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Exact renormalization of the random transverse-field Ising spin chain
in the strongly ordered and strongly disordered Griffiths phases
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Fisher’s [Phys. Rev. B51, 6411 (1995] real-space renormalization-grof|RG) treatment of random
transverse-field Ising spin chains is extended into the strongly ordered and strongly disordered Griffiths phases,
and asymptotically exact results are obtained. In the noncritical region the asymmetry of the renormalization of
the couplings and the transverse fields is related to a nonlinear quantum control patamédiah is a natural
measure of the distance from the quantum critical palntwhich is found to stay invariant along the RG
trajectories, and has been expressed by the initial disorder distributions, stands in the singularity exponents of
different physical quantitie@nagnetization, susceptibility, specific heat, gtathich are exactly calculated. In
this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities do not depend on
the form of the disorder, provided the nonlinear quantum control parameter has the same value. The exact
scaling function of the magnetization with a small applied magnetic field is calculated, and the critical point
magnetization singularity is determined in a simple, direct way.
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[. INTRODUCTION where vark) is the variance ok, and here and in the fol-
lowing we usq - - - ],, to denote an averaging over quenched
In statistical physics and in the theory of interacting disorder. The quantum critical point @#=0 separates the
many-body systems, exact solutions are of great importancéerromagnetic §<0) and paramagneticst0) phases.
especially in the vicinity of singular points, such as at phase Some previously known exact results for the surface
transitions. They provide physical insights into cooperativemagnetizatiof* and typical correlatiofswere greatly ex-
processes, and their results could be used as testing groungsded by Fishérusing the strong disorder RG method,
for d_ifferent approximqtions and num_erical methods. Exacbriginally introduced by Ma, Dasgupta, and HiFisher
solutions for models with short-range interactions and in they, e q that at the critical point the distribution functions of

presence of quenched rar)domness are scarce, Whlch.gre. couplings and the transverse fields broaden without limits
hampered our understanding of collective phenomena in dis-

ordered systems. At present, remarkable examples of exactias the energy scal@ defined by the strongest bond or trans-

soluble problems in the above class include the critical beiyerse field, is lowered. Therefore, as the fixed point of the

havior of low-dimensional random quantum systéntsere transformation with(2=0 is approached,_the disorder_ b_e-_
the interplay of quenched disorder, quantum flictuations, an§OMeS Stronger and stronger, so that in this, so-called, infinite
correlations can be systematically studied within a real-spacindomness fixed poitRFP) the ratio of typical couplings
renormalization grouRG) scheme, which is expected to and tran_svgr_se fields at ne|ghbor|r_19 sites is either zero or
lead to asymptotically exact results, at least for strong®nds to infinity. As a consequence in the IRFP the RG trans-
enough disorder. The prototype of such types of randon‘ﬁormauon becomeS asymptotlcally exact and the f|Xed'pO|nt
quantum systems is the random transverse-field Ising spiRG equations for the RTIC can be solved, to a large extent,
chain (RTIC) for which perhaps the most detailed analytical analytically. From the RG treatment and from other analyti-
and numerical information is available, as far as the randoneal result$ we have a clear physical picture of the origin of
quantum critical behavior is concerned. The RTIC is definedhe critical behavior of the RTIC, which is most probably
by the Hamiltonian also relevant for other low-dimensional random quantum
critical systems, having an IRFP. The critical properties of
~ these systems are determined by so-caited eventswhich
A== Jofol,1—> hot—=HX, of, (1) are realizations occurring with a vanishing probability, but
! ! ! which dominate theaverageproperties. Converselyypical
realizations which appear with probability 1, make a vanish-
ing contribution to the average critical quantities. The math-
ematical origin of the solubility of these models is connected
with the above observation, since it is enough only to deal
with the rare events, and an overwhelming part of the real-
izations is irrelevant in respect to the average critical prop-
erties.
[Inh]a—[InJ]a In the following we list the existing results about the sin-

0= vafIlnh]+vafinJ]’ (.2 gular behavior of the RTIC. AT=0 and without an external

in terms of theo|'” Pauli matrices at sité, whereas the
transverse fieldg, >0 and the couplingd,>0 are indepen-
dent random variables taken from thiaitial) distributions
Pi,(h)dh and R;,(J)dJ, respectively. Thelinean quantum
control parameter of the model is defined as
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field H=0, the average magnetization of the surface spirby Fisher at the critical point. Here we summarize our main
mg, asymptotically vanishes asn~(—48)Ps, with an  findings. A short account of our results, especially about the
exponent* renormalization of couplings and transverse fields, was given
in Ref. 10.
Bs=1, (1.3 The asymmetry in the renormalization of the couplings
and the transverse fields is related tmanlinear quantum

whereas the same behavior for the bulk magnetization control parameted, which is defined as the root of the fol-
involves the bulk exponeh: lowing equation:

oo, 08 ()]
h2

=1.. 1.9

Average correlation§(r)=[{o{ ], ,)]a, outside the criti-

cal point, decay exponentially, and the correlation lengith We have shown thah remains invariant along the RG tra-

asymptotically diverges in the vicinity of the critical point jectories(i.e. as the energy scale is lowered, and so can

ad be expressed by initial disorder distributions. Note that for
very different disorder distributions one might have the same

E~|87Y, v=2. (1.5 A, provided the distributions have the same form of asym-

metry. The dynamical exponents simply expressed by the

On the other hand, thQ/piCBj correlation Iengthgtyp, de- non-linear guantum control parameter as

fined through the relatiofin((o{o}; ))lay~ — r/ & p involves

another exponeﬁtytyp= 1. At the critical point average cor- 1

relations decay as a powed(r)~r 2%, and the scaling di- z= m (1.10

mension of the bulk magnetizationsatisfies the scaling re-

lation x=§/v. Similarly, for end-to-end critical correlations which is an exact relation in the entire Griffiths region. We

t:z c/orrespondmg scaling dimensieg is expressed by have calculated the singular behavior of different physical
stV guantities(magnetization, susceptibility, specific heat, gtc.

