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Topological quenching of spin tunneling in magnetic molecules with a fourfold easy axis
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Spin tunneling is investigated in magnetic molecules that have an easy axis with fourfold symmetry, such as
Mn,,-acetate, with emphasis on understanding the topological quenching of tunneling and the diabolical point
locations in the magnetic field space. This is done using a model spin Hamiltonian that has a fourth-order term
describing the tetragonal anisotropy. The problem is studied qualitatively using instantons and quantitatively
using two methods: a discrete phase integral or Wentzel-Kramers-Brillouin method and perturbation theory in
the fourth-order anisotropy and transverse magnetic field. The former method is used to find the splitting
between various levels when the applied magnetic field is along the hard axis and is found to give good
guantitative answers. The latter method is employed for fields which may have an easy component in addition
to a hard one and is found to be effective in locating all the diabolical points. These points are found as the
roots of a small number of polynomials in the hard component of the magnetic field and the basal plane
anisotropy. These roots are used to obtain approximate formulas that apply to any system with tdsal spin
=<10. The analytic results are found to compare reasonably well with exact numerical diagonalization for the
case of Mp,-acetate. In addition, perturbation theory shows that the diabolical points may be indexed by the
magnetic quantum numbers of the levels involved, even at large transverse fields. Certain points of degeneracy
are found to be mergeir®r near mergepsof two or three diabolical points because of the symmetry of the
problem.
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I. INTRODUCTION ing this behavior is in terms of interference of different Feyn-
man tunneling paths for spinand this is how it was theo-
Quantum tunneling of a spin or spinlike degree of free-retically discovered. While massive particle tunneling in
dom has been discussed for over a decade'nowt,unam-  two or more spatial dimensions can also show such
biguous evidence for its existence has only come recentlyinterferencé, the effect arises more directly in the spin prob-
from  studies ~on  the  magnetic  molecule |em since the kinetic term in the action has the mathematical
[Fe;O0p(OH)yo(tacn)]® " (Fe, for shord. This molecule has i e of a Berry phase. Briefly, whéH|X, there are two

a total spinS=10, is biaxially symmetric, and can be mod- ; X ~
eled by the spin Hamiltonian sym'metr.y—rel'ated instanton paths that wind arowrid op-
posite directions and together form a closed loop on the
H= k15f+ kzs)z,—gMBS' H, (1.1) (complexified u_nit sphere. The actions for the instantons are
complex and differ by a real-valued Berry phase giverSby
with k;>k,>0. In the first approximation, it has two degen- times the area of the loop, giving rise to interference. Since
erate ground states, approximately given3y =10, which  the Berry phase may be continuously varied by varyhg
are separated by an energy barrier inxlggplane. The ques- the splitting oscillates as a function &f, being completely
tion of interest is to understand how these states are admixeflienched at values df where the Berry phase is an odd
by quantum tunneling. integer timesar.

Direct numerical diagonalization of Edl1.1) using the In addition to being quenched for fields along the hard
experimentally determined value&,=0.33 K and k,  axis, the splitting is also quenched at other isolated points in
=0.22 K (Ref. 3-3 reveals that the tunnel splitting is  the H,-H, plane. These quenchings do not have as visual an
~107° K, which is too small to be observed directly. explanation as that given above, but they are ultimately due
Wernsdorfer and Sessblpvercome this difficulty by apply-  to the Berry-phase-like term in the spin path integt@ine
ing a small amplitude ac magnetic field along thairection,  could equally well say that they are due to the spin commu-
which causes th§z= +10 levels to cross one another. Tran- tators being what they aba[\/e note thatll these quenching
sitions b"etween these levels are now possible via the Landayoints arediabolical points in the terminology of Berry and
Zener-Stekelberg (LZS) process, and the underlying tun-  wilkinson' or conical intersectionsn older terminology-
neling matrix elementA can be deduced from a These differences between massive particle and spin tunnel-
measurement of the incoherent LZS relaxation rate for thehg add to the interest in the problem. Reciprocally, the ex-
total magnetization. The key experimental fact that supportgeriments on Rehave spurred more careful investigations of
this interpretation of the relaxatiawhich could after all be  spin-coherent-state path integrals which are more delicate
due to a classical activation process a pji@ia systematic than their massive particle counterpas.
and remarkable oscillatory dependence of the inferred split- A second magnetic molecule Mpacetatgor Mn,-ac for
ting A on the strength of the magnetic fidtdwhen this field  shor) has also been the subject of several experimental
is applied along the hard direction One way of understand- studies:*~*¥The reason for our interest in Mpac is that it
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simplest model for kg the quenching points for givehk
#0 all have the same easy-axis figlg.2° Here this is not
so. Another way of saying this is that in thg-H, plane, the
quenching points for givek no longer lie on lines parallel to
the x axis. This means that to search for these points experi-
mentally, one must scan along lines or curves that have a
slight negative slope with respect to tkexis. As we shall
see, the tunneling matrix element in the vicinity of a quench-
ing point depends very sharply dth,, and this is why we
have shown the quenchings in Fig. 1 as a sequendg,of
scans at differenH, values. This need not be too severe a
problem for an experimental search, however, if the method
FIG. 1. Semilogarithmic plot of numerically calculated split- of Wersndorfer and Sessblis employed. In this approach,
tings between the levels=—10 andm=10—k for k=0,1, and 2, the H, field has a small ac component. As long as the ac
as a function oh,=gugH,/AS. The scale on thg axis has been gmplitude is large enough to pass through a crossing some-
omitted as it is_, arbitrary, and the=1 curves have been vertically \yhere in the cycle, its exact location does not matter. From
offset for clarity. Fork=0, h,=gugH,/AS=0 all throughout, his hoint of view, it continues to make sense to thinkAof
while for k=1, h, is 0.135836224, 0.135832551, 0.135027, ¢ " given pair of levels as depending principally k.
0.133 225, 0.130354, and 0.126 331 for the successive quenches, It is clearly of interest to try and understand the above

and for k=2, successive quenches arehgtequal to 0.264 938, . ; .
0.263 958, 0.261042, 0.256 130, and 0.249 084. As discussed ?%mpert'es of the Hamiltonial.2) and, more broadly, the

Sec. IV C, there are two extremely close by diabolical points neal ull tunneling spectrum, analytically. Ideally, one would like

h,=0 for k=1 and two merged diabolical points flar=2. expressions or methods for calculatidg for any pair of
levels for any external magnetic fiell (assuming of course

that H is such that the levels are quasidegenerate to begin
with). A secondary goal might be to obtain the locations of
the quenching points. We report progress toward both these
goals using two separate methods. The first g tzr;e discrete
_ _ _ phase integralDPI) (or discrete WKB method<~=> This
H=-AS-BS+C(Si+SD)~gugH-S, (1.2 method has been applied to spin tunneling problems in sev-
whereAsB3>C>0. The easy axig now has fourfold sym- eral recent papers by one of #s?° and an approximate
metry, the hard axes arex and =y, and the medium axes Version of it has been developed and applied to the specific
are the line/= *x in thexy plane. Here, the symmetry of Case of Fg by Villain and Fort™® It is semiclassical just as
a pair of instanton paths is preserved when a magnetic fiel€ instanton approach is, but it is easier to use for the study
is applied along one of the four hard axes. Thus, thedf the splitiings of higher pairs of levels and when the mag-
quenched Spin tunne"ng phenomenon is also expected to OBEtIC field |S. not along a hard aX|§. The CalCUlathﬂl reduces to
cur in systems with this symmetry. To our knowledge, thethe evaluation of a handful of action integrals. Unlike thg Fe
effect has not been seen in Mrac to date, but the issue of case, however, these integrals must now be evaluated nu-
its observability in any particular system is one that depend§erically. This means that we do not have explicit analytic
on many other factors, in particular the scale of the splittingformulas forA and the value of the exercise is somewhat
and the strength and nature of the environmental decoheféduced for generad. Therefore, our DPI studies are limited
ence. It is not the purpose of this paper to discuss thes® the caseH||x. For general field orientations, we use per-
questions. We shall only study the quenching effect in theurbation theory inH, and the ratioC/A, very much in the
idealized system described by the Hamilton{dr®?). Given  spirit of Ref. 30. To our pleasant surprise, this not only yields
the large variety of magnetic molecules being studied andjuite good approximations for the locations of the diabolical
synthesized? one may hope that a system will be found in points, it also reveals a pattern in the points which would be
which the effect can indeed be observed. hard to discern otherwise. This pattern provides a natural
Because of the differences in symmetry, the systematicscheme for indexing these points.
of the quenching effect in tetragonal systems are different Some readers may wonder why an analytic study of Eq.
from those in Fg One of the main differences is shown in (1.2 is needed at all, since the corresponding<21 matrix
Fig. 1. We show the numerically computed splittings be-may be diagonalized numericafly* First, there have also
tween Zeeman levels with quantum numbers —10 and  been many other semiclassical studies of thg $yestem in
m’=10-k for k=0, 1, and 2, using values @& B, andC the last two years using a variety of analytic methods—
that are appropriate to Mgac (for which see beloy This  periodic instantons, Bohr-Sommerfeld quantization, mapping
figure should be compared with Fig. 2B of Ref. 2. As can beon to a particlé’ etc., but none of these is easily applicable
seen, here too the appropriate splitting is quenched at certain the Mn,-ac symmetry. Second, numerical methods are
values of the magnetic field. However, the pattern of theundoubtedly invaluable, but they cannot by themselves pro-
guenching points—their locations and their number as aide one with mental pictures or language with which to
function of k—is not so simple as in ke Second, in the interpret physical phenomena, understand trends, or yield

has a different symmetry from geln the presence of an
external magnetic fieldd, the spin Hamiltonian of Mp-ac
can be written as
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any of the insights that one means when one talks of the [l. QUALITATIVE ARGUMENTS
“physics” of a problem. In the present problem it is very
unlikely that numerics alone would have led to the indexing

scheme we find. Third, any black-box numerical routine’’ . : : )
must itself have an analytic basis. Standard methods such gns method is based on spin-coherent-state path integrals. In

tridiagonalization followed by QR factorizatidhare inferior € spm-coherent-state re‘?res?”ta“o” Fhe anJS(?tro;.)y energy
to the DPI for calculating tunnel splittings, especially if the Corresponding to the Hamiltonia1.2), with Hllx, is given

spin is large. Asl increases, the splitting decreases exponen®Y
tially, so one needs exponentially more significant digits in a
numerical approach. The DPI method tackles the problem of He

We begin with a qualitative treatment of spin tunneling in
Mn,-ac using instanton methods, considering ohijfx.

