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Magnetostatic excitations in quasiperiodic antiferromagnetic superlattices
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~Received 1 May 2001; revised manuscript received 24 September 2001; published 3 January 2002!

The magnetostatic excitation in antiferromagnetic superlattices~antiferromagnetic/nonmagnetic layered
structure! grown following the Fibonacci sequence has been studied. The dispersion relations of the magneto-
static spin wave spectra and the precession amplitudes of the total magnetization in each layer are numerically
obtained. The eigenfrequency spectra are divided into two branches,v2 andv1. For each branch, the distri-
bution of eigenfrequency spectra exhibits triadic Cantor-set subband structures with self-similar features. The
eigenfrequency spectra distribution strongly depends on the in-plane wave vector and the thickness of antifer-
romagnetic and nonmagnetic layers. For most of the eigenfrequencies, especially in the triadic regions, the
profiles of precession amplitudes of total magnetization in the quasiperiodic system are critical and self-similar.
For the eigenfrequencies near the edges of bands, the profiles of precession amplitudes of total magnetization
are extended with a sine modulation. Besides the critical and extended states, a few states at the edges of the
subbands are still quasilocalized. The corresponding profiles of precession amplitudes of total magnetization
either decay or oscillate with exponential attenuation from the surface into the film.

DOI: 10.1103/PhysRevB.65.064401 PACS number~s!: 75.50.Ee, 75.70.2i, 75.30.Ds, 76.50.1g
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I. INTRODUCTION

The discovery of quasicrystals in 1984 aroused gr
interest,1 both theoretically and experimentally, in quasipe
odic systems. For the electronic and phonon properties o
one-dimensional quasiperiodic system known as the
bonacci chain or Fibonacci multilayers,2–4 it has been found
that both electronic and phonon spectra are Cantor
structures5 and the corresponding eigenstates may be lo
ized, extended, or critical~neither localized nor extended!. A
quite complex fractal energy spectrum, which can be con
ered as their basic signature, is a common feature of th
systems. Parallel with these theoretical developments in
field of quasiperiodic superlattices, experimental investi
tions have included diffraction, superconductivity, elastic
and Raman scattering.6–10 On the other hand, the collectiv
excitations of the dipolar coupled ferromagnetic and antif
romagnetic superlattice have recently been discussed.11–16 It
has been found that both bulk and surface superlattice w
exist in the case where the saturation magnetization lies
allel to the layers in the superlattices. If the in-plane pro
gation wave vector of the spin wave is restricted to be p
pendicular to the saturation magnetization, one finds th
bulk superlattice wave is composed of surface waves wi
each layer, and the amplitude of these surface waves va
sinusoidally throughout the layers of the superlattice. Si
larly, a surface superlattice wave is composed of surf
waves within each layer, but here the amplitude of the wa
decreases exponentially as one penetrates into the sup
tice. It exists only if the thickness of the antiferromagne
layers is larger than that of the nonmagnetic layers. Th
features have been confirmed experimentally.17–19 However,
for the collective excitation in quasiperiodic superlattice
only little work has been done.20,21 It is worthwhile to ex-
plore the magnetostatic excitation in the antiferromagn
Fibonacci superlattices since these features might be de
able using microwave techniques, Brillouin scattering, or f
infrared experiments.22–24
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In this paper, we have treated the problem of excitation
an antiferromagnetic superlattice with Voigt geometry:The
magnetostatic spin waves propagate along the surface
films and perpendicular to the applied field, which is al
along the in-plane easy axis of films and less than the s
flop field of the antiferromagnetic material to keep the an
parallel alignment of the spins of the two sublattices. The
recursion relations are deduced by the transfer ma
method. The eigenfrequency spectra and profiles of pre
sion amplitude of total magnetization are obtained num
cally. The triadic and self-similar eigenfrequency spec
strongly depend on the thickness of the antiferromagn
and nonmagnetic layers. Three kinds of profiles of prec
sion amplitude of total magnetization have been found: Cr
cal states for most of the eigenfrequencies in the triadic s
band; extended states near the edges of band; quasiloca
states~surface superlattice wave! at the edges of the subban
The results are discussed based on the invariant obta
analytically.

II. GENERAL THEORY

A Fibonacci superlattice is a simple one-dimensional q
siperiodic structure with two building blocks denoted byA
and B. For the structure considered here, each of them
constructed by two layers with antiferromagnetic and no
magnetic materials. The antiferromagnetic layers inA andB
blocks have the same thickness, but the nonmagnetic l
has thicknessd1 in A block andd2 in B block, respectively.
Using these two blocks, a Fibonacci antiferromagne
nonmagnetic superlattice is formed according to the rule

Sj 115$Sj ,Sj 21%; S15A; S25AB.

