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We study the spir‘% antiferromagnetic Heisenberg chain in both uniform @pdrpendicular staggered
magnetic fields using the density-matrix renormalization-group method. This model has been shown earlier to
describe the physics of the copper benzoate materials in magnetic field. In the present work, we extend the
study to more general case for a systematic investigation of the field-induced gap and related properties of the
spin-% antiferromagnetic Heisenberg chain. In particular, we explore the high magnetic field regime where
interesting behaviors in the field-induced gap, magnetization, and spin correlation functions are found. Careful
examination of the low energy properties and magnetization reveals interesting competing effects of the
staggered and uniform fields. The incommensurate behavior in the spin correlation functions is demonstrated
and discussed in detail. The present work reproduces earlier results in good agreement with experimental data
on copper benzoate and predicts new interesting field-induced features at very high magnetic field.

DOI: 10.1103/PhysRevB.65.064420 PACS nunider75.10.Jm, 75.40.Mg

[. INTRODUCTION spin correlationsand = (for longitudinal spin correlations
to incommensurate values while the excitation remains gap-
The quasi-one-dimensional magnetic materials have atess until the field is larger than its saturation vahye= 2.0°
tracted considerable experimental and theoretical interest/henh,=2.0, the magnetization is saturated with all spins
since Haldane’s pioneering wdrkhat pointed out the differ- on the lattice sites oriented parallel to the applied uniform
ence between the integer spin Heisenberg antiferromagnetie|d. Further increase in the applied field leads to the open-
(HAFM) chains and the half-integer spin chains. By mappingng of a gap in the low energy spectrum with its magnitude

the Heisenberg spin chains onto t%3) nonlinear sigma  changing almost linearly with the applied field, correspond-
model; Haldane conjectured that the low-energy excnatloning to flipping one spin to its opposite direction.

spectrum di_splays a f_inite energy gap fqr_the integer spin “the field-induced incommensurate state was first ob-
systems while for half-integer spin chains it is gapless. Thesgerved in the neutron scattering measurements on copper
conjectures have been verified by later detailed studies. benzoate Cu(§DsCO0),3D,0.2 Copper benzoate is a lin-

In the linear chain HAFM family, the spif-chain is of o chain spi% AF§A4 2with Egupling constant J

particular interest since most of its properties can be obtained . . . . N
exactly. These exact results serve as benchmarks in testin(g;l‘57 meV? In this material, the effective spih-Cu?

the validity of various approximation schemes. The low enONsS form a linear chain structu_re, but the two neighboring
ergy excitation spectrum in this system has no gap; the el€OPP€r sites are npt totally eque_xlent. Bgcause of the small
ementary excitations are spinspinons; the ground state is value of the coupling constad it is possible to study the
quasi-long-range ordered, and the spin-spin correlations didligh field (largeh,) properties of Hamiltoniafl) and inves-
play power law decay. tigate how the induced incommensurate soft mode behaves
The effect of an applied magnetic field on the spin- With the changing magnetic field.
Heisenberg chain has also been studied to gain more insight In the copper benzoate experiménin addition to the
into the physics of such a system. When the external magfield-dependent incommensurate low energy modes, an un-
netic field is present, the Hamiltonian of the system is writtenexpected nonzero energy gap induced by the magnetic field
as was detected. The value of the gap varies with the magnitude
and the relative oérientation of the applied magnetic frelid.
5 was first suggestédhat the unexpected gap is caused by the
H=J2i (S-S+1=hS), @) inequivalence of the Cu sites leading to an effective stag-
geredg tensor, which in turn gives rise to an effective stag-

whereJ is the coupling constanf; the spinz operator on  gered field in addition to the applied uniform magnetic field.
sitei, S thezcomponent of5, hy=gugH/J is the effective  Later, detailed analysisshows that an additional staggered
dimensionless uniform fieldg the average effective gyro- Dzyaloshinskii-Moriy&® interaction term provides similar
magnetic ratio, andd the applied magnetic field. Whem, contribution along with the staggergdensor, and both have
=0, the critical wave vector of the gapless excitation is lo-the same order in magnitude. The Dzyaloshinskii-Moriya in-
cated at 0 andr. The applied field will shift the critical wave teraction together with the staggergéactor can account for
vector of the gapless excitation away from(for transverse the observed nonzero energy gap in copper benzoate. After
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making some assumptions and ignoring the small exchangield frustrating the incommensurate state. In the following,
anisotropy, the effective Hamiltonian to describe the coppethe numerical DMRG results will be presented in Sec. Il and
benzoate in the magnetic field can be writtefi as a summary given in Sec. lll.