In a quantum system statical and dynamical correlation%md the singularity exponents are all expressed by the non-
are inherently related. In the RTIC at the critical point the 9 y exp P y

. o . . inear quantum control parametdr. In this way we have
dynamical scaling is strongly anisotropic, and the relevan . . o . .
. . : . ) . demonstrated a weak-universality scenario: details of the dis-
(imaginary time scale—the relaxation time—is related to

the length scale as order. Qistributiqns are irrele\_/ant for the Griffiths-McCoy sin-
gularities, provided the nonlinear quantum control parameter
Int, ~ 2 (1.6 has the sa_m_e_value. N _
r ' ' In the vicinity of the random quantum critical point, the

In his RG study Fisher also considered teakly ordered nonlinear and linear quantum control parameters are asymp-

and weakly disordereriffiths phase$,which are situated ~totically identical:
in the vicinity of the critical point. He found an anisotropic

scaling relationt,~ &2 which can be interpreted as a A=5+0(5%); (1.19
5-dependent dynamical exponemtvhich in leading order is
given by consequently in the lineaf limit, from our formulas we can

recover Fisher’s resuft@aboutweaklydisordered ansveakly
1 ordered Griffiths phases. From our results one can also ob-
= e |8|<1. (1.7 tain the scaling function of the magnetization as a function of
a small applied magnetic field, which in the paramagnetic

In the presence of a small external field<1, and in the ~Phase is given in the functional form
vicinity of the critical point,| §]<1, but with a finite combi-
nation of, y= §In(H)=0(1), Fisher obtained the exact scal- 2A [A [H\?A
ing function of the magnetization of the form m(A!H)sz(H_) m A_(H_)
D D D
m(8,H)~mg[In(Ho/H)]® 2m[SIn(Hy/H)], (1.9 wheremp, Hp and Ay are nonuniversal dimensional con-
5 stants. Heré\ is a nonuniversal parameter, which depends
wherem, and H, are dimensional constants, ant{y) is  on the details of the distribution of the disorder. At the criti-
given in Ref. 6. cal point,A=0, our result in Eq(1.12 goes over Fisher’s
In the present paper we extend the RG treatment of Fisheesult in Eq.(1.8).
into the entire Griffiths region. Which for some type of initial ~ The structure of the paper is the following. The RG equa-
disorder distribution could cover the entire off-critical re- tions and their solution for the fixed-point distribution of the

gion, 0<|§|<w. Our analytical results in the Griffiths couplings and the transverse fields are presented in Sec. II.
phases are asymptotically exact in the same sense as arguednormalizations of lengths and magnetic moments are

z

, (112
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given in Sec. lll. The scaling behavior of different thermo

dynamic quantities in the presence of a finite external mag Po(h,Q)ZJ J P(h,1%u;Q)dI%du,
netic field or at small, but nonzero, temperature is calculated

in Sec. IV. We conclude our paper in Sec. V with a discus-

sion of a pqssible extepsion of our resu_lts .to qther prot_)lems. Pi(h,15,0)= J P(h,1%,u:Q)du
Some detailed calculations about the distribution function of

lengths are given in the Appendix.

— s . s
P#(h,,u,Q)—f P(h,1% u;Q)dl
Il. RENORMALIZATION OF COUPLINGS
AND TRANSVERSE FIELDS

- b. b
Here we consider the RTIC as given by the Hamiltonian RO(‘]’Q)_J' RI(3I%Q)dIP, 2.3

in Eq. (1.1 without external magnetic field, i.ekj=0. To a

spin at lattice sitd, we assign a magnetic momeat and a  all of which are normalized. In this section we consider the
length I}, while the transverse field acting on this spin is distribution of transverse fields and couplings, so that we
denoted byh,. Similarly to thelth bond, connecting lattice work with Py(h,Q) and Ry(J,Q2), whereas the other joint

sites| andl+1, we assign a Iengtrf’, and the associated distributions, which are connected to the size of average
coupling is denoted byd,. In the initial situationl,s‘=l|b lengths and average moments will be considered in Sec. Ill.

=1/2, =1 and the couplings and fields are taken from the, we sta;t by calculatifpgldthepviri?;ion ?: thehdistribution
initial distributions,P(h)dh andR,(J)dJ, respectively. ~ aeion Of ransverse fie dg O(h"h)’ when ihe energy
During renormalization the strongest term in the Hamil- Sca€ IS lowere - » Which amounts to eliminat-

. . . . ing a fraction ofdQ[ Po(Q,Q) +Ry(£,€)] spins. Here one
tonian, coupling, or transverse field, of strengthis succes- , .
. . : : : should take into account the fact that as a strong bond is
sively decimated out and the neighboring transverse-fields Yecimated out, two original fields are also eliminated and

couplings are replaced by weaker ones, which are generatedle field is created, the strength of which is given in Eq.

by a second-order perturbation calculation. If the strongesl 1) gince the distribution function should also be normal-
term is a coupling, sag)=J;, then the two spins connected ;o4 we arrive at the equation

by J, flip coherently in a longitudinal field; thus they act as

an effective, composite spin having the renormalized param-

eters 40, = Po()IRA(2,9) = Po(2,0)]

h Q
—0,0 | —.

