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Magnetostatic excitations in quasiperiodic antiferromagnetic superlattices
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The magnetostatic excitation in antiferromagnetic superlatt{egsiferromagnetic/nonmagnetic layered
structurg grown following the Fibonacci sequence has been studied. The dispersion relations of the magneto-
static spin wave spectra and the precession amplitudes of the total magnetization in each layer are numerically
obtained. The eigenfrequency spectra are divided into two braneheand ™. For each branch, the distri-
bution of eigenfrequency spectra exhibits triadic Cantor-set subband structures with self-similar features. The
eigenfrequency spectra distribution strongly depends on the in-plane wave vector and the thickness of antifer-
romagnetic and nonmagnetic layers. For most of the eigenfrequencies, especially in the triadic regions, the
profiles of precession amplitudes of total magnetization in the quasiperiodic system are critical and self-similar.
For the eigenfrequencies near the edges of bands, the profiles of precession amplitudes of total magnetization
are extended with a sine modulation. Besides the critical and extended states, a few states at the edges of the
subbands are still quasilocalized. The corresponding profiles of precession amplitudes of total magnetization
either decay or oscillate with exponential attenuation from the surface into the film.
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I. INTRODUCTION In this paper, we have treated the problem of excitation in
an antiferromagnetic superlattice with Voigt geomeffjre
The discovery of quasicrystals in 1984 aroused greamagnetostatic spin waves propagate along the surface of
interest: both theoretically and experimentally, in quasiperi- films and perpendicular to the applied field, which is also
odic systems. For the electronic and phonon properties of thalong the in-plane easy axis of films and less than the spin-
one_dimensional quasiperiodic System known as the F|ﬂ0p f|e|d Of the antifel’romagnetic material to keep the anti'
bonacci chain or Fibonacci multilayefs? it has been found Parallel alignment of the spins of the two sublattic&he
that both electronic and phonon spectra are Cantor-ségcursion relations are deduced by the transfer matrix
structure$ and the corresponding eigenstates may be localMethod. The eigenfrequency spectra and profiles of preces-
ized, extended, or criticdheither localized nor extendgdh sion amplitude of total magnetization are obtained numeri-
quite complex fractal energy spectrum, which can be considcally. The triadic and self-similar eigenfrequency spectra
ered as their basic signature, is a common feature of thes@rongly depend on the thickness of the antiferromagnetic
systems. Parallel with these theoretical developments in th@nd nonmagnetic layers. Three kinds of profiles of preces-
field of quasiperiodic superlattices, experimental investigasSion amplitude of total magnetization have been found: Criti-
tions have included diffraction, superconductivity, elasticity, al states for most of the eigenfrequencies in the triadic sub-
and Raman scatterirfg’° On the other hand, the collective band; extended states near the edges of band; quasilocalized
excitations of the dipolar coupled ferromagnetic and antiferstates(surface superlattice wayat the edges of the subband.
romagnetic super'attice have recently been d|scu§s‘é6[t The results are discussed based on the invariant obtained
has been found that both bulk and surface superlattice wavexialytically.
exist in the case where the saturation magnetization lies par-
allel to the layers in the superlattices. If the in-plane propa- Il. GENERAL THEORY
gation wave vector of the spin wave is restricted to be per- _ ) o ) _ )
pendicular to the saturation magnetization, one finds that a A Fibonacci superlattice is a simple one-dimensional qua-
bulk superlattice wave is composed of surface waves withiffiPeriodic structure with two building blocks denoted Ay
each layer, and the amplitude of these surface waves vari@d B. For the structure considered here, each of them is
sinusoidally throughout the layers of the superlattice. Simi-constructed by two layers with antiferromagnetic and non-
larly, a surface superlattice wave is composed of surfac8agnetic materials. The antiferromagnetic layeréiandB
waves within each layer, but here the amplitude of the waveB8locks have the same thickness, but the nonmagnetic layer
decreases exponentially as one penetrates into the superl8@s thicknessl; in A block andd, in B block, respectively.
tice. It exists only if the thickness of the antiferromagneticUsing these two blocks, a Fibonacci antiferromagnetic/
layers is larger than that of the nonmagnetic layers. ThesBonmagnetic superlattice is formed according to the rule
features have been confirmed experimentdity® However,
for the collective excitation in quasiperiodic superlattices, Si+1={5,5-1}; S1=A; S;=AB.
only little work has been dor@:?! It is worthwhile to ex-
plore the magnetostatic excitation in the antiferromagnetic It is also invariant under the transformatioAs-AB and
Fibonacci superlattices since these features might be detedd— A.*® The Fibonacci generations are
able using microwave techniques, Brillouin scattering, or far-
infrared experiment&-24 S,=[A], S,=[AB], S;=[ABA], S,=[ABAAB], etc.
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v4 d, d, d b are continuous across any boundary alongxtaxis. So
A ¥ the boundary conditions can be writen in terms of the poten-
][] ] tial ® as

