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Acoustic properties of colloidal crystals
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We present a systematic study of the frequency band structure of acoustic waves in crystals consisting of
nonoverlapping solid spheres in a fluid. We consider colloidal crystals consisting of polystyrene spheres in
water, and an opal consisting of close-packed silica spheres in air. The opal exhibits an omnidirectional
frequency gap of considerable width; the colloidal crystals do not. The physical origin of the bands are
discussed for each case in some detail. We also present results on the transmittance of finite slabs of the above
crystals.
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I. INTRODUCTION

Colloidal suspensions of monodispersed spherical p
ticles, with a diameter between 1 nm and 1mm, in liquids
or gases self-assemble onto three-dimensional simple lat
whose lattice parameter can be easily tailored, providing n
opportunities for fundamental as well as for applied resea
~see, e.g., Ref. 1,and references therein!. The optical proper-
ties of these colloidal crystals are being investigated by m
research groups because they seem to be good pho
band-gap materials; but they have interesting acoustic p
erties as well.2–5 Moreover, experiments relating to the r
flection, transmission, and absorption of ultrasonic waves
colloidal crystals can be very useful for the characterizat
of such systems, provided the means exist for a proper
oretical analysis of the experimental data. Finally, theoret
results for colloidal crystals offer a starting point for th
understanding, at a semiquantitative level, of the propaga
of acoustic waves in corresponding random media consis
of monodispersed spherical particles in a fluid.3–5

The vibration modes~normal modes of the elastic field! of
a phononic crystal, by which we mean a composite mate
whose densityr(r ) and Lame´ coefficientsl(r ) and m(r )
vary periodically in space, are Bloch waves with a cor
sponding frequency band structure that is analogous to
of electrons in ordinary crystals and electromagnetic wa
in photonic crystals.6–12 With an appropriate choice of th
parameters involved, one may obtain phononic crystals w
absolute~omnidirectional! frequency gaps~phononic gaps!
in selected regions of frequency. An elastic wave, whose
quency lies within an absolute frequency gap of a phono
crystal, incident on a slab of the crystal of certain thickne
will be reflected by it, the slab operating as a perfect non
sorbing mirror of elastic waves in the frequency region of
gap.13,14 It may be possible, for example, to construct in th
way vibration-free cavities that might be very useful in hig
precision mechanical systems operating in a given freque
range.

In this paper, we investigate in detail the acoustic prop
ties of fcc colloidal crystals of polystyrene spheres in wa
and of close-packed silica spheres in air~opals!. Given that
0163-1829/2002/65~6!/064307~6!/$20.00 65 0643
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these systems have a characteristic length scale of the o
of 1 mm, they should exhibit interesting acoustic propert
at ultrasonic frequencies of a few hundred MHz to a fe
GHz. It should be noted, however, that our results apply
different regions of frequency of the acoustic field provid
that the size of the spheres and of the unit cell are sca
accordingly, and provided the elastic coefficients can
taken as constants independent of frequency over the
regions. The calculations of the frequency band structure
of the transmission coefficient of acoustic waves throug
slab of the material were done using the layer-multip
scattering formalism, we have developed for this purpos11

A formalism along the same lines has also been published
Liu et al.12 We have already demonstrated the efficiency
this method in relation to solid-solid composites.15 The
present paper shows that the method applies equally we
phononic crystals consisting of nonoverlapping solid sphe
in a fluid host; it appears that the plane-wave method
calculating the frequency band structure of such systems
convergence problems.9 Besides, we shall pay particular a
tention to the physical origin of the different modes of t
acoustic field in the systems under consideration.