h' h'
(2.3) (2.9

hihiiy
J

Q
— RO(Q,Q)J' dh'Py(h",Q)Pq
h

~ ~ ) ~
h= PP=1P+IP+IP, =+ pypn

On the other hand, if the strongest term in the Hamiltonian isone can similarly derive the evaluation equation of the cou-

a transverse field, sa$) =h,, then the state of this spin in a pling distribution,

small longitudinal field is practically unchanged, thus its

contribution to the susceptibility is negligible. Consequently, d;Ro:R (3,Q)[Po(2,0) —Ro(Q,0)]
from a magnetic point of view this spin can be decimated dQ o s
out, and the renormalized parameters of the effective bond

connecting site$—1 andl +1 are given by —Py(Q Q)JQdJ’RO(J’ )R,
J

J Q
—0,Q0 |—,
J’ J’

2.5
Ji_4d (
I Ts=1P 15+, 2.2

which follows simply from Eq.(2.4) by duality, which
amounts to interchanging«—J and Py« R,. The two inte-
o ) ~ ~ grodifferential equations in Eq$2.4) and (2.5 have to be
Note that the decimation equations forandJ are related  sypplemented by the initial conditions, represented by the
through duality. distributionsP;,(h) andRi,(J).

During renormalization the energy scale is reduced and
joint distribution functions, such as the for the spins,

P(h,I5,x:Q)dhdPFdu, and those for the bonds, A. Fixed-point solution
R/(J,1°;Q)dJdP, are also) dependent. Generally we deal A special solution to the problem in Eq€.4) and(2.5) is
with the following reduced distribution functions: given by the functions
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Po(2) [ Q)1 Pol®) coupling  variable  =—(InQ—Inh)/In Q=—(nQ
Po(h,©)= QO 'n ' (2.6 —InJ)/In Q, which is given from Eqs(2.6) and (2.14) as
Ry(J Q):ro(Q) (g 17rol@) 27 p(m)dn=exp—7)d7. (2.15
o Q ’ ' This is just the critical point solution of the RTIC of Fister.

thus they depend only on the values of the distributions a‘g& OThig si?lleurt:cz)n to Eq.2.13 in the off-critical region A
their edges, aPy(2,Q)=py/Q and atRy(Q2,Q)=ry/Q. At 159 y
the end of this section we present arguments that this special
solution represents the true solution of the problem at the
fixed point, i.e., ad)—0. Later we also show how the pa-
rameters of the special solution can be related with the initial _
distributionsP;,(h) andR;,(J). Yo—A

Putting Egs.(2.6) and(2.7) into Eq. (2.4) we obtain =[A| 1+2%+A (QIQe)*+--- |, (216

_ Ayo+ AN AT ~T)]
A+t A(T=Ty)]

Yo

I QO 1
n___
h  po

which leads to the ordinary differential equation

dpo

pOrO_Qd_Q =0, (2. Where the solution goes through the poygty, at the ref-

erence (log) energy cutoff I'y. The second equation in
Eq.(2.16 is the approximate form of the solution close to the
line of fixed points, where in terms of the original energy-

dpo scale variableQ)/Q,<1. We note thaty,/A is a unique
ar -~ Pofo (2.9 function of two dimensionless variables,
in terms of the log-energy variablE=—In Q. Similarly, Yo [A ( Q )2" 217
from Eq. (2.5 for the edge parametep we obtain ALY Ayl Qp ' :
dro _ —roPo. (2.10 whereAp =y, andQp=0Q,.
dr In the following we relate the asymmetry parameteto

the properties of the initial distribution®,,(h) andRi,(J).

Subtracting Eq(2.9) from Eg.(2.10 we obtain thaipy and For this purpose we first calculate the derivative

ro differ from each other by a constant\2

_ d 2dRy(J,Q
Po=ro=2A. @10 o[ =Ry(Q,0) 0%+ fo —R(’;Q 34
Thus in terms of the variable

=Ro(Q,Q)Q*+[Po(2,0) = Ro(2,0) ][ I#]ay

Yo=Po—A=ro+A, (2.12
we obtain one differential equation: —PO(Q,Q)JQdJJ"JQdJ’R( JQQ,Q)Q,
0 J J/ J/
d
d—)l@+y§=A2. 213 (2.18

where in the second equation we have used the RG equation
in Eg. (2.5. In the last term we change the order of the
integration, and thus obtain

Here we note thaA is related to the asymmetry in the renor-
malization of couplings and transverse fields; its value
which can be expressed by the initial distributions, will be
determined later. At the critical point, where the distributions 0 5

of the transverse fields and that of the couplings evolve to the f d‘]’f dIFR
same limiting function a§)— 0, we haveA =0. In the para- 0 0

magnetic phase, where according to E#f.2) transverse (219
fields on average are stronger than the average couplingﬁ1

: . a similar way one can evaluatd/@Q)[h™#],,, and then
A>.O’ W_hereas.ln the ferromagnetic phase we have the OR5btain for the average value of the following derivative:
posite situationA <O0.

