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Topological quenching of spin tunneling in magnetic molecules with a fourfold easy axis
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~Received 13 July 2001; published 15 January 2002!

Spin tunneling is investigated in magnetic molecules that have an easy axis with fourfold symmetry, such as
Mn12-acetate, with emphasis on understanding the topological quenching of tunneling and the diabolical point
locations in the magnetic field space. This is done using a model spin Hamiltonian that has a fourth-order term
describing the tetragonal anisotropy. The problem is studied qualitatively using instantons and quantitatively
using two methods: a discrete phase integral or Wentzel-Kramers-Brillouin method and perturbation theory in
the fourth-order anisotropy and transverse magnetic field. The former method is used to find the splitting
between various levels when the applied magnetic field is along the hard axis and is found to give good
quantitative answers. The latter method is employed for fields which may have an easy component in addition
to a hard one and is found to be effective in locating all the diabolical points. These points are found as the
roots of a small number of polynomials in the hard component of the magnetic field and the basal plane
anisotropy. These roots are used to obtain approximate formulas that apply to any system with total spinS
<10. The analytic results are found to compare reasonably well with exact numerical diagonalization for the
case of Mn12-acetate. In addition, perturbation theory shows that the diabolical points may be indexed by the
magnetic quantum numbers of the levels involved, even at large transverse fields. Certain points of degeneracy
are found to be mergers~or near mergers! of two or three diabolical points because of the symmetry of the
problem.

DOI: 10.1103/PhysRevB.65.064411 PACS number~s!: 75.10.Dg, 03.65.Db, 03.65.Sq, 75.45.1j
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I. INTRODUCTION

Quantum tunneling of a spin or spinlike degree of fre
dom has been discussed for over a decade now,1 but unam-
biguous evidence for its existence has only come recen2

from studies on the magnetic molecu
@Fe8O2(OH)12(tacn)6#81 (Fe8 for short!. This molecule has
a total spinS510, is biaxially symmetric, and can be mo
eled by the spin Hamiltonian

H5k1Sx
21k2Sy

22gmBS•H, ~1.1!

with k1.k2.0. In the first approximation, it has two dege
erate ground states, approximately given bySz5610, which
are separated by an energy barrier in thexy plane. The ques-
tion of interest is to understand how these states are adm
by quantum tunneling.

Direct numerical diagonalization of Eq.~1.1! using the
experimentally determined valuesk1.0.33 K and k2
.0.22 K ~Ref. 3–5! reveals that the tunnel splittingD is
;1029 K, which is too small to be observed directl
Wernsdorfer and Sessoli2 overcome this difficulty by apply-
ing a small amplitude ac magnetic field along thez direction,
which causes theSz5610 levels to cross one another. Tra
sitions between these levels are now possible via the Lan
Zener-Stu¨ckelberg~LZS! process,6 and the underlying tun-
neling matrix element D can be deduced from
measurement of the incoherent LZS relaxation rate for
total magnetization. The key experimental fact that supp
this interpretation of the relaxation~which could after all be
due to a classical activation process a priori! is a systematic
and remarkable oscillatory dependence of the inferred s
ting D on the strength of the magnetic fieldH when this field
is applied along the hard directionx̂. One way of understand
0163-1829/2002/65~6!/064411~17!/$20.00 65 0644
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ing this behavior is in terms of interference of different Fey
man tunneling paths for spin,7 and this is how it was theo
retically discovered.8 While massive particle tunneling in
two or more spatial dimensions can also show su
interference,9 the effect arises more directly in the spin pro
lem since the kinetic term in the action has the mathemat

structure of a Berry phase. Briefly, whenHi x̂, there are two

symmetry-related instanton paths that wind aroundx̂ in op-
posite directions and together form a closed loop on
~complexified! unit sphere. The actions for the instantons a
complex and differ by a real-valued Berry phase given bS
times the area of the loop, giving rise to interference. Sin
the Berry phase may be continuously varied by varyingH,
the splitting oscillates as a function ofH, being completely
quenched at values ofH where the Berry phase is an od
integer timesp.

In addition to being quenched for fields along the ha
axis, the splitting is also quenched at other isolated point
the Hx-Hz plane. These quenchings do not have as visua
explanation as that given above, but they are ultimately
to the Berry-phase-like term in the spin path integral.~One
could equally well say that they are due to the spin comm
tators being what they are.! We note thatall these quenching
points arediabolical points in the terminology of Berry and
Wilkinson10 or conical intersectionsin older terminology.11

These differences between massive particle and spin tun
ing add to the interest in the problem. Reciprocally, the
periments on Fe8 have spurred more careful investigations
spin-coherent-state path integrals which are more delic
than their massive particle counterparts.12

A second magnetic molecule Mn12-acetate~or Mn12-ac for
short! has also been the subject of several experime
studies.13–18 The reason for our interest in Mn12-ac is that it
©2002 The American Physical Society11-1
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CHANG-SOO PARK AND ANUPAM GARG PHYSICAL REVIEW B65 064411
has a different symmetry from Fe8. In the presence of an
external magnetic fieldH, the spin Hamiltonian of Mn12-ac
can be written as

H52ASz
22BSz

41C~S1
4 1S2

4 !2gmBH•S, ~1.2!

whereA@B@C.0. The easy axisz now has fourfold sym-
metry, the hard axes are6x and6y, and the medium axe
are the linesy56x in the xy plane. Here, the symmetry o
a pair of instanton paths is preserved when a magnetic
is applied along one of the four hard axes. Thus,
quenched spin tunneling phenomenon is also expected to
cur in systems with this symmetry. To our knowledge, t
effect has not been seen in Mn12-ac to date, but the issue o
its observability in any particular system is one that depe
on many other factors, in particular the scale of the splitt
and the strength and nature of the environmental deco
ence. It is not the purpose of this paper to discuss th
questions. We shall only study the quenching effect in
idealized system described by the Hamiltonian~1.2!. Given
the large variety of magnetic molecules being studied
synthesized,19 one may hope that a system will be found
which the effect can indeed be observed.

Because of the differences in symmetry, the systema
of the quenching effect in tetragonal systems are differ
from those in Fe8. One of the main differences is shown
Fig. 1. We show the numerically computed splittings b
tween Zeeman levels with quantum numbersm5210 and
m85102k for k50, 1, and 2, using values ofA, B, andC
that are appropriate to Mn12-ac ~for which see below!. This
figure should be compared with Fig. 2B of Ref. 2. As can
seen, here too the appropriate splitting is quenched at ce
values of the magnetic field. However, the pattern of
quenching points—their locations and their number a
function of k—is not so simple as in Fe8. Second, in the

FIG. 1. Semilogarithmic plot of numerically calculated spl
tings between the levelsm5210 andm5102k for k50,1, and 2,
as a function ofhx5gmBHx /AS. The scale on they axis has been
omitted as it is arbitrary, and thek51 curves have been verticall
offset for clarity. For k50, hz5gmBHz /AS50 all throughout,
while for k51, hz is 0.135 836 224, 0.135 832 551, 0.135 02
0.133 225, 0.130 354, and 0.126 331 for the successive quen
and for k52, successive quenches are athz equal to 0.264 938,
0.263 958, 0.261 042, 0.256 130, and 0.249 084. As discusse
Sec. IV C, there are two extremely close by diabolical points n
hx50 for k51 and two merged diabolical points fork52.
06441
ld
e
c-

s
g
r-

se
e

d

cs
t

-

e
in

e
a

simplest model for Fe8, the quenching points for givenk
Þ0 all have the same easy-axis fieldHz .20 Here this is not
so. Another way of saying this is that in theHx-Hz plane, the
quenching points for givenk no longer lie on lines parallel to
the x axis. This means that to search for these points exp
mentally, one must scan along lines or curves that hav
slight negative slope with respect to thex axis. As we shall
see, the tunneling matrix element in the vicinity of a quenc
ing point depends very sharply onHz , and this is why we
have shown the quenchings in Fig. 1 as a sequence oHx

scans at differentHz values. This need not be too severe
problem for an experimental search, however, if the meth
of Wersndorfer and Sessoli2 is employed. In this approach
the Hz field has a small ac component. As long as the
amplitude is large enough to pass through a crossing so
where in the cycle, its exact location does not matter. Fr
this point of view, it continues to make sense to think ofD
for a given pair of levels as depending principally onHx .

It is clearly of interest to try and understand the abo
properties of the Hamiltonian~1.2! and, more broadly, the
full tunneling spectrum, analytically. Ideally, one would lik
expressions or methods for calculatingD for any pair of
levels for any external magnetic fieldH ~assuming of course
that H is such that the levels are quasidegenerate to be
with!. A secondary goal might be to obtain the locations
the quenching points. We report progress toward both th
goals using two separate methods. The first is the disc
phase integral~DPI! ~or discrete WKB! method.21–25 This
method has been applied to spin tunneling problems in s
eral recent papers by one of us,26–28 and an approximate
version of it has been developed and applied to the spe
case of Fe8 by Villain and Fort.29 It is semiclassical just as
the instanton approach is, but it is easier to use for the st
of the splittings of higher pairs of levels and when the ma
netic field is not along a hard axis. The calculation reduce
the evaluation of a handful of action integrals. Unlike the F8
case, however, these integrals must now be evaluated
merically. This means that we do not have explicit analy
formulas for D and the value of the exercise is somewh
reduced for generalH. Therefore, our DPI studies are limite
to the caseHi x̂. For general field orientations, we use pe
turbation theory inHx and the ratioC/A, very much in the
spirit of Ref. 30. To our pleasant surprise, this not only yie
quite good approximations for the locations of the diaboli
points, it also reveals a pattern in the points which would
hard to discern otherwise. This pattern provides a natu
scheme for indexing these points.

