalized ver- 2ok 7T ——T=42K
tex corrections. In expressiadb) for Ao, the first term due o AN soo-T=T7K
to direct tunneling is always positive. Concerning the second ~ '°[ "~ AN :Ifgggi
term, p3'>p3' sinceky' >k, but p§'>p3’ and, therefore, g 10F TN _
this term is negative. This contribution decreases the magne-n‘:’ 5F \‘\-\.::\\
toresistance when scattering parametdrecomes larger. At s ol '\.‘:

v> 1y, the sd contribution overlaps the contribution o - - N

from the ss channel, and we have TMRO. Thus, the in- St

verse TMR ratio arisen in our model is caused by extremely -10F

strong scattering of negatively polarizetilike electrons 15l . . . . !

(which give the indirect contribution to the tunneling cur- 0.00 0.05 0.10 0.15

rend to thes band on the interface. Y, eV

The parametery determining the amplitude of-d scat-
tering on the interface is defined &8=x(1—Xx)(ya— vs)>.
One can regard the difference between hybridizatigps

—vyg as approximately a constant value for given constitu- . . . .
ents. However, (% x) is a concentration of impurity centers suppression of majoritg-p density of states compared with

and thusy is a measure of the imperfection of t/O minority spins caused by the resonant scattering of majority

interface. The proposed model, therefore, explains qualita§pln sp-electrons with the Cu states. From the point of

. ) DL . view of our model, we can explain the strong degradation of
tively the strong interface sensitivity of the tunneling mag- ; o :

. 8 : S ; the TMR by the strong electron scattering within the interfa-
netoresistance effect.® According to Heine’s discussion of

the hybridization in transition metafé, the hybridization cial Co-Cr alloy that is formed under the preparation of ex-

constants are from about 1.0 to 3.0 eV for different eIementst.remely thin ¢-1 monolayey Cr interlayer.
We have also calculated the temperature dependence of

One can assume that the differenag ¢ ye) is o_f_the order the TMR taking into account spin-flip scattering in addition
of magnitude smaller and, therefore, the critical value of

scattering parametey,~0.16 eV that we obtained is more to s-d impurity scattering as it is described in detail in Secs.
or less realistic. IIC and IID. For that, the average magnon numiém)

The strong reduction of the TMR due to nonideal struc-(33) as a function of the temperature was found in analogy

ture of the metal/insulator interfaces is a well-known obser-Wlth Debye’s treatment of phonons using the similar ap-

agpl 13 .
vation. The oxidation of a thin Al layer leads to the undesir—pro"".Ch that v_vas_proposed by Zh ) The_ magnon d's_
able oxidation of few metal monolayers close to D persion relation in Eq(33) was replaced by simple isotropic

interface and thus to the formation BfO oxides[ Fe;0,,° parabolic spectrum

Co0, and CgO, (Ref. 9]—that reduces the TME°On the q\2

other hand, if the too thick Al layer is not oxidized com- wq:Em(k_K) ,

pletely, the contamination of the interface by Al ions also ma

reduces the TMR:™® The dependence of the TMR vs the wherek,, is the equivalent radius of the two-dimensional

thickness of the Al overlayer has, therefore, a maximum an@rillouin zone [see Eq.(30)], and E,, is related to Curie

the best TMR values achieved by Moodera’s group lie in theemperaturer, and in the mean-field approximation is given

range 10-16 R. . o by E,=3kgT./(S+1). For the chosen model of the disper-
The contamination of the/O interface by OH ions in the  sjon relatiorw,, one has to overcome the divergence on the

early experiments by Merservey and Tedrow on tunnelingower limit of the integral in Eq(33). Therefore, one must

with the superconductotded to the small measured values introduce a lower wavelength cutdf, . Physically, it may

of a spin polarizatiorP for Ni and Gd. The contamination yepresent a finite coherence length due to interfacial rough-

was due to oxidizing of the Al films in the laboratory air. The pess. In our calculation we have taken the same parameters

improved technique of samples preparation in a pure oxygefhat were used by Zhargt al*® for the analysis of the zero-

increased the values & for Ni and Gd, and for some rare- pjgg anomalyS=3/2, kgT,=110 meV, andE.=4 meV.