(a,B)=(n|H|n)=—AS’sirfa sirf3— BS'sin*a sin’g

calculating this exponentially small quantity head on. Thus +2C S (coda+sirfa cod B
we believe that even if the answers for Ef.2) are known
numerically, it is of some value to see how well they can be —6 sirfa coSa co$B) —gugHScosa, (2.1)

cgptured by an analytic approach. Such a comparison eSp\?v'herea and B are the polar and azimuthal angles with re-
cially serves as a test of the DPI method and increases one’s .
confidence in applying it in situations where numerics areSP€Ct tox, 1.e.,
not feasible.

The plan of our paper is as follows. In the following sec- (Nx,Ny,ng) = (cOSa, sina cosB,sinasinB).  (2.2)
tion we give a qualitative discussion of Spin tunneling baseqn Eq. (21), we have omiited terms of relative order $J_/

on instantons and selection rules. This gives an overall picy 4 energy(2.1) exhibits two degenerate minima a
ture of the quenching systematics and sets the stage for the '

more detailed analyses to follow. =(a.B)=(ao,m/2) and ny=(a,B)=(ao,~ml2), where

In Sec. Ill we present the DPI formalism for the present®o= 7/2 for H,=0, and decreases smoothly to 0l is
model. Unlike the previously studied model for gFehe increased. The level splitting due to tunneling between these

Schralinger equation corresponding to the present Spir{ninima can be obtained from the imaginary time propagator
Hamiltonian becomes a nine-term recursion relation because
of the fourth-order term. Hence, although the formalism of Kfi=<ﬁf|exp[—HT]|ﬁi>=f D n]exp{ — Se[n(7) 1},
Ref. 27 does not need to be extendseée especially the 2.3
discussion of nonclassical turning points theyethe actual '
application is made more difficult due to the nine terms. Wewhere
give a systematic analysis for this recursion relation. We then -
calculate the tunnel splittings as a function of the applied SE[ﬁ(T)]:—iSA[ﬁ(T)]JrJ He(a,B)dr, (2.9
field for the first few energy levels and compare our results 0
with those from numerical diagonalization. with

The perturbative analysis is given in Sec. IV. We first
develop the perturbation theory wiB=0 (Sec. IV A). This R T .
yields the diabolical points as the roots of polynomial$iip A[n(7)]= f (1—cosa)p(7)d7 (2.9
andC. For a given spir§ we have & polynomials. One of 0
the_unexpected bonuses is .thata polynomial which applies tthe Euclidean action and complex in general. Here, the
a given value ofS also applies to any other value 8fWe 1,5 ndary conditions are(0)=n; ,n(T)=n; . Geometrically,
find all these polynomials fo<10. In Sec. IV B, we incor- oy 5 closed path, the integral in E€.5) can be interpreted
porate the effects of thB term approximately and compare 55 5 surface area on the complexified unit sphere enclosed by
our anglytm results with thosg from_epr|C|t numerical diago- tpis path, as can be verified by the Stokes theorem. In the
nalization of the Hamiltonian with the parameters for large-spin limit the path integral can be approximated by the
Mnyz-ac. Our results are accurate to about 10%, and we be&sym of all contributions from paths that minimize the action:
lieve that they will also be useful for other systems withhat s, the instanton paths. The instantons for the present
fourfold anisotropy. This is especially true for the low-lying model are not simple because of the fourth-order terms.
energy levels. In fact, for the higher pairs of levels, the diajowever, we can construct a qualitative argument to find the
bolical points can be significantly moved or even eliminatedyyenching effect without performing explicit calculations.
altogether by still higher ansitropy terms in the Hamiltonian.gjnce the Euclidean actio8: has both real and imaginary

In Sec. IV C we discuss some qualitative aspects of the desarts we can express the ground-state tunnel splitting as
generacies on thkl, axis and show that some of them be-

have as the merger of two or three diabolical points. Our .

main results from perturbation theory are in the form of A:E Dje “rie™n, (2.6
tables of the underlying polynomials and explicit diabolical .

fields for Mn,-ac. Because of their length, we have placedwherej labels the various instantorSz; andS;; are the real

these tables in the EPAPS deposittty. and imaginary parts of the instanton action, respectively, and
We conclude the paper with a summary of the results irD; are prefactors. With these ingredients we now discuss
Sec. V. how the quenching appears in the present model.
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FIG. 2. Two-dimensional picture of instanton paths whep . . . |
=0. The pointstx, *y are the hard axes, amd;’s represent the FIG. 3. Two-dimensional picture of instanton paths whep
medium axes. Dotted lines denote the real projections of the instariz 0- The pOIn_tsiz represent the new easy axes. The instanton
ton paths. paths are again denoted by dotted lines. Note that the areas enclosed

by each pair of instanton paths are shrunk due to the field.

Let us first consider the case whel=0. Since the en- o .
ergy has fourfold symmetry, an argument of von Delft andteger spins, i.,e$=1, 3, 5, etc,, and sa is non-zero only

~ - : ; 7
Henley can be appliedlf n(r) is an instanton path, so is 0 S=2p, wherepis an integer.

A - . . . We now consider the case witt,# 0. Since the field is
Ri(ml2)n(7), where Ry(w/2) is a rotation throughm/2 ..o\ med to be applied along thex axis, both easy and all

aboutz. Keeping in mind thain(7) is complex, when we oy medium axes move close to thex axis. Thus, the
project onto the real unit sphere, there are four saddle-poinfyo_dimensional picture becomes the one shown in Fig. 3.
paths passing through each of the four medium directionsyne fourfold symmetry is now broken, but there are two
Because of symmetry, each has the same real contribution B%lirs of instanton paths surrounding thes axis: (a,a’) and

the action integrag. However, since their azimuths about (b,b’). The real parts of the instanton actions in a pair are
the easy axis are different, the imaginary part of the actionihe same, but different between the pairs. The phase differ-
i.e., the phas&, , will not be the same. From the geometrical gnees in each pair are the areas enclosed by each pair of
meaning of the integral in E¢2.9), the phase difference jnstanton pathgthe small and large oval regions in Fig. 3

between two instanton paths equalmes the surface area anq are dependent on the figdg . If we choose the straight
on the unit sphere enclosed by these instanton paths. line joining +z’ to —z' as a referenceS;y = — S5, Sy’ =

To visualize thg interfere_nce effect we map the two-sphere_ S,,, SO that the summation in E€2.6) can be performed
onto a plane, as in an ordinary atlesee Fig. 2 The hard
axes are mapped onto four equally separated points lying on
the equator, and the points exactly halfway between thESEA:Dae—SRa[e—iS|a+e—iS|ar]+Dbe—SRb[e—iS|b+e—iS|br]
correspond to the medium axes. Thus, the real projections of
the instanton paths can be drawn as curves which start from s SA(Hy) s SA(Hy)
+2, pass through the medium points, and end-at The =2Dge Racos—— +2Dpe Recos——, (2.9)
area enclosed by two adjacent instanton paths eqmals
since the sphere is equally divided into four parts by theyhereSy, andSg, are the real parts of the instanton actions
instantons. Thus, the phase difference between adjacent patfiseach pair, and\,(H,) andA,(H,) are the areas enclosed
becomesSw. Choosing the phase of path 1 as the base, wgy the pairs ,a’) and (b,b’), respectively. FoH,>0 the
can perform the summation in E.6). Recalling that by  saddle points through which the patte&s4’) pass are lower
symmetry the contribution from real parts of the instantonthan those forlf,b’), which means thaz ;< Sgp,. The main
actions are the same, as are the prefadigrswe have contribution toA in Eq. (2.8) then comes from the first term,
S —imS, a—2imS, a-3im and we can neglect the second term. The quenching of the
A=De e Si(1te '"Ste Amoe ) ground-state tunnel splitting thus arises whef{H,)=(2n
_ =S +1)7/S, wheren is a non-negative integer. To see how
=4DeSRe'VCos(rrS)cos<7), (2.7 many quenching points are allowed we note thg{H,)
<A,(0), where A,(0)== (the area enclosed by the two
where y is an irrelevant phase. This result gives us twopaths 1 and 4 in Fig.)2 From this condition we finch<<(S
guenching conditions. From the factor eeS we obtain the —1)/2. ForS=10 there are thus five values Hif, at which
guenching of spin tunneling for half-integ&r which is just  the quenching appears.
the Kramers degeneracy effect. The second cosine implies It should be noted that the region of very sm@ut non-
that the ground-state spin tunneling is quenched for odd inzerg H, is special. Exactly aH,=0, four instantons are
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important, but for largeH, only two are important. There
must therefore be a regime of sméll, where we make a

smooth transition between these two behaviors. The width Offie

this regime can be quite small sin@&,>Sg, as soon as

H,#0, and these actions appear in the exponents in E

(2.8), so that the differenceSg,— Sg.) is amplified. It is to

be expected that treating this crossover region correctly is a
technical problem in asymptotics requiring some kind of uni-

PHYSICAL REVIEW B5 064411

Ill. DPI CALCULATION OF TUNNEL SPLITTINGS

We consider the spin Hamiltonid@.2) with the magnetic
Id applied along the axis. For convenience we dividg
by A to work with dimensionless quantities. With this choice

%Ve can write

H=—SI—\Si+N[ST+S']-ShS,, (3D

form asymptotic approximation. We shall see that the diffi-Where)\lzB/Aiy\zzc/A,HX:HX/§HC(HCEA/9MB), and
culty persists in the DPI treatment. In particular, the basic

formula (3.29 fails nearH,=0. It contains only one cosine

factor and is effectively ignoring the second term in Eg.