Some readers may wonder why an analytic study of
~1.2! is needed at all, since the corresponding 21321 matrix
may be diagonalized numerically.31,32 First, there have also
been many other semiclassical studies of the Fe8 system in
the last two years33 using a variety of analytic methods—
periodic instantons, Bohr-Sommerfeld quantization, mapp
on to a particle,34 etc., but none of these is easily applicab
to the Mn12-ac symmetry. Second, numerical methods
undoubtedly invaluable, but they cannot by themselves p
vide one with mental pictures or language with which
interpret physical phenomena, understand trends, or y
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TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN . . . PHYSICAL REVIEW B65 064411
any of the insights that one means when one talks of
‘‘physics’’ of a problem. In the present problem it is ver
unlikely that numerics alone would have led to the index
scheme we find. Third, any black-box numerical routi
must itself have an analytic basis. Standard methods suc
tridiagonalization followed by QR factorization35 are inferior
to the DPI for calculating tunnel splittings, especially if th
spin is large. AsJ increases, the splitting decreases expon
tially, so one needs exponentially more significant digits i
numerical approach. The DPI method tackles the problem
calculating this exponentially small quantity head on. Th
we believe that even if the answers for Eq.~1.2! are known
numerically, it is of some value to see how well they can
captured by an analytic approach. Such a comparison e
cially serves as a test of the DPI method and increases o
confidence in applying it in situations where numerics
not feasible.

The plan of our paper is as follows. In the following se
tion we give a qualitative discussion of spin tunneling bas
on instantons and selection rules. This gives an overall
ture of the quenching systematics and sets the stage fo
more detailed analyses to follow.

In Sec. III we present the DPI formalism for the prese
model. Unlike the previously studied model for Fe8, the
Schrödinger equation corresponding to the present s
Hamiltonian becomes a nine-term recursion relation beca
of the fourth-order term. Hence, although the formalism
Ref. 27 does not need to be extended~see especially the
discussion of nonclassical turning points therein!, the actual
application is made more difficult due to the nine terms.
give a systematic analysis for this recursion relation. We t
calculate the tunnel splittings as a function of the appl
field for the first few energy levels and compare our resu
with those from numerical diagonalization.

The perturbative analysis is given in Sec. IV. We fi
develop the perturbation theory withB50 ~Sec. IV A!. This
yields the diabolical points as the roots of polynomials inHx
andC. For a given spinS, we have 2S polynomials. One of
the unexpected bonuses is that a polynomial which applie
a given value ofS also applies to any other value ofS. We
find all these polynomials forS<10. In Sec. IV B, we incor-
porate the effects of theB term approximately and compar
our analytic results with those from explicit numerical diag
nalization of the Hamiltonian with the parameters f
Mn12-ac. Our results are accurate to about 10%, and we
lieve that they will also be useful for other systems w
fourfold anisotropy. This is especially true for the low-lyin
energy levels. In fact, for the higher pairs of levels, the d
bolical points can be significantly moved or even elimina
altogether by still higher ansitropy terms in the Hamiltonia
In Sec. IV C we discuss some qualitative aspects of the
generacies on theHz axis and show that some of them b
have as the merger of two or three diabolical points. O
main results from perturbation theory are in the form
tables of the underlying polynomials and explicit diabolic
fields for Mn12-ac. Because of their length, we have plac
these tables in the EPAPS depository.36

We conclude the paper with a summary of the results
Sec. V.
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II. QUALITATIVE ARGUMENTS

We begin with a qualitative treatment of spin tunneling
Mn12-ac using instanton methods, considering onlyHi x̂.
This method is based on spin-coherent-state path integral
the spin-coherent-state representation the anisotropy en
corresponding to the Hamiltonian~1.2!, with Hi x̂, is given
by

Hc~a,b!5^n̂uHun̂&52AS2sin2a sin2b2BS4sin4a sin4b

12CS4~cos4a1sin4a cos4b

26 sin2a cos2a cos2b!2gmBHxScosa, ~2.1!

wherea andb are the polar and azimuthal angles with r
spect tox̂, i.e.,

~ n̂x ,n̂y ,n̂z!5~cosa,sina cosb,sina sinb!. ~2.2!

In Eq. ~2.1!, we have omiited terms of relative order (1/S).
The energy ~2.1! exhibits two degenerate minima atn̂i

5(a,b)5(a0 ,p/2) and n̂f5(a,b)5(a0 ,2p/2), where
a05p/2 for Hx50, and decreases smoothly to 0 asHx is
increased. The level splitting due to tunneling between th
minima can be obtained from the imaginary time propaga

K f i5^n̂f uexp@2HT#un̂i&5E D@ n̂#exp$2SE@ n̂~t!#%,

~2.3!

where

SE@ n̂~t!#52 iSA@ n̂~t!#1E
0

T

Hc~a,b!dt, ~2.4!

with

A@ n̂~t!#5E
0

T

~12cosa!ḃ~t!dt ~2.5!

the Euclidean action and complex in general. Here,
boundary conditions aren̂(0)5n̂i ,n̂(T)5n̂f . Geometrically,
for a closed path, the integral in Eq.~2.5! can be interpreted
as a surface area on the complexified unit sphere enclose
this path, as can be verified by the Stokes theorem. In
large-spin limit the path integral can be approximated by
sum of all contributions from paths that minimize the actio
that is, the instanton paths. The instantons for the pre
model are not simple because of the fourth-order ter
However, we can construct a qualitative argument to find
quenching effect without performing explicit calculation
Since the Euclidean actionSE has both real and imaginar
parts we can express the ground-state tunnel splitting as

D5(
j

D je
2SR jeiSI j , ~2.6!

wherej labels the various instantons,SR j andSI j are the real
and imaginary parts of the instanton action, respectively,
D j are prefactors. With these ingredients we now disc
how the quenching appears in the present model.
1-3
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CHANG-SOO PARK AND ANUPAM GARG PHYSICAL REVIEW B65 064411
Let us first consider the case whenHx50. Since the en-
ergy has fourfold symmetry, an argument of von Delft a
Henley can be applied.7 If n̂(t) is an instanton path, so i
Rẑ(p/2)n̂(t), where Rẑ(p/2) is a rotation throughp/2
about ẑ. Keeping in mind thatn̂(t) is complex, when we
project onto the real unit sphere, there are four saddle-p
paths passing through each of the four medium directio
Because of symmetry, each has the same real contributio
the action integralSR . However, since their azimuths abo
the easy axis are different, the imaginary part of the act
i.e., the phaseSI , will not be the same. From the geometric
meaning of the integral in Eq.~2.5!, the phase difference
between two instanton paths equalsS times the surface are
on the unit sphere enclosed by these instanton paths.

To visualize the interference effect we map the two-sph
onto a plane, as in an ordinary atlas~see Fig. 2!. The hard
axes are mapped onto four equally separated points lying
the equator, and the points exactly halfway between th
correspond to the medium axes. Thus, the real projection
the instanton paths can be drawn as curves which start f
1z, pass through the medium points, and end at2z. The
area enclosed by two adjacent instanton paths equalsp,
since the sphere is equally divided into four parts by
instantons. Thus, the phase difference between adjacent
becomesSp. Choosing the phase of path 1 as the base,
can perform the summation in Eq.~2.6!. Recalling that by
symmetry the contribution from real parts of the instant
actions are the same, as are the prefactorsD j , we have

D5De2SRe2 iSI~11e2 ipS1e22ipS1e23ipS!

54De2SReigcos~pS!cosS pS

2 D , ~2.7!

where g is an irrelevant phase. This result gives us tw
quenching conditions. From the factor cospS, we obtain the
quenching of spin tunneling for half-integerS, which is just
the Kramers degeneracy effect. The second cosine imp
that the ground-state spin tunneling is quenched for odd

FIG. 2. Two-dimensional picture of instanton paths whenHx

50. The points6x, 6y are the hard axes, andmi ’s represent the
medium axes. Dotted lines denote the real projections of the ins
ton paths.
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teger spins, i.e.,S51, 3, 5, etc., and soD is non-zero only
for S52p, wherep is an integer.37

We now consider the case withHxÞ0. Since the field is
assumed to be applied along the1x axis, both easy and al
four medium axes move close to the1x axis. Thus, the
two-dimensional picture becomes the one shown in Fig
The fourfold symmetry is now broken, but there are tw
pairs of instanton paths surrounding the1x axis: (a,a8) and
(b,b8). The real parts of the instanton actions in a pair a
the same, but different between the pairs. The phase di
ences in each pair are the areas enclosed by each pa
instanton paths~the small and large oval regions in Fig. 3!
and are dependent on the fieldHx . If we choose the straigh
line joining 1z8 to 2z8 as a reference,SIa852SIa ,SIb85
2SIb , so that the summation in Eq.~2.6! can be performed
as

D5Dae2SRa@e2 iSIa1e2 iSIa8#1Dbe2SRb@e2 iSIb1e2 iSIb8#

52Dae2SRacos
SAa~Hx!

