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Field-induced gap in the spin-12 antiferromagnetic Heisenberg chain:
A density-matrix renormalization-group study
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We study the spin-12 antiferromagnetic Heisenberg chain in both uniform and~perpendicular! staggered
magnetic fields using the density-matrix renormalization-group method. This model has been shown earlier to
describe the physics of the copper benzoate materials in magnetic field. In the present work, we extend the
study to more general case for a systematic investigation of the field-induced gap and related properties of the
spin-12 antiferromagnetic Heisenberg chain. In particular, we explore the high magnetic field regime where
interesting behaviors in the field-induced gap, magnetization, and spin correlation functions are found. Careful
examination of the low energy properties and magnetization reveals interesting competing effects of the
staggered and uniform fields. The incommensurate behavior in the spin correlation functions is demonstrated
and discussed in detail. The present work reproduces earlier results in good agreement with experimental data
on copper benzoate and predicts new interesting field-induced features at very high magnetic field.
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I. INTRODUCTION

The quasi-one-dimensional magnetic materials have
tracted considerable experimental and theoretical inte
since Haldane’s pioneering work1 that pointed out the differ-
ence between the integer spin Heisenberg antiferromagn
~HAFM! chains and the half-integer spin chains. By mapp
the Heisenberg spin chains onto theO(3) nonlinear sigma
model,2 Haldane conjectured that the low-energy excitat
spectrum displays a finite energy gap for the integer s
systems while for half-integer spin chains it is gapless. Th
conjectures have been verified by later detailed studies.

In the linear chain HAFM family, the spin-1
2 chain is of

particular interest since most of its properties can be obta
exactly. These exact results serve as benchmarks in te
the validity of various approximation schemes. The low e
ergy excitation spectrum in this system has no gap; the
ementary excitations are spin-1

2 spinons; the ground state
quasi-long-range ordered, and the spin-spin correlations
play power law decay.

The effect of an applied magnetic field on the spin1
2

Heisenberg chain has also been studied to gain more ins
into the physics of such a system. When the external m
netic field is present, the Hamiltonian of the system is writ
as

H5J(
i

~Si•Si 112huSi
z!, ~1!

whereJ is the coupling constant,Si the spin-12 operator on
site i, Si

z thez component ofSi , hu5gmBH/J is the effective
dimensionless uniform field,g the average effective gyro
magnetic ratio, andH the applied magnetic field. Whenhu
50, the critical wave vector of the gapless excitation is
cated at 0 andp. The applied field will shift the critical wave
vector of the gapless excitation away from 0~for transverse
0163-1829/2002/65~6!/064420~8!/$20.00 65 0644
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spin correlations! and p ~for longitudinal spin correlations!
to incommensurate values while the excitation remains g
less until the field is larger than its saturation valuehu52.0.6

Whenhu52.0, the magnetization is saturated with all spi
on the lattice sites oriented parallel to the applied unifo
field. Further increase in the applied field leads to the op
ing of a gap in the low energy spectrum with its magnitu
changing almost linearly with the applied field, correspon
ing to flipping one spin to its opposite direction.

The field-induced incommensurate state was first
served in the neutron scattering measurements on co
benzoate Cu(C6D5COO)23D2O.3 Copper benzoate is a lin
ear chain spin-12 AFM4 with coupling constant J
;1.57 meV.5 In this material, the effective spin-1

2 Cu21

ions form a linear chain structure, but the two neighbori
copper sites are not totally equivalent. Because of the sm
value of the coupling constantJ, it is possible to study the
high field ~largehu) properties of Hamiltonian~1! and inves-
tigate how the induced incommensurate soft mode beha
with the changing magnetic field.