earth metals:’ a0 ~ Then, for the temperature range within the room value, we
In a recent work by LeClaiet al.”" the strong suppression pgye

of magnetoresistance was observed in CgDAICo tunnel

junctions with a very thin Cr interfacial layer. It was found 1

that the TMR decayed exponentially on the Cr interlayer n(T)=—§<

thickness with a length scale1 A (approximately 0.5

monolayers With the addition of ont 3 A Cr (=1.5 mono- We have putx=50%, J,=2.0 eV (for Fe atom$ and Jg

layerg the reduced TMR was only 10% of the initial value =0 eV, i.e., it is supposed that spin-flip process is possible,

for a control junction. LeClaiet al*° presented some quali- if an electron scatters on the Fe ion. The TMR vs the scat-

tative arguments that the suppression of a spin polarizatiotering parametey at different temperatureé=4.2, 77, 210,

(and, hence, the reduction of TMRas due to more strongly and 300 K are plotted in Fig. 8. In Fig. 9 the temperature

FIG. 8. The TMR for different temperatures as a function of the
scattering parametey.

kgT

_ a—Ec/kgT
Em)In(l e Sc’fsl),
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0-44 T T T T T T
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FIG. 9. The temperature dependence of the resistande émd
AP configurations of the magnetic momentsyat 0 andx=50%.

dependence of the resistance for thand AP configuration

of magnetizations is presented for the same parameters, b,

PHYSICAL REVIEW B65 064430

fore, a tunneling current is conserved. We showed that
interfacial interband scattering substantially reduces a value
of the TMR, which can become even negative in the case of
extremely strong scattering. The reason for the suppression
of the magnetoresistance is the indirect contribution of nega-
tively polarizedd-like electrons to the tunneling current due
to strong scattering to theband on the interface. It is also
shown that spin-flip electron scattering on the surface mag-
nons within the interface leads to a further decrease of the
TMR at finite temperature. Thus, in the framework of the
proposed model, we are able to explain qualitatively the
strong interface sensitivity of the tunneling properties that is
observed in the experiments.
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y=0. The results show that the TMR ratio decreases Wit'b2-16965.

increasing of the temperature. Moreover, the resistaRges
andR,p of the structure for both configuratioRsand AP are

also decreasing when temperature increases — that is in the

qualitative agreement with experimental df¢eg., see Fig.
4(b) in Ref. 38. The physical mechanism of this effect is

APPENDIX A: WARD IDENTITY

In this appendix we briefly describe how to obtain Eq.
(19 (Ward identity, and using a simple example we will

related with the excitation of spin-flip processes in the sysshow how this identity can be proved. Starting from Ef),
tem. Due to these processes, the new channels of electr@me first has to compute the derivation of the “bubble” con-

scattering appear which are frozen at zero temperature. Aguctivity. Assuming, that the self-energy;” is symmetric
the result, the conductance of the system increases forfbothyith respect to the rearrangement of band indices, 167

and AP configurations and, therefore, the resistance drops.
The spin-flip processes mix the spin-up and spin-down chary,

Eﬁ“, and using the fact that functiong®(z’) are the so-
tions of the Schrdinger equatior{7), for the derivation of

nels. Therefore, the relative difference of the resistances d Re current matrix we obtain
creases at different configurations and the TMR decreases

with increasing of temperature.

IV. CONCLUSIONS

. . . . w
In conclusion, we would like to outline the main results
obtained in the present work. Based on the analysis of the

band structure of @ ferromagnetic metals and &D; crys-
tals and on the results @b initio calculations of the mag-