IIl. DMRG RESULTS

H=J Sy~ hS—(—1)'hS, 2
Ei: (S-S 7S (- 1hS] @ The DMRG methotf is a powerful tool for the calcula-

tion of low lying states of quasi-one-dimensional systems

Oand has been developed to calculate other properties of many

where hg is the induced effective dimensionless staggere
field, which is the key term to account for the observed non—Strongly correlated systemS.The accuracy of the DMRG

zero energy gap. The magnitude kef depends on the mag- calculations on spin chains is generally high. This has also

nitude and relative direction of the applied uniform fidigl begn verified n theS=1 .(Ref. 19 and S=2 (Ref. 19
, Heisenberg chain calculations. In the present work, we em-
with respect to the sample.

Hamiltonian(2) has been studied using the bosonization!Dloy the periodic boundary condition®BC's) and use the

approach, mapping on the sine-Gordon model, and forml_nflnlte chain length algorithm of DMRG. We retain as many

factor techniques. The gap and magnetization behvfor, 2° 500 optimal states and compute up to chain lemgth
the dynamical magnetic susceptibiltythe specific heaf =100 in each calculation. Thellargesy truncation errors are of
and the electron spin resonaﬁ%@xp,eriments have béen the order of 10° for zero uniform field calculations and
analyzed using the sine-Gordon quantum field theory. Ther%o_6 for_ nonzero ??rl]form f'el.ld calculglgsthTo simplify t_fse
have also been numerical studies of the excitation energy a scus?r:)n, V]Yfe St? € c;foup 'r;.g Izons H (?[henerfgf]y ltj.n' '
transition amplitudes in the staggered magnetic field, base tu as Zf.e I(?Ic Ive uniform field, antls as the efiective

on the Bethe ansatz solutioffsThese studies focus mainly S alg:;gert(; IHe : iitoni idered h the effect of th
on the parameter range corresponding to the reported copper . or the Hamiltonian considered here, the efiect ot the
benzoate magnetic field experim@rthe field-induced gap uniform field is to induce a uniform magnetization and shift

and related magnetization, as well as spin correlations iII]hetcn:lcaI Vf[’;?_\’e vect?r f{ﬁm_t(";]th'stpape; we will cokn_- h
generic spins antiferromagnetic Heisenberg chains are ofcentrate on this case for the pitch vector, where a péak in the

great interest but yet to be fully understood. Of particularSt%t'.C dstructure factor is expecbe(hgdwthe stt?]ggered gek: i
interest is the study of a wider range of parameter and ver Il INdUCE a nonzero energy gap between the ground state
high magnetic field conditions beyond those probed by th nd the lowest excited state. A nonzero staggered magnetiza-

experiment and previous theoretical work, which may prove'on will also be expected for finite staggered fields. The

to be of significant importance in understanding the entird'aUre of the ground state depends on the competition of the

N : iform and the staggered field. We will discuss the energy
range of field-induced phenomena and the underlying physL—ml AN
ics in this interesting system, spectrum of the Hamiltonian first, and then show the ground-

In this paper, we report results of our numerical calculg State magnetization behavior and investigate the incommen-

tions of the ground state and the low energy excitations 0§urate behavior of the spin correlation functions.
Hamiltonian (2) using the density matrix renormalization

group (DMRG) method®® We study the most general case A. Energy gap

and takeh, andhg as independent variables in our calcula-  \yhen the staggered field is present alone in the $pin-
tions. We find that the criticalsaturation uniform field hi chain, that ish,=0 in Hamiltonian(2),