At the critical point A=0, the solution to Eq(2.13) is d [/J\~ I\~
(&A=
av

given by aa
6=A=0, +Ro(Q,Q)Q#h™#],). (2.20

J0 Q
J—,Q,Q J_’:Q M[Jﬂ]av.

h

]{Po(Q,Q)Q_"[J"]av

1
Yo=Po= o= = n(q,/0)

(2.14 Note that this quantity is vanishing for a parameter 1.,

whereTy=—1InQy is a referencelog) energy scale. It is provided[(J/h)*],,=1; thus . defined in this way stays
instructive to consider the distribution of the reduced log-invariant along the RG trajectory. This relation is valid even
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if the starting RG steps are approximative. At the fixed pointTo obtain the scaling form at the critical point, in E§-25
Q1 —0, with the solution in Egs(2.6) and (2.7), we have we take the limitsA—0 andI’= —In Q—ox, with, however,
evaluated the average AXT'—0, and obtain

-2 -2

Qo
, A=0, (2.26

J2 A _ QO |
oz =1. (2.21) No= n ey
av

. ) ) which could be also directly calculated from Eg&.25 with
Consequently the asymmetry parameferis an invariant the critical-point solution in Eq.(2.14). Thus, from Eq.

by the initial distributions, as shown in E@L.9). In the e obtain

following A is considered the nonlinear quantum control pa-

rameter of the RTIC. 1
Next we show that the RG equations in E¢8.1) and LQ'\‘%N

(2.2 become asymptotically exact as the line of fixed points

is approached, i.e., 8/Q,—0. Here let us consider the Wwhich is just the relation in Eq(1.6), as found earlier by

disordered Griffiths phas&> 0, the reasoning foA>0 fol-  Fisher®

lows from duality. Here the ratio of decimated bonds;, In the Griffiths phasegA|>0, in Eq.(2.29), one obtains

and decimated transverse field&n,, goes to zero as No~Q?2, in the limit 2 —0. Consequently the relation be-

Any/An,=Ry(Q,0)/Po(Q,0)=ry/po~Q?*, thus close tween typical distance between remaining spirlsy

to the fixed point almost exclusively, transverse fields are~1/ng, and the energy scale is given by

decimated out. Then the probability ki), that the value of

1+70In

2

Inﬁ s A

0, (2.2

. . . . . 2\2 ‘QO 2|A|
a cou_pllngJ, which is a neighbor to_ a decimated transverse Lo=Lg (A+y0)2(—) _) ~q-2Al (2.29
field, is Q>J>a(}), with 0<a<1 given by 0 A\ Q
a ThusA is simply related to the dynamical exponent
Pr(a)zJ Ro(J,Q)dJ=1—a"o=ryIn(1/a), L
al)
(2.22 z= —2| K (2.29

which goes to zero during iteration, since according to Eqs,¢ shown in Eq(1.10.

(2.16 and(2.12) ro=Ry((2,02)Q2—0. Consequently the RG 14 gptain 4 relation between the nonlinear quantum con-
transformation becomes asymptotically exact and the singy;, parameter\, in Eq. (2.2, and the linear control param-

larities, which are characterized by the parameteas cal- eter 8, as defined in Eq1.2) we perform a Taylor expansion
culated by the original distributions in Eq2.21), are also ¢, ’ q1.2 P Yy p

exact.
[J28] =14 2A[INn J] 5+ 2A2[IN J)?] 5+ O(A3),
B. Relation between energy and length scales (2.30

Next we are going to study the actual relation between thend similarly for[h?2],,. Putting these into Eq2.21) we
asymmetry or nonlinear quantum control parameteand  obtain thatA(8) = 6+ O(6%), as shown in Eq(1.11).
the Griffiths-McCoy singularities of the RTIC. For this we  Closing this section, we argue that the special solution in
investigate the relation between the energy s€aland the Egs.(2.6) and (2.7) is a true fixed-point solution a@ —0.
length scalel,, by studying the fraction of nondecimated First we refer to Fisher’s results at the critical pdinthich
spins,ng . When the energy scale is decreased by an amounastifies that any nonsingular initial distribution is attracted
of dQ a fraction of spinsdng=ng[Po(Q2,Q)+Ry(Q,Q)], by the special solution in Eq$2.6) and (2.7). Second, we
is decimated out, so that we obtain the differential equationconsider a finite-energy scafe>0, when nonasymptotic so-
lutions to Egs(2.4) and(2.5) are given by the special solu-
dng tions in Egs.(2.6) and(2.7) extended by nonuniversal func-
EZHQ[PO(Q'QHRO(Q'Q)]’ (223 ions Po(h,Q) and R)(J3,Q), respectively. Inserting these
. . nonasymptotic solutions into Eq2.6), the relation in Eq.
which can be rewritten as (2.8) will be extended by other terms containifg andRy .
As () goes to zero, however, the second factor in @) is
B dinng, = re(Q)+po(Q)]=—2yo(Q). (2.24 diver_ges_; therefore, Fhe Correcti0n§ become irrelevz_;mt and the
din() relation in Eq.(2.9) will govern the fixed-point behavior. Our
third argument is based on numerical solutions of Eg<l)
and (2.5, which are evolving toward special solutions in
Egs.(2.6) and(2.7) for different initial distributions.
) Thus we can summarize that in the Griffiths phases the
] (2.2 RTIC is uniquely characterized by a nonuniversal quantum
‘ ' control parameted, which is related to the dynamical ex-

Using the solution to/o(Q) in Eq. (2.16 one can integrate
Eq. (2.24) with the result

Q
Aln—=2

Yo Qo
Q +—S|{Aln—

A Q

nQ:[Ch

064416-5



FERENC IGLQ

PHYSICAL REVIEW B 65 064416

ponentz through Eq(1.10. The possible difference between and similarly for the coupling distribution:

two initial distributions leading to the santeis given by the
nonuniversal parametef3, andy,, which account for the

number of necessary RG steps until the fixed-point distribu-

tions in Egs.(2.6) and(2.7) are sufficiently approached.

Ill. RENORMALIZATION OF LENGTHS
AND MAGNETIC MOMENTS

The scaling behavior of lengths and magnetic moments
during renormalization can be deduced from the joint distri-

bution functionsP,(h,1,Q),R/(J,1,Q), andP ,(h,«,Q), as
defined in Eqs(2.3). From here on we drop the indeor b
to indicate the type of the length.