[? H (23 ! ’ o
—jlzh= > 2Im3z)[pl(z')],
0z ap=s,d

here

seP(z')=32P(a)8(z' —a)+22P(b)8(z' —b),
and the matriipﬁ(z’)]“ﬁ is defined by Eq(18). Then, from

netoresistance for epitaxial tunnel junctions, we built on arEds.(15),(17) we have

adaptation of the simplified two-barsdd model to treat the
diffuse electron transport in the nonidelO/F magnetic
tunnel junctions. We had modeled the roughO interface
by the random binary alloy that is formed from the ions of
the ferromagnet and impuriti€g.g., the Al or O iong and

eZ

ap
oA > 2 [2m3fa)

igo(zzr):_
9z’ L k aB=s,d

X 8(z' —a)Ai(z,a)

assumed that the main mechanism of electron scattering on

the interface which substantially affects tunneling is $he
scattering. We used the Kubo formalism to calculate the tun

neling conductance and found the vertex corrections to con-

+2Im24P(b)8(z' —b)A&%(z,b)].
(A1)

ductivity with the use of the “ladder” approximation com- To proceed further, let us compute the derivation of the ver-
bined with the CPA. The obtained results show that in the€X correction to conductivity. The initial expression for the
case of strong electron scattering within the interfacial alloymatrix A, (see diagram in Fig.)2s written as

the vertex corrections give the essential contribution to the

tunneling conductance. We proved that adopted approxima-
tions lead to the physically correct results, namely, the non-
local conductivity tensor is a constant function and, there-

V.,
2im,

Y172 N — * Yy ’ aya. 1
AM%(a,z )—Q:ES’d G 1(a,2')5—Gi¥Z ).
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Taking into account that the Green'’s functions are the solu-

tion of Eq. (5), we obtain
J
A M1Y2 ’
,A,m (a,2")
=—28(z' —a)lm GZ%]Z(a)

+2 >

aB=s,d

Im3 % (a)G *ayl(a)Gﬁ”(a) 8z —a).

Substituting the obtained expression to form(l8) for the
vertex correction, we get

7,32, '~ a)APY2(z,a)

/

B1

2
_ ayay * a1yl @272
ImX *"2(a)G . (a)G 1 (a)].
(A2)
The summation here is also performed over indieesg;,

X [ 4P

Zl> [lm GVlVZ(a)

andvy; . A similar expression can be written for the derivation

of the vertex correctionriz(z,z’) at interfacez=b. From
Egs.(Al) and (A2) one can obtain the final expressitiD)
for the Ward identity.

Let us prove the identity for the simple case of osid

scattering, when there are no spin-flip processes, xand

PHYSICAL REVIEW B65 064430

Den=|G®42|G%2— y 4|1+ 3°G°Y*.

The same expessions for B and Im3 99 follow directly
from the CPA equation&39)—that finishes the proof.

APPENDIX B: THE DERIVATION OF THE CPA
EQUATIONS

In this appendix we will derive the CPA equations for our
particular case using the augmented-space formalism
(ASF).%5 As was described previously, we assume E©
interface to be a random binary alloy of the typeB; ,,
where A are ions of the ferromagnet ar®glare impurities.
Following the ASF, we associate each random varialjje

and J; with the self-conjugate operatorg and J, respec-
tively, which are determined in the auxiliary two-
dimensional vector spack such a way, that the spectrum of
these operators coincides with the set of possible values of
random variables. For the sake of clarity, hereafter, the tilde
is ascribed to any operator acting on the auxiliary space. We
also define the orthonormalized bakss, wheres=A or B,

which are eigenvectors of andJ, so that

YIAY=yalA),  TA)=TalA),

7|B)=1g|B), J|B)=Jg|B). (B1)

According to that definitiony andJ commutate with each
other. Let nowf(ys,J;) be a function or an operator of
random variables/, andJ;, . Then, the operator in the aux-

=0.5. This situation was considered in Sec. Ill, and therdliary space®, associated with functiof, is defined ad

were introduced the notations,z, T,z, and D8 (af

=s,d) for the components of the (22) matriciesl’, T, and

=f(’y,d) and according to EqB1), e.g.,(A[f|A) is a value
of f, if the siten is occupied by an ion A. One can introduce

D. Within these notations, the identit¥9), which has to be another orthonormal basis th

proved, can be written as

1
ImSee= > T,5 ImGPF—= D |GPA2Im AP,
B=s.d S <

10)=Vx|A)+\y[B), |1)=\y|A)—X[B),

so that the operatorg andJ in this representation are writ-

Here we omitted spin suffixes, all values associated either

with the interfacea or b, G## andT ,; are defined by Egs.