It is also invariant under the transformationsA→AB and
B→A.25 The Fibonacci generations are

S15@A#, S25@AB#, S35@ABA#, S45@ABAAB#, etc.
©2002 The American Physical Society01-1
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For our antiferromagnetic system, let the easy axis be
z direction, the wave vector be they direction, and the qua
siperiodicity be in thex direction~see Fig. 1!. The sublattices
are denoted by~I! and (II ). For each cell, the total magnet
zation can be treated as:mi

T5mi
I1mi

II with i 5x,y. In the
magnetostatic limit,15 Maxwell’s equations can be express
as

“•b50, “3h50 ~1!

with the constitutive relationb5mJh, wheremJ is the perme-
ability tensor. If the fluctuation field has the time dependen
of e2 ivt, wherev is the frequency,mJ has the form

mJ5S m1 im2 0

2 im2 m1 0

0 0 1
D . ~2!

Here

m1511
4pg2HaM

v0
22~v1gH0!2

1
4pg2HaM

v0
22~v2gH0!2

,

m25
4pg2HaM

v0
22~v1gH0!2

2
4pg2HaM

v0
22~v2gH0!2

,

v05gA2HexHa1Ha
2,

whereHa is the anisotropy field,Hex is the exchange field
H0 is the applied field,M is the saturation magnetization o
one of the sublattices, andg is the gyromagnetic ratio.

Equation~1! allows the introduction of a magnetic scal
potentialF defined byh5“F. From Eqs.~1! and ~2!, the
scalar potentialF obeys the equation of motion given by

m1S ]2

]x2
1

]2

]y2D F1
]2

]z2
F50. ~3!

The usual electromagnetic boundary conditions are
the tangential component ofh and the normal component o

FIG. 1. The geometry of the Fibonacci superlattice. The thi
ness of the antiferromagnetic layer isd and the thickness of the
nonmagnetic spacer isd1 andd2 in block A andB, respectively.
06440
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b are continuous across any boundary along thex axis. So
the boundary conditions can be writen in terms of the pot
tial F as

m1

]F in

]x
2 im2

]F in

]y
5

]Fex

]x
, ~4!

F in5Fex. ~5!

HereF in andFex are the potential inside the antiferroma
netic and nonmagnetic layers, respectively.

Equation~3! is the equation of motion forF in both an-
tiferromagnetic and nonmagnetic layers. Without loss of g
erality, we assume that only a plane waveeiky propagates
along they direction withk as the in-plane wave vector. It i
reasonable to writeF5f(x)ei (ky2vt) for both antiferromag-
netic (F in) and nonmagnetic (Fex) layers. Equation~3! can
be rewritten as

S d2

dx2
2k2D f~x!50. ~6!

The solution of Eq.~6! has the formf l(x)5Ale
k(x2xl )

1Ble
2k(x2xl ) in the antiferromagnetic layers, andf l(x)

5Cle
k(x2xl2d/22di /2)1Dle

2k(x2xl2d/22di /2) ( i 51,2) in the
nonmagnetic layers, wherel denotes the block index andxl
is the intersection of midplanes of thel th antiferromagnetic
layer with thex axis. If we eliminateCl andDl in the non-
magnetic layers using Eqs.~4! and~5!, the coefficients ofAl ,
Bl andAl 11 , Bl 11 of two adjacent antiferromagnetic laye
are related by

S Al 11

Bl 11
D 5T~ i !S Al

Bl
D , ~7!

whereT( i ) is a transfer matrix. For our system,T( i ) only
has two different forms,T(1) andT(2), andtheir explicit
forms are given as

T~ i !5S T11~ i ! T12~ i !

T21~ i ! T22~ i !
D ~ i 51,2!, ~8!

where

T11~ i !5$@~m111!22m2
2#ekdi2@~m121!2

2m2
2#e2kdi%ekd/~4m1!,

T12~ i !5~11m12m2!~11m22m1!~ekdi2e2kdi !/~4m1!,

T21~ i !5~11m11m2!~12m22m1!~e2kdi2ekdi !/~4m1!,

T22~ i !5$@~m111!22m2
2#e2kdi

2@~m121!22m2
2#ekdi%e2kd/~4m1!.