2
12Dbe2SRbcos

SAb~Hx!

2
, ~2.8!

whereSRa andSRb are the real parts of the instanton actio
in each pair, andAa(Hx) andAb(Hx) are the areas enclose
by the pairs (a,a8) and (b,b8), respectively. ForHx.0 the
saddle points through which the paths (a,a8) pass are lower
than those for (b,b8), which means thatSRa,SRb . The main
contribution toD in Eq. ~2.8! then comes from the first term
and we can neglect the second term. The quenching of
ground-state tunnel splitting thus arises whenAa(Hx).(2n
11)p/S, where n is a non-negative integer. To see ho
many quenching points are allowed we note thatAa(Hx)
,Aa(0), where Aa(0)5p ~the area enclosed by the tw
paths 1 and 4 in Fig. 2!. From this condition we findn,(S
21)/2. ForS510 there are thus five values ofHx at which
the quenching appears.

It should be noted that the region of very small~but non-
zero! Hx is special. Exactly atHx50, four instantons are

n-

FIG. 3. Two-dimensional picture of instanton paths whenHx

Þ0. The points6z8 represent the new easy axes. The instan
paths are again denoted by dotted lines. Note that the areas enc
by each pair of instanton paths are shrunk due to the field.
1-4
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TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN . . . PHYSICAL REVIEW B65 064411
important, but for largeHx only two are important. There
must therefore be a regime of smallHx where we make a
smooth transition between these two behaviors. The widt
this regime can be quite small sinceSRb.SRa as soon as
HxÞ0, and these actions appear in the exponents in
~2.8!, so that the difference (SRb2SRa) is amplified. It is to
be expected that treating this crossover region correctly
technical problem in asymptotics requiring some kind of u
form asymptotic approximation. We shall see that the di
culty persists in the DPI treatment. In particular, the ba
formula ~3.29! fails nearHx50. It contains only one cosine
factor and is effectively ignoring the second term in E
~2.8!.

It does not seem easy to generalize this qualitative a
ment for the number of diabolical points whenHzÞ0 and
the tunneling involves an excited state in at least one wel
particular, there is no simple argument that an area ofp is
lost for each excited state, as one might be tempted to th
based on the simplicity of the diabolical point pattern in F8.

It is possible to understand the spectrum whenH50 or
whenHi ẑ in terms of a selection rule induced by the fourt
order terms in Eq.~1.2!. First, as also noted by Tupitsyn an
Barbara,32 when H50, the splitting between levels210
1n and 102n alternates between zero and nonzero as
level pair numbern goes up. TheS6

4 terms forbid transitions
between levelsm andm8 unlessDm5um2m8u, is a multiple
of 4. For tunneling between levelsm and2m, this requires
2m54p, wherep is an integer, so there is no such tunneli
whenm is an odd number.

To give a more detailed argument of this point, we no
that whenHi ẑ, theS6

4 terms divide the Hamiltonian into th
following four subspaces forS510:

V15$210,26,22,12,16,110%,

V25$29,25,21,13,17%,

V35$28,24,0,14,18%,

V45$27,23,11,15,19%, ~2.9!

where the numbers in brackets give them quantum numbers
The subspaceV1 contains 6 levels, which form 3 pairs spl
by tunneling due to theCS6

4 terms. The spaceV3 contains 5
levels, of which68 and64 are split by tunneling andm
50 is isolated. There is no degeneracy amongst the stat
any one subspace. AtH50, however, the spaceV2 is iso-
morphic toV4 by time reversal symmetry, and we therefo
conclude that in the full spectrum ofH, there should be five
pairs of strictly degenerate levels, corresponding appro
mately tom56(2n11) with integern. Further, we can also
see that asHz is turned on, states in different subspaces w
cross. Thus, the level210 in V1 will cross successively with
19,18, and17 since these are inV4 ,V3, andV2, but it will
not cross with16 since that level is also inV1.
06441
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III. DPI CALCULATION OF TUNNEL SPLITTINGS

We consider the spin Hamiltonian~1.2! with the magnetic
field applied along thex axis. For convenience we divideH
by A to work with dimensionless quantities. With this choic
we can write

H52Sz
22l1Sz

41l2@S1
4 1S2

4 #2S̄h̄xSx , ~3.1!

wherel15B/A,l25C/A,h̄x5Hx /S̄Hc(Hc[A/gmB), and

S̄5S1
1

2
. ~3.2!

Here, mB is the Bohr magneton,g52, and S is the spin.
Following Ref. 17,A/kB50.556 K, B/kB51.131023 K,
and C/kB5331025 K, so that l151.9831023, l255.4
31025, and Hc50.414 T. Let un̂&5uu,f& be the spin-
coherent state along the directionn̂, with standard spherica
polar coordinatesu andf. We introduce the classical energ

Hc~u,f!5^n̂uHun̂&

52S2cos2u2l1S4cos4u

12l2S4sin4u cos 4f2SS̄h̄xsinu cosf.
~3.3!

When h̄x50, Hc has minima atu50,u5p. As h̄x is in-
creased, these minima move towardu5p/2, f50, lying in
the xz plane. At a certain critical fieldh̄xco, these minima
will merge with each other, giving rise to a double zero
]Hc(u,f50)/]u at u5p/2. By using this condition, we can
show that

h̄xco5
2S

S̄
~114l2S2!. ~3.4!

With the experimental numbers given above,h̄xco51.946.38

A. Recursion relation

The DPI formalism can be started with the Schro¨dinger
equation in the Sz representation. Introducing
Huc&5Euc&, Szum&5mum&, ^muc&5Cm , and ^muHum8&
5tm,m8 , the Schro¨dinger equation for the Hamiltonian~1.2!
can be expressed as

(
n5m24

m14

tm,nCn5ECm . ~3.5!

This is a nine-term recursion relation with diagonal term
tm,m from Sz

2 andSz
4 and off-diagonal termstm,m61 ,tm,m6,4

which are from theSx andS6
4 parts, respectively. Since ther

are noS6
2 or S6

3 terms in the Hamiltonian, we havetm,m62

5tm,m6350.
Equation ~3.5! may be interpreted as the Schro¨dinger

equation of an electron in a one-dimensional tight bind
model. That is, we can consider the diagonal and o
diagonal terms as the on-site energy and hopping terms
1-5
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FIG. 4. The different types of energy band
possible for recursion relation~3.5! with wave
function ~3.8!. NoteUp(m)5U1 in all cases.~a!

When h̄xr,h̄x,h̄xco with umu,S̄ and when

h̄xc(m),h̄x,h̄xr with umu.m* . In this case,
U0(m)5U2 , andU* 1(m) does not appear sinc

q* 1 is imaginary. ~b! When h̄xc(m),h̄x,h̄xr

with ma,umu,m* . Here U* 1(m)

5U2 ,U0(m)5Ui . ~c! When h̄xi,h̄x,h̄x max

with umu,ma and when 0,h̄x,h̄xi with mi

,umu,ma . ~d! when 0,h̄x,h̄xi with umu
,mi . Note that, in both~c! and ~d!, U* 1(m)
5U2 , andU0(m),U* 2(m), andU* 3(m) are in-
side the band and thus all denotedUi .
in

x

p

se

of

port
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ted
ing
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s.
ting
spectively. Once this analogy is recognized, assum
tm,m6a(a50,1, or 4) vary slowly withm, we can treat the
recursion relation within a continuum quasiclassical appro
mation or a phase integral method.21–24,27With this approxi-
mation we can define smooth functions

ta~m!.
1

2
~ tm,m1a1tm,m2a!, a50,1,4. ~3.6!

For the present model, theta’s are given by

t0~m!52m2~11l1m2!,

t1~m!52
S̄h̄x

2
AS̄22m2,

t4~m!5l2~S̄22m2!2, ~3.7!

where we have used the approximationS(S11)'S̄2. Intro-
ducing the DPI wave function within the semiclassical a
proximation

Cm;
1

Av~m!
expF i Em

q~m8!dm8G , ~3.8!

we have the Hamilton-Jacobi equation

E5Hsc~q,m![t0~m!12t1~m!cosq12t4~m!cos 4q
~3.9!

and the transport equation
06441
g

i-

-

v~m!5
]Hsc

]q
522 sinq~m!3@ t1~m!

116t4~m!cosq~m!cos 2q~m!#. ~3.10!

In Eqs.~3.8! and~3.10!, q(m) is a local,m-dependent Bloch
wave vector obtained by solving Eq.~3.9! for q for any given
energyE. It is very useful to have a physical picture of the
equations. For a given value ofm, Eq. ~3.9! gives an energy
band E(q) which defines the classically allowed range
energies. In Fig. 4 we show possibleE vs q curves for our
problem. At lower and upper edges of the band the trans
equation shows thatv(m) becomes zero because the slo
]E(q)/]q is zero. This means that the band edges are rela
to the classical turning points. These are not the only turn
points, however. Such points are more generally defined
the condition that the velocityv(m) vanishes. This condition
produces additional loci inE-m space, which we call
critical curves, along with the m-dependent band edge
These curves are crucial to understanding how the oscilla
tunnel splitting, i.e., the quenching effect, appears.

