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Exact renormalization of the random transverse-field Ising spin chain
in the strongly ordered and strongly disordered Griffiths phases
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Fisher’s @Phys. Rev. B51, 6411 ~1995!# real-space renormalization-group~RG! treatment of random
transverse-field Ising spin chains is extended into the strongly ordered and strongly disordered Griffiths phases,
and asymptotically exact results are obtained. In the noncritical region the asymmetry of the renormalization of
the couplings and the transverse fields is related to a nonlinear quantum control parameterD, which is a natural
measure of the distance from the quantum critical point.D, which is found to stay invariant along the RG
trajectories, and has been expressed by the initial disorder distributions, stands in the singularity exponents of
different physical quantities~magnetization, susceptibility, specific heat, etc.!, which are exactly calculated. In
this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities do not depend on
the form of the disorder, provided the nonlinear quantum control parameter has the same value. The exact
scaling function of the magnetization with a small applied magnetic field is calculated, and the critical point
magnetization singularity is determined in a simple, direct way.
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I. INTRODUCTION

In statistical physics and in the theory of interacti
many-body systems, exact solutions are of great importa
especially in the vicinity of singular points, such as at pha
transitions. They provide physical insights into cooperat
processes, and their results could be used as testing gro
for different approximations and numerical methods. Ex
solutions for models with short-range interactions and in
presence of quenched randomness are scarce, which gr
hampered our understanding of collective phenomena in
ordered systems. At present, remarkable examples of ex
soluble problems in the above class include the critical
havior of low-dimensional random quantum systems.1 Here
the interplay of quenched disorder, quantum fluctuations,
correlations can be systematically studied within a real-sp
renormalization group~RG! scheme, which is expected t
lead to asymptotically exact results, at least for stro
enough disorder. The prototype of such types of rand
quantum systems is the random transverse-field Ising
chain ~RTIC! for which perhaps the most detailed analytic
and numerical information is available, as far as the rand
quantum critical behavior is concerned. The RTIC is defin
by the Hamiltonian

Ĥ52(
l

Jls l
xs l 11

x 2(
l

hls l
z2H(

l
s l

x , ~1.1!

in terms of thes l
x,z Pauli matrices at sitel, whereas the

transverse fieldshl.0 and the couplingsJl.0 are indepen-
dent random variables taken from the~initial! distributions
Pin(h)dh and Rin(J)dJ, respectively. The~linear! quantum
control parameter of the model is defined as2

d5
@ ln h#av2@ ln J#av

var@ ln h#1var@ ln J#
. ~1.2!
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where var(x) is the variance ofx, and here and in the fol-
lowing we use@•••#av to denote an averaging over quench
disorder. The quantum critical point atd50 separates the
ferromagnetic (d,0) and paramagnetic (d.0) phases.

Some previously known exact results for the surfa
magnetization3,4 and typical correlations5 were greatly ex-
tended by Fisher6 using the strong disorder RG metho
originally introduced by Ma, Dasgupta, and Hu.7 Fisher
showed that at the critical point the distribution functions
the couplings and the transverse fields broaden without lim
as the energy scaleV defined by the strongest bond or tran
verse field, is lowered. Therefore, as the fixed point of
transformation withV50 is approached, the disorder b
comes stronger and stronger, so that in this, so-called, infi
randomness fixed point~IRFP! the ratio of typical couplings
and transverse fields at neighboring sites is either zero
tends to infinity. As a consequence in the IRFP the RG tra
formation becomes asymptotically exact and the fixed-po
RG equations for the RTIC can be solved, to a large ext
analytically. From the RG treatment and from other analy
cal results,8 we have a clear physical picture of the origin
the critical behavior of the RTIC, which is most probab
also relevant for other low-dimensional random quant
critical systems, having an IRFP. The critical properties
these systems are determined by so-calledrare events, which
are realizations occurring with a vanishing probability, b
which dominate theaverageproperties. Conversely,typical
realizations, which appear with probability 1, make a vanis
ing contribution to the average critical quantities. The ma
ematical origin of the solubility of these models is connec
with the above observation, since it is enough only to d
with the rare events, and an overwhelming part of the re
izations is irrelevant in respect to the average critical pr
erties.

In the following we list the existing results about the si
gular behavior of the RTIC. AtT50 and without an externa
©2002 The American Physical Society16-1
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field H50, the average magnetization of the surface s
ms , asymptotically vanishes asms;(2d)bs, with an
exponent3,4

bs51, ~1.3!

whereas the same behavior for the bulk magnetizationm,
involves the bulk exponent6 b:

b522F, F5
11A5

2
. ~1.4!

Average correlationsG(r )5@^s l
xs l 1r

x &#av, outside the criti-
cal point, decay exponentially, and the correlation lengthj
asymptotically diverges in the vicinity of the critical poin
as6

j;udu2n, n52. ~1.5!

On the other hand, thetypical correlation lengthj typ , de-
fined through the relation@ ln(^sl

xsl1r
x &)#av;2r /j typ involves

another exponent5 n typ51. At the critical point average cor
relations decay as a power,G(r );r 22x, and the scaling di-
mension of the bulk magnetizationx satisfies the scaling re
lation x5b/n. Similarly, for end-to-end critical correlation
the corresponding scaling dimensionxs is expressed byxs
5bs /n.

In a quantum system statical and dynamical correlati
are inherently related. In the RTIC at the critical point t
dynamical scaling is strongly anisotropic, and the relev
~imaginary! time scale—the relaxation timet r—is related to
the length scalej as

ln t r;j1/2. ~1.6!

In his RG study Fisher also considered theweakly ordered
and weakly disorderedGriffiths phases,9 which are situated
in the vicinity of the critical point. He found an anisotrop
scaling relationt r;j1/2udu, which can be interpreted as
d-dependent dynamical exponentz, which in leading order is
given by

z'
1

2udu
, udu!1. ~1.7!