(2.8.

1
S=St5. (3.2

It does not seem easy to generalize this qualitative argu-ere, ug is the Bohr magnetong=2, andS is the spin.

ment for the number of diabolical points whéh,#0 and

Following Ref. 17,A/kg=0.556 K, B/kg=1.1x10"3 K,

the tunneling involves an excited state in at least one well. IRnd C/kg=3X10"° K, so that\;=1.98<10"°, \,=5.4

particular, there is no simple argument that an arear 6§

x107°%, and H,=0.414 T. Let|n)=|6,¢) be the spin-

lost for each excited state, as one might be tempted to thinkoherent state along the directionwith standard spherical

based on the simplicity of the diabolical point pattern ig.Fe
It is possible to understand the spectrum wh&s0 or

whenH||z in terms of a selection rule induced by the fourth-
order terms in Eq(1.2). First, as also noted by Tupitsyn and

Barbara®?> when H=0, the splitting between levels- 10

polar coordinate® and ¢. We introduce the classical energy
He(6,¢)=(n|H|n)

=—S%cog0—\,S*cos b

+n and 10-n alternates between zero and nonzero as the

level pair numben goes up. ThéS‘_‘: terms forbid transitions
between levelsnandm’ unlessAm=|m—m’|, is a multiple
of 4. For tunneling between levels and —m, this requires

2m=4p, wherep is an integer, so there is no such tunneling

whenm is an odd number.

+ 2\ ,S’sin 6 cos 4¢— S ,sin 6 cose.
(3.3

When h,=0, H, has minima atg=0, 6=. As h, is in-
creased, these minima move toward /2, ¢=0, lying in

To give a more detailed argument of this point, we notethe Xz plane. At a certain critical fieldhy,, these minima

that whenH| z, the St terms divide the Hamiltonian into the
following four subspaces fo=10:

V,={—10,-6,—2,+2,+6,+ 10},
V,={-9,-5-1,+3,+7},
Vy={—8,-4,0+4,+8},

V,={-7,-3,+1,+5,+9}, (2.9
where the numbers in brackets give thejuantum numbers.
The subspac¥; contains 6 levels, which form 3 pairs split
by tunneling due to th€ S! terms. The spac¥; contains 5
levels, of which=8 and +4 are split by tunneling anch

will merge with each other, giving rise to a double zero of
dH(6,=0)/96 at 6= /2. By using this condition, we can
show that

_ 2s
hxc0=§(1+4>\252). (3.9

With the experimental numbers given abotg,,=1.946%

A. Recursion relation

The DPI formalism can be started with the Sainger
equation in the S, representation. Introducing
H ) =E|y), SJm)=mim), (m|#)=Cp, and (m/H|m’)
=tmm , the Schrdinger equation for the Hamiltonia(i.2)
can be expressed as

m+4

>

n=m—4

tmnCn=ECn. (3.5

=0 is isolated. There is no degeneracy amongst the states in

any one subspace. A1=0, however, the spac¥, is iso-

This is a nine-term recursion relation with diagonal terms

morphic toV, by time reversal symmetry, and we therefore tmm from SZ andS; and off-diagonal terms;, m-1,tm me 4

conclude that in the full spectrum @{, there should be five

which are from theS, andS? parts, respectively. Since there

pairs of strictly degenerate levels, corresponding approxi-are noSi or Si terms in the Hamiltonian, we hawg, -,

mately tom= *(2n+ 1) with integem. Further, we can also

see that a$, is turned on, states in different subspaces will

cross. Thus, the levet 10 in V4 will cross successively with
+9,+8, and+ 7 since these are M,,V;, andV,, but it will
not cross with+6 since that level is also iN;.

=tmm=3=0.

Equation (3.5 may be interpreted as the ScHinger
equation of an electron in a one-dimensional tight binding
model. That is, we can consider the diagonal and off-
diagonal terms as the on-site energy and hopping terms, re-
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E(g) E(g)
U=U,
5 FIG. 4. The different types of energy bands
U=U, U, =U, possible for recursion relatio(8.5 with wave
U=U_ ! function (3.8). NoteU .(m)=U in all cases(a)
0, =U_ E When hy,<hy<hy with Im/<S and when
0 T 0 d*l T, q3 T h,(m)<h,<h, with |m|>m, . In this case,
‘ Ug(m)y=U_, andU, ;(m) doeinot ap[)Eariince
@ © 0,1 is imaginary. (b) When h(m)<h,<h,,
E(g) E() with my<|mj<m, . Here U, (m)
=U_,Uy(m)=U;. (c) When h,;<h,<h, nax
U.=U, U.=U, U=U, with |m|<m, and when G<h,<h, with m
<|m|<m,. (d when O0<h,<h,; with |m|
<m;. Note that, in both(c) and (d), U, (m)
=U_, andUy(m),U, »(m), andU, 3(m) are in-
U=y, \ U=l \ / side the band and thus all denoteg.
U,=U_ U.=U,
' P USU "1
0 q*1 T 0 q*] C*z q*; T
) @)
spectively. Once this analogy is recognized, assuming IHse .
tmm=o(@=0,1, or 4) vary slowly withm, we can treat the v(m)= a0 — 2 sing(m) X [ty(m)

recursion relation within a continuum quasiclassical approxi-

mation or a phase integral meth@id2*2’With this approxi-
mation we can define smooth functions

1
t,(m)= E(tm’mwﬂm,m_a), a=0,14. (3.6
For the present model, the's are given by
to(m)=—m?(1+Xx;m?),
Sh,
ta(m)=— S —m?,
ta(m)=\o(S~m??, 37

where we have used the approximatis(s+ 1)~§2. Intro-
ducing the DPI wave function within the semiclassical ap-
1

proximation
\/U(_m)ex;{i fmq(m’)dm’},

we have the Hamilton-Jacobi equation

Cr~

(3.9

E="H./q,m)=ty(m)+ 2t;(m)cosq+ 2t,(m)cos 4
(3.9

and the transport equation

06441

(3.10

In Egs.(3.8) and(3.10, g(m) is a local,m-dependent Bloch
wave vector obtained by solving E@.9) for q for any given
energyE. It is very useful to have a physical picture of these
equations. For a given value of, Eq. (3.9 gives an energy
band E(g) which defines the classically allowed range of
energies. In Fig. 4 we show possilifevs q curves for our
problem. At lower and upper edges of the band the transport
equation shows thai(m) becomes zero because the slope
JdE(q)/dq is zero. This means that the band edges are related
to the classical turning points. These are not the only turning
points, however. Such points are more generally defined by
the condition that the velocity(m) vanishes. This condition
produces additional loci inE-m space, which we call
critical curves along with the m-dependent band edges.
These curves are crucial to understanding how the oscillating
tunnel splitting, i.e., the quenching effect, appears.

+16t,(m)cosq(m)cos (m)].

B. Critical curves

From Eq.(3.10 the conditionv(m) =0 is satisfied when
g=0,9=m, orq=gq, , whereq, is the solution of

32t,(m)cosq, (m)— 16t,(m)cosq, (m)+t;(m)=0.
(3.11)

Substituting these into E43.9) we obtain the following en-
ergy curves for each of the thregs:

Uo(m)=to(m)+2t;(m)+2t,(m),

1-6
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U -(m) =to(m) —2t;(m) + 2t4(m), fx)
U, (m)=to(m)+ 2t (m)cosa, (M) + 2t,(m)cos 4, (m), »
(3.12
X
where Uy(m)=E(0,m), U_(m)=E(w,m), and U, (m) X x X