(38),(39). From EQs.(36),(37) it follows that

1
Daa:KE |Gia|2_|Gaa|2, l‘**l:T*l_D_

ten as
~ (70 7) (Jo 5) (B2)
"y: y = .
Y n 6 I
Herex andy are the concentration &-type ions(ferromag-
net's iong and B-type ions(impurities on the interface, re-
spectively, and

Using these expressions, Ward identity can be written in the

form
IMG*— > {[T Yap+ 8,5G2mMZPE=0.

B=s,d

Using Eq.(40), we then can find that

1
Im 3%5= o (|GH2Im G**+ y 21+ X9G°4Im G,

1
Im 39— (|G°42Im G+ 21+ 299G Im G=),

where

Yo=XYa+Y¥e:, Y1=Y¥atXvygm,
y=XY(ya— 78), Jo=XIat+YJg,
Ji=yIat+xJg, =1xy(Ja—Jp).

Then one can prove that the average valué isfgiven by

=(0[f|0). Together with Eq(B2) this property is the way

to evaluate the average of any given operator, depending on
the random variables, and we can apply this method to aver-
age thet matrix (28).

Following the general scheme of the ASF, outlined above,

the random effective potentiai®=0%—3¢ is associated
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with the operatot) — 3 acting in the augmented vector space
d®L, whereL denotes the four-dimensional space of orbital
(s,d) and spin (,]) electron degrees of freedom. In accor-

dance with Eqs(26), (27), and (B2) this operator has the

form
_ . [0, A

A U,;-3
Yo+ oo —3 Y+ 50
:( otd =S y+? ) ©3)
’y+5l) ’)’1+le_2

where? is defined by Eq(29), operators&(i) are defined
similar to Eq.(26), and other operators are given by

v=I1S_ (e +11)Ss (p2)(1],

5=als)(sl, Ji=Jils)(s| (i=01).

Let us also introduce the nonrandom averaged propagator

acting in the augmented space
G O
0 G

and associated with potentiﬁl (B3) the augmented scatter-
ing t matrix

T=(0-3)

1 _ to to
1-G(0-3)

.~ . ) . (B4)
tio tnn

Its projection onto the zero-levéd) of the augmented space
too=(0[|0) coincides with the average from the “physical”

randomt matrix (28). The subsequent averaging over mag-

non degrees of freedofiyy, must vanish due to condition
(34).

To proceed further, let us introduce the electron propaga-

tor G,

1 j—
G 1-(0,-3)

G}
(chy

G,
G;

élz

which is associated with the “propagation” of an electron on

the first level of the augmented space in the potential

—3. Taking into account the explicit form df;—3 with
respect to spin-up and spin-down subspaces

Ul_i :(
where operatory,; andJ; are

y1=ya{[s)(d|+[d)(s|},

J1=J4s)(s],

J;S.

o )
y-st)

J;S.

(B5)

one gets

PHYSICAL REVIEW B65 064430
Gi=[1-G"(»-3"+Jn, g3y *6,

Gi=[1-GMy~2'+3in_gldp] 'G',  (BO)

where
é}(l):[l_éT(l)(a,l_iT(i))]—léT(i),

andn,=S_5,, n_=S5,S_. The physical meaning of these
formulas is rather transparent. The Green's functigh'
corresponds to the propagation of the electron in a spin con-
serving part of the potentiall;—3 which is y;—31(),
while GV corresponds to scattering on the potengal
—31M+3,n.9;V3;, renormalized with respect to the
spin-conserving potential due to the interaction with surface
magnons on the interface.