A. Scaling of lengths

In the following we consider the joint distribution
Pi(h,1,Q), and write down the relevant evaluation equation

when energy scale is lowered 85— —d(). Generalizing
the reasoning leading to E(R.4) we obtain

dP,(h,1,Q)

o~ P LO)Re(€, Q)= Po(Q2,9)]

QO Q[ -1,
—f dhl—f d|2f dILRI(Q.1,,Q)P,
h hiJo 0

x(hl,ll,mpl(hﬂlﬂ,l—|1—|2,Q), (3.1)

and similarly for the coupling distribution by interchanging

R<P and J;«h;, as in Egs.(2.4 and (2.5. The second
term on the right-hand side of E¢3.1) can be written as a

convolution in terms of the variablé =1,+1;=1—1, as
| 1 QO
—f dI’R|(Q,I—I’,Q)J dI1J dh;
0 0 h
Q h
X—P,(hy, 11, Q)P | —Q,1"=1,,Q . (3.2
hy hy
Consequently taking the Laplace transforms
Fﬁ(h,x,ﬂ):f e "Pi(h,1,Q)dl,
0
”F“el(J,x,Q)=f e ""R(J,1,Q)dl, (3.3
0

we obtain a simpler relation

dP,(h,\,Q)
dQ

=P,(h,\,Q)[R(Q,00)-P,(QN,Q)]-R(Q,\,Q)

Q _(h Q
xf dh’P|(h’,)\,Q)P|(h—Q,)\,Q>h—, (3.4)
h ! !

dR (I, Q)
dQ

=R(IND[P(Q,00)-R(QN,Q)]-Pi(Q,\,Q)

(3.5

Q ~[J Q
><J dIRI' NOR| —=ONQ |—.

J J’ J’
Note that the differenh components are separated, which
makes it possible to solve the equations. ker0, when

P,(h,00)=Py(h,Q) and R(J,00)=Ry(J,Q), the solu-
tions are given in Eq€2.6) and(2.7). With this guidance we
are looking for a solution for general in the forms

- m(N,Q) [ QPO

Pi(h,\, Q)= Q (F) , (3.6

~ )\,Q Q 1-r(\,Q)

Ran =" )(3) . @
where now p;(0,Q)=m(0,Q)=pe(Q2) and r(0,1)

=p(0,Q)=ry(Q), whereas forA>0 p;(\,Q)>m (N, Q)
andr (A, Q)>p, (N, Q). This latter relation follows from the

fact that the_average length of a bori_g>0, and that of a
spin cluster,| >0, are given by

- 1[1_ pNQ)

l,= Ilmx )

— 1
, IS=I|m—[1

m()x,Q)}
)\—‘0)\ .

p(nQ)
(3.8

A—0

Inserting the functions in Eq$3.6) and(3.7) into Eqs.(3.4)
and (3.5), we obtain a set of ordinary differential equations:

dp| d7T|
ar - men ﬁ:_ﬂ'l(pl_ﬂ'l"'l)l),
dr dp

ar- e ﬁ:_PI(rI_PI"'WI)- (3.9

involving the functionsp, ,#,r,, andp,.

These equations are solved in the Appendix. Here we con-
sider only the scaling behavior of the average lengths, and
for this it is enough to treat the small expansions up to
linear order:

PI(N, Q) =po(2)+Ap1(Q),
m(N, Q) =po(Q)+A7(L),

NNLQ)=ro(Q)+Ar(Q),  pi(N,Q)=ro(2)+Apy (),

(3.10

Inserting the expressions in EqR.10 into (3.9), for the
correction terms we obtain:
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dp1 dm, dP,(h,u,Q)
ar -~ ™ifo~PiPo. d—F:_ero_po(pl_ﬁ*‘m), d—Q:Pﬂ(h-M.Q)[Ro(Q,Q)—Po(Q,Q)]
Q Q (u
o dpy _ (F1= pot 1) —RO(Q,Q)f dh’—,J du'P,
ar . ™fo pP1Po; ar - —P1Po~ pollri—p1T 7). h h'Jo
(3.11) h
X(h',u"  OP| —Q,u—u',Q |,
Now, noting that (o )(h’ mp
(3.1
din(py—my) din(ry—p1) . . .
—ar Po, Tzro, (3.12  which can be derived along the lines of E¢&.4) and(3.1).

The second term on the right-hand side of E816 is a

. . : : nvolution; therefore, we intr he Lapl ransform
after integration we obtain, using Eq2.9 and(2.10, that convolution; therefore, we introduce the Laplace transfo

p1—mi=Ap/rg andri—py=A,/py, WhereA, and A, are - o
integration Fconstants. Consequently the average lengths from Pﬂ(hﬁ,ﬂ):f e P,(h,u,Q)du, (3.17
Eq. (3.8 are given by 0
which satisfies the relation
2 A2

— Pi—7 — ro(Qo)po(Qo) — — Yo~ A dP_(h,s,0)
R ST R T R v — o
(3.13
g =P,(h,s,Q)[Ry(©2,0)—P,(2,00)]-Ry(Q,0)
an

xJth’ﬁ (h',s,Q)P (EQ sQ)2
—zrl_Plz—(Q )ro(Qo)po(Qo) T )yg_ h S “ln e
e T g Q)p(Q) T2z (3.19

(3.14 In Eq. (3.18 the differents components are separated for
=0; whenIBM(h,O,Q)=PO(h,Q), the solution is given in
Egs. (2.6). As for the joint distribution of the lengths,
P,(h,\,Q), in Eqg. (3.6) we are looking for the solution for
generals in the form

At the line of fixed points()—0, one can see thdt~I
~Lq, consequently the previous interpretation of the dy-
namical exponent in Eq. (2.28 is also justified with aver-
age length scales.