In the copper benzoate experiment,3 in addition to the
field-dependent incommensurate low energy modes, an
expected nonzero energy gap induced by the magnetic
was detected. The value of the gap varies with the magnit
and the relative orientation of the applied magnetic field.3 It
was first suggested3 that the unexpected gap is caused by
inequivalence of the Cu sites leading to an effective st
geredg tensor, which in turn gives rise to an effective sta
gered field in addition to the applied uniform magnetic fie
Later, detailed analysis7 shows that an additional staggere
Dzyaloshinskii-Moriya8,9 interaction term provides simila
contribution along with the staggeredg tensor, and both have
the same order in magnitude. The Dzyaloshinskii-Moriya
teraction together with the staggeredg factor can account for
the observed nonzero energy gap in copper benzoate. A
©2002 The American Physical Society20-1
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making some assumptions and ignoring the small excha
anisotropy, the effective Hamiltonian to describe the cop
benzoate in the magnetic field can be written as7

H5J(
i

@Si•Si 112huSi
z2~21! ihsSi

x#, ~2!

where hs is the induced effective dimensionless stagge
field, which is the key term to account for the observed n
zero energy gap. The magnitude ofhs depends on the mag
nitude and relative direction of the applied uniform fieldhu
with respect to the sample.

Hamiltonian~2! has been studied using the bosonizat
approach, mapping on the sine-Gordon model, and fo
factor techniques. The gap and magnetization behavio7,10

the dynamical magnetic susceptibility,11,10the specific heat,12

and the electron spin resonance13 experiments have bee
analyzed using the sine-Gordon quantum field theory. Th
have also been numerical studies of the excitation energy
transition amplitudes in the staggered magnetic field, ba
on the Bethe ansatz solutions.14 These studies focus mainl
on the parameter range corresponding to the reported co
benzoate magnetic field experiment.3 The field-induced gap
and related magnetization, as well as spin correlations
generic spin-12 antiferromagnetic Heisenberg chains are
great interest but yet to be fully understood. Of particu
interest is the study of a wider range of parameter and v
high magnetic field conditions beyond those probed by
experiment and previous theoretical work, which may pro
to be of significant importance in understanding the en
range of field-induced phenomena and the underlying ph
ics in this interesting system.

In this paper, we report results of our numerical calcu
tions of the ground state and the low energy excitations
Hamiltonian ~2! using the density matrix renormalizatio
group ~DMRG! method.15 We study the most general cas
and takehu andhs as independent variables in our calcu
tions. We find that the critical~saturation! uniform field hu

c

52.0 serves as an important reference point in understan
the obtained results. When fixedhu is lower than or equal to
hu

c , the induced energy gap increases withhs as a power with
exponent; 2

3 , and for fixedhu larger thanhu
c , the smallhs

dependence is exponential. On the other hand, whenhs is
fixed, the hu dependence of the gap displays a minimu
aroundhu

c . Whenhu andhs increase simultaneously with
fixed ratio, the gap increases with the field when the ratio
small but develops a minimum aroundhu

c at larger ratios.
The magnetization results are consistent with the intuit
expectation in general. The most interesting features are
tained for fixedhu,hu

c and in small fixedhs cases. Whenhu

is lower thanhu
c and fixed, the existence of a small stagger

field enhances the uniform magnetization instead of s
pressing it; similar effects are also observed for small fix
hs case, where the staggered magnetization increases unhu

approacheshu
c . The uniform field induced incommensura

behavior is also studied, and the results show competing
fects of the uniform and staggered fields, with the stagge
06442
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field frustrating the incommensurate state. In the followin
the numerical DMRG results will be presented in Sec. II a
a summary given in Sec. III.

II. DMRG RESULTS

The DMRG method15 is a powerful tool for the calcula-
tion of low lying states of quasi-one-dimensional syste
and has been developed to calculate other properties of m
strongly correlated systems.16 The accuracy of the DMRG
calculations on spin chains is generally high. This has a
been verified in theS51 ~Ref. 17! and S52 ~Ref. 18!
Heisenberg chain calculations. In the present work, we e
ploy the periodic boundary conditions~PBC’s! and use the
infinite chain length algorithm of DMRG. We retain as man
as 500 optimal states and compute up to chain lengthN
5100 in each calculation. The largest truncation errors ar
the order of 1029 for zero uniform field calculations and
1026 for nonzero uniform field calculations. To simplify th
discussion, we set the coupling constantJ as the energy unit,
hu as the effective uniform field, andhs as the effective
staggered field.