=2.0 serves as an important reference point in understanding

the obtained results. When fixdy} is lower than or equal to ‘

hS, the induced energy gap increases wigtas a power with H= EI [S-S+1—(—D'hS] ()]

exponent~ %, and for fixedh, larger thanh(, the smallhg

dependence is exponential. On the other hand, whers the x component of the total spis;, is conserved. This

fixed, thce h, dependence 9f the gap displays a m'n.'mumproperty can be used in DMRG calculations to reduce the
aroundh;;. Whenh, andhg increase simultaneously with a dimension of the Hilbert space to be considered.

fixed ratio, the gap increases with the field when the ratio is The spin-1 case of Hamiltonia8) has been studied in
small but develops a minimum arourd at larger ratios. getaill® For the standard spin-1 Heisenberg chain, the low
The magnetization results are consistent with the intuitive(_;.nergy spectrum is gapful, and the lowest excited state is a
expectation in general. The most interesting features are Olé‘pin triplet known as Haldane triplet. The presence of a stag-
tained for fixedh,<hj and in small fixechs cases. Wheh,  gered field will split the Haldane triplet into two branches,

is lower thanhj; and fixed, the existence of a small staggeredthe transverse branch and the longitudinal branch. Both
field enhances the uniform magnetization instead of supbranches are gapful and the gap increases with the staggered
pressing it; similar effects are also observed for small fixedield.

hs case, where the staggered magnetization increasedhiyntil  For the spins case, the excitation spectrum for zero-field
approaches$; . The uniform field induced incommensurate chain is gapless, and the presence of the staggered field may
behavior is also studied, and the results show competing e&lso open a finite gap between the ground state and the low-
fects of the uniform and staggered fields, with the staggerednergy continuum. It is expected that the gapful excitations
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1 ‘ . 2 ‘ , , . _ b _ 0.678
(@) h =0 o o ®h05 Au=ahs=2.9Mm.""
os | ﬂﬁw’a Ll ] Ar=arhT=1.92%, (5)
o
g 05 1 whereA, andA denote the longitudinal and transverse gap,
0 ‘ , 0 L respectively. The ratio of the gap increase coefficient of the
20 005 o1 0.15 20 0:2 04 0.|6 0:8 1 Iongit_uc_iinal mode to the transverse mcaj_e’aT is_ about 1.5.
© h=2.0 (@ h =3.0 The fitting curves Eq(5) are _aIS(_) shown in Fig. (&). F_or_ _
15 - v ] L larger staggered field, the fitting is almost perfect, while it is
. not very good for very small staggered fie]d@his deviation
T 151 1 is not visible in Fig. 1a).] It should be noted here that the
05 - | . numerical error of DMRG results for small staggered field is
<] much bigger than that for large field.
= 08 02 04 06 o8 1 8702 o4 08 08 1 _ When the uni_f(_)rm field in H_amiltonia("Q) is not vanish-_
O 4 \ , e 12 , - ing, the competition of the uniform and the staggered field
> g @hshy 0 (f) h,=10h, needs to be taken into account. The presence of the uniform
%’3 > 0.8 t g field will affect the behavior of the energy gap. In the non-
£ 2 1 - zero uniform field case, the calculation is more difficult,
= .1 ] 04+ ot since now eversy, is not conserved any more. There is no
good quantum number which can be used to reduce the rel-
0 ‘ ; 0 - : evant Hilbert space dimension. To investigate the gap behav-
0 ' h 2 8 0 0ty 02 03 5 the ground state and the lowest excited state must be
05 ‘ 2 ' calculated at the same time, and at least two states must be
04l (&) h,=0.05 o] (hyh=1.0 targeted in each calculation.
™. To study the effect of the uniform field on the gap behav-
03me o ,, . IRt i *] ior, we first calculate the staggered field dependence of the
0o | * . ¢ . . gap when uniform fieldh, is a nonzero constant. As de-
o’ teet® scribed above, when the uniform field is present alone, there
01, y > 18 ] > 3 is a critical pointhi=2.0, where the magnetization is satu-
h, h, rated. We need to perform calculations at different values of