Now, to calculate the correlation lengghin the paramag- _ (5,Q) [Q\17PusD)
netic phase\ >0, one should take into account that the ratio P.(hsQ)= MT(F) (3.19
of (nondecimated transverse fieldeondecimated cou-
plings) at an energy scal€), is given byp,/ro. Conse- Here againp,(0,Q2)=m,(0,Q2)=po({2), whereasp,,(s, Q)
quently the number of nondecimated spins in a cluster iss .(s,Q) for s>0, since the average cluster momet,
given by~14po/ro~1/r3~A~2, which stays constant as the >0, is given by
energy-scale is lowered. This quant|ty is actually the measure
of the size of the average correlated domain in the system, = Iim}[l— m,(8,Q)
where the couplings between the spins, being larger then the c.0S Pu(s,Q)]
transverse fields, are decimated out. Therefore, in this way
we have an estimate for the correlation length close to thé’ utting Eq.(3.19 into Eq.(3.16, we find that the functions

(3.20

critical point, p, andm, satisfy the differential equations
_ _ dp
E~A2~572, (3.15 o =~ alos
which is consistent with Fisher’s result in Ed..5). dor
o0 =~ u(To=Po+p,). (329

B. Scaling of magnetization moments .
Keeping in mind that the average cluster momenand thus

In this subsection we perform a similar calculation for the e .
the average magnetizatiom are defined as

joint distribution functionP ,(h,u«,{), and calculate the av-
erage size of a magnetic momep{(}), as a function of the
energy cutoff. The joint distribution functio® ,(h,u,Q) m=
satisfies the differential equation

= |

(3.22

[
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and are related to the smallasymptotics of the distribution 1 +3 1

in Eq. (3.19, we perform the expansions up to linear order: 7,=— |A|"(y—1)y "*DF %+1,§+ E; §+ L
y
PL(S,Q2)=po(Q) +spy(Q), =|A|""pi(y), (3.30
WM(S,Q)=|00(Q)+S;71(Q)- (3.23 and putting Eqs(3.29 and (3.30 .|nto Eq. (3.26), for the
average cluster moment we obtain
For the correction termp; and 7y, we derive differential ‘y)
equations, in terms of the functiomg andr, as = -r=1_77
q s 0 w=constA| Vi1 (3.3)
%:ﬂ where f(y)=f,(y)— ¢1(y). Here one should differentiate
dpy Po’ between the paramagnetid 0, y>0) and ferromagnetic
(A>0, y>0) phases. In the former case the average cluster
dmy, 71 P moment approaches a finite limiting value, 84 ,—0,
W:p_+r_' (324  whereas in the ferromagnetic phase, whgre1™ in the
_ o o0 fixed point, u is divergent, ag.(Q)~Q =22l For the aver-
which leads to age magnetization in E¢3.22, one then obtains
d?p; -~ (1-y)f(y)
(Y5—A%)— =Py, (3.29 m=my————, (3.32
© T ay (1-Y)f(Y)

whereyy,=yo(Q) is given in Eq.(2.16. We note that with where my is the average magnetization 8t= (), andy

the solution forp,, for the average cluster moment we havedenotes the value of the variabjeat the same energy scale.
The average magnetization in the paramagnetic phase is

Yo o~ , zero, whereas in the ferromagnetic phase one has to evaluate
R — dyopai(Yo)/(yo—A) Eg. (3.32 along the lines of semicritical fixed points:
nw= 1T Y -y . (320 Q/Q,—0. Here, taking the limifA|<1, i.e., close to the
Po Yo

critical point, we have (+y)~'~|A| and f(y)~|A|", so

At the critical pointwith A=0 the solution of Eq(3.25) is that'?
[ in simpl -law f

given in simple power-law forms m=constA|* 7= consta|t 7. (333

P1=Yo", A=0, (3.27  From Eg.(3.33 one can read the critical exponent of the

. » , average magnetization as
where 7= (\/5—1)/2 is the positive root of the equation:

7(7+1)=1. [The other linearly independent solution with B=1l—7=2-0, (3.39
r=—(\/6+1)/2 is physically unacceptable, since the aver-
age cluster moment would be smaller thai Erom Eq.

(3.24 we haverT;=—r7y, ", and using Eq(3.26 for the

which corresponds to Fisher’s result in Ed.4).
IV. SCALING OF THERMODYNAMICAL QUANTITIES

average cluster moment at the critical point we obtain
Q0| 1% 1 1+.5 In the previous sections we presented solutions of the RG
—) , =—= . equations in the entire Griffiths region for the distribution of
Q 4 2 couplings, transverse fields, lengths, and magnetization mo-
(3.28 ments. Then, with those distributions, average quantities,
In this way we have rederived Fisher’s refditr the scaling such as length scales, magnetization, etc. were calculated at
behavior of the average cluster moment in a direct way.  zero temperature and in the absence of a longitudinal mag-
In Griffiths phases with\ # 0, the differential equation in netic field. In this section we extend these calculations, and
Eq. (3.25 in terms of the variablg=y,/A is related to the determine the scaling form of singular thermodynamic quan-

Legendre differential equation and the physically acceptabléties as a function of a small, but finite, temperattire0, or

solution can be expressed by the hypergeometric function, magnetic fieldH>0.