B. Critical curves

From Eq.~3.10! the conditionv(m)50 is satisfied when
q50,q5p, or q5q* , whereq* is the solution of

32t4~m!cos3q* ~m!216t4~m!cosq* ~m!1t1~m!50.
~3.11!

Substituting these into Eq.~3.9! we obtain the following en-
ergy curves for each of the threeq’s:

U0~m!5t0~m!12t1~m!12t4~m!,
1-6
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Up~m!5t0~m!22t1~m!12t4~m!,

U* ~m!5t0~m!12t1~m!cosq* ~m!12t4~m!cos 4q* ~m!,
~3.12!

where U0(m)[E(0,m), Up(m)[E(p,m), and U* (m)
[E(q* (m),m). Whenever a given energyE crosses one o
these curves a turning point occurs. Various types of turn
points depending on the characteristic of the critical cur
have been analyzed in Ref. 27. An interesting feature of
analysis is the existence of novel turning points inside
classically forbidden region, which is crucial for the quenc
ing of spin tunneling. The recursion relation studied the
was based on a spin Hamiltonian which includes terms u
second order, and there were only three critical curves to
considered. Here, we expect to have up to five curv
U0(m),Up(m), and up to threeU* (m)’s from the cubic
equation~3.11!.

In order to proceed further, it is necessary to analyze
critical curve structure more closely, in particular its depe
dence onh̄x . To do this, let us first compareU0(m) with
Up(m). From Eq. ~2.7! it can be easily seen thatUp(m)
.U0(m) since t0(m),0, t1(m),0, and t4(m).0 for all
umu,S̄. Thus,Up(m) can be the upper band edge. Howev
in order for this to be so we still need to prove thatUp(m)
.U* (m). This is not obvious. Indeed, since Eq.~3.11! is a
cubic in cosq* , it is possible to have complex solution
These solutions will yield a complexU* (m), which is not of
interest because the Hamilton-Jacobi equationE5U* (m)
cannot then be satisfied. A careful consideration of the s
tions of Eq.~3.11! is therefore necessary.

Defining x5cosq* , m5m/S̄ and using Eq.~2.7! for the
ta’s, we can write Eq.~3.11! as

f ~x![2x32x2
h̄x

32l2S̄2
~12m2!23/250. ~3.13!

A sketch of the functionf (x) is drawn in Fig. 5. This sketch
incorporates the following easily verified properties off (x):
~i! f (0),0, ~ii ! f 8(0)521, ~iii ! f 8(61)55.0, ~iv! f
(21),0, ~v! f (1) may be of either sign, and~vi! f 8
(61/A6)50, where f 8(x)[d f(x)/dx. It follows that a
curve of type marked (a), characterized by one real zero
f (x), arises whenh̄x is large or whenumu is large and that a
curve of type marked (b), characterized by three real zero
arises whenh̄x is small or whenumu is small. Let us denote
the largest zero byx1 and the other two, when they are rea
by x2 and x3 with x2.x3. The corresponding values fo
q* (m) andU* (m) are denoted byq* i andU* i(m), with i
51,2, or 3. It is obvious thatx1.0 and that21,x3,
21/A6,x2,0. The first real root yields a positive value fo
cosq*1, but since we cannot say ifx1 is greater or lesser tha
1, q* 1 may be real or purely imaginary. The other two re
roots, when they exist, always yield real wave vectorsq* 2
andq* 3.
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The transition from one to three real roots occurs wh
f (x) has a double zero, i.e., whenf (x) and f 8(x) both vanish
simultaneously. It is easily shown that this condition
equivalent to

h̄xc~m!5h̄x maxS 12
m2

S̄2 D 3/2

, ~3.14!

h̄x max532A 2

27
l2S̄2. ~3.15!

The curveh̄xc(m) and some special values ofh̄x are dis-
played in Fig. 6. The physical meanings of these values
listed in Table I. From the arguments of the previous pa
graph, it follows that we will have three zeros whenh̄x

FIG. 5. Sketch of the cubic functionf (x) for ~a! large h̄x , or

large umu, ~b! small h̄x , or smallumu. Note that there is one root in
~a!, but three roots in~b!. The transition from type~a! to type ~b!
occurs whenf (2xm)5 f 8(2xm)50(xm51/A6), which gives the

curve h̄xc(m) in Eq. ~3.14!.

FIG. 6. The curveh̄xc(m) and some physically meaningful va

ues ofh̄x’s. In the inset we list these values computed with expe

mental numbers forl1 and l2 for Mn12-ac. Points at whichh̄x

intersects the curveh̄xc(m) arem56ma .
1-7
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CHANG-SOO PARK AND ANUPAM GARG PHYSICAL REVIEW B65 064411
,h̄xc(m) and one zero whenh̄x.h̄xc(m). When h̄x,h̄x max,

we can also ask for the points6ma(h̄x) at which we change
from one to three real roots off (x). These are directly given
by solving Eq.~3.14! for h̄xc(m)5h̄x :

ma5S̄F12S h̄x

h̄xmax
D 2/3G 1/2

. ~3.16!

Next, let us investigate whetherU* 1(m) is inside or out-
side the classically allowed energy band. Sincex1 moves to
larger positive values asumu increases~see Fig. 5!, we see
thatU* 1 lies inside the band ifx1,1, i.e.,umu,m* , where
m* is such thatf (1)50. Solving this equation we get

m* 5S̄F12S h̄x

h̄xr
D 2/3G 1/2

, ~3.17!

h̄xr5A27

2
h̄xmax. ~3.18!

Clearly,ma,m* .
Let us also explore whether theU* i(m)’s, when they are

real, are larger or smaller thanUp(m) or U0(m). We con-
sider the following differences:

Up j~m![Up~m!2U* j~m!516t4~m!cosq* j~11cosq* j !
2

3~2213cosq* j !, ~3.19!

U* i j ~m![U* i~m!2U* j~m!

5216t4~m!~cos2q* i2cos2q* j !

3@3~cos2q* 11cos2q* j !21#, ~3.20!

U0i~m![U0~m!2U* i~m!516t4~m!cosq* i~12cosq* i !
2

3~213 cosq* i !, ~3.21!

wherei , j 51, 2, or 3 and we have used Eq.~3.11! to elimi-
nate t1(m) in favor of t4(m). From these equations, an
using the facts thatt4(m).0, plus39

2
1

A2
<cosq* 3<2

1

A6
<cosq* 2,0,

1

A2
<cosq* 1 ,

~3.22!

we find the following:
~1! When there is only one real root,

TABLE I. Physical meanings of the specialh̄x’s

h̄xco
Coercive field above which no tunneling exists

h̄xosc
The value below which the wavefunction can ha

an oscillating part inside the forbidden region.

h̄xr
The value above whichq* 1 becomes real.

h̄xmax The maximum value of the curveh̄xc(m).

h̄xi
The value at whichU* 3(0) intersectsU0(0).
06441
U* 1~m!,U0~m!,Up~m! ~3.23!

for all umu,S̄ and h̄xmax,h̄x,h̄xco.
~2! When there are three real roots,

U* 1~m!,U0~m!,U* 3~m!,U* 2~m!,Up~m!
~3.24!

for h̄xi,h̄x and

U* 1~m!,U* 3~m!,U0~m!,U* 2~m!,Up~m!
~3.25!

for 0,h̄x,h̄xi , where h̄xi is determined byU0(m50,h̄xi)
5U* 3(m50,h̄xi), which, from Eqs.~3.21! and ~3.22!, is
equivalent to cosq*3(m50,h̄xi)522/3 .

We can now list the various types of critical curve pa
terns that arise in our problem and the corresponding ran
of the fieldh̄x . In the following,U2(m) andU1(m) denote
the lower and upper bounds of the energy band, andU f(m)
andUi(m) mean the forbidden and internal energies, resp
tively.

1. Case I: h̄xrËh̄xËh̄xco

In this caseU* 2 and U* 3 are not real for anym, and
q* 1(m) is imaginary; i.e.,U* 1(m) is outside the band for al
umu<S̄. The energy bandE(q) is of the type in Fig. 4~a! for
all m, and the critical curves become

U* 15U f , U05U2 , Up5U1 for umu,S̄,
~3.26!

which are shown in Fig. 7.

FIG. 7. The critical curves for case I. At points6m0 , U0 has
minima, and the points6mc denote the intersection betweenE and

U* 1. NoteU* 15U f andU05U2 for all umu<S̄. For a given value
of E,q becomes complex forumu,mc which lies inside the classi-
cally forbidden region. In this region the semiclassical wave fu
tion Cm oscillates with decaying or growing envelope.
1-8
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2. Case II: h̄xmaxËh̄xËh̄xr

Now, U* 2 andU* 3 continue to be complex for allm, but
q* 1(m) is real in the central regionumu,m* . In this region,
the energy band is as in Fig. 4~b!, while in the outer region it
is of the type in Fig. 4~a!. Accordingly, the critical curves
have the structure shown in Fig. 8 and can be written as

U* 15U2 , U05Ui , Up5U1 for umu,m* ,

U* 15U f , U05U2 , Up5U1 for umu.m* .
~3.27!