FIG. 1. Field dependence of the induced energy gap for Hamil-h“’ one in each part of th, phase space. We choobg

tonian(2) with differenth, andhg relations. The DMRG results are |_0'5 ff.oidthe sms\l/l unllform Iﬂelldtcase darhj,—d3.0 for 1t‘ht$1
shown by circle, the lines denote the fitting curves(dn the filled arge ne Cas_e. e. aiso Ca cu a(_a lﬂg@ épendence ot the
circles denote the transverse branch, while the empty circles th@2P at the uniform field critical poirft;=2.0. o
longitudinal branch. It should be noted that in several c&ds The results forh,=0.5, 2.0, and 3.0 are shown in Figs.
(g), and(h)] they axis does not start from =0 as in other cases. 1(b), 1(c), 1(d), respectively. Foh,=0.5 and 2.0, the spec-

trum is gapless whehg=0, and an energy gap opens up
will also split into two branches, with the component of When the staggered field is present. The gap increases with
total spin S, =0 (longitudinal branch and 1 (transverse the staggered fieltl following the same function Eq4) as

branch. in the h,=0 case, although with different parameters. Least
The field dependence of the gap of the longitudinal ancfquare fitting givesa=1.89, b=0.624 forh,=0.5 anda
transverse branches for Hamiltoni8) is shown in Fig. =1.63,b=0.81 forh,=2.0. Comparison with results in Fig.

1(a). It is clear that the low energy spectrum becomes gapfull(@) shows that both the coefficient and the exponent in the
as soon as the staggered field is present. The magnitude &= 0.5 case differ only slightly from those of the transverse
both longitudinal and transverse modes increases when tH@anch forh,=0; for h,=2.0, the difference becomes more
Staggered field becomes |arger with the |0ngitudina| modepronounced. The calculated results show that in the uniform
goes up faster than the transverse one. This behavior is efield gapless phasén(<2.0), the induced gap is affected by
actly the same as for the spin-1 chain. But for the spin-1the uniform field only when the uniform field is strong
chain in the staggered field, the increase of the longitudinagnough. Forh,=3.0, the gap dependence is different. The
gap is about threé&wo) times faster than the transverse one€nergy spectrum is gapful even whieg=0. With the appli-

for small (large staggered field. For the spinchain case, cation of the staggered field, the gap increases. The increase
this ratio is smaller. The two gaps are fitted using the equaof the gap is nearly exponential when the staggered field is

tion not very strong, foIIowingAzexp(arﬁ) with parametersa
=1.186 andb=1.939. When the staggered field is large
Azahg, (4) enough, the gap increase deviates from the exponential be-
havior.
wherea andb are fitting parameters. The least square fitting  In the experiment on Cu benzodgtéhe magnitude of the
gives induced staggered field depends on the applied uniform field.
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Roughly speaking, when the relative orientation of the ap- 0.4 - - T
plied field is fixed, the induced staggered field increases lin- 0.4
early with the applied uniform field. To compare with experi-
ment directly, we have also considered the case whemd 0.2 |
h, increase at the same time with the raiigh,, being fixed.
In Figs. 1(e) and Xf), we present the calculated results of the (a)h,=0 (b) h,=0.5
energy gap with the staggered field for the caseh @fhg 0 : : 0 T
andh,=10h,. In both cases, the field dependence of the gap 0 , °'°‘rf ,0'1 , 015 0 0;4 0;8 1;2 1;6 2
for smaller staggered field can also be fitted with function 0.4 B e Yoal e
(4). For h,=hg, the fitting holds ath,=h,<2.0 with a Tleoe t ' *
=1.786 andb=0.594, while forh,=10hg, it holds for hg 2 ° o o
<0.1 witha=1.755 andb=0.613. The gap foh,=hg case 023 102« i
increases monotonically but that fdr,=10hg exhibits a (©) h =2.0 . (d)h =3.0
minimum neahgs~0.2 (h,~2.0), and then increases rapidly. i
The largest induced staggered field produced in experiment
is abouths~0.05, and it is not big enough to detect the gap -
minimum shown in Fig. (f). Experiments at higher mag-
netic field are needed to test this predicted phenomenon.
Here we can see again that the critical pdifit= 2.0 plays an
important role in separating different regions where the scal-
ing behavior of the field-induced gap shows qualitative dif-
ference. 0 > h, 3 4 5
The effect of the uniform field on the spin gap induced by N R R
the staggered field can be studied directly by calculating the o4l (® hs=0-05 s | oal T °
uniform field dependence of the gap at fixed staggered field. ' N ’
From the above results, we have learned that the systerr ees ®
. . : . me & o
stays in one single gapful phase when the staggered field is 02} { 02} ° .
present alone, so we just choose two seth gfh,=0.05 as o° . ° () h=1.0
the small staggered field limit arftj=1.0 as the large stag- 0 o . . 0 e
gered field limit. In Figs. dg) and 1h), we show the gap 0 h 2 0 1 2,8 4 5
behavior with the change of the uniform field for the two "
cases. It is clearly seen that in both cases the gap decreasesg|G. 2. Magnetization curves for eight parameter sets,odnd
when the uniform field increases from zero and reaches itﬁs_ The filled (emptw circles are for the staggerédniform) mag-
minimum nearh,~ 2.0, followed by a rapid increase with netization. The solid line iffa) is the fitting curve described in text.
further increase in the uniform field. The increase of the gagror theh,=0.5 case inb), the uniform magnetization is amplified
after the minimum is approximately linear for both cases. 6 times to bring it up to the same scale with the other panels.
Detailed calculations around the gap minimum provide
more information on the gap behavior. Fgy=0, the system zation. The staggered magnetizatidy(N) and the uniform
is gapless until the uniform field reaches the saturation poinmagnetizationM ,(N) of the system with a finite chain
h;=2.0. Whenhg is not zero, the system has a finite energylengthN are defined as
gap, and the presence of a small uniform field may suppress
the gap. However, for small uniform fields, the suppression
of the gap is negligible; it becomes visible only when the
uniform field is large enough. The gap minimum for nonzero
hs occurs when the uniform fielti, is slightly larger than 1
2.0. It occurs ah,~2.02 for hg=0.05 andh,~2.1 for hq Mu(N)= > (SH. (6)
=1.0. This means that the minimum gap uniform field value '