In the presence of a small external field,H!1, and in the
vicinity of the critical point,udu!1, but with a finite combi-
nation of,g5d ln(H)5O(1), Fisher obtained the exact sca
ing function of the magnetization of the form

m~d,H !'m0@ ln~H0 /H !#F22m̃@d ln~H0 /H !#, ~1.8!

where m0 and H0 are dimensional constants, andm̃(g) is
given in Ref. 6.

In the present paper we extend the RG treatment of Fis
into the entire Griffiths region. Which for some type of initi
disorder distribution could cover the entire off-critical r
gion, 0,udu,`. Our analytical results in the Griffiths
phases are asymptotically exact in the same sense as a
06441
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by Fisher at the critical point. Here we summarize our m
findings. A short account of our results, especially about
renormalization of couplings and transverse fields, was gi
in Ref. 10.

The asymmetry in the renormalization of the couplin
and the transverse fields is related to anonlinear quantum
control parameterD, which is defined as the root of the fo
lowing equation:

F S J2

h2D DG
av

51.. ~1.9!

We have shown thatD remains invariant along the RG tra
jectories~i.e. as the energy scaleV is lowered!, and so can
be expressed by initial disorder distributions. Note that
very different disorder distributions one might have the sa
D, provided the distributions have the same form of asy
metry. The dynamical exponentz is simply expressed by the
non-linear quantum control parameter as

z5
1

2uDu
, ~1.10!

which is an exact relation in the entire Griffiths region. W
have calculated the singular behavior of different physi
quantities~magnetization, susceptibility, specific heat, etc!,
and the singularity exponents are all expressed by the n
linear quantum control parameterD. In this way we have
demonstrated a weak-universality scenario: details of the
order distributions are irrelevant for the Griffiths-McCoy si
gularities, provided the nonlinear quantum control parame
has the same value.

In the vicinity of the random quantum critical point, th
nonlinear and linear quantum control parameters are asy
totically identical:

D5d1O~d2!; ~1.11!

consequently in the lineard limit, from our formulas we can
recover Fisher’s results6 aboutweaklydisordered andweakly
ordered Griffiths phases. From our results one can also
tain the scaling function of the magnetization as a function
a small applied magnetic fieldH, which in the paramagnetic
phase is given in the functional form

m~D,H !5mDS H

HD
D 2D

m̃F D

DD
,S H

HD
D 2DG , ~1.12!

wheremD , HD and DD are nonuniversal dimensional con
stants. HereDD is a nonuniversal parameter, which depen
on the details of the distribution of the disorder. At the cri
cal point,D50, our result in Eq.~1.12! goes over Fisher’s
result in Eq.~1.8!.

The structure of the paper is the following. The RG equ
tions and their solution for the fixed-point distribution of th
couplings and the transverse fields are presented in Se
Renormalizations of lengths and magnetic moments
6-2
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EXACT RENORMALIZATION OF THE RANDOM . . . PHYSICAL REVIEW B65 064416
given in Sec. III. The scaling behavior of different therm
dynamic quantities in the presence of a finite external m
netic field or at small, but nonzero, temperature is calcula
in Sec. IV. We conclude our paper in Sec. V with a discu
sion of a possible extension of our results to other proble
Some detailed calculations about the distribution function
lengths are given in the Appendix.

II. RENORMALIZATION OF COUPLINGS
AND TRANSVERSE FIELDS

Here we consider the RTIC as given by the Hamilton
in Eq. ~1.1! without external magnetic field, i.e.,H50. To a
spin at lattice sitel, we assign a magnetic momentm l and a
length l l

s , while the transverse field acting on this spin
denoted byhl . Similarly to thel th bond, connecting lattice
sites l and l 11, we assign a lengthl l

b , and the associate
coupling is denoted byJl . In the initial situation l l

s5 l l
b

51/2, m l51 and the couplings and fields are taken from
initial distributions,Pin(h)dh andRin(J)dJ, respectively.

During renormalization the strongest term in the Ham
tonian, coupling, or transverse field, of strengthV, is succes-
sively decimated out and the neighboring transverse-field
couplings are replaced by weaker ones, which are gener
by a second-order perturbation calculation. If the strong
term is a coupling, sayV5Jl , then the two spins connecte
by Jl flip coherently in a longitudinal field; thus they act a
an effective, composite spin having the renormalized par
eters

h̃5
hlhl 11

Jl
, l̃ b5 l l

s1 l l
b1 l l 11

s , m̃5m l1m l 11 .

~2.1!

On the other hand, if the strongest term in the Hamiltonian
a transverse field, say,V5hl , then the state of this spin in
small longitudinal field is practically unchanged, thus
contribution to the susceptibility is negligible. Consequen
from a magnetic point of view this spin can be decima
out, and the renormalized parameters of the effective b
connecting sitesl 21 andl 11 are given by

J̃5
Jl 21Jl

hl
, l̃ s5 l l 21

b 1 l l
s1 l l

b . ~2.2!

Note that the decimation equations forh̃ and J̃ are related
through duality.

During renormalization the energy scale is reduced
joint distribution functions, such as the for the spin
P(h,l s,m;V)dhdlsdm, and those for the bonds
Rl(J,l b;V)dJdlb, are alsoV dependent. Generally we de
with the following reduced distribution functions:
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P0~h,V!5E E P~h,l s,m;V!dlsdm,

Pl~h,l s,V!5E P~h,l s,m;V!dm

Pm~h,m,V!5E P~h,l s,m;V!dls

R0~J,V!5E Rl~J,l b;V!dlb, ~2.3!

all of which are normalized. In this section we consider t
distribution of transverse fields and couplings, so that
work with P0(h,V) and R0(J,V), whereas the other join
distributions, which are connected to the size of avera
lengths and average moments will be considered in Sec.