II. POLYSTYRENE SPHERES IN WATER

We consider a model colloidal crystal consisting of po
styrene spheres in water. The mass density and the so
velocities for polystyrene are:rp51050 kg/m3, clp
52400 m/s, ctp51150 m/s. For water we have:rw
51000 kg/m3 andcw51480 m/s. We begin by considerin
the scattering of a harmonic plane acoustic wave~a longitu-
dinal wave! of angular frequencyv, by a single polystyrene
sphere of radiusS in water; the water extends over all spac
The incident plane wave can be written as a sum of spher
waves associated with the spherical harmonicsYlm , where
l 50,1,2, . . . andm52 l , . . . ,0, . . . ,l , as usual.11 A spheri-
cal wave of given (l ,m) scatters independently of the other
of different (l ,m), because of the spherical symmetry of t
scatterer; therefore, the total scattering cross section is
sum of partial (l ,m) cross sections, withl up to a maximum
l max depending on the size parameter,vS/cw , of the sphere.
©2002 The American Physical Society07-1
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We assume that waves withl . l max do not scatter from the
sphere and do not contribute to the total scattering cross
tion. Of course partial cross sections of differentm ~but of
the samel ) are equal because of the spherical symmetry
the system. In Fig. 1, we show the total scattering cr
section for a plane wave scattered by a polystyrene sphe
water as a function ofvS/cw . The peaks correspond to res
nant modes of the acoustic field about the sphere with
angular distribution of the displacement field at the surfa
of the sphere determined by the spherical waves that con
ute to these modes. We find that the resonance atvS/cw
51.49 is anl 52 resonance: the displacement field asso
ated with it is made up almost entirely~98%! from l 52
spherical waves; the one atvS/cw52.19 is anl 53 reso-
nance: the corresponding displacement field is made
mostly ~90%! from l 53 spherical waves; finally the field
associated with the resonance atvS/cw52.83 is made up
mostly from l 54 waves ~65%! and l 51 waves ~22%!.
And we remember that there will be (2l 11) resonant
modes of the displacement field corresponding
m52 l , . . . ,0, . . . ,l of the same frequencyv l , i.e., v l
is (2l 11)—degenerate.

We now consider a fcc crystal, with lattice constanta, of
nonoverlapping polystyrene spheres in water. We view
crystal as a sequence of~111! planes of spheres. The spher
of a plane are arranged on a hexagonal lattice of lattice c
stant a05aA2/2, defined by the primitive vectorsa1

5a0(1,0) anda25a0(1/2,A3/2), in thex-y plane~plane of
the spheres!. The (n11)th plane along thez axis is obtained
from thenth plane by a primitive translation,a3, of the crys-
tal. The planes are separated along thez direction by a dis-
tanced5aA3/3.

Figure 2~a! shows the frequency band structure of aco
tic waves in this crystal normal to the~111! surface, obtained
by the method of Ref. 11, when the fractional volume oc
pied by the spheres isf 530%. In this case, the compone
of the reduced wave vector within the surface Brillouin zo
~SBZ! of the fcc~111! surface,ki , equals zero. The symme
try of the bandskz(v;ki50) is determined by the symmetr
group for this direction~the C3v group! and the correspond
ing propagating modes~Bloch waves! of the acoustic field
belong to the different irreducible representations of t
group, denoted byL1 , L2,andL3 ~see, e.g.,Ref. 16!; L1 and

FIG. 1. Scattering of a plane acoustic wave by a polystyr
sphere in water: total scattering cross section.
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L2 are one dimensional: the corresponding frequency ba
are nondegenerate, andL3 is two dimensional: the corre
sponding frequency bands are doubly degenerate. At thG
point (ki50,kz50) the modes of the acoustic field belong
the irreducible representations of theOh group associated
with this point, as shown in Fig. 2~a!. We see that the fre-
quency bands of Fig. 2~a! appear in pairs:kz(v;ki50),
2kz(v;ki50). However, this symmetry property is no
valid for an arbitrary value ofki , because the crystal unde
consideration, described by theOh group, does not have a
plane of mirror symmetry parallel to the~111! surface that
would transform (kx ,ky ,kz) to (kx ,ky ,2kz). The above
symmetry property holds only forki on the x axis @ki
5(kx,0)#, because a rotation throughp about thex axis is a
symmetry operation ofOh and it transforms (kx,0,kz) to
(kx,0,2kz).