3. Case III: 0Ëh̄xÏh̄xmax .

There are now threem regions. In the outer region,umu
.m* ,U* 2 and U* 3 are still complex,U* 1 is outside the
band, andE(q) has the shape in Fig. 4~a!. In the intermediate
rangema,umu,m* ,U* 2 andU* 3 continue to be complex
but U* 1 is inside the band andE(q) has the shape in Fig
4~b!. In the central range,umu,ma ,U* 2 and U* 3 become
real, andE(q) has the shape shown in Figs. 4~c! ~when h̄xi

,h̄x,h̄xmax) and 4~d! ~when h̄x,h̄xi). The critical curves
can be expressed as40

U0 ,U* 2 ,U* 35Ui , U* 15U2 , Up5U1 , umu,ma ,

U05Ui , U* 15U2 , Up5U1 , ma,umu,m* ,
~3.28!

which are illustrated in Figs. 9~a! and 9~b!.
As a matter of fact, we should distinguish two subcase

case III. Whenh̄x.h̄xi , as in Eq.~3.24!, the relevant critical
curves are as in Fig. 9~a!. When h̄x,h̄xi , as in Eq.~3.25!,
there is a range ofm values in whichU* 3,U0 @see Fig.
9~b!#. For the experimental parameters relevant to Mn12-ac,
the field h̄xi is rather small, and the pointsm0 ,m* ,ma , and
mi are all clustered tightly nearm5S̄. This means that for

FIG. 8. The critical curves for case II.6m* are the points
where U0(m)5U* 1(m) @and dU0(m)/dm5dU* 1(m)/dm#. U* 1

is the lower band edge in the central regionumu,m* and forbidden
in the outer regionumu.m* .
06441
in

the low-lying states, there will be four turning points ve
close to one another, and the DPI analysis would have to
done using aquartic turning point formula, analogous to th
quadratic turning point formula as discussed by Berry a
Mount.41 Since we know the qualitative structure of the e
ergy spectrum for fields as small ash̄xi from the arguments
of Sec. II, this exercise is largely academic, and we ha
chosen not to perform it. This means that our analysis is
quite correct at very small fields, and this can be seen in
10, especially in the behavior of the splitting between t
first excited pair of levels. As discussed in Sec. II, this sp
ting is rigorously zero ath̄x50, whereas we appear to find
zero at a slightly nonzero value ofh̄x .

As discussed in Ref. 28 the quenching of spin tunnel
occurs whenq(m) has a real part as well as an imagina
part inside the forbidden region. From the viewpoint of e
ergy curves this happens when there is an energy curve
side the forbidden region. From the above analysis we

FIG. 9. The critical curves for case III.~a! When h̄xi,h̄x

,h̄xmax and ~b! when 0,h̄x,h̄xi . There are five critical curves
Note, however, thatU* 2 and U* 3 appear only in the regionumu
,ma because they are complex outside this region.
1-9
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FIG. 10. Tunnel splittingsDn between first
three pairs of levels as a function of the fie

parameterh̄x . The dotted and solid curves ar
obtained from exact numerical diagonalization
the Hamiltonian and the DPI method, respe
tively.
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see that onlyU* 1(m) resides inside the forbidden regio
For a given energyE such thatU0min<E,U*1max, q changes
from pure imaginary to complex asm passes from theumu
.mc region to theumu,mc region, wheremc is the point
whereE intersectsU* 1(m) ~for example, see Fig. 7!. When
q becomes complex the semiclassical wave function in
~3.8! oscillates with exponentially decaying or growing e
velope. The quenching of spin tunneling arises from this
cillating nature of the wave fuction inside the forbidden r
gion.

We note here that for the experimental Mn12 parameters,
the field h̄x max is quite small~see the legend in Fig. 6!, and
so in the entire field range for case III, even though there
a forbidden region turning point, the behavior of the groun
state tunnel splitting is qualitatively similar to that forh̄x
50. The behavior of the splitting of the next two levels
more interesting, and as can be seen from Fig. 10, the
method does capture it, at least qualitatively and, perh
even quantitatively.

C. Tunnel splittings

We now turn to calculating the energy splittings the
selves. In Ref. 28, tunnel splittings for a five-term recurs
relation have been obtained from Herring’s formula. The
nal result is, however, quite general so that it can be app
to a recursion relation which includes more than five term
Moreover, as we can notice from the above classificatio
although the present nine-term case has more critical cur
the possible types of turning points are all included in tho
discussed in Ref. 27 and no new type of turning po
emerges here. Thus, we can directly apply the formula
the tunnel splittings obtained in Ref. 28 to the present pr
lem. Since our calculation is based on this formula we qu
the main results here. The tunnel splitting fornth pair of
states is given by

Dn~ h̄x!5
1

n!
A8

p
v0Fn1

1
2e2G0cosLn , ~3.29!

where
06441
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G05E
2m0

m0
k0~m!dm,

Ln5E
2mc

mc S x01S n1
1

2Dv0x08Ddm,

F52Mv0~m02mc!
23expS 22Q11v0E

2mc

mc
k08dmD ,

Q15E
2m0

2mcS v0B08

AB0
221

1
1

m1m0
D dm. ~3.30!

Here,k andx are the imaginary and real parts of complexq,
respectively, and

k05k~m,e50!, k085
]k~m,e!

]e U
e50

,

x05x~m,e50!, x085
]x~m,e!

]e U
e50

,

B05cosq~m,e50!, B085
] cosq~m,e!

]e U
e50

,

~3.31!

with e[E2U2(2m0). In these equations,6mc are not
quite the turning points of the previous subsection, in t
they are not the point whereU* 1(m) equals the true energ
En of thenth pair of levels. Rather, they are the points whe
U* 1(m)5U2(6m0), which corresponds to settingE
5U2(m0), i.e., e50. The reason is that the formula~3.29!
incorporates expansions of various phase integrals in the
ergy difference

en5En2U2~m0!5S n1
1

2Dv0 , ~3.32!

which is of order (1/S) compared to the energy barrier, a
long asn!S. This is whymc is modified and also why the
primary phase integral for the Gamow factorG0 runs from
1-10
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TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN . . . PHYSICAL REVIEW B65 064411
2m0 to m0, the minima ofU0(m), rather than between th
points whereU0(m)5En . Since all energy curves are
function of bothm and h̄x , these points still depend onh̄x ,
which in turn makes theDn depend onh̄x .

The massM and frequencyv0 in Eq. ~3.30! are obtained
by approximatingU2(m) near its minima by a parabola, i.e
U2(m)5E1 1

2 Mv0
2(m6m0)2. We find

M52
1

2t1~2m0!132t4~2m0!
,

v0
2522@ t1~2m0!116t4~2m0!#

]2U2

]m2 U
m52m0

.

~3.33!

The application of formulas~3.29!–~3.33! cannot be car-
ried out in closed form all the way, and we must resort
numerical methods. We explain the principal steps in
numerical calculation below.

In step 1, we must find6m0 and U2(6m0). For our
problem we discover thatU2(m) is always given byU0(m)
near the classically allowed minima. The equation for
minima can be reduced to another cubic

S̄2h̄x
254~S̄22y!@2~l122l2!y1114l2S̄2#2,

~3.34!

where y5m2. For the parametersl1 and l2 of interest to
Mn12 andh̄x,h̄xco, all three roots of this cubic equation a
real, but only one is positive. This root gives usm0, and
substitution of this value into Eq.~3.12! for U0(m) givesE,
and Eqs.~3.33! then giveM andv0.

Step 2 is to obtain the points6mc given by the roots of
the equation

U* 1~m!5U2~m0!. ~3.35!

As discussed after Eq.~3.32!, up to terms of relative orde
(1/S), the points6mc are the actual turning points for th
low-lying energies. Note that it isU* 1 which appears in Eq
~3.35! since this is the critical curve that lies in the classica
forbidden region.

To solve Eq.~3.35! numerically, we first solve Eq.~3.11!
for the function cosq*1(m), which can be done in close
form. This solution is then substituted in Eq.~3.12! to obtain
U* 1(m). The entire procedure can be implicitly imple
mented in the numerical routine. The same holds
dU* 1(m)/dm. SinceU2(m0) is known from step 1, any o
the standard root-finding methods—Newton-Raphson, bis
tion, secant, etc.—can be applied to Eq.~3.35!.

Step 3 is to findq(m), in particular its real and imaginar
parts k0(m) and x0(m). This is done by solving the
Hamilton-Jacobi equation~3.9! with the energyE found in
the first step. The problem amounts to solving a quartic eq
tion in cosq and making sure that one has the correct so
tion, which can be done easily by making use of the prop
ties that we have found above. Thus, in the regionmc,umu
,m0, there are two solutions of the formik ~with k real!
and two of the formp2 ik. We discard the latter and of th
06441
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former select that one which continuously tends to 0 asm
→6m0. In the regionumu,mc , the solutions can be written
asik6x and asp2( ik6x), wherex→0 asm→6mc . We
discard the latter two and read offk([k0) and x([x0)
from the imaginary and real parts of the first two. Note th
both k0 andx0 are taken to be positive.