We start by calculating the variation of the distributio
function of transverse fields,dP0(h,V), when the energy
scale is lowered byV→V2dV, which amounts to eliminat-
ing a fraction ofdV@P0(V,V)1R0(V,V)# spins. Here one
should take into account the fact that as a strong bon
decimated out, two original fields are also eliminated a
one field is created, the strength of which is given in E
~2.1!. Since the distribution function should also be norm
ized, we arrive at the equation

dP0

dV
5P0~h,V!@R0~V,V!2P0~V,V!#

2R0~V,V!E
h

V

dh8P0~h8,V!P0S h

h8
V,V D V

h8
.

~2.4!

One can similarly derive the evaluation equation of the c
pling distribution,

dR0

dV
5R0~J,V!@P0~V,V!2R0~V,V!#

2P0~V,V!E
J

V

dJ8R0~J8,V!R0S J

J8
V,V D V

J8
,

~2.5!

which follows simply from Eq. ~2.4! by duality, which
amounts to interchangingh↔J and P0↔R0. The two inte-
grodifferential equations in Eqs.~2.4! and ~2.5! have to be
supplemented by the initial conditions, represented by
distributionsPin(h) andRin(J).

A. Fixed-point solution

A special solution to the problem in Eqs.~2.4! and~2.5! is
given by the functions
6-3
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P0~h,V!5
p0~V!

V S V

h D 12p0(V)

, ~2.6!

R0~J,V!5
r 0~V!

V S V

J D 12r 0(V)

; ~2.7!

thus they depend only on the values of the distributions
their edges, atP0(V,V)5p0 /V and atR0(V,V)5r 0 /V. At
the end of this section we present arguments that this sp
solution represents the true solution of the problem at
fixed point, i.e., asV→0. Later we also show how the pa
rameters of the special solution can be related with the in
distributionsPin(h) andRin(J).

Putting Eqs.~2.6! and ~2.7! into Eq. ~2.4! we obtain

Fp0r 02V
dp0

dV GF ln
V

h
2

1

p0
G50, ~2.8!

which leads to the ordinary differential equation

dp0

dG
52p0r 0 ~2.9!

in terms of the log-energy variableG52 ln V. Similarly,
from Eq. ~2.5! for the edge parameterr 0 we obtain

dr0

dG
52r 0p0 . ~2.10!

Subtracting Eq.~2.9! from Eq. ~2.10! we obtain thatp0 and
r 0 differ from each other by a constant 2D:

p02r 052D. ~2.11!

Thus in terms of the variable

y05p02D5r 01D, ~2.12!

we obtain one differential equation:

dy0

dG
1y0

25D2. ~2.13!

Here we note thatD is related to the asymmetry in the reno
malization of couplings and transverse fields; its val
which can be expressed by the initial distributions, will
determined later. At the critical point, where the distributio
of the transverse fields and that of the couplings evolve to
same limiting function asV→0, we haveD50. In the para-
magnetic phase, where according to Eq.~1.2! transverse
fields on average are stronger than the average coupl
D.0, whereas in the ferromagnetic phase we have the
posite situation:D,0.

At the critical point, D50, the solution to Eq.~2.13! is
given by

y05p05r 05
1

G2G0
5

1

ln~V0 /V!
, d5D50,

~2.14!

where G052 ln V0 is a reference~log! energy scale. It is
instructive to consider the distribution of the reduced lo
06441
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e

l

,

e

gs,
p-

-

coupling variable h52(ln V2ln h)/ln V52(ln V
2ln J)/ln V, which is given from Eqs.~2.6! and ~2.14! as

r~h!dh5exp~2h!dh. ~2.15!

This is just the critical point solution of the RTIC of Fisher6

The solution to Eq.~2.13! in the off-critical region, D
Þ0, is given by

y05
D ȳ01D2th@D~G2G0!#

D1 ȳ0th@D~G2G0!#

5uDuS 112
ȳ02D

ȳ01D
~V/V0!2D1••• D , ~2.16!

where the solution goes through the pointy05 ȳ0 at the ref-
erence ~log! energy cutoff G0. The second equation in
Eq.~2.16! is the approximate form of the solution close to t
line of fixed points, where in terms of the original energ
scale variableV/V0!1. We note thaty0 /D is a unique
function of two dimensionless variables,

y0

D
5yF D

DD
,S V

VD
D 2dG , ~2.17!

whereDD5 ȳ0 andVD5V0.
In the following we relate the asymmetry parameterD to

the properties of the initial distributions,Pin(h) andRin(J).
For this purpose we first calculate the derivative

d

dV
@Jm#av5R0~V,V!Vm1E

0

VdR0~J,V!

dV
JmdJ

5R0~V,V!Vm1@P0~V,V!2R0~V,V!#@Jm#av

2P0~V,V!E
0

V

dJJmE
J

V

dJ8RS JV

J8
V,V D V

J8
,

~2.18!

where in the second equation we have used the RG equa
in Eq. ~2.5!. In the last term we change the order of th
integration, and thus obtain

E
0

V

dJ8E
0

J8
dJJmRS JV

J8
V,V D V

J8
5V2m@Jm#av

2 .

~2.19!

In a similar way one can evaluate (d/dV)@h2m#av, and then
obtain for the average value of the following derivative:

d

dV F S J

hD mG
av

5H 12F S J

hD mG
av
J $P0~V,V!V2m@Jm#av

1R0~V,V!Vm@h2m#av%. ~2.20!

Note that this quantity is vanishing for a parameterm5m̃,
provided @(J/h) m̃#av51; thus m̃ defined in this way stays
invariant along the RG trajectory. This relation is valid ev
6-4
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EXACT RENORMALIZATION OF THE RANDOM . . . PHYSICAL REVIEW B65 064416
if the starting RG steps are approximative. At the fixed po
V→0, with the solution in Eqs.~2.6! and ~2.7!, we have
evaluated the average

F S J2

h2D DG
av

51. ~2.21!

Consequently the asymmetry parameterD is an invariant
quantity of the RG transformation, which is then determin
by the initial distributions, as shown in Eq.~1.9!. In the
following D is considered the nonlinear quantum control p
rameter of the RTIC.