For the Hamiltonian considered here, the effect of t
uniform field is to induce a uniform magnetization and sh
the critical wave vector fromp ~in this paper we will con-
centrate on this case for the pitch vector, where a peak in
static structure factor is expected!, and the staggered field
will induce a nonzero energy gap between the ground s
and the lowest excited state. A nonzero staggered magne
tion will also be expected for finite staggered fields. T
nature of the ground state depends on the competition of
uniform and the staggered field. We will discuss the ene
spectrum of the Hamiltonian first, and then show the grou
state magnetization behavior and investigate the incomm
surate behavior of the spin correlation functions.

A. Energy gap

When the staggered field is present alone in the spi1
2

chain, that is,hu50 in Hamiltonian~2!,

H5(
i

@Si•Si 112~21! ihsSi
x# ~3!

the x component of the total spinStot
x is conserved. This

property can be used in DMRG calculations to reduce
dimension of the Hilbert space to be considered.

The spin-1 case of Hamiltonian~3! has been studied in
detail.19 For the standard spin-1 Heisenberg chain, the l
energy spectrum is gapful, and the lowest excited state
spin triplet known as Haldane triplet. The presence of a st
gered field will split the Haldane triplet into two branche
the transverse branch and the longitudinal branch. B
branches are gapful and the gap increases with the stagg
field.

For the spin-12 case, the excitation spectrum for zero-fie
chain is gapless, and the presence of the staggered field
also open a finite gap between the ground state and the
energy continuum. It is expected that the gapful excitatio
0-2
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will also split into two branches, with thex component of
total spin Stot

x 50 ~longitudinal branch! and 1 ~transverse
branch!.

The field dependence of the gap of the longitudinal a
transverse branches for Hamiltonian~3! is shown in Fig.
1~a!. It is clear that the low energy spectrum becomes gap
as soon as the staggered field is present. The magnitud
both longitudinal and transverse modes increases when
staggered field becomes larger with the longitudinal mo
goes up faster than the transverse one. This behavior is
actly the same as for the spin-1 chain. But for the spi
chain in the staggered field, the increase of the longitud
gap is about three~two! times faster than the transverse o
for small ~large! staggered field. For the spin-1

2 chain case,
this ratio is smaller. The two gaps are fitted using the eq
tion

D5ahs
b , ~4!

wherea andb are fitting parameters. The least square fitti
gives

FIG. 1. Field dependence of the induced energy gap for Ha
tonian~2! with differenthu andhs relations. The DMRG results ar
shown by circle, the lines denote the fitting curves. In~a!, the filled
circles denote the transverse branch, while the empty circles
longitudinal branch. It should be noted that in several cases@~d!,
~g!, and~h!# the y axis does not start fromD50 as in other cases
06442
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DL5aLhs
bL52.97hs

0.678,

DT5aThs
bT51.97hs

0.63, ~5!

whereDL andDT denote the longitudinal and transverse ga
respectively. The ratio of the gap increase coefficient of
longitudinal mode to the transverse modeaL /aT is about 1.5.
The fitting curves Eq.~5! are also shown in Fig. 1~a!. For
larger staggered field, the fitting is almost perfect, while it
not very good for very small staggered field.@This deviation
is not visible in Fig. 1~a!.# It should be noted here that th
numerical error of DMRG results for small staggered field
much bigger than that for large field.