The ~longitudinal! wave field, of givenv and ki , in the
host region between thenth and the (n11)th planes of
spheres, can be expanded into plane waves propagatin~or
decaying! to the left and to the right as follows:

u~v;ki!5(
g

$ugn
1 exp@ iKg

1
•~r2An!#

1ugn
2 exp@ iKg

2
•~r2An!#%, ~1!

with

Kg
65~ki1g,6@~v/cw!22~ki1g!2#1/2!, ~2!

where g are the two-dimensional reciprocal vectors cor
sponding to the lattice defined bya1 anda2 above, andAn is
a point between thenth and (n11)th planes. A generalized
Bloch wave satisfies the equation

ugn11
6 5exp~ ik•a3!ugn

6 , ~3!

e

FIG. 2. ~a! The phononic frequency band structure normal to
~111! surface of a fcc crystal of polystyrene spheres in water w
f 530%. The solid/dotted/dashed lines refer to bands ofL1/L2/L3

symmetry, respectively.~b! Transmittance of an acoustic wave inc
dent normally on a slab of the above crystal consisting of 32 pla
of spheres parallel to the~111! surface. The positions of the first tw
resonant modes of a single polystyrene sphere in water are indic
in the margin.
7-2
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ACOUSTIC PROPERTIES OF COLLOIDAL CRYSTALS PHYSICAL REVIEW B65 064307
where a35An112An and k5„ki ,kz(v;ki)…. We note that,
although both longitudinal and transverse modes of the e
tic field are considered within the~solid! spheres, only lon-
gitudinal modes exist in the~fluid! host region in the absenc
of viscosity. Therefore, in a binary composite of nonoverla
ping solid spheres in a fluid host, where the solid compon
does not form a continuous network, there cannot be pro
gating transverse waves. Consequently, at theG point (ki
50,kz50) the dispersion curves@Fig. 2~a! and also Figs. 3,
5, and 7~a! below#, show only one~longitudinal! branch
starting from zero frequency, instead of the three~corre-
sponding to both longitudinal and transverse modes! appear-
ing in solid-solid composites.2,6,10–12,14,15

One can easily show that whenki50, theg50 compo-
nent of the wave field, described by Eq.~1!, vanishes
(ug50

6 50) for the modes of theL2 or theL3 symmetry; only
theL1 symmetry allows a nonvanishingg50 component of
the wave field. Now assume that we have a slab of the cry
of finite thickness, i.e.,N fcc ~111! planes of polystyrene
spheres; between the spheres and to the left and right o
slab, extending to infinity, we have water. There, and for
frequency range that interests us here, the acoustic wave
has only the one componentg50. And, therefore, the exter
nal field couples with the field inside the slab essentially o
through theg50 component of the latter. Therefore, a
acoustic wave of given frequency, incident normally on t
~111! slab of the crystal, will excite essentially onlyL1
modes of the crystal. If such a band does not exist at
given frequency the wave will be totally reflected by t
slab. There will be no transmitted wave. The reader will s
that this is, indeed, the case in the present instance: we s
in Fig. 2~b!, opposite the frequency band structure, the tra
mission coefficient of an acoustic plane wave incident n
mally on a slab of the crystal consisting of 32 planes
polystyrene spheres in water. The transmission coeffic
opposite theL1 bands exhibits the well-known Fabry-Pero
like oscillations due to multiple scattering between the s
faces of the slab; elsewhere it practically vanishes, and
includes regions of frequency where only bands of theL2
and/or L3 symmetry exist. Of course the above argume
holds for normal incidence; off this direction the symme
argument does not apply, and there will be some transm

FIG. 3. The phononic frequency band structure normal to
~111! surface of a fcc crystal of polystyrene spheres in water w
f 530% ~only bands ofL1 symmetry are shown!, calculated~a!:
with l max51 and~b!: with l max56.
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sion if there are any propagating modes of the acoustic fi
at the given frequency~see below, Fig. 4!.

From a practical point of view, once the frequency ba
structure and, if required, the transmission coefficient h
been calculated, one has all that is necessary for a com
son with relevant experimental data. However, it is wor
while to look at the physics behind the band structure of F
2. We note that the five narrow bands aboutvS/cw'1.5 ~we
remember that theL3 band is doubly degenerate! derive
from the l 52 resonances on the individual spheres, wh
interact weakly between them. The fivefold degeneracy
the resonance of the single sphere is split by this interac
in accordance with the lower~cubic! symmetry of the crystal
field. Similarly the seven narrow bands aboutvS/cw'2.2
derive from thel 53 resonances on the individual sphere
We observe the small hybridization gaps opening up ab
vS/cw'1.5 and aboutvS/cw'2.2, between bands of th
same symmetry.