Both T(1) andT(2) are unimodular. As usual, we takeM1
5T(1) and M25T(2)T(1), and have recursion relations
M j 115M j 21M j , from which all M j ’s can be obtained,
where j is the Fibonacci generation number. Definingx j

-

1-2
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51
2Tr(M j ), one can find that the quantityI 5x j 11

2 1x j
2

1x j 21
2 22x j 11x jx j 2121 is invariant. For our system,

I 5
4m1~m11m221!~m12m221!

@4m11~m11m221!~m12m221!#2

3sinh2~kd!sinh2 k~d12d2!. ~9!

This analytic formula is different from those for electro
and phonons in Fibonacci chains.26 This invariant has a wave
vector dependence. It can be used to characterize the fe
of the energy spectra as well as the properties of the state
Fibonacci superlattices.26

In the calculation of the frequency spectra of the
bonacci antiferromagnetic superlattices, we use the f
boundary conditions. IfN is the total number of antiferro
magnetic layers in thej th order Fibonacci superlattice, b
exploiting Eqs.~4! and~5! at the two surfaces, we can obta
the following two equations:

FIG. 2. ~a! Dispersion relation of the eigenfrequency for th
12th order Fibonacci superlattice, hered54d2 ,d153d2. The * in-
dicates the isolated mode is merged into subband modes. The i
are the profiles of precession of magnetization in two sublattic
~b! Eigenfrequency versus number of modes for 17th order
bonacci superlattice withkd50.41,kd150.375,kd250.125. Two
enlarged local regions are shown in the insets.
06440
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~m11m221!A11~m12m221!B1ekd50, ~10!

~m11m211!AN1~m12m211!BNe2kd50. ~11!

On the other hand, the global equation for the quasiperio
structure can be writen as

S AN

BN
D 5M j S A1

B1
D . ~12!

The linear equations forA1 , B1 andAN , BN , Eqs.~10!, ~11!,
and~12!, have a nontrivial solution only if the determinant o
the coefficient vanishes. By applying a numerical calcu
tion, we can obtain the eigenfrequency spectra of the m
netostatic excitation. Here we select MnF2 as the antiferro-
magnetic material. The physical parameters areHex
5550 kOe, Ha57.87 kOe, M5600 G, and
H05200 Oe.15

III. RESULTS AND DISCUSSIONS

Figure 2~a! shows the dispersion relation of magnetosta
modes for the 12th order Fibonacci antiferromagnetic sup
lattice, whered54d2 , d153d2, andd2 are fixed. It is clear
that the eigenfrequency spectra are divided into t
branches, namelyv2 andv1, which are separated by a ga
as in the periodic superlattices.27 It can be seen that eac
branch consists of bandlike dense modes andisolatedmodes
in the gaps. For largerkd, the modes are highly degenerat
For the intermediate value ofkd, the subbands are most ob
vious, and hence the effect of quasiperiodicity is stronges
is clear that the low frequency subband of thev2 band is

ets
s.
i-

FIG. 3. The variation of eigenfrequency distribution with th
thickness ratios~a! d/d1 for kd150.6,kd250.2, ~b! d2 /d1 for kd
50.8,kd150.6. The * indicates the isolated mode is merged in
subband modes.
1-3
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S. S. KANG PHYSICAL REVIEW B 65 064401
wider than high frequency subband, but for thev1 band, the
situation is reversed. This feature reflects the strength of q
siperiodicity, as can be illustrated by Eq.~9!. The lower re-
gion of thev2 band and the higher region of thev1 band
have larger values ofI, while the higher region of thev2

FIG. 4. The profiles of total magnetization~at midplane of each
antiferromagnetic layer labeled with N! for eigenfrequencies in~a!
v2 band,~b! v1 band, hered54d2 ,d153d2.

FIG. 5. The profiles of total magnetization~at midplane of each
antiferromagnetic layer labeled with N! for the critical states:~a!
mx , ~b! my , hered54d2 ,d153d2.
06440
a-

band and the lower region of thev1 band have smaller
values ofI.