When the uniform field in Hamiltonian~2! is not vanish-
ing, the competition of the uniform and the staggered fi
needs to be taken into account. The presence of the unif
field will affect the behavior of the energy gap. In the no
zero uniform field case, the calculation is more difficu
since now evenStot

x is not conserved any more. There is n
good quantum number which can be used to reduce the
evant Hilbert space dimension. To investigate the gap beh
ior, the ground state and the lowest excited state mus
calculated at the same time, and at least two states mus
targeted in each calculation.

To study the effect of the uniform field on the gap beha
ior, we first calculate the staggered field dependence of
gap when uniform fieldhu is a nonzero constant. As de
scribed above, when the uniform field is present alone, th
is a critical pointhu

c52.0, where the magnetization is sat
rated. We need to perform calculations at different values
hu , one in each part of thehu phase space. We choosehu
50.5 for the small uniform field case andhu53.0 for the
large field case. We also calculate thehs dependence of the
gap at the uniform field critical pointhu

c52.0.
The results forhu50.5, 2.0, and 3.0 are shown in Fig

1~b!, 1~c!, 1~d!, respectively. Forhu50.5 and 2.0, the spec
trum is gapless whenhs50, and an energy gap opens u
when the staggered field is present. The gap increases
the staggered fieldhs following the same function Eq.~4! as
in the hu50 case, although with different parameters. Le
square fitting givesa51.89, b50.624 for hu50.5 anda
51.63,b50.81 forhu52.0. Comparison with results in Fig
1~a! shows that both the coefficient and the exponent in
hu50.5 case differ only slightly from those of the transver
branch forhu50; for hu52.0, the difference becomes mo
pronounced. The calculated results show that in the unifo
field gapless phase (hu<2.0), the induced gap is affected b
the uniform field only when the uniform field is stron
enough. Forhu53.0, the gap dependence is different. T
energy spectrum is gapful even whenhs50. With the appli-
cation of the staggered field, the gap increases. The incr
of the gap is nearly exponential when the staggered fiel
not very strong, followingD5exp(ahs

b) with parametersa
51.186 andb51.939. When the staggered field is larg
enough, the gap increase deviates from the exponential
havior.

In the experiment on Cu benzoate,3 the magnitude of the
induced staggered field depends on the applied uniform fi

l-

he
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Roughly speaking, when the relative orientation of the
plied field is fixed, the induced staggered field increases
early with the applied uniform field. To compare with expe
ment directly, we have also considered the case whenhs and
hu increase at the same time with the ratiohs /hu being fixed.
In Figs. 1~e! and 1~f!, we present the calculated results of t
energy gap with the staggered field for the cases ofhu5hs
andhu510hs . In both cases, the field dependence of the g
for smaller staggered field can also be fitted with funct
~4!. For hu5hs , the fitting holds aths5hu,2.0 with a
51.786 andb50.594, while forhu510hs , it holds for hs
,0.1 with a51.755 andb50.613. The gap forhu5hs case
increases monotonically but that forhu510hs exhibits a
minimum nearhs;0.2 (hu;2.0), and then increases rapidl
The largest induced staggered field produced in experim3

is abouths;0.05, and it is not big enough to detect the g
minimum shown in Fig. 1~f!. Experiments at higher mag
netic field are needed to test this predicted phenomen
Here we can see again that the critical pointhu

c52.0 plays an
important role in separating different regions where the s
ing behavior of the field-induced gap shows qualitative d
ference.