Next we show that the RG equations in Eqs.~2.1! and
~2.2! become asymptotically exact as the line of fixed poi
is approached, i.e., asV/V0→0. Here let us consider th
disordered Griffiths phaseD.0, the reasoning forD.0 fol-
lows from duality. Here the ratio of decimated bonds,DnJ ,
and decimated transverse fields,Dnh , goes to zero as
DnJ /Dnh5R0(V,V)/P0(V,V)5r 0 /p0;V2D, thus close
to the fixed point almost exclusively, transverse fields
decimated out. Then the probability Pr(a), that the value of
a couplingJ, which is a neighbor to a decimated transve
field, is V.J.aV, with 0,a,1 given by

Pr~a!.E
aV

V

R0~J,V!dJ512a r 0'r 0ln~1/a!,

~2.22!

which goes to zero during iteration, since according to E
~2.16! and~2.12! r 05R0(V,V)V→0. Consequently the RG
transformation becomes asymptotically exact and the sin
larities, which are characterized by the parameterD as cal-
culated by the original distributions in Eq.~2.21!, are also
exact.

B. Relation between energy and length scales

Next we are going to study the actual relation between
asymmetry or nonlinear quantum control parameterD and
the Griffiths-McCoy singularities of the RTIC. For this w
investigate the relation between the energy scaleV and the
length scaleLV , by studying the fraction of nondecimate
spins,nV . When the energy scale is decreased by an amo
of dV a fraction of spins.dnV5nV@P0(V,V)1R0(V,V)#,
is decimated out, so that we obtain the differential equat

dnV

dV
5nV@P0~V,V!1R0~V,V!#, ~2.23!

which can be rewritten as

2
dlnnV

dlnV
52@r 0~V!1p0~V!#522y0~V!. ~2.24!

Using the solution toy0(V) in Eq. ~2.16! one can integrate
Eq. ~2.24! with the result

nV5H chFD ln
V0

V G1
ȳ0

D
shFD ln

V0

V G J 22

. ~2.25!
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To obtain the scaling form at the critical point, in Eq.~2.25!
we take the limitsD→0 andG52 ln V→`, with, however,
D3G→0, and obtain

nV5F11 ȳ0ln
V0

V G22

;F ln
V0

V G22

, D50, ~2.26!

which could be also directly calculated from Eq.~2.25! with
the critical-point solution in Eq.~2.14!. Thus, from Eq.
~2.26! for the typical distance between remaining spins,LV ,
we obtain

LV;
1

nV
;F ln

V0

V G2

, D50, ~2.27!

which is just the relation in Eq.~1.6!, as found earlier by
Fisher.6

In the Griffiths phases,uDu.0, in Eq.~2.25!, one obtains
nV;V2uDu, in the limit V→0. Consequently the relation be
tween typical distance between remaining spins,LV

;1/nV , and the energy scale is given by

LV.LV0
~D1y0!2S 2

D D 2S V0

V D 2uDu

;V22uDu. ~2.28!

ThusD is simply related to the dynamical exponentz,

z5
1

2uDu
, ~2.29!

as shown in Eq.~1.10!.
To obtain a relation between the nonlinear quantum c

trol parameterD, in Eq. ~2.21!, and the linear control param
eterd, as defined in Eq.~1.2! we perform a Taylor expansion
for

@J2D#av5112D@ ln J#av12D2@ ln J!2] av1O~D3!,
~2.30!

and similarly for @h2D#av. Putting these into Eq.~2.21! we
obtain thatD(d)5d1O(d2), as shown in Eq.~1.11!.

Closing this section, we argue that the special solution
Eqs. ~2.6! and ~2.7! is a true fixed-point solution asV→0.
First we refer to Fisher’s results at the critical point,6 which
justifies that any nonsingular initial distribution is attract
by the special solution in Eqs.~2.6! and ~2.7!. Second, we
consider a finite-energy scaleV.0, when nonasymptotic so
lutions to Eqs.~2.4! and ~2.5! are given by the special solu
tions in Eqs.~2.6! and ~2.7! extended by nonuniversal func
tions P08(h,V) and R08(J,V), respectively. Inserting thes
nonasymptotic solutions into Eq.~2.6!, the relation in Eq.
~2.8! will be extended by other terms containingP08 andR08 .
As V goes to zero, however, the second factor in Eq.~2.8! is
diverges; therefore, the corrections become irrelevant and
relation in Eq.~2.9! will govern the fixed-point behavior. Ou
third argument is based on numerical solutions of Eqs.~2.4!
and ~2.5!, which are evolving toward special solutions
Eqs.~2.6! and ~2.7! for different initial distributions.

Thus we can summarize that in the Griffiths phases
RTIC is uniquely characterized by a nonuniversal quant
control parameterD, which is related to the dynamical ex
6-5
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ponentz through Eq.~1.10!. The possible difference betwee
two initial distributions leading to the sameD is given by the
nonuniversal parametersV0 and ȳ0, which account for the
number of necessary RG steps until the fixed-point distri
tions in Eqs.~2.6! and ~2.7! are sufficiently approached.

III. RENORMALIZATION OF LENGTHS
AND MAGNETIC MOMENTS

The scaling behavior of lengths and magnetic mome
during renormalization can be deduced from the joint dis
bution functionsPl(h,l ,V),Rl(J,l ,V), and Pm(h,m,V), as
defined in Eqs.~2.3!. From here on we drop the indexs or b
to indicate the type of the length.

A. Scaling of lengths

In the following we consider the joint distributio
Pl(h,l ,V), and write down the relevant evaluation equati
when energy scale is lowered asV→V2dV. Generalizing
the reasoning leading to Eq.~2.4! we obtain

dPl~h,l ,V!

dV
5Pl~h,l ,V!@R0~V,V!2P0~V,V!#

2E
h

V

dh1

V

h1
E

0

l

dl2E
0

l 2 l 2
dl1Rl~V,l 2 ,V!Pl

3~h1 ,l 1 ,V!Pl S h

h1
V,l 2 l 12 l 2 ,V D , ~3.1!

and similarly for the coupling distribution by interchangin
R↔P and Ji↔hi , as in Eqs.~2.4! and ~2.5!. The second
term on the right-hand side of Eq.~3.1! can be written as a
convolution in terms of the variablel 85 l 11 l 35 l 2 l 2 as

2E
0

l

dl8Rl~V,l 2 l 8,V!E
0

l 8
dl1E

h

V

dh1

3
V

h1
Pl~h1 ,l 1 ,V!Pl S h

h1
V,l 82 l 1 ,V D . ~3.2!