F(a,b;c;z), as To treat the effect of a small finite temperature in the RG
scheme, one should first note that the thermal energy sets an
energy scal€);~T, and that the RG decimation should be

=[A]7f4(y), stopped ag) is lowered toQ1. At that energy scale a frac-

(3.29 tion of spin clustersng_, in Eqg.(2.29 is not decimated out,
' and these spins are loosely coupled as compared with the
where, in the limitA—O0, we recover the solution at the temperaturd. Consequently the entropy per spinijs given
critical point in Eq.(3.27. From Eg.(3.24 we obtain as the contribution of non-interacting spin clusters,

In

u=consty, )=,

R — Tl 7
p1=[A["Ty 3515

3 N 1
2 y?
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s=ng. In2, (4.1)  Note that in the ordered Griffiths phase the singularity expo-

nent is different from that in the disordered Griffiths phase,

whereas the specific heat can be obtained through a derivand that there is a logarithmic correction term. The tempera-
tion: cy=T(ds/dT). From Egs(4.1) and(2.25), for the sin-  ture dependence of the susceptibility, which follows from the

gular behavior we obtain: relationQ,~ Q-+, is given by

S(T)~cy(T)~T241, 4.2
which is valid both in ordered and disordered Griffiths x(T)~T 128N T,  A<0. (4.10
phases.

Next we consider the effect c.)f a small Iong|tgd|nal field, e conclude this section by stating that all singularities of
H>Q, af[ zero temperat_ure..Dunng renormalization the localjitarent physical quantities, both ifstrongly ordered and
longitudinal fieldH, at sitel is transformed as disordered Griffiths phases, can be expressed by the nonlin-
ear quantum control parametér

Hi=Hu, (4.3
so that the energy scale related to the longitudinal field is
given by Q=Hu(Q). As Q is lowered toQ), i.e., when V. DISCUSSION

the energy scale satisfies the equation In this paper the strong-disorder RG method is applied in

Qu—HZ(Q 44 the strongly disordered and strongly ordered Griffiths phases
= Hu( D), 44 of the random transverse-field Ising spin chain. With this
the RG procedure is stopped, and the remaining spin clustegglculation we have demonstrated that the RG method leads
are practically uncoupled. Then the average magnetizatiof® asymptotically exact results in the entire Griffiths region.

and the average susceptibility satisfy the equations The key concept of our solution is the introduction of a non-
linear quantum control paramet&r which remains invariant
am under the RG transformation, even if the renormalization is

m(H)=m(Q=0Qy), x= 9H- (4.5 approximate in the starting decimation stefiss.which is a

_ measure of the asymmetry in the renormalization between
In the disordered Griffiths phasewhere u(€2y) has a the couplings and the transverse fields, is simply related to
Qy-independent limiting value, we hav@,~H; conse- the dynamical exponert, and all the singularities of the
quently, from Eq.(3.32 the singular behavior is given by  different physical quantities in the Griffiths phases can be
oa expressed by it. In this way we have presented an example
m(H)~(i> A>0 4.6 for a RG transformation, where the relevamanlinear scal-

o ' ' ing field® outside the critical fixed point is exactly con-
structed, and the off-critical singularities are calculated ana-
lytically. The line of fixed points controlling the singular
behavior in the Griffiths phases are found todtengly at-
tractive for any weak initial disorder, having the same asym-
metry parameten\, the system scales into the same fixed

More generally the scaling form is given in E4.12), where
the scaling function can be computed using E(&32),
(2.16, and(2.17). Similarly, for the scaling of the suscepti-
bility in the disordered Griffiths phase one obtains

—1+2A point. This is a remarkable weak-universality property of the
X(H)~(H—) . x(T)~T 124 A>0Q, system. We note that previous numeric4land analyticaf
D results about the RTIC are in accordance with our RG find-
4.7 ings.
where the temperature dependence follows from the scaling At this point one may ask how far these results are gen-
relationQy~ Q. eral, and how they could apply for other random quantum

In the ordered Griffiths phasevhereu(Qy) ~Q ;22| as spin systems. The above scenario is certainly valid for those
given above Eq(3.32 we haveQH~H1/(1+2|A\)_ Putting problgms, which can be mappe_d to the RTI.C, so that the RG
this result into Eq(3.32, and using the asymptotic expan- equa}tlo_nS can be transformed into an equivalent form. Free
sion for the hypergeometric functioiisin Egs. (3.29 and  fermionic spin-1/2 models, such as the rand model
(3.30), for the leading field dependence of the magnetizatiofVith dimerization or the randonxY model with anX/Y

we obtain anisotropy, are such exampfés.’Also, the one-dimensional
Sinai-walk problem, i.e., a random walk in a random envi-

H \2ara+2ah -y ronment with a global bia¥ can be mapped to the RTIC

m(H)—m(0)~(H—D) In(H_D , A<O, (Ref. 19, thus a renormalization analy&isalso leads to as-

(4.9 ymptotically exact results for this problem.
o o Other, more general, random quantum spin systems could
and, similarly for the susceptibility, belong to two main classeé) systems having an IRFP and
H | -Mr2A) Y a line of s.emicritical fixed points which astrongly attrac-
X(H)~<—) In(—), A<0. (4.9 tive and i) those models where a cross-over phenomena
Hp Ho takes place when the strength of the disorder is increased.

064416-9
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Models belonging to the first class include, among others, th&ince Eq.(A3) is equivalent to Eq(2.13), for its solution,
random spin-1/2 Heisenberg ch¥imnd randony=2 states from Eq.(2.16), with the substitutiomA—c, we have
quantum Potts chairfs.For these systems we expect that a
strong-disorder RG calculation also leads to asymptotically p|°c+ c’tanfcIn(Qqy/Q)]
exact results, and the physical picture obtained in the analyti- Pi= c+ptantcIn(Qy/Q)] ' (A4)
cal treatment of the RTIC stays qualitatively correct. Indeed, Pi 0
scaling arguments and numerical calculations about specifiwhere nowp?=p(\,Q,) at a reference poinf2=Q,.
models are in favor of our conjectut®. Close to the line of fixed points, ,/Q—0, we should
The second class of models includes, among others, thgavec(\)—0, in order to have a finite scaling combination
random quantum clock and quantum Ashkin-Teller chéins, in Eq. (A4). In this smallx limit from Egs. (3.8) and (A2)
and probably several higher-dimensional systeth80-  we obtain thaic?(\)=a?\ + O(\?), where the value of the
dimen;]sional rabr?dom t}:anzversc?—fiel?] |S:39 mo?aédﬁ et(f-)- constant is connected to the average length§)at O, and
For these problems the disorder should exceed a limiting” _7; T — 22/9(n0)2
strength, when the IRFP and the line of semicritical fixedgr0 | (£o). As 1o=a7/2(pr)". As 20, the average length
points become attractive. Above this limiting disorder value
the strong disorder RG could be asymptotically exact. To _ Qo
verify this possibility, however, one should perform detailed =1 opé( Inﬁ
numerical investigations.