There is also a mode of propagation of acoustic wa
corresponding to almost free propagation in an effective
mogeneous medium. In the absence of the resonances
ciated with the spheres, this mode of propagation, which
theL1 symmetry, would dominate the frequency band stru
ture of the acoustic field as shown in Fig. 3~a!. It was calcu-
lated by suppressing thel .1 resonances, i.e., cutting off th
l .1 spherical waves, which give rise to these resonan
from the spherical-wave expansion of the wave field~see,
Ref. 11!. In the long-wavelength limit (v→0) we obtain a
linear dispersion curve, the slope of which gives an effect
velocity of sound for the composite medium,c̄51589 m/s,
which is in very good agreement with the result,c̄
51566 m/s, of the effective-medium approximation.17 The
small gap aboutvS/cw'1.5 in Fig. 3~a!, is a Bragg gap; it is
analogous to the small gaps one obtains at the edges o
Brillouin zone in the electronic band structure of fre
electron-like metals. When the resonances on the sphere
allowed in, one obtains the band structure shown in Fig. 3~b!,
with apparent hybridization gaps between the continu
band@of Fig. 3~a!# and resonance bands of the same symm
try (L1).

e
h

FIG. 4. ~a! The phononic frequency band structure associa
with the ~111! surface of a fcc crystal of polystyrene spheres
water with f 530%, forki52p(0.3,0.1)/a0. ~b! Transmittance of
an acoustic wave incident withki52p(0.3,0.1)/a0 on a slab of 32
fcc ~111! planes of polystyrene spheres in water.
7-3
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PSAROBAS, MODINOS, SAINIDOU, AND STEFANOU PHYSICAL REVIEW B65 064307
We believe that the disorder that is naturally there in
colloidal solution, does not eradicate the essential chara
istics of the acoustic modes as calculated here, which
determined by the local environment about a sphere and
so by long range order. We would expect the fine featu
associated with narrow bands to be smoothed out by di
der, but bands of modes separated by gaps could rem
This would be in accordance with the results of Brilloui
scattering experiments on disordered colloidal suspens
of monodispersed polymethylmethacrylate~PMMA! spheres
in transparent oil. It has been shown that in these collo
suspensions different longitudinal modes of propagation
the acoustic field exist that are separated by frequency g
about the resonance frequencies of an individual PMM
sphere,3–5 which agrees, at a semiquantitative level, with t
hybridization-induced gaps discussed above.

In Fig. 4~a!, we show an example of the band structure
a kiÞ0, and next to it, in Fig. 4~b!, the transmission coeffi
cient of an acoustic wave, with the sameki , incident on a
slab of the material consisting of 32 fcc~111! planes of poly-
styrene spheres. The thing to note is that all bands are a
in this case, although the transmission coefficient is not
ways unity@compare with Fig. 2~a!#. We remember that the
incident wave cannot have a frequency smaller thanv in f
5cwukiu. Finally, it can be seen that now the frequen
bands do not have the reflection symmetry found in the c
of ki50 @Fig. 2~a!#, for the reasons given above.

We calculated the frequency band structure for a suffic
number of ki points within the SBZ. There is a nea
omnidirectional gap aboutvS/cw'1.3; we tried to turn this
gap into a proper omnidirectional gap by changing some
the parameters, but we did not succeed.

In Fig. 5, we look at the dependence of the frequen
band structure on the fractional volume occupied by
spheres. We see, in particular, that the width of the resona
bands increases withf, apparently because the spatial overl
of the wave field associated with resonances on neighbo
spheres increases withf.