=E(qg, (m),m). Whenever a given enerdy crosses one of
these curves a turning point occurs. Various types of turning
points depending on the characteristic of the critical curves
have been analyzed in Ref. 27. An interesting feature of this
analysis is the existence of novel turning points inside the
classically forbidden region, which is crucial for the quench-
ing of spin tunneling. The recursion relation studied there
was based on a spin Hamiltonian which includes terms up to
second order, and there were only three critical curves to be
considered. Here, we expect to have up to five curves, g, 5. Sketch of the cubic functiof(x) for (a) largeh,, or
UO(m),'Uw(m)’ and up to threel, (m)'s from the cubic large|m|, (b) smallh,, or small|m|. Note that there is one root in
equation(3.11). o (a), but three roots irb). The transition from typéa) to type (b)
_Inorder to proceed further, it is necessary to analyze thgccurs whenf(—x,)=f'(—x,) =0(x,=1/y6), which gives the
critical curve structure.more closgly, in particular its (?Iepen-curveﬁxc(m) in Eq. (3.14).
dence onh,. To do this, let us first compardy(m) with
U,(m). From Eq.(2.7) it can be easily seen thal . (m) The transition from one to three real roots occurs when
>Up(m) since to(m)<0,t;(m)<0, andty(m)>0 for all  f(x) has a double zero, i.e., whé(x) andf’(x) both vanish
|m|<'S. Thus,U_(m) can be the upper band edge. However,simultaneously. It is easily shown that this condition is
in order for this to be so we still need to prove thag(m)  equivalent to
>U, (m). This is not obvious. Indeed, since E.1)) is a

cubic in cogy, , it is possible to have complex solutions. — — 2\ 3

These solutions will yield a complebt, (m), which is not of Pye(M) =hy ma 1—§ : (3.19
interest because the Hamilton-Jacobi equatioaU, (m)

cannot then be satisfied. A careful consideration of the solu- 5

tions of Eq.(3.1)) is therefore necessary. Ny max= 32\/2:%252_ (3.15

Defining x=cosq, , u=m'S and using Eq(2.7) for the

t,'s, we can write Eq(3.11) as The curveh,(m) and some special values bf, are dis-
played in Fig. 6. The physical meanings of these values are
— listed in Table I. From the arguments of the previous para-

h _
f(x)=2x3—x— 2}\X§2(1—,u2)*3’2=0. (3.13  graph, it follows that we will have three zeros whég
2
. . o , hxe g =1, 946
A sketch of the functiorf(x) is drawn in Fig. 5. This sketch T, =0.101 —— Ttxco
incorporates the following easily verified propertiesfx): Tromax = 0.052 _

(i) f(0)<o, (i) f'(0)=-1, (i) f'(x1)=5>0, (iv) f 4 T A
(—1)<0, (v) f(1) may be of either sign, andvi) f’ '
(+1/\/6)=0, where f'(x)=df(x)/dx. It follows that a
curve of type markedq), characterized by one real zero of
f(x), arises wherh, is large or wherjm| is large and that a
curve of type markedk), characterized by three real zeros,

arises wherh, is small or whenm| is small. Let us denote
the largest zero by, and the other two, when they are real,
by x, and x5 with X,>X3. The corresponding values for
g, (m) andU,(m) are denoted by, ; andU, ;(m), with i : : ,
=1,2, or 3. It is obvious thak;>0 and that—1<x;< -10.5 -m, 00 n, 105
—1/\/6<x,<0. The first real root yields a positive value for _

cosa, 5, but since we cannot says, is greater or lesser than ~ FIG. 6. The curven,(m) and some physically meaningful val-
1, g, 1 may be real or purely imaginary. The other two real ues ofh,’s. In the inset we list these values computed with experi-
roots, when they exist, always yield real wave vectprs  mental numbers foh; and \, for Mn,,-ac. Points at whicth,
andq, ;. intersects the curvExc(m) arem=xm,.

m

064411-7
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TABLE I. Physical meanings of the specﬁ[’s

Nyeo Coercive field above which no tunneling exists.

Nyose The value below which the wavefunction can have
an oscillating part inside the forbidden region.

hy, The value above whichy, ; becomes real.

Fxmax The maximum value of the cur\Exc(m).

hyi The value at whichJ , 5(0) intersectdJ,(0).

<h(m) and one zero wheh,>h,(m). Whenh,<hy max.

we can also ask for the poinISma(Fx) at which we change
from one to three real roots ¢{x). These are directly given

by solving Eq.(3.14) for h,((m)=h,:

-

Next, let us investigate whethét, ;(m) is inside or out-
side the classically allowed energy band. Sirganoves to
larger positive values asn| increasegsee Fig. 5, we see
thatU, , lies inside the band ik, <1, i.e.,|m|<m, , where
m,. is such thatf(1)=0. Solving this equation we get

X

F ) 2/31 12
hxma .

(3.16

F 2/3711/2
m,=9/ 1— _—X> , (3.17
Py
— 27—
= \/;hxmax- (3.18

Clearly, m,<m, .

Let us also explore whether thé, ;(m)’s, when they are
real, are larger or smaller thds,(m) or Uy(m). We con-
sider the following differences:

U j(m)=U_(m)—U,(m)=16t,(m)cosq, ;(1+cosa,)?

X (—2+3cosq, ), (3.19
U,ij(m=U,;(m)—U,;(m)
= —16t4(M)(cOS'q,; — COS T |)
X[3(cogq, +cosa, ) —1], (3.20
Uoi(M)=Uog(m) —U,,;(m) = 16t4(mM)cosq, (1 - cosq, )
X(2+3c0s0,i), (3.2)

wherei,j=1,2, or 3 and we have used E®.11) to elimi-
nate t;(m) in favor of t,(m). From these equations, and
using the facts that,(m)>0, plus®

1

\2

1

V6

— <CO0S(,3=— =C0s(, »<0, <COSQy 1,

(3.22

1
V2
we find the following:

(1) When there is only one real root,

PHYSICAL REVIEW B65 064411

U(m)

FIG. 7. The critical curves for case I. At pointsmg, U, has
minima, and the points m; denote the intersection betweErand

U, 1. NoteU, ;=U; andU,=U _ for all |[m|<S. For a given value

of E,q becomes complex fdm| <m, which lies inside the classi-
cally forbidden region. In this region the semiclassical wave func-
tion C,, oscillates with decaying or growing envelope.

Uy 1(m)<Ug(m)<U(m) (3.23
for all |m|<S and hymay<h<hyco.
(2) When there are three real roots,

U 1(m)<Uo(m) <U, 3(m)<U, o(m)<U-(m)

(3.29

for h;<h, and

U, 1(m)<U, 3(m)<Ug(m)<U, ,(m)<U(m)

(3.29

for 0<FX<HXi, Whereﬁxi is determined bwo(mzo,h_xi)
=U,3(m=0h,), which, from Egs.(3.2) and (3.22, is
equivalent to cog, 3(m=0,h,;)=—2/3 .

We can now list the various types of critical curve pat-
terns that arise in our problem and the corresponding ranges
of the fieldh, . In the following,U _(m) andU . (m) denote
the lower and upper bounds of the energy band, @an)
andU,;(m) mean the forbidden and internal energies, respec-
tively.

1. Case I: h,<h,<h,,

In this caseU,, and U, 5 are not real for anym, and
d, 1(m) is imaginary; i.e.J, 1(m) is outside the band for all
|m|<S. The energy ban&(q) is of the type in Fig. ) for
all m, and the critical curves become

U,1=Us, Ug=U_, U,=

U, for |m|<S,

(3.26

which are shown in Fig. 7.

064411-8
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U(m)
U1:= +
U0= i
t
-, U'=1=U— m, m
/
U, =U,

FIG. 8. The critical curves for case It=m, are the points
where Ug(m)=U, ,(m) [and dUy(m)/dm=dU, (m)/dm]. U, ,
is the lower band edge in the central regjorj<m, and forbidden
in the outer regionm|>m,, .

2. Case II: hypa<h,<h,

Now, U, , andU 3 continue to be complex for ath, but
g, 1(m) is real in the central regiopm|<m, . In this region,
the energy band is as in Fig(b}, while in the outer region it
is of the type in Fig. &). Accordingly, the critical curves
have the structure shown in Fig. 8 and can be written as

U,;=U_, Uy=U;, U,.=U, for Im<m,,

U,1=U;, Up=U_, U.=U, for [m/>m,.

(3.2

3. Case ll1: 0<h,<h, .

There are now threen regions. In the outer regionm|
>m, ,U,, andU,; are still complex,U, ; is outside the
band, andE(q) has the shape in Fig(d. In the intermediate
rangem,<|m|<m, ,U, , andU, ; continue to be complex,

but U, ; is inside the band an#(q) has the shape in Fig.

4(b). In the central ranggm|<m,,U,, and U, ; become
real, andE(q) has the shape shown in Figgcy(whenh,;
<h,<hyms) and 4d) (whenh,<h,;). The critical curves
can be expressed“ds

U01U*21U*3:Ui1 U*l:U,, Uﬂ':U+7 |m|<mav

Uo=U;, U, =U_, U,=U,, m<|m|<m,,
(3.28
which are illustrated in Figs.(8) and 9b).

As a matter of fact, we should distinguish two subcases i

case Ill. Wherh,>h,;, as in Eq.(3.24), the relevant critical
curves are as in Fig.(8. Whenh,<h,;, as in Eq.(3.25,
there is a range ofn values in whichU, ;<U, [see Fig.
9(b)]. For the experimental parameters relevant to,Jvac,

the fieldﬁxi is rather small, and the pointsy,m, ,m,, and
m; are all clustered tightly nean=S. This means that for

PHYSICAL REVIEW B5 064411

U(m)
Un= +
U,
U,
-m : / m
7
U, =U _
U, =U
(@)
U(m)
Un:= +
IR
m. ma m
U,,1=Uf

(b

FIG. 9. The critical curves for case llia) When h;<h,
<hymax @nd (b) when 0<h,<h,;. There are five critical curves.
Note, however, that), , and U, ; appear only in the regiofm|
<m, because they are complex outside this region.

the low-lying states, there will be four turning points very
close to one another, and the DPI analysis would have to be
done using ajuartic turning point formula, analogous to the
quadratic turning point formula as discussed by Berry and
Mount*! Since we know the qualitative structure of the en-

ergy spectrum for fields as small hg, from the arguments

of Sec. I, this exercise is largely academic, and we have
chosen not to perform it. This means that our analysis is not
quite correct at very small fields, and this can be seen in Fig.
10, especially in the behavior of the splitting between the
r%‘irst excited pair of levels. As discussed in Sec. Il, this split-

ting is rigorously zero ah,=0, whereas we appear to find a

zero at a slightly nonzero value bf, .