Step 4 is to find thee partial derivativesk08 and x08 , in
effect ]q(e,m)/]e. (B08 is directly obtainable fromk08 .! We
differentiate the Hamilton-Jacobi equation with respect toE:

22@ t1sinq14t4sin 4q#
]q

]e
51. ~3.36!

Sinceq(m) is found in step 3, this equation gives]q/]e for
any m directly.

We now have all the ingredients needed to evaluate
one-dimensional integralsG0 ,Ln ,F, and Q1. This is a
straightforward numerical procedure. The only point wo
noting is that the integrand forQ1 is nonsingular at
m52m0 and behaves, in fact, as (m1m0).

In Fig. 10 we show the tunnel splittings for first thre
pairs of states as a function of the field parameterh̄x . For
comparison we also plotted the tunnel splittings obtain
from exact diagonalization of the Hamiltonian.

From the results we observe several interesting featu
First, as anticipated, the tunnel splittings are completely s
pressed at certain values ofHx . A large part of the overall
pattern of zeros, their number, and the dependence of
number onn, the pair index, etc., has already been discus
qualitatively in Sec. II. What is surprising is how regular
spaced the diabolical values ofHx are. For the first pair of
splittings, e.g., the intervals between successive zeros
crease by 2% or 3% only and the last interval is 92% of
first. For the next pairD2, the last interval is 95% of the first
The mean interval between zeros for the first three pair
DH0.0.93 T,DH1.0.85 T, andDH0.0.79 T.

The regularity of the zeros means that the phase inte
Ln decreases almost linearly withh̄x . ~From Fig. 10, the
Gamow factorG0 also appears to be quite linear inh̄x .)
While this variation is clearly expected to be smooth, w
have noa priori way to judge how linear it will be. A simi-
larly strong regularity of quenching intervals is experime
tally seen in Fe8. The simplest model Hamiltonian for Fe8
entails only second-order terms in the components of
spin operator, and in this model, the spacing of zerosis ex-
actly equal,20 but to describe actual Fe8, one must add fourth-
order terms. These terms change the spacing significa
but still seem to preserve its regularity. It would be intere
ing to find a physical argument for this feature, which a
pears to be somewhat general.

IV. PERTURBATIVE CALCULATION

For the purposes of this section, it is useful to revie
some basic facts pertaining to degeneracy in quantum
chanics in the absence of symmetry. As a rule, eigenvalue
a finite Hamiltonian are all simple. For a general Ham
tonian, represented by a complex Hermitian matrix we m
be able to adjust at least three parameters in order to pro
1-11
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a degeneracy. An approximate physical argument is
follows.42 Let two statesm andm8 be approximately degen
erate and write the secular matrix between them as

S Em Vmm8

Vm8m Em8
D , ~4.1!

with Vm8m5Vmm8
* . The states will be truly degenerate only

the following two conditions are met:

Bmm8[Em2Em850, ~4.2!

Vmm850. ~4.3!

We shall refer to these as the no-bias and no-mixing co
tions, respectively.29 SinceVmm8 is in general complex, we
have three real conditions requiring three or more varia
parameters for their satisfaction.

Precisely three parameters are available to us in Eq.~1.2!
in the three components ofH. If the Hamiltonian matrix is
real symmetric, the number of adjustable parameters requ
is lowered to 2. In the present problem, this situation is
alized whenHy50, and so, as for Fe8, we expect to find
degeneracies in theHx-Hz plane. Unless explicitly stated, w
will henceforth takeHy50, so thatVmm85Vm8m .

Ignoring an additive constant, the energy surface in
vicinity of the degeneracy is given by

E56~Bmm8
2

1Vmm8
2

!1/2, ~4.4!

which has the form of a double cone or adiabolo in Hx-Hz
space.

Let us first takeHx50, i.e., Hi ẑ. As argued in Sec. II,
levels belonging to different subspaces can cross. The fi
at which they do so can be approximately found by negle
ing the S6

4 terms. The crossing conditions areEm5Em8 ,
where Em52Am22Bm42gmBHzm. Improved formulas
can be obtained by finding corrections toEm perturbatively
in C. These intersections are easy to understand in term
symmetry~invariance ofH under a rotation by 90° aboutẑ).

If Hx andHz are both nonzero, there is no obvious sy
metry. If Hx and C are both small, however, we may co
tinue to label the states by them quantum numbers and ca
culate the energies perturbatively in these two parameter
terms of the secular matrix~4.1!, the energiesEm and Em8
and the biasBmm8 are determined by the terms inSz in Eq.
~1.2! and the mixingVmm8 by the terms involvingC andHx .
The energies are trivial to find, so the problem is to fi
Vmm8 .

As in Sec. III, it is convenient to divideH by A and to
work with scaled quantitiesl15B/A and l25C/A. How-
ever, we scale the magnetic fields slightly differently:

hx,z5Hx,z /SHc . ~4.5!

As before,Hc[A/gmB .
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A. Simplified model: BÄ0

To keep the problem tractable, let us setB50 at this
stage. Then, to zeroth order in bothC andHx , Em52Am2

2gmBHzm. Hence, levelsm andm8 are degenerate when

hz52
m1m8

S
. ~4.6!

It remains to find the off-diagonal elementVmm8 . As we
shall see, the choiceB50 simplifies the calculation greatly
for Em is then quadratic inm, and energy level difference
are linear inm and given by a fixed set of numbers whenev
Eq. ~4.6! holds.

To illustrate the calculation ofVmm8 , we consider the case
S55. Supposehz51/5, so thatm525 andm854 are de-
generate~see Fig. 11!. We will find V4,25 to leading nonzero
order inhx andC as a double series in these variables. It
clear that a transition fromm to m8 can be made in three
ways:~1! act with hxS1 in ninth order,~2! act with hxS1 in
fifth order andCS1

4 in first order, and~3! act with hxS1 in
first order andCS1

4 in second order.
We denote the corresponding contributions toV by

V(1),V(2), andV(3). Each of these involves a product of m
trix elements and a product of energy denominators.
V(1), the former is

1

29
^5,4uS1

9 u5,25&~2hxS!9[W~2hxS!9, ~4.7!

whereW5709A10. The energy denominators can be read
Fig. 11~a!. For V(1), the net denominator is

~21!8~8314318320!2[~21!8K2. ~4.8!

The factor (21)8 appears here because all intermedi
states are higher in energy thanE25 andE4. Putting together
Eqs.~4.7! and ~4.8!, we get

V(1)52
W

K2
~hxS!9. ~4.9!

FIG. 11. ~a! Energy level diagram forS55, with B50, and
hz51/5. ~b! Part of diagram forS510 with hz50.3, showing that
the pattern above any two degenerate levels depends only onDm,
irrespective ofS.
1-12
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For V(2), the transition can occur in a total of six way
corresponding to where theS1

4 term acts~see Table II!. The
product of matrix elements in each case is

S 2
hxS

2 D 5

l2^4uS1
9 u25&5224Wl2~hxS!5. ~4.10!

The energy denominators, however, depend on the trans
path and are listed in Table II. Adding together all the co
tributions, we get

V(2)5
24399

140

W

K
~hxS!5l2 . ~4.11!

Last, for V(3), there are three transition paths~i! 25→21
→3→4, ~ii ! 25→21→0→4, and~iii ! 25→24→0→4.
The transition element product for all three
228W(hxS)l2

2, and the energy denominator product is
38, 20320, and 8320, respectively. Thus,

V(3)52
2833

200
W~hxS!l2

2 . ~4.12!

Adding togetherV(1),V(2), andV(3), we obtain the netV4,25
~restoring the level quantum numbers!. For a diabolical
point, this quantity should vanish. In addition tohx50, this
happens when

j22
99K

140
j1

3K2

200
50, ~4.13!

wherej5l2
21(Shx/2)4. Solving this equation and using th

scaled valuel252.1631024 for S55, we obtain hx
50.2643 and 0.6252, while direct numerical diagonalizat
yields hx50.2669 and 0.638.

Readers will undoubtedly have noted that apart from
overall factor ofhx to some power, our perturbation metho
yields the off-diagonal element as a homogeneous poly
mial in hx

4 and l2. It is not difficult to see that this will be
generally true and also not difficult to justify. Let us first ta
the point that we have only included transition paths that
through the higher-energy levels. Consider, e.g., the path
V4,25 in the above calculation that goes from25 to 11 via
six successivehxS1 terms, then to15 via aCS1

4 term, and
finally to 14 via anhxS2 term. This term is of orderhx

7l2

and should be regarded as a higher-order correction toV(2).
Second, it is positive and of the same sign asV(2), because it
involves six negative and one positive energy denominat

TABLE II. Transition paths and energy denominators for pert
bative calculation ofV(2).