III. OPALS

In this section, we consider a phononic crystal, an ar
cial opal, consisting of two media~silica spheres in air! with

FIG. 5. The phononic frequency band structure normal to
~111! surface of a fcc crystal of polystyrene spheres in water w
~a!: f 520% and~b!: f 550%. The solid/dotted/dashed lines refer
bands ofL1 /L2 /L3 symmetry, respectively. The positions of th
first two resonant modes of a single polystyrene sphere in wate
indicated in the margin.
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density and velocity contrasts much higher than was the c
in the crystal~polystyrene spheres in water! studied in the
preceding section. Opalescent structures~usually referred to
as synthetic or artificial opals! can be obtained from mono
dispersed silica colloids, e.g., by sedimentation in the gra
tational field. In this way, fcc arrays of silica microspheres
air, near the close-packing density (;74%), similar to a
natural opal, have been obtained.1 Here we present som
results on the acoustic properties of such an opal. The m
density and the sound velocities for silica are:rs
52200 kg/m3, cls55970 m/s,cts53760 m/s. For air we
have:ra51.23 kg/m3, ca5340 m/s.

Proceeding as in Sec. II, we first consider the scattering
a harmonic plane acoustic wave, of angular frequencyv, by
a single silica sphere of radiusS in air. In this case the tota
scattering cross section is a slowly increasing function
vS/ca ~see Fig. 6!. However, the partial cross sections, co
responding to different values ofl, exhibit well-defined reso-
nance peaks, of some width, as can be seen from Fig. 6
vS/ca52.22, we obtain anl 50 resonance, atvS/ca53.88
an l 51 resonance, and atvS/ca55.25 anl 52 resonance.

We consider then an fcc crystal of nonoverlapping sil
spheres in air withf 574% and view it as a sequence
~111! planes of spheres. Fig. 7~a! shows the frequency ban
structure of the infinite crystal, forki50. The physical origin
of the bands shown in Fig. 7~a!, other than the flat band
aboutvS/ca53.426, can be understood in much the sa
way as for the bands of Fig. 2~a!. In the absence of hybrid
ization, we would have, extending practically over the ent
frequency range, a mode corresponding to almost free pro
gation in an effective homogeneous medium, with Bra
gaps opening up aboutvS/ca'1.5 at the edges of the Bril
louin zone and aboutvS/ca'3.5 at the center of the Bril-
louin zone; and we would have also resonance bands de
oping about thel 50 and l 51 resonances of the individua
spheres. From Fig. 6, we expect a singlel 50 resonance
band of L1 symmetry aboutvS/ca'2.2; and threel 51
bands aboutvS/ca'3.9, of which one should be nondege
erate (L1 symmetry! and one doubly degenerate (L3 sym-
metry!. We expect a degree of hybridization between ban
of the same (L1) symmetry, and this naturally leads to th
bands shown in Fig. 7~a!, except for the one flat band,

e
h

re

FIG. 6. Scattering of a plane acoustic wave by a silica spher
air. Solid lines: partial scattering cross sections correspondingl
50,1,2. Dashed line: total scattering cross section.
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ACOUSTIC PROPERTIES OF COLLOIDAL CRYSTALS PHYSICAL REVIEW B65 064307
doubly degenerate band ofL3 symmetry, aboutvS/ca
53.426, which appears to have a very different physical
gin ~see below!.

In the long-wavelength limit (v→0) we obtain a linear
dispersion curve, the slope of which gives an effective
locity of sound in the composite medium,c̄5278 m/s,
which is in very good agreement with result,c̄5291 m/s, of
the effective-medium approximation.17 We note that this
agreement is greatly improved at lower values of
volume-filling fraction f. It is worth noting, also, that the
effective velocity of sound in a system of silica spheres in
is smaller than in air because of the high density cont
between silica and air. Indeed, in the limitra!rs , the
effective-medium approximation gives practically identic
results with the simple expressionc̄/ca5@2/(21 f )#1/2,
which givesc̄,ca at any value off.

It seems that the modes corresponding to the flat b
aboutvS/ca53.426, which are deaf modes, are those o
wave field highly concentrated between consecutive pla
of spheres, with very little interaction between neighbor
gions of high concentration. In order to demonstrate
above, we looked for the eigenmodes of the acoustic fi
for ki50, in a slab ofN52,4,8,16 planes of spheres, in th
manner described for the corresponding problem of the e
tromagnetic field,18 over a frequency range about the said fl
band of Fig. 7~a!. Because of the two-dimensional translati
symmetry of the slab, the wave field, in the air regions, c
be expanded@as in Eq.~1!# in a series of plane waves wit
wave vectorsKg