As discussed in Ref. 28 the quenching of spin tunneling
occurs whenmg(m) has a real part as well as an imaginary
part inside the forbidden region. From the viewpoint of en-
ergy curves this happens when there is an energy curve in-
side the forbidden region. From the above analysis we can

064411-9
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FIG. 10. Tunnel splittingsA, between first
three pairs of levels as a function of the field

T‘}. 107 parameterh,. The dotted and solid curves are
P obtained from exact numerical diagonalization of
e the Hamiltonian and the DPI method, respec-
tively.
10"
1909
e
see that onlyU, ;(m) resides inside the forbidden region. mo
For a given energ§ such thatl g min<E<U, 1max, 0 Changes I'o= f Ko(mM)dm,
from pure imaginary to complex as passes from thém| o
>m, region to the|m|<m, region, wherem, is the point m, 1
whereE intersectsJ, 1(m) (for example, see Fig.)7When An—f X0+(n+ = woxc’,)dm,
g becomes complex the semiclassical wave function in Eq. —me 2

(3.9 oscillates with exponentially decaying or growing en-

velope. The quenching of spin tunneling arises from this os- -~ _ 2 _ fmC /
cillating nature of the wave fuction inside the forbidden re- F=2Mao(Mo—me)"Xexy —2Qs+wo ,mCKOdm ’
gion.
We note here that for the experimental Mparameters, ~m[ woBY 1
the fieldh, .« is quite small(see the legend in Fig.)6and Q1= f—mo \/E(%—_l+ T mg dm. (3.30

so in the entire field range for case lll, even though there is
a forbidden region turning point, the behavior of the ground-Here, « andy are the imaginary and real parts of comptex
state tunnel splitting is qualitatively similar to that fbg, ~ respectively, and

=0. The behavior of the splitting of the next two levels is

more interesting, and as can be seen from Fig. 10, the DPI B o ,dk(m,e)
method does capture it, at least qualitatively and, perhaps, Ko=k(M,e=0),  Ko=— o
even quantitatively. =0
,_dx(m,e)
C. Tunnel splittings Xo=x(m,e=0),  xo= Je .
We now turn to calculating the energy splittings them-
selves. In Ref. 28, tunnel splittings for a five-term recursion , dcosq(m,e)
relation have been obtained from Herring’s formula. The fi- Bo=cosq(m,e=0), Bo= de ’
nal result is, however, quite general so that it can be applied =0 (3.31)

to a recursion relation which includes more than five terms.

Moreover, as we can notice from the above classificationsyith e=E—U_(—mg). In these equations:m, are not
although the present nine-term case has more critical curvegyite the turning points of the previous subsection, in that
the possible types of turning points are all included in thosdhey are not the point whetg, ;(m) equals the true energy
discussed in Ref. 27 and no new type of turning pointE, of thenth pair of levels. Rather, they are the points where
emerges here. Thus, we can directly apply the formula fold, ;(m)=U_(*=mg), which corresponds to settindg=

the tunnel splittings obtained in Ref. 28 to the present prob=U _(my), i.e., e=0. The reason is that the formu(a.29

lem. Since our calculation is based on this formula we quoténcorporates expansions of various phase integrals in the en-
the main results here. The tunnel splitting foth pair of  ergy difference

states is given by

en=Ep—U_(mg) = o, (3.32

L
3

_ 1 /8 1
Aq(h =—\ﬁ Fn*2e~TocosA 2 L .
() nt V720 2 °C0Shn, (3.29 which is of order (1) compared to the energy barrier, as

long asn<S. This is whym, is modified and also why the
where primary phase integral for the Gamow facidg runs from

064411-10
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—my to Mg, the minima ofUy(m), rather than between the former select that one which continuously tends to Qras
points whereUy,(m)=E,. Since all energy curves are a — =m,. In the regionm|<m., the solutions can be written
function of bothm andh,, these points still depend dm,, ~ aSix* x and asm—(ix* x), wherey—0 asm—+m.. We
which in turn makes thé\, depend orh, . discard the latter two and read ok(=«o) and x(=Xxo)
The massvl and frequencyw, in Eq. (3.30 are obtained from the imaginary and real parts of the first two. Note that

by approximatindJ _(m) near its minima by a parabola, i.e., both «, and x, are taken to be positive.

U_(m)=E+3Mw2(m+mg)2 We find Step 4 is to find thes partial derivativesky and xq, in
- 2o effect dq(e,m)/de. (By is directly obtainable fromk,.) We
M 1 differentiate the Hamilton-Jacobi equation with respedEto

2ty (—mg) +324(—myg)”

J
—2[tysing+4t,sin 4q]07—2 1. (3.39

9°U _

2_ _ — _ -

wp= ~2[ty(—Mp) + 16L4(—mo)] o Sinceq(m) is found in step 3, this equation gives/de for
any m directly.

0
(3.33 We now have all the ingredients needed to evaluate the
The application of formula$3.29—(3.33 cannot be car- one.-d|men3|onal mtegralé“o,An F, and Q. Th|s. IS a
ried out in closed form all the way, and we must resort toStraightforward numerical procedure. The only point worth

numerical methods. We explain the principal steps in ouf'°ting is that the integrand foQ, is nonsingular at
numerical calculation below. m=—m, and behaves, in fact, asnf- mo).

In step 1, we must find=m, and U_(=my). For our In Fig. 10 we show the tunnel splittings for first three

prob|em we discover tha_ﬂi(m) is a|Ways given by_jo(m) pairS Of- states as a function of the field pal’-al:né_t)e.r For.
near the classically allowed minima. The equation for thecomparison we also plotted the tunnel splittings obtained

m=-—-m,

minima can be reduced to another cubic from exact diagonalization of the Hamiltonian.
o - o From the results we observe several interesting features.
S2ﬁ)2(:4(52_y)[2()\1_2)\2)y+ 1+4N,5°)2, First, as anticipated, the tunnel splittings are completely sup-

(3.39 pressed at certain values Hf . A large part of the overall
wherey—m?. For the parameters, and\, of interest to pattern of zeros, their number, and the dependence of this
_ 1emfe = ) number om, the pair index, etc., has already been discussed
Mny, andh,<h,c,, all three roots of this cubic equation are gyajitatively in Sec. Il. What is surprising is how regularly
real, but only one is positive. This root gives o%, and  gpaced the diabolical values bf, are. For the first pair of
substitution of this value into Eq3.12 for Ug(m) givesE,  spjittings, e.g., the intervals between successive zeros de-

and Eqs(3.33 then giveM andwo. crease by 2% or 3% only and the last interval is 92% of the
Step 2 is to obtain the pointsm given by the roots of  first. For the next paif\,, the last interval is 95% of the first.
the equation The mean interval between zeros for the first three pairs is

_ AHy=0.93 T,AH,;=0.85 T, andAH,=0.79 T.
Usalm)=U-(mo). (339 The regularity of the zeros means that the phase integral

As discussed after Eq3.32, up to terms of relative order A, decreases almost linearly with,. (From Fig. 10, the
(1/S),_the point_si m; are the_a_ctual turning points _for the Gamow factorl', also appears to be quite linear E_)
low-lying energies. Note that it i§/,., which appears in Eq. hile this variation is clearly expected to be smooth, we
(3.35) since th_|s is the critical curve that lies in the classically 5ve noa priori way to judge how linear it will be. A simi-
forbidden region. . . larly strong regularity of quenching intervals is experimen-
To solve Eq.(3.39 numerically, we first solve Eq3.1) g1y seen in Fg The simplest model Hamiltonian for fe
for the function cosj,4(m), which can be done in closed gntajls only second-order terms in the components of the
form. This solution is then substituted in E§.12 to obtain spin operator, and in this model, the spacing of zésex-
U,1(m). The entire procedure can be implicitly imple- 5ci1y equaP® but to describe actual eone must add fourth-
mented in the numerical routine. The same holds fory der terms. These terms change the spacing significantly,
dU, y(m)/dm. SinceU _(my) is known from step 1, any of pyt still seem to preserve its regularity. It would be interest-
the standard root-finding methods—Newton-Raphson, blseqﬁg to find a physical argument for this feature, which ap-

tion, secant, etc.—can be applied to E8.35. pears to be somewhat general.
Step 3 is to findy(m), in particular its real and imaginary

parts xo(m) and xo(m). This is done by solving the
Hamilton-Jacobi equatiof3.9) with the energyE found in
the first step. The problem amounts to solving a quartic equa- For the purposes of this section, it is useful to review
tion in cosq and making sure that one has the correct solusome basic facts pertaining to degeneracy in quantum me-
tion, which can be done easily by making use of the properehanics in the absence of symmetry. As a rule, eigenvalues of
ties that we have found above. Thus, in the regigs< |m| a finite Hamiltonian are all simple. For a general Hamil-
<my, there are two solutions of the forix (with x rea)  tonian, represented by a complex Hermitian matrix we must
and two of the formm—i«. We discard the latter and of the be able to adjust at least three parameters in order to produce

IV. PERTURBATIVE CALCULATION
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a degeneracy. An approximate physical argument is as
follows.*? Let two statesn andm’ be approximately degen-
erate and write the secular matrix between them as

( Em me') (4 1)
Vivm Em /)’ '
with Vm,m=V’:nm, . The states will be truly degenerate only if

the following two conditions are met:

)]

By =Em—Ep =0, (4.2)

FIG. 11. (a) Energy level diagram foS=5, with B=0, and
Vi =0. (4.3 h,=1/5. (b) Part of diagram foiS=10 with h,=0.3, showing that
the pattern above any two degenerate levels depends onyngn
We shall refer to these as the no-bias and no-mixing condigrespective ofS.

tions, respectivel§? SinceV,, is in general complex, we
have three real conditions requiring three or more variable A. Simplified model: B=0
parameters for their satisfaction.