0.2

ladd ey

o | I R R |
0040812162 o 1 2 3 4 5

o“'oo... <’

¢ 04 OoO

Magnetlzation

1 0.2, %

4 o
(e h,=h, ¥ > ®h=10n,
0 &°

0

0.1 h 0.2 0.3

1 .
Mo(N)=5 2 (=D,

h™" increases slowly with,. After the gap minimum, its o

behavior is dominated by the uniform field, and the gap in- The results for the thermodynamic fimit

creases almost linearly with,. We should emphasize here M= lim M(N)

that the minimum gap for both cases is not zero, and for the SNl

hs=1.0 case the decrease in magnitude is a little bigger than

that for thehy,=0.05 case. M,= lim M,(N) (7
N— oo

B. Magnetization can be obtained by studying different chain-length systems.

The existence of a nonzero uniform field will induce a The results of the magnetization and the staggered magneti-
magnetization in the system, and the existence of a nonzemation for the eight parameter sets,(hs) used in the pre-
staggered field will induce an additional staggered magnetivious subsection are shown in Fig. 2.
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When the uniform magnetization is abseht,€0), the  magnetizations approach finite but nonsaturated values when
induced staggered magnetization increases with the staghe field goes to infinity. Foh,=10h,, the effect of the
gered field and approaches the saturation value 0.5 Wwhen staggered field is also dominating at small field. But at large
—oe. From the field dependence of the staggered magnetizdield, the effect of the uniform field becomes dominant. The
tion, we can extract the staggered magnetic susceptibilitétaggered magnetization decays fast to a small finite value
x®=0M/dhs. In Fig. Aa), we can see clearly that the ~0.05 after reaching its maximum. The uniform magnetiza-
staggered magnetic susceptibility goes to infinity when th&jon increases monotonically and approaches a nearly satu-
staggered fielth,— O instead of approaching a constant as inrated value 0.498 at high enough field.
the case of the spin-1 chain. This is because the Smihain When the staggered field is fixed, laj=0 the staggered
is gapless for zero staggered field while it has a finite gap inmagnetization is finite while the uniform magnetization is
the spin-1 case. The magnetization curves are fitted using theero. The uniform field dependence of the magnetization for
following function: hs=0.05 andhs=1.0 is shown in Figs. @) and Zh). For