Transition path Energy denominator produ

25→21→0→1→2→3→4 (21)520K
25→24→0→1→2→3→4 (21)58K
25→24→23→1→2→3→4 (21)5(8314/20)K
25→24→23→22→2→3→4 (21)5(8314/20)K
25→24→23→22→21→3→4 (21)58K
25→24→23→22→21→0→4 (21)520K
06441
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This feature is also generally valid and is important in lig
of the next point, which is that the sign of the terms in t
polynomial for the off-diagonal element alternate when org
nized as a series inl2. Thus, forV4,25 ,V(1) is negative,V(2)

is positive andV(3) is negative. This is a consequence of t
fact that replacing four2hxS1 terms by a singleCS1

4 term
~a! leaves the sign of the matrix element product unchang
but ~b! replaces four negative energy denominators by
single negative one.

Let us call the polynomial that remains after we ha
canceled off as many overall factors ofhxS from Vmm8 as
possible theunderlying polynomial. It is clear that this poly-
nomial is of degree

nmm85FUm2m8

4 UG ~4.14!

in hx
4 , where@x# denotes the integer part ofx, i.e., the largest

integer less than or equal tox. The alternation of signs o
successive powers ofhx

4 is a necessary~but not sufficient!
condition for allnmm8 roots to be positive.43 This means that,
not including the points on thehx or hz axes, it is possible for
states labeled bym andm8 to intersect in a diabolical poin
up to nmm8 times in the first quadrant of thehx-hz plane. This
appears to us to be a topological property of the Mn12 Hamil-
tonian that is not altered by presence of higher-order ter
as long as the symmetry is not changed. Of course, the n
ber of diabolical points may be smaller, but we do not b
lieve it can be greater, because ifhx is sufficiently large, the
term HxSx dominates the energy in the equatorial plane, a
the possibility of interfering trajectories is lost. We do n
have a proof of these statements, which must be regarde
conjectures, but the similarity to Fe8 and all the empirical
evidence we have gathered suggests that they are indeed

For S55, we have found all the diabolical points usin
this perturbation approach and also numerically. In all cas
the perturbative answers are nearly exact. The results
shown in Fig. 12.

At this point we wish to note a remarkable feature of th
approximation, which may have been noticed by some re
ers. This is that the diabolical values ofhx depend onm and
m8 only through the combinationDm5m82m. This means
that in Fig. 12, the theoretical points corresponding to
same value ofDm are vertically aligned. See, for exampl
the points with (m,m8)5(24,4) and (25,3), or the points
with (m,m8)5(25,2) and (24,3). The reason is that whe
we setB50, the energyEm is a quadratic function ofm, and
when levelsm andm8.m are degenerate,

Em1k2Em5k~Dm2k!. ~4.15!

Thus, the entire pattern of energy levels above the levels
and m8 depends only onDm ~see Fig. 11!, and since only
these levels enter into our perturbation theory, the ene
denominators are identical. The matrix elements are
course different, but since our transition paths involve
closed loops, they amount to a net factor of^m8uS1

Dmum& in
each term, which drops out of the underlying polynomial.
short, the entire polynomial depends only onDm.

-

1-13
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FIG. 12. Diabolical points for
S55. For l2 we have used the
scaled value 2.1631024. Each
point is labeled by the Zeema
quantum numbers (m,m8) except
those on thehz axis. Note that
points with the same value ofm
1m8 are horizontally aligned,
while those with the sameDm
5m82m are vertically aligned.
For the points on thehz axis, any
pair (m,m8) is allowed, consistent
with the given value ofm1m8
and the ruleDmÞ4n.
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Furthermore, we see from Eq.~4.15! that value ofS also
does not enter in the energy denominators. This means
the polynomials found forS55 are applicable to theS510
problem for transitions withDm<10 and makes it worth-
while to find all the remaining polynomials forS510. The
task is easily automated on a computer. As an example,
polynomial forDm513 is

j32286gj219767g2j211 858g3, ~4.16!

wherej5l2
21(Shx/2)4 andg51440. The full list of polyno-

mials is given in Table I of the EPAPS depository, along w
the roots forhx for generalSandl2, as well as for the values
applicable to Mn12-ac.36

One last general point worth noting is that for a diabolic
point labeled by the pair (m,m8) with m8.m, the energy
levels which are degenerate are numbers 2S1(m2m8)11
and 2S1(m2m8)12, where the ground state is given th
number 1.

B. Inclusion of Sz
4 term

When we try and compare the results of the previous s
section with numerics on Eq.~1.2! with BÞ0, we find that
the systematics of the diabolical points are fully captured
that the analytic results provide a complete indexing sche
but the error for Mn12-ac is as bad as 30% in some cases.
therefore seek some way to incorporate theBÞ0 effects.

It is easy to includeB in the no-bias condition. Equatio
~4.6! is modified to

hz~m,m8!52
1

S
~m1m8!@11l1~m21m82!#.

~4.17!
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The no-mixing condition is harder to evaluate. A simp
minded approach is to shift the energy levels so as to re
the same relative spacings as whenB50, but allow the over-
all range to be modified.

With this in mind, let us first consider the energies wh
l150. When levelsm andm8 are degenerate, the level at th
top of the barrier is given by the quantum numberk5(m
1m8)/2, whenever this is an integer, or by the nearest t
integers if it is a half-integer. In the spirit of our approxim
tions, keeping track of this distinction would be an overr
finement, so we will use the formula (m1m8)/2 in both
cases. The energy range is thus given by

DE(0)5Ek
(0)2Em

(0)5
1

4
~m2m8!2, ~4.18!

where the~0! superscript indicates thatB50. With BÞ0, we
get

DE(1)5DE(0)2l1F S m1m8

2 D 4

2m4G1l1~m1m8!

3~m21m82!Fm1m8

2
2mG5gmm8DE(0),

~4.19!

where

gmm8511
l1

4
~7m2110mm817m82!. ~4.20!

If we assume that the entire spectrum gets modified fr
its quadratic form by a uniform stretching factorgmm8 , then
the only change in our perturbation theory is that all ene
denominators get multiplied by this factor. In the underlyi
1-14
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polynomial, hx and l2 get replaced byhx /gmm8 and
l2 /gmm8 , and hence the no-mixing condition becomes

hx~m,m8!5gmm8
3/4 r a~Dm!, a51,2, . . . ,nmm8 ,

~4.21!

where$r a% are the originalhx values obtained from the root
of the underlying polynomialPDm .

The formulas~4.17! and ~4.21! are compared with exac
numerical results in Table II of the EPAPS depository.36 The
errors are now typically about 10% and can be of either s

It is useful to briefly discuss our numerical procedure. F
points lying on theHz or Hx axis, the splitting is a function
of one variable, and its zeros can be found by simple sc
ning. For the off-axis zeros, this is harder, and we resor
the Herzberg and Longuet-Higgins sign change theorem,11,44

which applied to the present problem states that, upon a
batic traversal of a closed contour in theHx-Hz plane enclos-
ing a single point of degeneracy of two states, the wa
function of either of these two states returns to itself exc
for a change in sign. Conversely, there is no change in sig
the contour does not enclose a degeneracy. Hence, to fi
diabolical point, we first find a sign-reversing rectangu
contour by hit and trial. By bisecting this rectangle in thex
andz directions alternately and using the sign-change tes
each bisection, we can corral the degeneracy to the de
desired. We have found this procedure to be generally su
rior to a direct minimization of the energy difference for th
reason that the diabolo in the vicinity of a degeneracy
highly asymmetrical in thex andz directions. Consider, for
example, the fourth and fifth energy levels from the botto
whenhz.0.12–0.13, corresponding approximately to them
quantum numbers29 and 8. Since these states are separa
by a high barrier, the mixing element between them is b
understood as arising from tunneling and will therefore c
tain an exponentially small Gamow factore2G, whereG is a
tunneling action. Thus the energy surface consists of a d
and narrow valley running nearly parallel to thehx axis, with
a valley floor that goes to zero linearly at occasional poi
and may rise and fall in between. Because of this shape
because the surface is not analytic in the vicinity of t
points being sought, standard methods for finding
minima of a function are often not well suited.

The above argument also enables us to understand an
servation made by Berry and Wilkinson11 and Berry and
Mondragon45 in the study of two very different model prob
lems, namely, that the energy cone near a diabolical point
very high eccentricity in terms of the physically natural p
rameters describing the system. In other words, the c
section of the energy surface is a very long and narrow
lipse in one direction. Let us see how this happens in
present problem. To save writing let us write justx andz for
the deviations ofhx and hz from a diabolical point at
(hx0 ,hz0). In the vicinity of this point, we have

Bmm8.az, ~4.22!

Vmm8.be2Gx, ~4.23!
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wherea andb are constants of order unity. Thus the ener
surface is

E.~a2z21b2e22Gx2!1/2. ~4.24!

The cross section is an ellipse with major axis parallel tox
and eccentricity;eG@1. This scenario is expected to b
quite general. The no-bias condition defines a line in para
eter space. The gradient of the bias normal to this line
generally expected to be of order unity in the natural phy
cal variables. The mixing element also varies on the sa
order unity scale in the parameter space, but because it a
from tunneling, its absolute scale is very small. The resul
an energy surface of high eccentricity of the type just d
scribed.

C. Merged diabolical points

Our discussion of diabolical points46 needs some elabora
tion for certain degeneracies lying on thehz axis. For the pair
(m,m8)5(210,9), e.g.~more generally any pair withDm
54n13), we peeled off a factor ofhx

3 from the mixing
element. Writingx5hx and z5hz as in Eq.~4.24! and z0
5hz0 for the point of degeneracy, the bias and mixing a
given by

Bmm8'z2z0 , ~4.25!