&q)in . (7<I)i“ I ex .
M1 _|M28y—&x, (4)

DN= P, (5)

Here ®™ and ®°* are the potential inside the antiferromag-
netic and nonmagnetic layers, respectively.
. . S | Equation(3) is the equation of motion fo® in both an-
A B A A tiferromagnetic and nonmagnetic layers. Without loss of gen-
erality, we assume that only a plane was/&’ propagates
FIG. 1. The geometry of the Fibonacci superlattice. The thick-along they direction withk as the in-plane wave vector. It is
ness of the antiferromagnetic layer dsand the thickness of the reasonable to writd = ¢(x)e'*Y~“Y for both antiferromag-
nonmagnetic spacer &; andd, in block A andB, respectively. netic (®™) and nonmagnetic®®*) layers. Equatior(3) can

. ) i be rewritten as
For our antiferromagnetic system, let the easy axis be the

z direction, the wave vector be thedirection, and the qua- g2
siperiodicity be in thex direction(see Fig. 1L The sublattices — —Kk? | ¢(x)=0. (6)
are denoted byl) and (). For each cell, the total magneti-
zation can be treated a;'=m/+m!' with i=x,y. In the ; — A ok(X=x))
magnetostatic limit> Maxvx;ell’s quualltions can bg expressed The 32139851 -Of £a.(6) _has the form Hl)~Ae |
' +B,e V" in the antiferromagnetic layers, andg,(x)
as =Cekx—x—d2-di2) 4 p gkO—x=d2=di2) (j=12) in the
_ _ nonmagnetic layers, whetedenotes the block index and
V-b=0, Vxh=0 @ is the intersection of midplanes of th# antiferromagnetic
with the constitutive relatiot= jth, where/ is the perme- layer with thex axis. If we eliminateC, andD, in the non-
ability tensor. If the fluctuation field has the time dependencénagnetic layers using Eqel) and(5), the coefficients oA,

of e”'“!, wherew is the frequencyji has the form B; andA,,, By, of two adjacent antiferromagnetic layers
are related by
M1 imp O A A
=l —ips w0 ?) '”):T(i)( '), (7)
0 0 1 Bis1 B

whereT(i) is a transfer matrix. For our system(i) only
has two different formsT (1) andT(2), andtheir explicit
forms are given as

Tua(i)  To(i)
Toa(i)  Toi)

Here

47y°H M . 47y°H M
wi—(o+yH)?  wi—(w—yHg)?’

=1+
T(i)=

) (i=1,2), tS)]

where

47 y?H M 47 y?H M
M2=

wo—(@+yH0)?  wi—(0—yHo)*’
Tua(i) ={[ (p1+1)°— u3le4 = [ (1~ 1)?
— 2
@0~ 7V&HeHa*Ha, — pZle e (apy),
whereH, is the anisotropy fieldH,, is the exchange field,
H, is the applied fieldM is the saturation magnetization of ~ T1a(i)=(1+ p1— o) (1+ py— py) (e —e *4)/(4p,y),
one of the sublattices, angis the gyromagnetic ratio.
Equation(1) allows the introduction of a magnetic scalar Toi(i)=(1+ u1+ o) (1— po— py) (e Khi—ek%)/(4u),
potentiald® defined byh=V®. From Egs.(1) and (2), the

scalar potentiafP obeys the equation of motion given by Too(i)={[ (1 +1)%— u3le
PP 7 ~[(u1=1)2 = uile e Y (4py).
—+—| P+ —>=0. 3 .
s ax?  ay? 972 ® Both T(1) andT(2) are unimodular. As usual, we také;