Figure 2~b! illustrates the eigenfrequency distributio
with mode number. It is clear that the allowed frequen
forms two branches of Cantor-set, which are singular c
tinuous ~the spectrum is between point and continuous!.28

For each branch, there are several bands. Each band ha
gaps giving rise to three subbands, each one of them ha
two gaps and so on@see the inset of Fig. 2~b!#. This is the
typical feature of a quasiperiodic system.26

The relative thicknesses ofd, d1, andd2 have important
effects on the eigenfrequency spectra. Figure 3~a! shows the
eigenfrequency distribution with the thickness ratiod/d1 for
kd150.6 andkd250.2. It is clear that two branches of th
eigenfrequency spectra consist of bandlike andisolated
modes. For theisolated modes, two important feature
should be mentioned here. First, their appearance is clo
related to the thickness of antiferromagnetic and nonm
netic layers. When these parameters vary, some of theiso-
latedmodes can be merged into subband modes@see mark *
in Fig. 3~a!#. Second, theisolatedmodes at the edges of tw
branches behave differently fromisolated modes in gaps.
When d.d1& d2, the isolated modes at the edges of tw

FIG. 6. The profiles of total magnetization~at midplane of each
antiferromagnetic layer labeled with N! for two quasilocalized
states corresponding to the eigenfrequencies~a! at the edge and~b!,
~c! in the gap, hered54d2 ,d153d2.
1-4
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branches appear and their frequency almost does not ch
with the above parameters. But the frequency ofisolated
modes in gaps are obviously dependent on them.

Figure 3~b! shows the variation of eigenfrequency distr
bution with the thickness ratiod2 /d1. Whenk, d, andd1 are
fixed, the eigenfrequency spectra are triadic branches
d2 /d1Þ1. Notice that, ford2 /d1→1, two continuous bands
are prominent, which stem from the fact that the structu
becomes periodic~here I→0 as expected!. However, the
quasiperiodicity is more prominent for small or large valu
of d2 /d1.

The quasiperiodicity of the frequency spectra must be
flected in the profiles of precession amplitude of total ma
netization. According to Gru¨nberg et al.,12 the precession
amplitudemx and my of magnetization in thel th antiferro-
magnetic layer are given by

mx5
1

4p
@~m11m221!Ale

k(x2xl )

1~m22m111!Ble
2k(x2xl )#, ~13!

my5
1

4p
@~m11m221!Ale

k(x2xl )

1~m12m221!Ble
2k(x2xl )#. ~14!

We have calculated the total magnetization profiles foj
515 with different wave vectors. For the frequencies ne
the edges of two branches, due to the small constants
motion, the corresponding states are extended as illustr
in Fig. 4. It can be seen that the aperiodic amplitude is mo
lated by a sinelike wave. Thus the system behaves ma
like an ordinary periodic superlattice. For thev2 band, the
precession of total magnetization is elliptic and out-of-pha
with the long axis along thex direction, while the precession
is in-phase and elliptic with the long axis along they direc-
tion for thev1 band. The corresponding precession of ma
netization of the two sublattices is left~right! elliptic for the
v2(v1) band as illustrated in Fig. 2~a!. As the frequency
decreases~increases! from the edge of thev2(v1) band, the
modulation wavelength decreases approximately follow
the relationL52D/n (n51,2,3, . . . ), whereD is the total
thickness of system.
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As is the case in the electronic and phonon problem,
have found that most states are critical, especially in
obviously triadic subband. Figure 5 shows the profiles of
total magnetization. It is clear that the distribution of ma
netization is neither sine extended nor an exponential de
but it obeys a power law and is self-similar due to the q
siperiodicity.

As mentioned above, besides the extended and cri
states, still a few states are quasilocalized. These states
ally appear at the edges of the band or in the gaps of tria
subbands. Figure 6 shows two examples. For the quasilo
ized states at the edge of bands, the profiles of preces
exponentially decay from the surface@Fig. 6~a!#. This mode
is unreciprocal and has its maximum amplitude at right s
face for positivek and at the opposite surface for negati
k.29 The frequency is almost independent of the thickness
antiferromagnetic and nonmagnetic layers ford.d1& d2.
However, for the quasilocalized states in the gaps, the pro
of precession oscillates with an attenuating amplitude fr
the surface@Fig. 6~b!#. The frequency of the precession
sensitive to the thickness of antiferromagnetic and nonm
netic layers as well as the in-plane wave vector.

In summary, we have investigated some interesting f
tures of magnetostatic excitations in antiferromagnetic
bonacci superlattices. It is found that the eigenfreque
spectra exhibit a triadic Cantor-set structure with nonunifo
scaling and strongly depends on the thickness of antife
magnetic and nonmagnetic layers. For the eigenfrequenc
the obviously triadic region, the states are critical, wher
near the edges of bands, the states are extended like an
nary periodic system. We also find a few states that
quasilocalized with the eigenfrequencies at the edges
bands or in the gaps of the subband. It might be possibl
experimentally observe these predictions using Raman
Brillouin inelastic light scattering spectroscopy, ferroma
netic resonance, and far-infrared techniques.
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