Precisely three parameters are available to us in(Eg)
in the three components &f. If the Hamiltonian matrix is ™
real symmetric, the number of adjustable parameters required
is lowered to 2. In the present problem, this situation is re- ,

. ! m-+m
alized whenH,=0, and so, as for ke we expect to find h,=— ) (4.6)
degeneracies in thd,-H, plane. Unless explicitly stated, we S
will henceforth takeH, =0, SO thatVmmw =Vimm. . It remains to find the off-diagonal elemelt,,,. As we

Ignoring an additive constant, the energy surface in theh Il see, the choicB=0 simplifies the calculation greatl

vicinity of the degeneracy is given by Snaj see, 2 simp ng Y.
for E., is then quadratic inm, and energy level differences
5 2 are linear inm and given by a fixed set of numbers whenever
E==(BnwtVim) 5 (4.4  Eq.(4.6) holds.

To illustrate the calculation df,,,y , we consider the case
which has the form of a double cone od@boloin H,-H,  S=5. Supposé,=1/5, so thatm=—5 andm’=4 are de-
space. generatgsee Fig. 11 We will find V,4_5 to leading nonzero

Let us first takeH,=0, i.e., H||2. As argued in Sec. Il, orderinh, andC as a double series in these variables. It is
levels belonging to different subspaces can cross. The fielg@ear that a transition fronm to m’ can be made in three
at which they do so can be approximately found by neglectways: (1) act withh,S, in ninth order,(2) act withh,S, in

To keep the problem tractable, let us €£0 at this
stage. Then, to zeroth order in bathandH,, E,,=—Am?
gugH,m. Hence, levelsn andm’ are degenerate when

ing the S! terms. The crossing conditions akg,=E,, , fifth order andCS! in first order, and3) act with h, S, in
where E,= — Am?—Bm—gugH,m. Improved formulas first order andCS} in second order.
can be obtained by finding corrections Eg, perturbatively We denote the corresponding contributions Yo by

in C. These intersections are easy to understand in terms 8 ,V(?), andVv(®). Each of these involves a product of ma-

symmetry(invariance ofH under a rotation by 90° aboa}. trni elements ar_ld a product of energy denominators. For
If H, andH, are both nonzero, there is no obvious sym—V( ), the former is

metry. If H, and C are both small, however, we may con-

tinue to label the states by tme quantum numbers and cal-

culate the energies perturbatively in these two parameters. In

terms of the secular matri¢d.1), the energie€,, and E,,/

and the bias8,,y are determined by the terms 8 in Eq.  whereW=709,/10. The energy denominators can be read off

(1.2) and the mixingV ,,,y by the terms involvingC andH,.  Fig. 11(a). For V(}), the net denominator is

The energies are trivial to find, so the problem is to find

1 9
§<5,415+|5,—5>(—hx5 =W(-h,9° (47

Vi - (—1)%(8%x14x18%20)%=(—1)8K? (4.9
As in Sec. lll, it is convenient to dividé{ by A and to 8 . ]
work with scaled quantities;=B/A and\,=C/A. How-  The factor (-1)° appears here because all intermediate
ever, we scale the magnetic fields slightly differently: states are higher in energy thEns andE,. Putting together
Egs.(4.7) and(4.8), we get
hy ;=Hy ,/SH;. 4.5 W
vl=——(h,9)°. 4.9

As before,H.=A/gug.
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TABLE II. Transition paths and energy denominators for pertur-This feature is also generally valid and is important in light

bative calculation of/®), of the next point, which is that the sign of the terms in the
polynomial for the off-diagonal element alternate when orga-
Transition path Energy denominator product pized as a series i,. Thus, fOFV4,75,V(1) is negativeV(®
5 -1-0—1—22—-3-4 (—1)520K is positive and\/_(3) is negative. This is a consequence of the
5 —450—1-52-34 (—1)°8K fact that repIaC|_ng four-h,S. terms by a singlec S’ term
B4 —31234 (— 1)5(8X 14/20K (a) leaves the sign of the matrix element product unchanged,
B, 4322344 (—1)5(8X 14/20K but (b) replaces four negative energy denominators by a
B 43D 1534 (—1)58K single negative one. _ _
B 4391054 (—1)520K Let us call the polynomial that remains after we have

canceled off as many overall factors lofS from V,,,, as
possible theunderlying polynomiallt is clear that this poly-

For V@, the transition can occur in a total of six ways, "omial is of degree
corresponding to where tHg term acts(see Table Ii. The
product of matrix elements in each case is

!

m—m
4

nmm/ =

} (4.19

5
( - ; ) No(4|S1[=5)=—2*WN,(h,S)°. (410  inh*, where[x] denotes the integer part Bfi.e., the largest
integer less than or equal to The alternation of signs of
The energy denominators, however, depend on the transitiofuccessive powers d,fj is a necessarybut not sufficient
path and are listed in Table Il. Adding together all the con-condition for alln,,,y roots to be positivé® This means that,

tributions, we get not including the points on the, or h, axes, it is possible for
24599 W states labeled byn andm’ to intersect in a diabolical point

V)= —(hS)°\,. (4.11) up to n, v times in the first quadrant of thg.-h, plane. This

140 K appears to us to be a topological property of the pMamil-

Last, for V®, there are three transition patfis —5— —1 tonian that is not altered _by presence of higher-order terms,
34, (i) -5——1-0-4, and(iii) -5——4—-0-4. &S long as thg symmetry is not changed. Of course, the num-
The transition element product for all three is ber of diabolical points may be smaller, but we do not be-
—28W(h,S)\2, and the energy denominator product is oplieve it can be greater, becausenifis sufficiently large, the

X 8, 20x 20, and 8 20, respectively. Thus, term HXS,_( c_;l_ominaj[es the_energy in th_e equatorial plane, and
the possibility of interfering trajectories is lost. We do not
28% 3 have a proof of these statements, which must be regarded as
V@)= — 500 W(hS)\3. (4.12  conjectures, but the similarity to fend all the empirical
evidence we have gathered suggests that they are indeed true.
Adding togethev™™),v(?), andV(®), we obtain the ne¥, _s For S=5, we have found all the diabolical points using

(restoring the level quantum numbgrd-or a diabolical  this perturbation approach and also numerically. In all cases,
point, this quantity should vanish. In additiontig=0, this  the perturbative answers are nearly exact. The results are

happens when shown in Fig. 12.
5 At this point we wish to note a remarkable feature of this
- % + £=0 (4.13 approximation, which may have been noticed by some read-
140 200 ' ers. This is that the diabolical values lof depend orm and

m’ only through the combinatioAm=m’—m. This means
that in Fig. 12, the theoretical points corresponding to the
=0.2643 and 0.6252, while direct numerical diagonalizatiorfﬁgnsoyrigjsvi?ﬁg rz;r,e) \:/e(r_tlzazy)/ er:%n(idé s)eeérf?geegimtpsle,

yields h,=0.2669 and 0.638. . N a .
Readers will undoubtedly have noted that apart from aﬁN'th (m,m’)=(=52) and (~4,3). The reason is that when

" we setB=0, the energ¥,, is a quadratic function ai, and

overall factor ofh, to some power, our perturbation method ,

: . when levelsm andm’>m are degenerate,
yields th(;.\ off-diagonal element as a homogeneous polyno-
mial in hy and\,. It is not difficult to see that this will be _E _
generally true and also not difficult to justify. Let us first take Em i En=k(Am—k). (4.19
the point that we have only included transition paths that garhus, the entire pattern of energy levels above the levels m
through the higher-energy levels. Consider, e.g., the path faind m’ depends only oiAm (see Fig. 11, and since only
V45 in the above calculation that goes fronb to +1 via  these levels enter into our perturbation theory, the energy
six successivé, S, terms, then tot+5 via aCSi term, and denominators are identical. The matrix elements are of
finally to +4 via anh,S_ term. This term is of ordeh/\,  course different, but since our transition paths involve no
and should be regarded as a higher-order correctidfftb  closed loops, they amount to a net factor(m"|5ﬁm| m) in
Second, it is positive and of the same sigrV48, because it each term, which drops out of the underlying polynomial. In
involves six negative and one positive energy denominatorshort, the entire polynomial depends only Aam.

wheregz)\z’l(s h/2)*. Solving this equation and using the
scaled valueh,=2.16x10"% for S=5, we obtain h,
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2.0 10
1.84— ¢ (numerics) 9
164 v (perturbation) 8
FIG. 12. Diabolical points for
144w 7 S=5. For A, we have used the
scaled value 2.1810°“ Each
12'¢ {_S'f";\ 8 point is labeled by the Zeeman
10_¢ Ll 5 "g quantum numbersnf,m’) except
N (-50) + thqse on theh, axis. Note that
= 08— &7 &7 4z points with the same value ah
(40) 51) O +m’ are horizontally aligned,
0.6 7 300 while those with the same\m
=m’—m are vertically aligned.
0.4 e g ?5 A 2 For the points on thdﬂz axis, any
a5l g - . pair (m,m’) is allowed, consistent
) (-54) with the given value ofm+m’
0.0- % A 0 and the ruleAm=#4n.
(-4 4) (-5=5)
0.5 0.6 0.7 0:8 0.9

Furthermore, we see from E@.15 that value ofSalso  The no-mixing condition is harder to evaluate. A simple
does not enter in the energy denominators. This means thatinded approach is to shift the energy levels so as to retain
the polynomials found fo6=5 are applicable to th8=10 the same relative spacings as wtien 0, but allow the over-
problem for transitions witAm=10 and makes it worth- all range to be modified.