Consequently taking the Laplace transforms

P̃l~h,l,V!5E
0

`

e2 llPl~h,l ,V!dl,

R̃l~J,l,V!5E
0

`

e2 llRl~J,l ,V!dl, ~3.3!

we obtain a simpler relation

dP̃l~h,l,V!

dV

5 P̃l~h,l,V!@R̃l~V,0,V!2 P̃l~V,l,V!#2R̃l~V,l,V!

3E
h

V

dh8P̃l~h8,l,V!P̃lS h

h8
V,l,V D V

h8
, ~3.4!
06441
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and similarly for the coupling distribution:

dR̃l~J,l,V!

dV

5R̃l~J,l,V!@ P̃l~V,0,V!2R̃l~V,l,V!#2 P̃l~V,l,V!

3E
J

V

dJ8R̃l~J8,l,V!R̃lS J

J8
V,l,V D V

J8
. ~3.5!

Note that the differentl components are separated, whi
makes it possible to solve the equations. Forl50, when
P̃l(h,0,V)5P0(h,V) and R̃l(J,0,V)5R0(J,V), the solu-
tions are given in Eqs.~2.6! and~2.7!. With this guidance we
are looking for a solution for generall in the forms

P̃l~h,l,V!5
p l~l,V!

V S V

h D 12pl (l,V)

, ~3.6!

R̃l~J,l,V!5
r l~l,V!

V S V

J D 12r l (l,V)

, ~3.7!

where now pl(0,V)5p l(0,V)5p0(V) and r l(0,V)
5r l(0,V)5r 0(V), whereas forl.0 pl(l,V).p l(l,V)
andr l(l,V).r l(l,V). This latter relation follows from the
fact that the average length of a bond,l̄ b.0, and that of a
spin cluster,l̄ s.0, are given by

l̄ b5 lim
l→0

1

l F12
r l~l,V!

r l~l,V! G , l̄ s5 lim
l→0

1

l F12
p l~l,V!

pl~l,V! G .
~3.8!

Inserting the functions in Eqs.~3.6! and~3.7! into Eqs.~3.4!
and ~3.5!, we obtain a set of ordinary differential equation

dpl

dG
52p lr l ,

dp l

dG
52p l~pl2p l1r l !,

drl

dG
52p lr l ,

dr l

dG
52r l~r l2r l1p l !. ~3.9!

involving the functionspl ,p l ,r l , andr l .
These equations are solved in the Appendix. Here we c

sider only the scaling behavior of the average lengths,
for this it is enough to treat the smalll expansions up to
linear order:

pl~l,V!5p0~V!1lp1~V!,

p l~l,V!5p0~V!1lp1~V!,

r l~l,V!5r 0~V!1lr 1~V!, r l~l,V!5r 0~V!1lr1~V!,
~3.10!

Inserting the expressions in Eqs.~3.10! into ~3.9!, for the
correction terms we obtain:
6-6
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dp1

dG
52p1r 02r1p0 ,

dp1

dG
52p1r 02p0~p12p11r1!,

dr1

dG
52p1r 02r1p0 ,

dr1

dG
52r1p02r0~r 12r11p1!.

~3.11!

Now, noting that

d ln~p12p1!

dG
5p0 ,

d ln~r 12r1!

dG
5r 0 , ~3.12!

after integration we obtain, using Eqs.~2.9! and ~2.10!, that
p12p15Ap /r 0 and r 12r15Ar /p0, whereAp and Ar are
integration constants. Consequently the average lengths
Eq. ~3.8! are given by

l̄ s5
p12p1

p0
5 l̄ s~V0!

r 0~V0!p0~V0!

r 0~V!p0~V!
5 l̄ s~V0!

ȳ0
22D2

y0
22D2

~3.13!

and

l̄ b5
r 12r1

r 0
5 l̄ b~V0!

r 0~V0!p0~V0!

r 0~V!p0~V!
5 l̄ b~V0!

ȳ0
22D2

y0
22D2

.

~3.14!

At the line of fixed pointsV→0, one can see thatl̄ s; l̄ b
;LV , consequently the previous interpretation of the d
namical exponentz in Eq. ~2.28! is also justified with aver-
age length scales.

Now, to calculate the correlation lengthj in the paramag-
netic phaseD.0, one should take into account that the ra
of ~nondecimated transverse fields!/~nondecimated cou
plings! at an energy scaleV, is given by p0 /r 0. Conse-
quently the number of nondecimated spins in a cluste
given by; l̄ sp0 /r 0;1/r 0

2;D22, which stays constant as th
energy-scale is lowered. This quantity is actually the meas
of the size of the average correlated domain in the syst
where the couplings between the spins, being larger then
transverse fields, are decimated out. Therefore, in this
we have an estimate for the correlation length close to
critical point,

j;D22;d22, ~3.15!

which is consistent with Fisher’s result in Eq.~1.5!.

B. Scaling of magnetization moments

In this subsection we perform a similar calculation for t
joint distribution functionPm(h,m,V), and calculate the av
erage size of a magnetic moment,m̄(V), as a function of the
energy cutoff. The joint distribution functionPm(h,m,V)
satisfies the differential equation
06441
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dPm~h,m,V!

dV
5Pm~h,m,V!@R0~V,V!2P0~V,V!#

2R0~V,V!E
h

V

dh8
V

h8
E

0

m

dm8Pm

3~h8,m8,V!PS h

h8
V,m2m8,V D ,

~3.16!

which can be derived along the lines of Eqs.~2.4! and~3.1!.
The second term on the right-hand side of Eq.~3.16! is a
convolution; therefore, we introduce the Laplace transfor

P̃m~h,s,V!5E
0

`

e2msPm~h,m,V!dm, ~3.17!

which satisfies the relation

dP̃m~h,s,V!

dV

5 P̃m~h,s,V!@R0~V,V!2 P̃m~V,0,V!#2R0~V,V!

3E
h

V

dh8P̃m~h8,s,V!P̃mS h

h8
V,s,V D V

h8
.