hs=0.05, the staggered magnetization increases with the uni-

Ms=ah§ (8)  form field first, reaches its maximum &t,~1.8, and then

decays to zero rapidly. Fdrg=1.0, the staggered magneti-
with a=0.527 andb=0.277. The fitting line is also shown in  zation decreases with the uniform field monotonically. But
Fig. 2@). In the hs range shown in Fig. @), the fitting is  the decrease is not rapid for smal,. In both cases, the
good, but it should be noted that the fitting E8). will notbe  yniform magnetization increases with the uniform field. At
valid for very largehs, since it diverges whehs— instead  small uniform field, the uniform magnetization increases lin-
of approaching the finite value 1/2 which is the strong stagearly with the uniform field. We have obtained zero-field
gered field limit of Hamiltoniar(3). uniform magnetic susceptibilityy((0)=0.1185 for h

Whenh, is finite and fixed, the staggered magnetization=0.05 andy(")(0)=0.1283 forhs=1.0.
increases monotonically with the staggered field and ap- For theh,=0.5 (h,=0.05) case, the existence of a small
proaches the saturation valdks=0.5 whenhg goes to in-  staggered(uniform) field enhances the corresponding uni-
finity, the same as in thie,= 0 case. The magnetizations for form (staggerell magnetization instead of suppressing it.
h,=0.5, 2.0, and 3.0 are shown in Figgbp 2(c), and 2d),  This phenomenon can be explained intuitively. In these
respectively. Because the zero staggered field energy spegases, when a small unifortstaggereyifield is applied, the
trum for h,=0.5 andh,=2.0 is gapless, the zero-field stag- coupling between neighboring spins is weakened. While this
gered magnetic susceptibility =0 is still divergent. For  uniform (staggerejifield is not strong enough to destroy the
h,=3.0, thehs=0 system is gapful, so the zero-field stag- effect of the stronger staggerédniform) field, it enhances
gered magnetic susceptibility has a finite valy&(0) the ratio between the effective uniforfataggeregfield and
=0.299. Forh,=2.0 and 3.0, the uniform magnetization is the effective coupling constant and, consequently, the in-
saturated when the staggered field is absent; it decreasdaced uniform(staggerefimagnetization.
from the saturation value 0.5 when a staggered field is ap-
plied. When the staggered field is weak, the way the magne-
tization changes is different for the two cases. It decreases C. Correlation function and incommensurate behavior
rapidly for h,=2.0 but slowly forh,=3.0. Forh,=0.5, at
zero staggered field, the uniform magnetization has a finit%h
value but is not saturated; when the staggered field increas
the uniform magnetization will also increase and reach
maximum whenhg~0.5 before decreasing with further in-
creasing staggered field.

In Figs. 4e) and Zf), we show the field dependence of
the magnetization for thie,= hg andh,= 10hg cases, respec-
tively. When the uniform and staggered fields increase simul-
taneously from zero, both staggered and uniform magnetiza-
tions increase. For both cases, the zero-field staggered Cs(i—))=(SS)),
susceptibility is divergent and the zero-field uniform suscep-
tibility is zero. We should note here that the zero-field uni-
form susceptibility is not shown clearly in Figsie? and Zf) Cy(i—))=(5'9). (€)
due to the large field scale used. Its zero value was obtained
by analyzing results for very small field. Whénp=hg, the
effect of the staggered field rises rapidly and is dominating al'he correlation functiory is expected to display exponen-
small fields. When the field increases, the effect of the unitial decay because of the existence of the spin gap induced
form field becomes more important and must be taken intdy the staggered field’s andC, do not decay exponentially
account. At hg=h,~1.2, the staggered magnetization because of the effects of the nonzero staggered and uniform
reaches its maximum, and it decreases with further increagnagnetization, respectively, is also expected to show in-
ing field. The uniform magnetization increases monotoni-commensurate behavior due to the existence of the uniform
cally with the increasing fields. Both staggered and uniformfield. These correlation functions have the following fofn:

We define three ground-state spin correlation functions for
ain lengthL, (i) C, parallel to the uniform magnetic field,
e(‘T’r) Cs parallel to the staggered field, atid ) C, along the
e}emaining(y) axis, as
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FIG. 3. The inverse correlation length for the transverse branch
of the zero uniform field case vs the transverse gap at differe
staggered fields. The solid fitting line ﬁ1=0.6364AT.