of a cluster or bond is divergent as

2
: (AS5)

which is the same as the typical distance between remaining

spins,Lq , as given in Eq(2.27), if we make the identifica-

tion a?=p,. To obtain the joint distribution of the fields
The author is grateful to R. Jubmand P. Lajkdor pre-  (couplings and lengths, we use the fact that at the fixed

vious cooperation on this subject, and to J-C. Asgle point of the RG transformation the appropriate scaling vari-

d’Auriac, E. Carlon, R. Melin, H. Rieger, and L. Turban for able in Eq.(A4) is axY4n(Q,/Q)=0(1); therefore,
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APPENDIX: DISTRIBUTION FUNCTION OF LENGTHS can be obtained by an inverse Laplace transform of Egs.
Here we present a general solution for the joint distribu-(3-6) and(3.7), with Egs.(A6). o _
tion functionsP,(h,1,Q) andR,(J,1,Q), in the vicinity of In the Griffiths region, i.e.putside the critical poinbne

the line of fixed points}/Q,—0. This amounts to solving s.hould.consider a system of four coupled differential equa-
the set of differential equations in Eq®.9) involving the ~ tons in Egs. (3.9, where one can construct two
functions py(\,Q),m(\,Q),r,(A\,Q) and p;(\,Q), which Q-independent combinations of the variables
appear in the Laplace transfor®g(h,\,Q) andR,(h,\,Q) P Q) =1 (NLQ)=2A(N) (A7)
in Egs.(3.6) and(3.7).

We start with the solutiort the critical pointwhere the — and
fixed-point distributions of the couplings and the transverse B _ 2
fields are identical, so thatp,(\,Q)=r,(\,Q) and P (L) =m(AD)pi (N D) =D(N)7. - (A8)

m(N,Q)=p (N, Q). Here we have just two differential Thus there are two variables left,= (p,+r,)/2 andu,=p,

equations —r, which satisfy the differential equations
dp__ o dinm_ Y o2 d=an2DOZ (A9)
ﬁ——m, T——pﬂﬂ. (Al) ar | '
) s 2 and
From Eq.(Al) it follows thatd(p; — #{)/dI'=0; therefore,
p? and 2 differ by anQ-independent term du
d_F+U|—(Y|+|A(7\)|)U|=0- (A10)
2 _n2 2
N Q) =pf(N,Q)—c(N), A2 . .
m L =pr(h Q) e (A2) The solution of Eq.(A9) is analogous to that of EqA3),
and we can write a simple differential equation and immediately given by
d+d%tanfd(I'—T
ﬁ+p2:c2 A3) y|=y| - Hd( 0)], (AL1)
ar M ' d+ytanfd(I'=T'g)]
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Wherey?=y|()\,90) at the reference energf) = Q.
To integrate Eq(A10), we first note that it is a Bernoulli-

PHYSICAL REVIEW B65 064416

Having the solution at hand first, we check that at the
critical point, whereA(A\)=0 and thusd?=D?=c? we re-

type differential equation, and that its solution can be ex-<cover the previous solution. Indeed, the constant in Eq.

pressed as

: (A12)

L Er deF’-I-C
TR E(T")

with

E(F)=ex;{—f [y|(F’)+|A()\)|]dF’>. (A13)

Using the solution foy,(I") in Eq.(A11) we can perform the
integration forE(I") as

E(N)=e "A{d cotHd(I'=T)]+y? sinfd(I'-Tg)]} 2,
(A14)
putting this into Eq.(A12), one can integrate once more,
giving
f (I)—f_(T')

TEL(D)(d+|A]) i+ f_(T)(d—|A|) *+Ce TAI"
(A15)

wheref . (I') = (yoxd)exd =(I'-T'g)d] and the value of the
constantC follows from the boundary condition &t=T,.

U

(A15) at the critical point is given b =[(y?)2—d?]*? and
than combining Eq9A11) and(A15) in the small€) and A
scaling limits we recover the result in EGAB).

In the Griffiths phases,A(\)|>0, keeping Eq{(3.9) in
mind in the smallx limit we have

d(N)2—A(N)?

d(k)—|A(>\)|=m

=AN|A(A=0)|+O()\?),
(A16)

so that the appropriate scaling combination in E§4.1) and

(A15), as Q—0 and A—0, is A\(Q/Q)44=0(1). The

constantA in Eq. (A16) is related to the average cluster size

atQ=Q,, I_S(QO), so that finally, along the line of semicriti-
cal points, we obtain

(yP+[AD2(Qo Q)N (2] AT ()

YT [AD2(Qo /) PPN (/a8 ) 2T Qg) + 1
(A17)

Now the joint distribution of the fieldqcouplingg and
lengths can be obtained through inverse Laplace transforma-
tion of Egs.(3.3) using Eqs(3.6) and(3.7) and the solutions
in Egs. (A7), (A8), (All), and(Al7).
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