~3.18!

In Eq. ~3.18! the differents components are separated fors

50; when P̃m(h,0,V)5P0(h,V), the solution is given in
Eqs. ~2.6!. As for the joint distribution of the lengths
Pl(h,l,V), in Eq. ~3.6! we are looking for the solution for
generals in the form

P̃m~h,s,V!5
pm~s,V!

V S V

h D 12pm(s,V)

. ~3.19!

Here againpm(0,V)5pm(0,V)5p0(V), whereaspm(s,V)
.pm(s,V) for s.0, since the average cluster moment,m̄
.0, is given by

m̄5 lim
s→0

1

s F12
pm~s,V!

pm~s,V! G . ~3.20!

Putting Eq.~3.19! into Eq. ~3.16!, we find that the functions
pm andpm satisfy the differential equations

dpm

dG
52pmr 0 ,

dpm

dG
52pm~r 02p01pm!. ~3.21!

Keeping in mind that the average cluster momentm̄, and thus
the average magnetization,m are defined as

m5
m̄

l̄ s

, ~3.22!
6-7
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and are related to the smalls asymptotics of the distribution
in Eq. ~3.19!, we perform the expansions up to linear ord

pm~s,V!5p0~V!1sp̃1~V!,

pm~s,V!5p0~V!1sp̃1~V!. ~3.23!

For the correction termsp̃1 and p̃1, we derive differential
equations, in terms of the functionsp0 and r 0, as

dp̃1

dp0
5

p̃1

p0
,

dp̃1

dp0
5

p̃1

p0
1

p̃1

r 0
, ~3.24!

which leads to

~y0
22D2!

d2p̃1

dy0
2

5 p̃1 , ~3.25!

wherey05y0(V) is given in Eq.~2.16!. We note that with
the solution forp̃1, for the average cluster moment we ha

m̄5
p̃12p̃1

p0
52

E
ȳ0

y0
dy08p̃1~y08!/~y082D!

y01D
. ~3.26!

At the critical pointwith D50 the solution of Eq.~3.25! is
given in simple power-law forms

p̃15y0
2t , D50, ~3.27!

where t5(A521)/2 is the positive root of the equation
t(t11)51. @The other linearly independent solution wi
t52(A511)/2 is physically unacceptable, since the av
age cluster moment would be smaller than 1.# From Eq.
~3.24! we havep̃152ty0

2t , and using Eq.~3.26! for the
average cluster moment at the critical point we obtain

m̄5consty0
2(11t)5m̄0F lnS V0

V D GF

, F5
1

t
5

11A5

2
.

~3.28!

In this way we have rederived Fisher’s result6 for the scaling
behavior of the average cluster moment in a direct way.

In Griffiths phases withDÞ0, the differential equation in
Eq. ~3.25! in terms of the variabley5y0 /D is related to the
Legendre differential equation and the physically accepta
solution can be expressed by the hypergeometric functio11

F(a,b;c;z), as

p̃15uDu2ty2tFS t

2
,
1

2
1

t

2
;
3

2
1t;

1

y2D 5uDu2t f 1~y!,

~3.29!

where, in the limitD→0, we recover the solution at th
critical point in Eq.~3.27!. From Eq.~3.24! we obtain
06441
:
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,

p̃152uDu2t~y21!y2(t11)FS t

2
11,

1

2
1

t

2
;
3

2
1t;

1

y2D
5uDu2tf1~y!, ~3.30!

and putting Eqs.~3.29! and ~3.30! into Eq. ~3.26!, for the
average cluster moment we obtain

m̄5constuDu2t21
f ~y!

y11
, ~3.31!

where f (y)5 f 1(y)2f1(y). Here one should differentiate
between the paramagnetic (D.0, y.0) and ferromagnetic
(D.0, y.0) phases. In the former case the average clu
moment approaches a finite limiting value, asV/V0→0,
whereas in the ferromagnetic phase, wherey→12 in the
fixed point,m̄ is divergent, asm̄(V);V22uDu. For the aver-
age magnetization in Eq.~3.22!, one then obtains

m5m0

~12y! f ~y!

~12 ȳ! f ~ ȳ!
, ~3.32!

where m0 is the average magnetization atV5V0, and ȳ
denotes the value of the variabley at the same energy scale
The average magnetization in the paramagnetic phas
zero, whereas in the ferromagnetic phase one has to eva
Eq. ~3.32! along the lines of semicritical fixed points
V/V0→0. Here, taking the limituDu!1, i.e., close to the
critical point, we have (12 ȳ)21;uDu and f ( ȳ);uDut, so
that12

m5constuDu12t5constudu12t. ~3.33!

From Eq. ~3.33! one can read the critical exponent of th
average magnetization as

b512t522F, ~3.34!

which corresponds to Fisher’s result in Eq.~1.4!.

IV. SCALING OF THERMODYNAMICAL QUANTITIES

In the previous sections we presented solutions of the
equations in the entire Griffiths region for the distribution
couplings, transverse fields, lengths, and magnetization
ments. Then, with those distributions, average quantit
such as length scales, magnetization, etc. were calculate
zero temperature and in the absence of a longitudinal m
netic field. In this section we extend these calculations,
determine the scaling form of singular thermodynamic qu
tities as a function of a small, but finite, temperatureT.0, or
magnetic fieldH.0.