while to find all the remaining polynomials f@&=10. The With this in mind, let us first consider the energies when
task is easily automated on a computer. As an example, the;=0. When levelsnandm’ are degenerate, the level at the
polynomial forAm=13 is top of the barrier is given by the quantum numihker (m

+m’)/2, whenever this is an integer, or by the nearest two
integers if it is a half-integer. In the spirit of our approxima-
£°—2869¢”+976719% ~ 11 858°, (4.16 tions, keeping track of this distinction would be an overre-
finement, so we will use the formulan+m’)/2 in both
where§=)\2_1(8h(/2)4 andg=1440. The full list of polyno- cases. The energy range is thus given by
mials is given in Table | of the EPAPS depository, along with
the roots foih, for generalSand\ ,, as well as for the values
applicable to Mp,-ac3®
One last general point worth noting is that for a diabolical
point labeled by the pairng,m’) with m’>m, the energy where the(0) superscript indicates th&=0. WithB+0, we
levels which are degenerate are numbe®s-2m—m’)+1 get
and 25+ (m—m')+2, where the ground state is given the

1
AEO=E—ER)=7(m—m")?, 4.18

number 1. m+m’\*4
AB”=AEM—A4( 5 ) —m*+ Ny (m+m’)
; 4
B. Inclusion of S; term | (mem?) +m’ e AE®
When we try and compare the results of the previous sub- 2 Ymny '

section with numerics on Ed1.2) with B#0, we find that
the systematics of the diabolical points are fully captured in (4.19
that the analytic results provide a complete indexing schemg, e
but the error for Mp,-ac is as bad as 30% in some cases. We
therefore seek some way to incorporate B0 effects. N

It is easy to includeB in the no-bias condition. Equation Yy =1+ —l(7m2+ 10mm’ +7m’?). (4.20
(4.6) is modified to 4

If we assume that the entire spectrum gets modified from
its quadratic form by a uniform stretching factgf, .y , then
the only change in our perturbation theory is that all energy
(4.17 denominators get multiplied by this factor. In the underlying

1
h,(m,m’)=— g(m+ m)[1+ N (m?+m’'?)].

064411-14



TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN . .. PHYSICAL REVIEW B5 064411

polynomial, h, and N\, get replaced byh,/y,, and wherea andb are constants of order unity. Thus the energy
No/ymm » @nd hence the no-mixing condition becomes surface is

he(mm)=y¥*r (Am), @=1.2,... oy E=(a’z+b%e *'x*)'~ (4.29

4.2
.23 The cross section is an ellipse with major axis parallex to

where{r } are the originah, values obtained from the roots @nd eccentricity~e'>1. This scenario is expected to be

of the underlying polynomiaP, . quite general. The no—lblas conqun defines a line in param-
The formulas(4.17) and (4.21) are compared with exact eter space. The gradient of the b|a§ nprmal to this line is

numerical results in Table Il of the EPAPS depositér¥he genera!ly expected to pe of order unity in the natural physi-

errors are now typically about 10% and can be of either signc@l variables. The mixing element also varies on the same
It is useful to briefly discuss our numerical procedure. ForOrder unity scale in the parameter space, but because it arises

points lying on theH, or H, axis, the splitting is a function from tunneling, its absol_ute scale is very small. The _result is

of one variable, and its zeros can be found by simple scar2" energy surface of high eccentricity of the type just de-

ning. For the off-axis zeros, this is harder, and we resort t&cribed.

the Herzberg and Longuet-Higgins sign change thedreth,

which applied to the present problem states that, upon adia- C. Merged diabolical points

ﬁ\fglztr;\rlgzalpg:ri cg?s(;a:gg?]r;t;uc;mot:d&g Zsﬁ:}[gz,etr;lcelo\?v-av _ Our discu_ssion of diabqlical_poirﬁ‘fsneeds_ some eIabora—

function of either of these two states returns to itself excep‘T;Ion fc,)r Eertam degeneracies lying on thgaxis. F_or the paur

for a change in sign. Conversely, there is no change in sign i m,m’) =(~10,9), e.g.(more ge”era”%{ any pair W|t_lzt\_m

the contour does not enclose a degeneracy. Hence, to find:4n+3)’ we peeled off a factor O.hx from the mixing

diabolical point, we first find a sign-reversing rectangularélément. Writingx=h, andz=h, as in Eq.(4.24 and z,

contour by hit and trial. By bisecting this rectangle in the — hzo for the point of degeneracy, the bias and mixing are

andz directions alternately and using the sign-change test &Ven by

each bisection, we can corral the degeneracy to the degree

desired. We have found this procedure to be generally supe- Bmmw~2—2o, (4.29
rior to a direct minimization of the energy difference for the
reason that the diabolo in the vicinity of a degeneracy is Vi =X+ 0(x7), (4.26

highly asymmetrical in thex and z directions. Consider, for

example, the fourth and fifth energy levels from the bottomignoring multiplicative constants. Correspondingly, the en-
whenh,=0.12-0.13, corresponding approximately to the ergy surface i§ (z—z,)?+x%]*2, whose cross section is no
quantum numbers- 9 and 8. Since these states are separatehnger an ellipse. There is also no reason for the simple
by a high barrier, the mixing element between them is besgign-change result to hola priori.

understood as arising from tunneling and will therefore con- These conclusions are based on perturbation theory, how-
tain an exponentially small Gamow facter”, whereI' isa  ever. More generally, we can only argue on grounds
tunneling action. Thus the energy surface consists of a deegf symmetry that, under x— —X, Bjyy—Bmm and

and narrow valley running nearly parallel to thgaxis, with v . —+V_ . . Instead of Egs.(4.25 and (4.26, we

a valley floor that goes to zero linearly at occasional pointsshould therefore expect the general expansion to take the
and may rise and fall in between. Because of this shape arfdrm

because the surface is not analytic in the vicinity of the

points being sought, standard methods for finding the B, ~7— Zo+ax2+ O((z— 2g)2, X2(2— 25)2,x*)

minima of a function are often not well suited. mm 0 o ol @.27)
The above argument also enables l;%to understand an ob- '

servation made by Berry and Wilkinsonand Berry and

Mondragofi® in the study of two very different model prob- Vi =X = bX+ €X(2=20) + 00*(2~2) X°),

lems, namely, that the energy cone near a diabolical point has (4.28

B e o e Byial 2] 2% hres,o,ancare constant,all of which e exct o e
; . ' vVery small on account of the quantitative accuracy of the
section of the energy surface is a very long and narrow el-
lipse in one direction. Let us see how this happens in th(g
present problem. To save writing let us write jusindz for
the deviations ofh, and h, from a diabolical point at

(hyo,hyg). In the vicinity of this point, we have

erturbative approach. Ignoring the higher-order terms, the
ias vanishes on the parabala z,—ax?. On this parabola,
the mixing is given by

(1—ac)x3—bx, (4.29
Bmm =az, (422 \yhich vanishes at=0 andx= +[b/(1—ac)]Y?>==*x,, as-
suming thato/(1—ac)>0. Thus, instead of a single degen-
Vo =be Tx, (4.23 eracy at (@), we have three closely spaced degeneracies at
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40 ' ' ' ' indeed so, and the split off point is again found to bénat
35+ =0.01855.

In exactly the same way, we may also consideubly
mergedpoints, corresponding to the tunneling of states with
Am=4n+2, e.g., n,m’)=(—-10,8), whenh,~0. We can
continue to expand the bias as in E4.27), but the leading
term inV,,y is now proportional toc?, so that instead of Eq.

] (4.28, we have

0r 10°A(-10,8)
25
20+
15+

10

10°A(-10,9)

0 0005 001 0015 002 0025 Vinm =~ X2+ 0((2—29),x4(2— 20) ,X*). (4.32

h

o . It is then obvious that the double zerodf,,y atx=0 can-

FIG. 13. Merged and nearly merged diabolical points. The plott pe split. This conclusion can also be reached in another
shows the tunnel splittingh(m,m’), showing how the triply \yay Symmetry would require that, if they split, the points be
merged[(m,m’) =(~-10,9)] point is split, but the doubly merged | o1aq at ¢-x,,2,), with x,#0. The selection rule argu-
[(m,m’)=(—10,8)] point is not. The splitting is calculated along o given in Sec. Il shows, however, that this is impossible,

the bottom of the parabolic trench in tig-h, plane. In other o " 0 0 1ot ha a crossing of any two levelandm’ with
words, for each value di,, what is plotted is the minimum of the Am#4 H. i ied withH.=0. In Fig. 13 |
splitting with respect toh,. For the —10—9 triple merger, the m#4n asH, 1S varied wi x= 0. N Fg. 19, WE also

points are very well fit by the curvd =|ah (1—hZ/h2)|, with ~ SNOW the (n,m’)=(—10,8) gap at the bottom of the no-bias

a=1.51x10"*? and h,;=0.01855. Indeed, the curve cannot be trench. It is apparent that now the diabolical points remain
. X . . ’ B . .
distinguished from the points on the scale of the figure. Similarly,Unsplit ath,=0, and the curve is extremely well fit by a

the — 108 splitting is very accurately fit to a parabola. parabola, as required by E(t.32. The merged point itself
is ath,=0, h,=0.264 938 17004, which we find by mini-
(02), (ixl,zo—axf). (4.30 Ir2|szs|ng the energy splitting, the sign-change test being use-