=T(1) and M,=T(2)T(1), and have recursion relations
The usual electromagnetic boundary conditions are thavlj,;=M;_;M;, from which all M;’s can be obtained,
the tangential component dfand the normal component of wherej is the Fibonacci generation number. Definiyg
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FIG. 2. (a) Dispersion relation of the eigenfrequency for the

On the other hand, the global equation for the quasiperiodic
structure can be writen as

12th order Fibonacci superlattice, hete4d,,d,;=3d,. The * in

dicates the isolated mode is merged into subband modes. The insets A A
are the profiles of precession of magnetization in two sublattices. ( NI Z Mj( 1)_ (12)
(b) Eigenfrequency versus number of modes for 17th order Fi- Bn B:1

bonacci superlattice wittkd=0.41kd;=0.375kd,=
enlarged local regions are shown in the insets.

0.125. Two The linear equations fok,;, B; andAy, By, Egs.(10), (1),

and(12), have a nontrivial solution only if the determinant of
the coefficient vanishes. By applying a numerical calcula-
tion, we can obtain the eigenfrequency spectra of the mag-
netostatic excitation. Here we select Mn&s the antiferro-

1Tr(M) one can find that the quantity= XJ+1+X,
+X, 17 2Xj+1XjXj—1—1 is invariant. For our system,

magnetic material. The physical parameters dti,

Apg(pyt po— D) (= p2—1) =550 kOe, H,=7.87 kOe, M=600 G, and
- _ 15
[4p1t (pat o= D) (p1— po— 112 Ho=200 e

X sintf(kd)sint? k(d;—d,). 9)
This analytic formula is different from those for electrons  Figure 2a) shows the dispersion relation of magnetostatic
and phonons in Fibonacci chaiffsThis invariant has a wave modes for the 12th order Fibonacci antiferromagnetic super-
vector dependence. It can be used to characterize the featusdtice, whered=4d,, d,=3d,, andd, are fixed. It is clear
of the energy spectra as well as the properties of the states tifat the eigenfrequency spectra are divided into two
Fibonacci superlattice’s. branches, namely ™ andw™*, which are separated by a gap
In the calculation of the frequency spectra of the Fi-as in the periodic superlatticé§It can be seen that each
bonacci antiferromagnetic superlattices, we use the fredsranch consists of bandlike dense modesianthtedmodes
boundary conditions. IN is the total number of antiferro- in the gaps. For largetd, the modes are highly degenerate.
magnetic layers in thgth order Fibonacci superlattice, by For the intermediate value &fd, the subbands are most ob-
exploiting Eqgs.(4) and(5) at the two surfaces, we can obtain vious, and hence the effect of quasiperiodicity is strongest. It
the following two equations: is clear that the low frequency subband of the band is

IIl. RESULTS AND DISCUSSIONS
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situation is reversed. This feature reflects the strength of que
siperiodicity, as can be illustrated by E®). The lower re-
gion of thew ™ band and the higher region of the' band
have larger values df, while the higher region of the ™
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Figure 2b) illustrates the eigenfrequency distribution
with mode number. It is clear that the allowed frequency
forms two branches of Cantor-set, which are singular con-
tinuous (the spectrum is between point and continydfis
For each branch, there are several bands. Each band has two
gaps giving rise to three subbands, each one of them having
two gaps and so ofsee the inset of Fig.(B)]. This is the
typical feature of a quasiperiodic systéh.