To treat the effect of a small finite temperature in the R
scheme, one should first note that the thermal energy se
energy scaleVT;T, and that the RG decimation should b
stopped asV is lowered toVT . At that energy scale a frac
tion of spin clusters,nVT

, in Eq. ~2.25! is not decimated out,
and these spins are loosely coupled as compared with
temperatureT. Consequently the entropy per spin,s, is given
as the contribution of non-interacting spin clusters,
6-8
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s.nVT
ln 2, ~4.1!

whereas the specific heat can be obtained through a de
tion: cV5T(]s/]T). From Eqs.~4.1! and~2.25!, for the sin-
gular behavior we obtain:

s~T!;cV~T!;T2uDu, ~4.2!

which is valid both in ordered and disordered Griffit
phases.

Next we consider the effect of a small longitudinal fiel
H.0, at zero temperature. During renormalization the lo
longitudinal fieldHl at sitel is transformed as

H̃ l5Hm l , ~4.3!

so that the energy scale related to the longitudinal field
given byVH5Hm̄(V). As V is lowered toVH , i.e., when
the energy scale satisfies the equation

VH5Hm̄~VH!, ~4.4!

the RG procedure is stopped, and the remaining spin clus
are practically uncoupled. Then the average magnetiza
and the average susceptibility satisfy the equations

m~H !5m~V5VH!, x5
]m

]H
. ~4.5!

In the disordered Griffiths phase, where m̄(VH) has a
VH-independent limiting value, we haveVH;H; conse-
quently, from Eq.~3.32! the singular behavior is given by

m~H !;S H

HD
D 2D

, D.0. ~4.6!

More generally the scaling form is given in Eq.~1.12!, where
the scaling function can be computed using Eqs.~3.32!,
~2.16!, and~2.17!. Similarly, for the scaling of the suscept
bility in the disordered Griffiths phase one obtains

x~H !;S H

HD
D 2112D

, x~T!;T2112D, D.0,

~4.7!

where the temperature dependence follows from the sca
relationVH;VT .

In theordered Griffiths phase, wherem̄(VH);VH
22uDu , as

given above Eq.~3.32! we haveVH;H1/(112uDu). Putting
this result into Eq.~3.32!, and using the asymptotic expan
sion for the hypergeometric functions11 in Eqs. ~3.29! and
~3.30!, for the leading field dependence of the magnetizat
we obtain

m~H !2m~0!;S H

HD
D 2uDu/(112uDu)

lnS H

HD
D , D,0,

~4.8!

and, similarly for the susceptibility,

x~H !;S H

HD
D 21/(112uDu)

lnS H

HD
D , D,0. ~4.9!
06441
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Note that in the ordered Griffiths phase the singularity ex
nent is different from that in the disordered Griffiths phas
and that there is a logarithmic correction term. The tempe
ture dependence of the susceptibility, which follows from t
relationVH;VT , is given by

x~T!;T2112uDuln T, D,0. ~4.10!

We conclude this section by stating that all singularities
different physical quantities, both in~strongly! ordered and
disordered Griffiths phases, can be expressed by the no
ear quantum control parameterD.

V. DISCUSSION

In this paper the strong-disorder RG method is applied
the strongly disordered and strongly ordered Griffiths pha
of the random transverse-field Ising spin chain. With th
calculation we have demonstrated that the RG method le
to asymptotically exact results in the entire Griffiths regio
The key concept of our solution is the introduction of a no
linear quantum control parameterD, which remains invariant
under the RG transformation, even if the renormalization
approximate in the starting decimation steps.D, which is a
measure of the asymmetry in the renormalization betw
the couplings and the transverse fields, is simply related
the dynamical exponentz, and all the singularities of the
different physical quantities in the Griffiths phases can
expressed by it. In this way we have presented an exam
for a RG transformation, where the relevantnonlinear scal-
ing field13 outside the critical fixed point is exactly con
structed, and the off-critical singularities are calculated a
lytically. The line of fixed points controlling the singula
behavior in the Griffiths phases are found to bestrongly at-
tractive: for any weak initial disorder, having the same asy
metry parameterD, the system scales into the same fix
point. This is a remarkable weak-universality property of t
system. We note that previous numerical8,14 and analytical15

results about the RTIC are in accordance with our RG fi
ings.

At this point one may ask how far these results are g
eral, and how they could apply for other random quant
spin systems. The above scenario is certainly valid for th
problems, which can be mapped to the RTIC, so that the
equations can be transformed into an equivalent form. F
fermionic spin-1/2 models, such as the randomXX model
with dimerization or the randomXY model with anX/Y
anisotropy, are such examples.16,17Also, the one-dimensiona
Sinai-walk problem, i.e., a random walk in a random en
ronment with a global bias,18 can be mapped to the RTIC
~Ref. 19!, thus a renormalization analysis20 also leads to as-
ymptotically exact results for this problem.

Other, more general, random quantum spin systems c
belong to two main classes:~i! systems having an IRFP an
a line of semicritical fixed points which arestrongly attrac-
tive, and ii! those models where a cross-over phenom
takes place when the strength of the disorder is increa
6-9
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Models belonging to the first class include, among others,
random spin-1/2 Heisenberg chain16 and randomq>2 states
quantum Potts chains.21 For these systems we expect tha
strong-disorder RG calculation also leads to asymptotic
exact results, and the physical picture obtained in the ana
cal treatment of the RTIC stays qualitatively correct. Inde
scaling arguments and numerical calculations about spe
models are in favor of our conjecture.10

The second class of models includes, among others,
random quantum clock and quantum Ashkin-Teller chain22

and probably several higher-dimensional systems~two-
dimensional random transverse-field Ising model,23,24 etc.!.
For these problems the disorder should exceed a limi
strength, when the IRFP and the line of semicritical fix
points become attractive. Above this limiting disorder val
the strong disorder RG could be asymptotically exact.
verify this possibility, however, one should perform detail
numerical investigations.
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garian National Research Fund under Grant Nos. OT
TO23642, TO25139, TO34183, and MO28418, by the M
istry of Education under Grant No. FKFP 87/2001, and
the Center of Excellence ICA1-CT-2000-70029.