The effect of the uniform field on the spin gap induced
the staggered field can be studied directly by calculating
uniform field dependence of the gap at fixed staggered fi
From the above results, we have learned that the sys
stays in one single gapful phase when the staggered fie
present alone, so we just choose two sets ofhs , hs50.05 as
the small staggered field limit andhs51.0 as the large stag
gered field limit. In Figs. 1~g! and 1~h!, we show the gap
behavior with the change of the uniform field for the tw
cases. It is clearly seen that in both cases the gap decre
when the uniform field increases from zero and reaches
minimum nearhu;2.0, followed by a rapid increase wit
further increase in the uniform field. The increase of the g
after the minimum is approximately linear for both cases

Detailed calculations around the gap minimum prov
more information on the gap behavior. Forhs50, the system
is gapless until the uniform field reaches the saturation p
hu

c52.0. Whenhs is not zero, the system has a finite ener
gap, and the presence of a small uniform field may supp
the gap. However, for small uniform fields, the suppress
of the gap is negligible; it becomes visible only when t
uniform field is large enough. The gap minimum for nonze
hs occurs when the uniform fieldhu is slightly larger than
2.0. It occurs athu;2.02 for hs50.05 andhu;2.1 for hs
51.0. This means that the minimum gap uniform field va
hu

min increases slowly withhs . After the gap minimum, its
behavior is dominated by the uniform field, and the gap
creases almost linearly withhu . We should emphasize her
that the minimum gap for both cases is not zero, and for
hs51.0 case the decrease in magnitude is a little bigger t
that for thehs50.05 case.

B. Magnetization

The existence of a nonzero uniform field will induce
magnetization in the system, and the existence of a non
staggered field will induce an additional staggered magn
06442
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zation. The staggered magnetizationMs(N) and the uniform
magnetizationMu(N) of the system with a finite chain
lengthN are defined as

Ms~N!5
1

N (
i

~21! i^Si
x&,

Mu~N!5
1

N (
i

^Si
z&. ~6!

The results for the thermodynamic limit

Ms5 lim
N→`

Ms~N!,

Mu5 lim
N→`

Mu~N! ~7!

can be obtained by studying different chain-length syste
The results of the magnetization and the staggered mag
zation for the eight parameter sets (hu ,hs) used in the pre-
vious subsection are shown in Fig. 2.

FIG. 2. Magnetization curves for eight parameter sets ofhu and
hs . The filled ~empty! circles are for the staggered~uniform! mag-
netization. The solid line in~a! is the fitting curve described in text
For thehu50.5 case in~b!, the uniform magnetization is amplified
6 times to bring it up to the same scale with the other panels.
0-4
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When the uniform magnetization is absent (hu50), the
induced staggered magnetization increases with the s
gered field and approaches the saturation value 0.5 whehs
→`. From the field dependence of the staggered magne
tion, we can extract the staggered magnetic susceptib
x (s)5]Ms /]hs . In Fig. 2~a!, we can see clearly that th
staggered magnetic susceptibility goes to infinity when
staggered fieldhs→0 instead of approaching a constant as
the case of the spin-1 chain. This is because the spin-1

2 chain
is gapless for zero staggered field while it has a finite gap
the spin-1 case. The magnetization curves are fitted using
following function:

Ms5ahs
b ~8!

with a50.527 andb50.277. The fitting line is also shown i
Fig. 2~a!. In the hs range shown in Fig. 2~a!, the fitting is
good, but it should be noted that the fitting Eq.~8! will not be
valid for very largehs , since it diverges whenhs→` instead
of approaching the finite value 1/2 which is the strong st
gered field limit of Hamiltonian~3!.

Whenhu is finite and fixed, the staggered magnetizati
increases monotonically with the staggered field and
proaches the saturation valueMs50.5 whenhs goes to in-
finity, the same as in thehu50 case. The magnetizations fo
hu50.5, 2.0, and 3.0 are shown in Figs. 2~b!, 2~c!, and 2~d!,
respectively. Because the zero staggered field energy s
trum for hu50.5 andhu52.0 is gapless, the zero-field sta
gered magnetic susceptibility aths50 is still divergent. For
hu53.0, thehs50 system is gapful, so the zero-field sta
gered magnetic susceptibility has a finite valuex (s)(0)
50.299. Forhu52.0 and 3.0, the uniform magnetization
saturated when the staggered field is absent; it decre
from the saturation value 0.5 when a staggered field is
plied. When the staggered field is weak, the way the mag
tization changes is different for the two cases. It decrea
rapidly for hu52.0 but slowly forhu53.0. Forhu50.5, at
zero staggered field, the uniform magnetization has a fi
value but is not saturated; when the staggered field increa
the uniform magnetization will also increase and reach
maximum whenhs;0.5 before decreasing with further in
creasing staggered field.