The relative thicknesses of d,, andd, have important
effects on the eigenfrequency spectra. Figui@® 8hows the
eigenfrequency distribution with the thickness ratial, for
kd;=0.6 andkd,=0.2. It is clear that two branches of the
eigenfrequency spectra consist of bandlike asdlated
modes. For theisolated modes, two important features
should be mentioned here. First, their appearance is closely
related to the thickness of antiferromagnetic and nonmag-
netic layers. When these parameters vary, some ofsihe
lated modes can be merged into subband mddes mark *
in Fig. 3@]. Second, thésolatedmodes at the edges of two
branches behave differently froimsolated modes in gaps.
When d>d;&d,, the isolated modes at the edges of two
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branches appear and their frequency almost does not changeAs is the case in the electronic and phonon problem, we

with the above parameters. But the frequencyisaflated
modes in gaps are obviously dependent on them.

Figure 3b) shows the variation of eigenfrequency distri-
bution with the thickness ratid,/d,. Whenk, d, andd; are

have found that most states are critical, especially in the
obviously triadic subband. Figure 5 shows the profiles of the
total magnetization. It is clear that the distribution of mag-

netization is neither sine extended nor an exponential decay,

fixed, the eigenfrequency spectra are triadic branches asyt it obeys a power law and is self-similar due to the qua-

d,/d;# 1. Notice that, ford,/d;—1, two continuous bands

siperiodicity.

are prominent, which stem from the fact that the structure ag mentioned above. besides the extended and critical

becomes periodichere | -0 as expected However, the

states, still a few states are quasilocalized. These states usu-

quasiperiodicity is more prominent for small or large values(,j”y appear at the edges of the band or in the gaps of triadic

of d,/d,.

The quasiperiodicity of the frequency spectra must be re

flected in the profiles of precession amplitude of total mag
netization. According to Gmberg et al,'? the precession
amplitudem, andm, of magnetization in théth antiferro-
magnetic layer are given by

:i T+ o— 1) A, ekx—x)
My 477[(,“1 m2—1)Ae

+(pp— pyt+1)Be KX, (13
my=7—[(na+pa— 1)A )
+(pg— pmo—1)Bje K], (14

We have calculated the total magnetization profilesjfor

subbands. Figure 6 shows two examples. For the quasilocal-
ized states at the edge of bands, the profiles of precession
‘exponentially decay from the surfafEig. 6(@)]. This mode

is unreciprocal and has its maximum amplitude at right sur-
face for positivek and at the opposite surface for negative
k.2 The frequency is almost independent of the thickness of
antiferromagnetic and nonmagnetic layers fibrd ;& d,.
However, for the quasilocalized states in the gaps, the profile
of precession oscillates with an attenuating amplitude from
the surfacgFig. 6(b)]. The frequency of the precession is
sensitive to the thickness of antiferromagnetic and nonmag-
netic layers as well as the in-plane wave vector.

In summary, we have investigated some interesting fea-
tures of magnetostatic excitations in antiferromagnetic Fi-
bonacci superlattices. It is found that the eigenfrequency
spectra exhibit a triadic Cantor-set structure with nonuniform
scaling and strongly depends on the thickness of antiferro-

=15 with different wave vectors. For the frequencies neéamagnetic and nonmagnetic layers. For the eigenfrequency in
the edges of two branches, due to the small constants @he opviously triadic region, the states are critical, whereas
motion, the corresponding states are extended as illustratgghyy the edges of bands, the states are extended like an ordi-
in Fig. 4. It can be seen that the aperiodic amplitude is modunary periodic system. We also find a few states that are
lated by a sinelike wave. Thus the system behaves mainlyasjlocalized with the eigenfrequencies at the edges of

like an ordinary periodic superlattice. For the band, the

bands or in the gaps of the subband. It might be possible to

with the long axis along thg direction, while the precession
is in-phase and elliptic with the long axis along thelirec-

tion for thew™ band. The corresponding precession of mag-

netization of the two sublattices is Igfight) elliptic for the
o (o) band as illustrated in Fig.(8). As the frequency
decreaseéincreasesfrom the edge of the (™) band, the

Brillouin inelastic light scattering spectroscopy, ferromag-
netic resonance, and far-infrared techniques.
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