The energy surface in the immediate vicinity of each one of Finally, the points on thé, axis, corresponding tdm
these points is now diabolical in the ordinary sense. A smal=4n+1 are singly diabolical to begin with, so the issue of
circuit of each of these points separately will therefore leadsplitting does not arise.

to a sign reversal, as will a larger circuit enclosing all three

of them. If we ignore the splitting, we may regard the origi- V. SUMMARY
nal degeneracy on thie, axis as atriply mergeddiabolical .
point. In this paper, we have used the DPI method and perturba-

It is useful to think of the coefficients, b, andc as  tion theory to study tunneling in fourfold-symmetric mag-
depending on parameters in the Hamiltonian other than thB&tic molecules, such as Mn especially its behavior in a
components oH, e.g.,A; and \,. It may be that as these magn(_atlc flel'd, wh|c_h is expected to sho_vv oscnlgtmns and
parameters are varied, the quantiy/(1—ac) becomes dlabol'lcal points as in 'Fge The DPI recursion relation now
negative, so that the rootsx, cease to be real. We can think Nas nine terms, complicating the analysis. There may be up
of the two off-axis diabolical points as having annihilated © five critical curves, which leads to many more turning
each other, leaving behind only one true diabolical point orPCINtS. The method still works, however, even though the
the axis. Unless one is very close to this point, however, th@hase integrals and integrands must be evaluated numeri-
energy surface may still resemble that of a triply mergeo_ca"y' But the numgrlcgl proced'ures reqwre_:d are S|mple and
point. involve only root f|nd|_ng and integration in one variable.

For the parameters appropriate to ac, we find that Except for some special narrow-field regions, where two or
the points are located &t more turning points merge, the DPI analysis based on linear

turning point formulas is extremely good and agrees with
exact numerical results quantitatively. A perturbation theory

(hy,hz)=(0.0,0.135836 224 in the parametersi, and C is found to give a very good
qualitative and even quantitative understanding. Our central

(+£0.01855,0.135832531 (43D results are formulagt.17) and (4.21), which along with the

) ) _ results in Table | of Ref. 36 give the full set of diabolical
These numbers are obtained by using the same &gn-reversi%mts for any molecule witls< 10.

theorem as previously described. Because the energy differ-
ence depends so sensitively bp, however, we have con-
firmed them in another way. For any given valuehgf we

first find the minimum of the relevant energy gapwith We are indebted to Wolfgang Wernsdorfer for very useful
respect tch,. In essence, we find the value of the gap at thecorrespondence. C.-S.P.’'s reserach was supported by the re-
bottom of the parabolic trench where the bias vanishes. Aearch fund of Dankook University in 2000, and A.G.’s re-
plot of this gap versu$, should be given by the absolute search was partly supported by the NSF via Grant No. DMR-
value of the expressioft.29. As shown in Fig. 13, this is 9616749.

ACKNOWLEDGMENTS

064411-16



TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN. ..

PHYSICAL REVIEW B5 064411

*Permanent address: Department of Physics, Dankook Universitﬁ,OF. Hartmann-Boutron, J. Phys5| 1281(1995; A. Garg, Euro-

Cheonan, 330-714, Korea.
Electronic address: pacs@anseo.dankook.ac.kr
"Electronic address: agarg@northwestern.edu
1Quantum Tunneling of Magnetization—QTM:9ddited by L.
Gunther and B. Barbar&luwer, Dordrecht, 1996
2W. Wernsdorfer and R. Sessoli, Scierz@4, 133(1999.

SA.L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz, and R.

Sessoli, Europhys. Let85, 133(1996.

4C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi,

Phys. Rev. Lett78, 4645(1997.

5T. Ohm, C. Sangregorio, and C. Paulsen, Eur. Phys. 6, 85
(1998.

L. D. Landau and E. M. LifshitzQuantum Mechani¢s3rd ed.
(Pergamon, Oxford, 1976Sec. 90.

’D. Loss, D.P. DiVincenzo, and G. Grinstein, Phys. Rev. L&t
3232 (1992; J. von Delft and C.L. Henleyjbid. 69, 3236
(1992.

8A. Garg, Europhys. Let22, 205(1993.

9M. Wilkinson, Physica D21, 341(1986. See final paragraph of
Sec. 6.

LV AVA Berry and M. Wilkinson, Proc. R. Soc. London, Ser382,
15 (1984).

phys. Lett.50, 382(2000.

31w. Wernsdorfer(private communication

32| Tupitsyn and B. Barbara, cond-mat/000218@publisheil See
pp. 15-17, and Figs. 13-15.

333.P. Kou, J.Q. Liang, Y.B. Zhang, and F.C. Pu, Phys. Re59B

11 792(1999; R. Lu et al, ibid. 61, 14 581(2000; Y.H. Jin

et al, ibid. 62, 3316(2000; R. Lu et al, ibid. 62, 3346(2000;

S.K. Yoo and S.Y. Leeipid. 62, 5713(2000; R. Lu, J.L. Zhu, Y.

Zhou, and B.-L. Guibid. 62, 11 661(2000; J.L. Zhuet al, Eur.

Phys. J. B16, 507 (2000.

34\/V. Ulyanov and O.B. Zaslavskii, Phys. Rep16, 179(1992.

%5This method is one of the commonest and most efficient for solv-
ing matrix eigensystems. See, e.g., W. H. Press, B. P. Flannery,
S. A. Teukolsky, and W. T. Vetterlindyumerical Recipe§Cam-
bridge University Press, Cambridge, UK, 1986hap. 11.

36See EPAPS Document No. E-PRBMDO-65-044206 for 12 pages
of tables. Table | herein lists all the underlying polynomials
along with their zeros, and Table Il lists all the diabolical points
for the Mnyac system, as calculated by our perturbative
method as well as by numerical diagonalization. This document
may be retrieved via the EPAPS homepalgitp://www.aip.org/
pubservs/epaps.htirdr from ftp.aip.org in the directory /epaps/.
See the EPAPS homepage for more information.

G, Herzberg and H.C. Longuet-Higgins, Discuss. Faraday Soc>'This result also stems from the fourth-order term since it only

35, 77 (1963.

12\, stone, Kee-Su Park, and A. Garg, J. Math. PH/s. 8025
(2000.

B3A. Caneschi, D. Gatteschi, and R. Sessoli, J. Am. Chem. B&.

5873 (199)); R. Sessoli, D. Gatteschi, A. Caneschi, and M.A.

Novak, Nature(London 365 141(1993.

allows transitions between energy levels witm=4p, wherep
is an integer. For spi® the existence of the ground state tun-
neling requires 3=4p, as before.

38This field value, along with some other important ones, is listed in
Table I.

39The lower bounds fox; and x; are found by noting that they

143, Friedman, M.P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. arise ath,=0, since for any fixedn, the curve forf(x) shifts

Lett. 76, 3830(1996.
151, Thomaset al., Nature(London) 383 145(1996.

163 A.A.J. Perenboom, J.S. Brooks, S. Hill, T. Hathaway, and N.S.

Dalal, Phys. Rev. B58, 330(1998.

7A.L. Barra, D. Gatteschi, and R. Sessoli, Phys. Re\6@38192
(1997.

18A short review is given by B. Barbara, L. Thomas, F. Lionti, I.
Chiorescu, and A. Sulpice, J. Magn. Magn. Mate@0, 167
(1999.

19gee, e.g., the review by A. Canesehial, J. Magn. Magn. Mater.
200, 182(1999.

20Ersin Keeciodu and A. Garg, Phys. Rev. B3, 064422(2001).

2R B. Dingle and G.J. Morgan, Appl. Sci. Res, 221(1967); 18,
238(1967.

22K. Schulten and R.G. Gordon, J. Math. Phys, 1971(1975.

23p A. Braun, Teor. Mat. Fizik&7, 355(1978 [Theor. Math. Phys.
37, 1070(1978]; P.A. Braun, Rev. Mod. Phy®5, 115(1993.

24J.L. van Hemmen and A. $Y Europhys. Lett.1, 481 (1986);
Physica B141, 37 (1986.

25A. Garg, J. Math. Phys39, 5166 (1998.

26A. Garg, Phys. Rev. LetB3, 4385(1999.

2. Garg, math-ph/000300Ginpublishedl

28, Garg, Phys. Rev. B4, 094413(2001); 64, 094414(200J.

293, Villain and A. Fort, Eur. Phys. J. B7, 69 (2000.

upward ash, is reduced. The lower bound for, (and upper

bound for x3) follows from the fact thatf’(x)=0 at x=

—1/\/6.

40By writing U, and U, , 5=U;, we do not mean that these three
critical energies are equal, but that theyitisidethe classically
allowed region.

4IM.V. Berry and K.E. Mount, Rep. Prog. Phy35, 315 (1972.

42 more rigorous argument is given in V. I. ArnolMathematical
Methods of Classical MechanidSpringer-Verlag, New York,
1978, Appendix 10.

“3Consider the polynomialx—a;)(x—a,)- - - (x—a,), where the
a; are all positive. The coeffcient of" ¥ is (—1)* times the
symmetric sunmza; aj - - - a;, of all distinct k-fold products of
thea’s.

4M.V. Berry, Proc. R. Soc. London, Ser.392, 45 (1984.

45M.V. Berry and R.J. Mondragon, J. Phys.18, 873(1986.

46The considerations of this subsection were prompted by a private
communication from Dr. Wernsdorfer, informing us that numeri-
cal diagonalization with the Mp-ac parameters revealed that in
addition to being quenched on tle axis, the splitting of the
m= —10 andm’ =9 states was also quenched at a very close by
point.

4THence,a=1.067x 1072, It seems safe to assume thakl, so
thatb=3x10"*.

064411-17