In Figs. 2~e! and 2~f!, we show the field dependence
the magnetization for thehu5hs andhu510hs cases, respec
tively. When the uniform and staggered fields increase sim
taneously from zero, both staggered and uniform magnet
tions increase. For both cases, the zero-field stagg
susceptibility is divergent and the zero-field uniform susc
tibility is zero. We should note here that the zero-field u
form susceptibility is not shown clearly in Figs. 2~e! and 2~f!
due to the large field scale used. Its zero value was obta
by analyzing results for very small field. Whenhu5hs , the
effect of the staggered field rises rapidly and is dominating
small fields. When the field increases, the effect of the u
form field becomes more important and must be taken
account. At hs5hu;1.2, the staggered magnetizatio
reaches its maximum, and it decreases with further incre
ing field. The uniform magnetization increases monoto
cally with the increasing fields. Both staggered and unifo
06442
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magnetizations approach finite but nonsaturated values w
the field goes to infinity. Forhu510hs , the effect of the
staggered field is also dominating at small field. But at la
field, the effect of the uniform field becomes dominant. T
staggered magnetization decays fast to a small finite va
;0.05 after reaching its maximum. The uniform magnetiz
tion increases monotonically and approaches a nearly s
rated value 0.498 at high enough field.

When the staggered field is fixed, athu50 the staggered
magnetization is finite while the uniform magnetization
zero. The uniform field dependence of the magnetization
hs50.05 andhs51.0 is shown in Figs. 2~g! and 2~h!. For
hs50.05, the staggered magnetization increases with the
form field first, reaches its maximum athu;1.8, and then
decays to zero rapidly. Forhs51.0, the staggered magnet
zation decreases with the uniform field monotonically. B
the decrease is not rapid for smallhu . In both cases, the
uniform magnetization increases with the uniform field.
small uniform field, the uniform magnetization increases l
early with the uniform field. We have obtained zero-fie
uniform magnetic susceptibilityx (u)(0)50.1185 for hs
50.05 andx (u)(0)50.1283 forhs51.0.

For thehu50.5 (hs50.05) case, the existence of a sm
staggered~uniform! field enhances the corresponding un
form ~staggered! magnetization instead of suppressing
This phenomenon can be explained intuitively. In the
cases, when a small uniform~staggered! field is applied, the
coupling between neighboring spins is weakened. While
uniform ~staggered! field is not strong enough to destroy th
effect of the stronger staggered~uniform! field, it enhances
the ratio between the effective uniform~staggered! field and
the effective coupling constant and, consequently, the
duced uniform~staggered! magnetization.

C. Correlation function and incommensurate behavior

We define three ground-state spin correlation functions
chain lengthL, ~i! Cu parallel to the uniform magnetic field
~ii ! Cs parallel to the staggered field, and~iii ! Cy along the
remaining~y! axis, as

Cu~ i 2 j !5^Si
zSj

z&,

Cs~ i 2 j !5^Si
xSj

x&,

Cy~ i 2 j !5^Si
ySj

y&. ~9!

The correlation functionCy is expected to display exponen
tial decay because of the existence of the spin gap indu
by the staggered field.Cs andCu do not decay exponentially
because of the effects of the nonzero staggered and uni
magnetization, respectively.Cu is also expected to show in
commensurate behavior due to the existence of the unif
field. These correlation functions have the following form20
0-5
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Cu~ l !5Mu
21~21! lA1

e2 l /j

Al
cos~al1u0!,

Cs~ l !5~21! lMs
21~21! lA2

e2 l /j

Al
,

Cy~ l !5~21! lA3

e2 l /j

Al
, ~10!

whereMu andMs are the uniform and staggered magnetiz
tion, respectively,A1 , A2 , A3 , a, u0, arel independent con-
stants, andj is the correlation length. It should be noted he
that the lengthj may not be the same along three differe
directions.