Vmm8'x31O~x7!, ~4.26!

ignoring multiplicative constants. Correspondingly, the e
ergy surface is@(z2z0)21x6#1/2, whose cross section is n
longer an ellipse. There is also no reason for the sim
sign-change result to holda priori.

These conclusions are based on perturbation theory, h
ever. More generally, we can only argue on groun
of symmetry that, under x→2x, Bmm8→Bmm8 and
Vmm8→6Vmm8 . Instead of Eqs.~4.25! and ~4.26!, we
should therefore expect the general expansion to take
form

Bmm8'z2z01ax21O„~z2z0!2,x2~z2z0!2,x4
…,

~4.27!

Vmm8'x32bx1cx~z2z0!1O„x3~z2z0!,x5
…,

~4.28!

wherea,b, andc are constants, all of which we expect to b
very small on account of the quantitative accuracy of
perturbative approach. Ignoring the higher-order terms,
bias vanishes on the parabolaz5z02ax2. On this parabola,
the mixing is given by

~12ac!x32bx, ~4.29!

which vanishes atx50 andx56@b/(12ac)#1/2[6x1, as-
suming thatb/(12ac).0. Thus, instead of a single dege
eracy at (0,z0), we have three closely spaced degeneracie
1-15
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CHANG-SOO PARK AND ANUPAM GARG PHYSICAL REVIEW B65 064411
~0,z0!, ~6x1 ,z02ax1
2!. ~4.30!

The energy surface in the immediate vicinity of each one
these points is now diabolical in the ordinary sense. A sm
circuit of each of these points separately will therefore le
to a sign reversal, as will a larger circuit enclosing all thr
of them. If we ignore the splitting, we may regard the orig
nal degeneracy on thehz axis as atriply mergeddiabolical
point.

It is useful to think of the coefficientsa, b, and c as
depending on parameters in the Hamiltonian other than
components ofH, e.g.,l1 and l2. It may be that as thes
parameters are varied, the quantityb/(12ac) becomes
negative, so that the roots6x1 cease to be real. We can thin
of the two off-axis diabolical points as having annihilat
each other, leaving behind only one true diabolical point
the axis. Unless one is very close to this point, however,
energy surface may still resemble that of a triply merg
point.

For the parameters appropriate to Mn12-ac, we find that
the points are located at47

~hx ,hz!5~0.0, 0.135 836 224!,

~60.018 55, 0.135 832 551!. ~4.31!

These numbers are obtained by using the same sign-rev
theorem as previously described. Because the energy d
ence depends so sensitively onhz , however, we have con
firmed them in another way. For any given value ofhx , we
first find the minimum of the relevant energy gapD with
respect tohz . In essence, we find the value of the gap at
bottom of the parabolic trench where the bias vanishes
plot of this gap versushx should be given by the absolut
value of the expression~4.29!. As shown in Fig. 13, this is

FIG. 13. Merged and nearly merged diabolical points. The p
shows the tunnel splittingD(m,m8), showing how the triply
merged@(m,m8)5(210,9)# point is split, but the doubly merged
@(m,m8)5(210,8)# point is not. The splitting is calculated alon
the bottom of the parabolic trench in thehx-hz plane. In other
words, for each value ofhx , what is plotted is the minimum of the
splitting with respect tohz . For the 210↔9 triple merger, the
points are very well fit by the curveD5uahx(12hx

2/hx1
2 )u, with

a51.51310212 and hx150.018 55. Indeed, the curve cannot b
distinguished from the points on the scale of the figure. Simila
the 210↔8 splitting is very accurately fit to a parabola.
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indeed so, and the split off point is again found to be athx
50.018 55.

In exactly the same way, we may also considerdoubly
mergedpoints, corresponding to the tunneling of states w
Dm54n12, e.g., (m,m8)5(210,8), whenhx'0. We can
continue to expand the bias as in Eq.~4.27!, but the leading
term inVmm8 is now proportional tox2, so that instead of Eq
~4.28!, we have

Vmm8'x21O„~z2z0!,x2~z2z0!,x4
…. ~4.32!

It is then obvious that the double zero ofVmm8 at x50 can-
not be split. This conclusion can also be reached in ano
way. Symmetry would require that, if they split, the points
located at (6x0 ,z0), with x0Þ0. The selection rule argu
ment given in Sec. II shows, however, that this is impossib
as there must be a crossing of any two levelsm andm8 with
DmÞ4n as Hz is varied with Hx50. In Fig. 13, we also
show the (m,m8)5(210,8) gap at the bottom of the no-bia
trench. It is apparent that now the diabolical points rem
unsplit at hx50, and the curve is extremely well fit by
parabola, as required by Eq.~4.32!. The merged point itself
is at hx50, hz50.264 938 170 04, which we find by mini
mizing the energy splitting, the sign-change test being u
less.

Finally, the points on thehz axis, corresponding toDm
54n11 are singly diabolical to begin with, so the issue
splitting does not arise.

V. SUMMARY

In this paper, we have used the DPI method and pertu
tion theory to study tunneling in fourfold-symmetric ma
netic molecules, such as Mn12, especially its behavior in a
magnetic field, which is expected to show oscillations a
diabolical points as in Fe8. The DPI recursion relation now
has nine terms, complicating the analysis. There may be
to five critical curves, which leads to many more turnin
points. The method still works, however, even though
phase integrals and integrands must be evaluated num
cally. But the numerical procedures required are simple
involve only root finding and integration in one variabl
Except for some special narrow-field regions, where two
more turning points merge, the DPI analysis based on lin
turning point formulas is extremely good and agrees w
exact numerical results quantitatively. A perturbation theo
in the parametersHx and C is found to give a very good
qualitative and even quantitative understanding. Our cen
results are formulas~4.17! and ~4.21!, which along with the
results in Table I of Ref. 36 give the full set of diabolic
points for any molecule withS<10.

ACKNOWLEDGMENTS

We are indebted to Wolfgang Wernsdorfer for very use
correspondence. C.-S.P.’s reserach was supported by th
search fund of Dankook University in 2000, and A.G.’s r
search was partly supported by the NSF via Grant No. DM
9616749.

t

,

1-16



si

R

sc

f

o

A.

e

.S

I.

lv-
ery,

ges
ls
ts
ve
ent

/.

nly

n-

in

e

vate
ri-
in

by

TOPOLOGICAL QUENCHING OF SPIN TUNNELING IN . . . PHYSICAL REVIEW B65 064411
*Permanent address: Department of Physics, Dankook Univer
Cheonan, 330-714, Korea.
Electronic address: pacs@anseo.dankook.ac.kr

†Electronic address: agarg@northwestern.edu
1Quantum Tunneling of Magnetization—QTM’94, edited by L.

Gunther and B. Barbara~Kluwer, Dordrecht, 1995!.
2W. Wernsdorfer and R. Sessoli, Science284, 133 ~1999!.
3A.L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz, and

Sessoli, Europhys. Lett.35, 133 ~1996!.
4C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatte

Phys. Rev. Lett.78, 4645~1997!.
5T. Ohm, C. Sangregorio, and C. Paulsen, Eur. Phys. J. B6, 195

~1998!.
6L. D. Landau and E. M. Lifshitz,Quantum Mechanics, 3rd ed.

~Pergamon, Oxford, 1976!, Sec. 90.
7D. Loss, D.P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett.69,

3232 ~1992!; J. von Delft and C.L. Henley,ibid. 69, 3236
~1992!.

8A. Garg, Europhys. Lett.22, 205 ~1993!.
9M. Wilkinson, Physica D21, 341 ~1986!. See final paragraph o

Sec. 6.
10M.V. Berry and M. Wilkinson, Proc. R. Soc. London, Ser. A392,

15 ~1984!.
11G. Herzberg and H.C. Longuet-Higgins, Discuss. Faraday S

35, 77 ~1963!.
12M. Stone, Kee-Su Park, and A. Garg, J. Math. Phys.41, 8025

~2000!.
13A. Caneschi, D. Gatteschi, and R. Sessoli, J. Am. Chem. Soc.113,

5873 ~1991!; R. Sessoli, D. Gatteschi, A. Caneschi, and M.
Novak, Nature~London! 365, 141 ~1993!.

14J. Friedman, M.P. Sarachik, J. Tejada, and R. Ziolo, Phys. R
Lett. 76, 3830~1996!.

15L. Thomaset al., Nature~London! 383, 145 ~1996!.
16J.A.A.J. Perenboom, J.S. Brooks, S. Hill, T. Hathaway, and N

Dalal, Phys. Rev. B58, 330 ~1998!.
17A.L. Barra, D. Gatteschi, and R. Sessoli, Phys. Rev. B56, 8192

~1997!.
18A short review is given by B. Barbara, L. Thomas, F. Lionti,

Chiorescu, and A. Sulpice, J. Magn. Magn. Mater.200, 167
~1999!.

19See, e.g., the review by A. Caneschiet al., J. Magn. Magn. Mater.
200, 182 ~1999!.
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