FIG. 4. Incommensurate behavior if(1) = \e"{[C,(1)—M?]

Nor h,=0.5, h4=0.05 and chain length =100 system. The corre-
lation lengthé~4.05. The odd and evdrare denoted by filled and
empty circles, respectively. The solid and dashed fitting lines are

e /¢ +0.08 cos(0.38-0.407).
Cu()=M2+(—1)'A;, ———cogal+ 6y),
N existence of the staggered field, the net incommensurate be-
havior is a result of competition betweéyp andhg. In Fig.
B - el 4, we presentp(l) = Jie"{[c,(1)—M?] at chain length 100
C(H=(=D'M+(=1) A2T’ as a function ofl for h,=0.5 andhs=0.05, whereM, is
obtained by the magnetization calculation discussed above.
ol This clearly shows the existence of incommensurability in
Cy(l)=(—1)'A3—, (100  the system. In this case, the correlation length4.05. _
J The incommensurate behavior in the correlation function
leads directly to the peak shift from in the static structure
whereM, andMg are the uniform and staggered magnetiza-factorS(q) which can be obtained from the correlation func-
tion, respectivelyA;, A,, A3, a, 6, arel independent con-  tions. For the uniform fieldz) axis and the staggered field
stants, and is the correlation length. It should be noted here(x) axis, we can write
that the lengthé may not be the same along three different 1 _
directions. Si@)=r > ede (), (12)
From the spin correlation functions E(LO), we can ex- !

tract the corresponding correlation length. Whegp=0, the 1 al

obtained correlation length is a function of the staggered Ss(@=1 2 e'vCy(l). (12)

field. The product of the correlation length and the spin gap o N _

gives the spin wave velocity of the system. In Fig. 3, WeSlnce we use the periodic poundary cqndltlons in our calcu-

show the relation between the inverse correlation length anttions, the wave vectoq is well defined,q=27n/L,n

the transverse gap. It is seen that the curve goes linearly 1,...L _

which means that the spin wave velocity does not change " Fig- 5, we present the static structure facfyrat h,

with the magnitude of the staggered field. The linear fitting=0-> @1dhs=0.05 for the even chain length from 60 to 100.

of the line gives the spin wave velocity =Arér The results for different chain length systems fall onto the

; , . same curve. This success is due to the small correlation

wal\ig.?/i?;zitly. E;Z):rl?hénS%?;dcagzre]f:?ze:tlvél%ghi:)iﬁcttthInlength of the system considereg 4.05). The chain lengths

. : ; - : used here are much larger than the correlation length, and the
spin-1 chain cas® this also serves as an independent Chec‘?inite size effect is very weak. Figure 5 shows a two peak
of the self-consistency of our calculations. From the ﬁgurestructure symmetric about which is obtained by Eq(11).
we can see for zero stagger field sgirehain, the spectrum o this case, we have obtained the critical wave vector shift
is gaplessA=0, so the correlation length is infinite. For sq—|q— 7|~0.224~0.07. The accuracy ofq obtained
other cases in our calculations, the correlation length is diffrom the peak deviation a$,(q) is good; it is mainly limited
ficult to obtain, because the chain length is short and thgy the finite chain lengths used in the calculations and the
numerical error is bigger for those cases. But we can COngrror is estimated to be less than 1%.
clude from our results that in general the spin wave velocity For all parameters studied in these calculations, using the
is not a constant anymore, and, instead, it changes with theeak position of the static structure fac®(q) to determine
applied uniform field. the existence of the incommensurate state, we found the