APPENDIX: DISTRIBUTION FUNCTION OF LENGTHS

Here we present a general solution for the joint distrib
tion functionsPl(h,l ,V) and Rl(J,l ,V), in the vicinity of
the line of fixed pointsV/V0→0. This amounts to solving
the set of differential equations in Eqs.~3.9! involving the
functions pl(l,V),p l(l,V),r l(l,V) and r l(l,V), which
appear in the Laplace transformsP̃l(h,l,V) andR̃l(h,l,V)
in Eqs.~3.6! and ~3.7!.

We start with the solutionat the critical pointwhere the
fixed-point distributions of the couplings and the transve
fields are identical, so thatpl(l,V)5r l(l,V) and
p l(l,V)5r l(l,V). Here we have just two differentia
equations

dpl

dG
52p l

2 ,
d ln p l

dG
52plp l . ~A1!

From Eq.~A1! it follows that d(pl
22p l

2)/dG50; therefore,
pl

2 andp l
2 differ by anV-independent term

p l
2~l,V!5pl

2~l,V!2c2~l!, ~A2!

and we can write a simple differential equation

dpl

dG
1pl

25c2. ~A3!
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Since Eq.~A3! is equivalent to Eq.~2.13!, for its solution,
from Eq. ~2.16!, with the substitutionD→c, we have

pl5
pl

0c1c2tanh@c ln~V0 /V!#

c1pl
0tanh@c ln~V0 /V!#

, ~A4!

where nowpl
05p(l,V0) at a reference point,V5V0.

Close to the line of fixed points, asV0 /V→0, we should
havec(l)→0, in order to have a finite scaling combinatio
in Eq. ~A4!. In this small-l limit from Eqs. ~3.8! and ~A2!
we obtain thatc2(l)5a2l1O(l2), where the value of the
constanta is connected to the average lengths atV5V0 and
l̄ 05 l̄ (V0). As l̄ 05a2/2(pl

0)2. As V→0, the average length
of a cluster or bond is divergent as

l̄ 5 l̄ 0p0
2S ln

V0

V D 2

, ~A5!

which is the same as the typical distance between remai
spins,LV , as given in Eq.~2.27!, if we make the identifica-
tion a25p0. To obtain the joint distribution of the fields
~couplings! and lengths, we use the fact that at the fix
point of the RG transformation the appropriate scaling va
able in Eq.~A4! is al1/2ln(V0 /V)5O(1); therefore,

pl~l,V!5al1/2cothFal1/2S ln
V0

V D G ,
p l~l,V!5al1/2sinh21Fal1/2S ln

V0

V D G . ~A6!

Consequently at the fixed point,Pl(h,l ,V) and Rl(J,l ,V)
can be obtained by an inverse Laplace transform of E
~3.6! and ~3.7!, with Eqs.~A6!.

In the Griffiths region, i.e.,outside the critical pointone
should consider a system of four coupled differential eq
tions in Eqs. ~3.9!, where one can construct tw
V-independent combinations of the variables

pl~l,V!2r l~l,V!52D~l! ~A7!

and

pl~l,V!r l~l,V!2p l~l,V!r l~l,V!5D~l!2. ~A8!

Thus there are two variables left,yl5(pl1r l)/2 andul5pl
2p l , which satisfy the differential equations

dyl

dG
1yl

25d2, d25D~l!21D~l!2 ~A9!

and

dul

dG
1ul

22„yl1uD~l!u…ul50. ~A10!

The solution of Eq.~A9! is analogous to that of Eq.~A3!,
and immediately given by

yl5
yl

0d1d2tanh@d~G2G0!#

d1yl
0tanh@d~G2G0!#

, ~A11!
6-10
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whereyl
05yl(l,V0) at the reference energy,V5V0.

To integrate Eq.~A10!, we first note that it is a Bernoulli-
type differential equation, and that its solution can be
pressed as

1

ul
5E~G!S E 1

E~G8!
dG81CD , ~A12!

with

E~G!5expS 2E @yl~G8!1uD~l!u#dG8 D . ~A13!

Using the solution foryl(G) in Eq. ~A11! we can perform the
integration forE(G) as

E~G!5e2GuDu$d coth@d~G2G0!#1yl
0 sinh@d~G2G0!#%21,

~A14!

putting this into Eq.~A12!, one can integrate once mor
giving

ul5
f 1~G!2 f 2~G!

f 1~G!~d1uDu!211 f 2~G!~d2uDu!211Ce2GuDu
,

~A15!

where f 6(G)5(y06d)exp@6(G2G0)d# and the value of the
constantC follows from the boundary condition atG5G0.
,

l

n

06441
-

Having the solution at hand first, we check that at t
critical point, whereD(l)50 and thusd25D25c2 we re-
cover the previous solution. Indeed, the constant in
~A15! at the critical point is given byC5@(yl

0)22d2#1/2, and
than combining Eqs.~A11! and~A15! in the small-V and -l
scaling limits we recover the result in Eq.~A6!.

In the Griffiths phases,uD(l)u.0, keeping Eq.~3.8! in
mind in the small-l limit we have

d~l!2uD~l!u5
d~l!22D~l!2

d~l!1uD~l!u
5AluD~l50!u1O~l2!,

~A16!

so that the appropriate scaling combination in Eqs.~A11! and
~A15!, as V→0 and l→0, is l(V0 /V)2uDu5O(1). The
constantA in Eq. ~A16! is related to the average cluster si
at V5V0 , l̄ s(V0), so that finally, along the line of semicriti
cal points, we obtain

ul5
~yl

01uDu!2~V0 /V!2uDul/~2uDu! l̄ s~V0!

~yl
01uDu!2~V0 /V!2uDul~1/4D!2 l̄ s~V0!11

.

~A17!

Now the joint distribution of the fields~couplings! and
lengths can be obtained through inverse Laplace transfor
tion of Eqs.~3.3! using Eqs.~3.6! and~3.7! and the solutions
in Eqs.~A7!, ~A8!, ~A11!, and~A17!.
ys.
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