From the spin correlation functions Eq.~10!, we can ex-
tract the corresponding correlation length. Whenhu50, the
obtained correlation length is a function of the stagge
field. The product of the correlation length and the spin g
gives the spin wave velocity of the system. In Fig. 3, w
show the relation between the inverse correlation length
the transverse gap. It is seen that the curve goes line
which means that the spin wave velocity does not cha
with the magnitude of the staggered field. The linear fitti
of the line gives the spin wave velocityv5DTjT
51/0.636451.5713, in good agreement with the exact sp
wave velocity for the spin-12 chain p/2'1.5708. As in the
spin-1 chain case,19 this also serves as an independent ch
of the self-consistency of our calculations. From the figu
we can see for zero stagger field spin-1

2 chain, the spectrum
is gapless,D50, so the correlation length is infinite. Fo
other cases in our calculations, the correlation length is
ficult to obtain, because the chain length is short and
numerical error is bigger for those cases. But we can c
clude from our results that in general the spin wave veloc
is not a constant anymore, and, instead, it changes with
applied uniform field.

The cosine function inCu comes from the incommensu
rate behavior induced by the uniform field. Because of

FIG. 3. The inverse correlation length for the transverse bra
of the zero uniform field case vs the transverse gap at diffe
staggered fields. The solid fitting line isjT

2150.6364DT .
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existence of the staggered field, the net incommensurate
havior is a result of competition betweenhu andhs . In Fig.
4, we presentf( l )5Alel /j@Cu( l )2Mu

2# at chain length 100
as a function ofl for hu50.5 andhs50.05, whereMu is
obtained by the magnetization calculation discussed ab
This clearly shows the existence of incommensurability
the system. In this case, the correlation lengthj'4.05.

The incommensurate behavior in the correlation funct
leads directly to the peak shift fromp in the static structure
factorS(q) which can be obtained from the correlation fun
tions. For the uniform field~z! axis and the staggered fiel
~x! axis, we can write

Su~q!5
1

L (
l

eiqlCu~ l !, ~11!

Ss~q!5
1

L (
l

eiqlCs~ l !. ~12!

Since we use the periodic boundary conditions in our cal
lations, the wave vectorq is well defined,q52pn/L,n
51, . . . ,L.

In Fig. 5, we present the static structure factorSu at hu
50.5 andhs50.05 for the even chain length from 60 to 10
The results for different chain length systems fall onto t
same curve. This success is due to the small correla
length of the system considered (j;4.05). The chain lengths
used here are much larger than the correlation length, and
finite size effect is very weak. Figure 5 shows a two pe
structure symmetric aboutp which is obtained by Eq.~11!.
For this case, we have obtained the critical wave vector s
dq5uq2pu;0.224;0.07p. The accuracy ofdq obtained
from the peak deviation ofSu(q) is good; it is mainly limited
by the finite chain lengths used in the calculations and
error is estimated to be less than 1%.

For all parameters studied in these calculations, using
peak position of the static structure factorSu(q) to determine
the existence of the incommensurate state, we found
critical wave vector shift in three sets of parameters,hu
50.5, hu510hs , and hs50.05. The critical wave vecto

h
nt

FIG. 4. Incommensurate behavior inf( l )5Alel /j@Cu( l )2Mu
2#

for hu50.5, hs50.05 and chain lengthL5100 system. The corre
lation lengthj'4.05. The odd and evenl are denoted by filled and
empty circles, respectively. The solid and dashed fitting lines
60.08 cos(0.38l 20.407).
0-6
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shift dq versus field in these cases is shown in Fig. 6. Si
the largest total chain length in our calculations isN5100,
we cannot detect the incommensurate state ifdq,2p/100
50.02p. For thehu50.5 case, the critical wave vector sh
becomes smaller when the staggered fieldhs increases from
zero. It is expected to go to zero when the staggered fie
large enough. In other words, the existence of the stagg
field will frustrate the incommensurate state. For the ot
two caseshu510hs and hs50.05, the critical wave vecto