65(g,6@(v/ca)22g2#1/2); now, as it turns
out, for the eigenmodes in question the term correspond
to g50 in the above plane-wave expansion vanishes, wh
implies that the wavefield decreases exponentially on b
sides out of the slab, sincev/ca,ugu for gÞ0. We can say
that these eigenmodes correspond to bound~in the z direc-
tion! states of the acoustic field. Our results are shown in F
8. For a single pair of planes (N52), we obtain a pair of
such modes corresponding to a doubly degenerate eige

FIG. 7. ~a! The phononic frequency band structure normal to
~111! surface of a fcc crystal of silica spheres in air withf 574%.
The solid and dashed lines refer to bands ofL1 andL3 symmetry,
respectively.~b! Transmittance of an acoustic wave incident no
mally on a slab of the above crystal consisting of 32 planes
spheres parallel to the~111! surface. The positions of the first tw
resonant modes of a single silica sphere in air are indicated in
margin.
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quency. For three pairs of planes (N54) we obtain three
pairs of doubly degenerate eigenfrequencies, and similarl
each case we obtain a pair of doubly degenerate eigen
quencies for every pair of planes in the slab. The eigen
quencies corresponding to the bound states of the diffe
slabs in Fig. 8, have been plotted against values of the
duced wavenumberkzi5p i /Nd, i 51,2, . . . ,N21, for the
slab consisting ofN planes, to show how this band of stat
develops with increasingN. In every case,d equals the sepa
ration of two consecutive fcc~111! planes in the infinite crys-
tal, so thatNd equals the thickness of the slab. We note th
the eigenfrequencies of the finite slabs coincide with the c
responding eigenfrequencies on the dispersion curves~solid
lines in Fig. 8! of the infinite crystal. The question now arise
as to whether one can see experimentally this band.
corresponding modes do not couple to an incident wave. T
is demonstrated quite clearly in Fig. 7~b!, which shows the
transmission coefficient of a wave incident normally on
slab of the material consisting of 32 planes of spheres.
can see that the transmission coefficient vanishes at
aboutvS/ca53.426 where the band under consideration e

FIG. 9. Projection of the phononic frequency band structure o
fcc crystal of silica spheres in air, withf 574%, on the SBZ of the
fcc ~111! surface, along the symmetry lines shown in the ins
Propagating waves in the air about a slab of the crystal exist
frequencies above a threshold value~a function of ki) v in f

5caukiu denoted by the dashed line.

e

f

he

FIG. 8. The deaf band aboutvS/ca53.426 of Fig. 7~a! ~solid
line!. The doubly degenerate eigenfrequencies of the correspon
bound states in slabs ofN52,4,8,16 planes of spheres are noted
circles.
7-5
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PSAROBAS, MODINOS, SAINIDOU, AND STEFANOU PHYSICAL REVIEW B65 064307
ists. However, we have verified that the said band survi
for kiÞ0 ~at least in the neighborhood ofki50) where it
couples with an incident wave of the sameki leading to
measurable transmittance.

In Fig. 9, we present the projection of the frequency ba
structure of the acoustic field of the phononic crystal un
consideration, on the symmetry lines of the SBZ of the
~111! surface. The shaded regions extend over the freque
bands of the acoustic field: at any one frequency within
shaded region, for a givenki , there exists at least one prop
gating acoustic mode in the infinite crystal. The blank are
correspond to frequency gaps. We note that knowing
modes withki in the shaded area (ḠK̄M̄) of the SBZ and
2p/d,kz<p/d is sufficient for a complete description o
all the modes in the infinite crystal. The modes in the rema
ing of the reducedk space are obtained through symmet
it
c
o

i-

0643
es

d
r

c
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a

s
e

-
.

One clearly sees that for the opal under consideration,
unlike the colloidal crystal studied in Sec. II, one obtains
omnidirectional frequency gap extending fromvS/ca
51.59 tovS/ca51.95. We verified that this is indeed so b
calculating the band structure at a sufficient number ofki
points in the SBZ. Finally, we should note the existence o
very narrow omnidirectional gap at higher frequencies,
tending fromvS/ca53.30 tovS/ca53.34.
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