The cosine function irC, comes from the incommensu- critical wave vector shift in three sets of parametdrs,
rate behavior induced by the uniform field. Because of the=0.5, h,=10hs, and hy=0.05. The critical wave vector
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0.2 . shifts away froms with increasing uniform field but even-
, tually returns torr aroundh;.
018 - FT e g w07 ) For comparison, we examine our calculated results with
| § % parameters corresponding to the reported experimental case
g % on Cu benzoaté The highest magnetic field reached in the
= 016 - a experiment is about 7 T which correspondste=0.52. The
= 2 4 energy gap observed at this fieldAs-0.4 meV, consider-
W 514l o o ing the coupling constant for the materidk=1.57 meV,
L2 s A/J~0.255. From our calculated results for=0.5, we es-
v % timate that the induced staggered fiblg-0.04. The critical
0.12 75 8| wave vector shiftéq for h,=0.5, and h,=0.04 is 5q
B i3 ~0.274-0.097. The critical wave vector shift forh,
0.10"8 i 1"2 =0.52, hy=0.04 will be slightly larger than 0.G2 In the

FIG. 5. Static structure facta$,(q) for h,=0.5 andhs=0.05.

q (in unit of 1)

The results for chain length from 60 to 100 are shown.

shift 6q versus field in these cases is shown in Fig. 6. Since

experiment, the largest wave shift fé4=7 T is about
0.127. This comparison shows that the calculated results are
in good agreement with the experiment.

. SUMMARY

We have carried out systematic calculations using the
density matrix renormalization group method to study the

the largest total chain length in our calculationsNis- 100,
we cannot detect the incommensurate statéqgif 27/100
=0.027. For theh,=0.5 case, the critical wave vector shift
becomes smaller when the staggered fleldncreases from

behavior of the energy gap, magnetization, and spin correla-
tion functions of spins antiferromagnetic Heisenberg chain
in the presence of a uniform and a perpendicular staggered

zero. It is expected to go to zero when the staggered field jmagnetic field. An extensive examination of the parameter

large enough. In other words, the existence of the staggerexP@c€ has revealed many interesting features beyond those
field will frustrate the incommensurate state. For the othef€POrted in previous studies. In particular, results at very high

two casesh,=10hg and hy=0.05, the critical wave vector

magnetic field show quantitatively and even qualitatively dif-
ferent behaviors in the energy gap and magnetization, from
those found for lower fields. For thg,= 10hg case, which is

0.12 ¢ Py T ' close to the real parameters in the Cu benzoate experiment,
L we can see from Figs. 1 and 2 that the competition of the
0.08 ¢ ° . staggered and uniform field is visible whég>0.15, orh,,
. >1.5. In Cu benzoateh,=1.5 corresponds to an applied
004 - . 4 field H~21 T. Further experimental investigation at such
() h,=0.5 high magnetic fields is needed to test these predictions.
0 L L The field-induced energy gap is dominated by the stag-
— 0 002 004 006 008 0. gered field when the uniform field is smaller than the stan-
r 02 ' ' ' ' ; ' ' dard spins chain saturation fielh’=2.0. When the uniform
kS 0.15 - (b)h,=10h, o« °* o 4 field is comparable or larger tharf;, the effect of the uni-
‘é’ - ° form field becomes important and must be taken into ac-
5 01r e 7 count. The uniform field introduces frustration effects and
= 0.05 | * i creates a local minimum in the energy gap rigain several
~ T cases.
08" 0 ' ' ' The magnetization results clearly reveal the competition
0 0.05 0.1 0.15 0. of the uniform and staggered fields. However, for some uni-
hs form (staggered field, the existence of a small staggered
' ' (uniform) field enhances the uniforiistaggerefimagnetiza-
04 r (¢) h=0.05 e Yo 7 tion instead of suppressing it. The competition of the two
o o kinds of field can also be seen from the incommensurate
02 | ° ° | behavior with the staggered field suppressing the incommen-
' ° surate state and moving the critical wave vector closer to the
° zero-field valuer.
0 . ! s The specific heat experiment on Cu benzdateows that
0 1 2 the field-induced gap scales with approximately 2/3 power of
h the applied magnetic field. The analytic restibyield the

FIG. 6. The field dependence of the critical wave vector sfgft
for (&) h,=0.5,

u

(b) h,=10hg, and(c) hy=0.05.

same power law dependence for Hamilton{@n In our nu-
merical results, forh,=0 case, the scaling powelb,
=0.678 for the longitudinal gap aruk=0.63 for the trans-
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