FIG. 5. Static structure factorSu(q) for hu50.5 andhs50.05.
The results for chain length from 60 to 100 are shown.

FIG. 6. The field dependence of the critical wave vector shiftdq
for ~a! hu50.5, ~b! hu510hs , and~c! hs50.05.
06442
e

is
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shifts away fromp with increasing uniform field but even
tually returns top aroundhu

c .
For comparison, we examine our calculated results w

parameters corresponding to the reported experimental
on Cu benzoate.3 The highest magnetic field reached in th
experiment is about 7 T which corresponds tohu'0.52. The
energy gap observed at this field isD;0.4 meV, consider-
ing the coupling constant for the materialJ51.57 meV,
D/J;0.255. From our calculated results forhu50.5, we es-
timate that the induced staggered fieldhs;0.04. The critical
wave vector shiftdq for hu50.5, and hs50.04 is dq
;0.274;0.09p. The critical wave vector shift forhu
50.52, hs50.04 will be slightly larger than 0.09p. In the
experiment, the largest wave shift forH57 T is about
0.12p. This comparison shows that the calculated results
in good agreement with the experiment.

III. SUMMARY

We have carried out systematic calculations using
density matrix renormalization group method to study t
behavior of the energy gap, magnetization, and spin corr
tion functions of spin-12 antiferromagnetic Heisenberg cha
in the presence of a uniform and a perpendicular stagge
magnetic field. An extensive examination of the parame
space has revealed many interesting features beyond t
reported in previous studies. In particular, results at very h
magnetic field show quantitatively and even qualitatively d
ferent behaviors in the energy gap and magnetization, fr
those found for lower fields. For thehu510hs case, which is
close to the real parameters in the Cu benzoate experim
we can see from Figs. 1 and 2 that the competition of
staggered and uniform field is visible whenhs.0.15, orhu
.1.5. In Cu benzoate,hu51.5 corresponds to an applie
field H;21 T. Further experimental investigation at su
high magnetic fields is needed to test these predictions.

The field-induced energy gap is dominated by the st
gered field when the uniform field is smaller than the sta
dard spin-12 chain saturation fieldhu

c52.0. When the uniform
field is comparable or larger thanhu

c , the effect of the uni-
form field becomes important and must be taken into
count. The uniform field introduces frustration effects a
creates a local minimum in the energy gap nearhu

c in several
cases.

The magnetization results clearly reveal the competit
of the uniform and staggered fields. However, for some u
form ~staggered! field, the existence of a small staggere
~uniform! field enhances the uniform~staggered! magnetiza-
tion instead of suppressing it. The competition of the tw
kinds of field can also be seen from the incommensur
behavior with the staggered field suppressing the incomm
surate state and moving the critical wave vector closer to
zero-field valuep.

The specific heat experiment on Cu benzoate3 shows that
the field-induced gap scales with approximately 2/3 powe
the applied magnetic field. The analytic results7,10 yield the
same power law dependence for Hamiltonian~2!. In our nu-
merical results, forhu50 case, the scaling powerbL
50.678 for the longitudinal gap andbT50.63 for the trans-
0-7
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verse gap. They are in good agreement with the experim
and the analytic value. The existence of the nonzero unifo
field modifies the power law relation. When the uniform fie
is small, the modification is almost negligible. Further hi
field experiments are needed to examine the predicted e
of the applied uniform field on the scaling behavior of t
induced gap.
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