Coming back to the evaluation of scattering matrix ele-
mentfoo, let us introduce the “denominatoD, correspond-

ing to the whole augmented potentidh 3
Ij00 Ij01
Ij10 Ijll

1

E’)ZT:
1-G(U-3)

Again, using the technique of the inversion of a matrix in the
block form and taking into account the elemebitsB3) with
respect to the auxiliary spack, the blocks ofD can be
expressed in terms of the propagay as follows:

(B7)
D11=(1+GyAG,A)Dy,

where we define the propagatGy,

G, G¢

Gs

corresponding to the propagation of the electron in the effec-
tive potentialW—3,, where

(B8)

The potentialV can be regarded as a renormalization of the

“virtual” crystal potential U, of the zero level of the aug-
mented space, representing the average of the random poten-
tial on a site. The renormalization comes from the “interac-

tion” A in the auxiliary space with the first level, being
described by the propagat@;. Using the explicit form of
A!
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A (3, 3§_) and

DERY Do=[1-Gw/'-21+J,n.g6d )] %,

one can write down the elements ) andJ. : Bi=[1- G (W =143 A gL3, )]
0= -N-goJ+)I *
WO=5 4581054 5B R. 505 L o
YoT YELTY T YR N0 Bi=613, 8 d), D;=63 &.d, (813
+86103:n. g1y +on.G1V5. (BY  ypere denominatord/(") are given by
J.=Jo+7yG]Ws+ 5G| W3,91 M y+6G;NI,n.glM6 AW =[1-&TOW =311,

+5G1My, (B10)  Now, using Eqs(B12) and(B13) and taking into account the

. _ , , obvious relatiortyy=(W—23)D,, one finds
One can regard/' (") as the effective spin-conserving poten-

tial, taking into account the effects of a disorder, ahd— thb=(w'—-321+3.n,g{d_)D},
as the renormalized electron-magnon interaction. Finally, the
simple algebra using Eq&B3),(B7), yields ti=(w'-3'+3_n_gl3,)D},

P TS\ _ WS AN _Sy1-1 R P N aita A

too=(0[(U—-2)D|0)=(W-2)[1-G(W-2)] tr=a"3,D, 15;=0ai"3_D}). (B14)

S aee . ) A _
[t o S- According to the ASFG)(!) andt((!) represent the configu-
iy S, f(i) ' rationally averaged quantities, and after the averaging over

magnon degrees of freedom one must ¢8f!),=G'()

Ty, = _
averaged over configurations, corresponds to scattering dnd _<t0 )6=0. It_means that due to the CPA self
the effective potential— S consistency conditions the averaged scatteringatrix must
P o ) . vanish and averaged electron propagator has to be equal to
To evaluate the spin-conservirig'" and spin-fipt;  the effective Green's functiof21), determined by the self-

parts of scattering matrix, we introduce the propagators energy operatod. Carrying out the averaging procedure
ST 1 — AT (D) S TN T-1AT() over magnon degrees of freedom the similar way as it was
Y% [1=GH(w 26T, (B proposed earlier in Sec. Il C, it is possible to satisfy both of

corresponding to the potentials'!—3 ! and define the these conditions if one assumes that

“denominator” ST=w!(n)+J3,(n)ngy(n)J_(n), (B15)

Thus, we have obtained the logical result, that tmeatrix,

St=wh(n)+3_(n)ngl(nJ. (n).
o We have pointed out the explicit dependence of matrices
rAeIated with the efiecuve potentiah/—2.. Tr)e elements of 1()(n), 3. (n) andg)"(n) on the average magnon num-
D, and propagatoG, can be expressed v'g{)(“ using the  bern[Eq. (33)]. This dependence is assumed to be the same
form of potential W (B8), namely, as it comes from the initial definition of operataus("), J. ,
andgV as functions om.. [Egs.(B9)—(B11)], which is the
consequence of the adopted approximate averaging proce-

dure. The matricesy!(V), J. andg)" functionally depend
on3'M). Due to that, the systertB15) represents the alter-
At AT . NPT native to Eq.(34) form of the CPA conditions and it can be
Go=GoJ+S-9p, Gp=GpJ-Sido,  (B12  gimply solved by means of successive numerical iterations.

B, B;
Do=[1—é<w—i>]—1=(A° fj)
DO DO

Gl=[1-6/(W—31+3,h, 553 )] 16,
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