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Propagation Hanle effect of quadrupole polaritons in Cu2O

S. A. Moskalenko1 and M. A. Liberman2,3

1Institute of Applied Physics of the Academy of Sciences of Republic Moldova Academy str. 5, Kishinev MD 2028, Moldov
2Department of Physics, Uppsala University, Box 530, S-751 21, Uppsala, Sweden

3P. Kapitsa Institute for Physical Problems, Russian Academy of Sciences, 117334, Moscow, Russia
~Received 14 February 2001; revised manuscript received 5 June 2001; published 8 January 2002!

A generalized theory of the Hanle effect is developed for the case of propagation quantum beats. Time-
integrated quantum beats of two polariton wave packets with the same group velocities and polarizations
belonging to two different Zeeman components in Voigt geometry of the quadrupole-active ortho-excitonG5

1

level in Cu2O crystal give rise to the propagation Hanle effect. It is characterized by a quasiresonant depen-
dence of the emitted light intensity on the magnetic field strength, as well as by a supplementary periodic
dependence. This dependence originates from the difference of the wave vectors of the carrier waves. It has a
period inversely proportional to the sample thickness and can be observed when the propagation way is larger
than the light wavelength and the propagation time is shorter than the dephasing time. The interference of two
monochromatic waves with the same frequencies and amplitudes but with different polarizations in both
Faraday and Voigt geometries is also considered. The dispersion laws of five polariton branches with different
polarizations in both geometries are obtained. The theory developed with account of the effective propagation
way explains recent experimental results on quantum interference in Cu2O.

DOI: 10.1103/PhysRevB.65.064303 PACS number~s!: 71.36.1c, 78.47.1p, 42.50.Md
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I. INTRODUCTION

Many years ago Hanle1 discovered a phenomenon whic
soon became known as the Hanle effect. It concerned
optical properties of Hg atomic gas placed into an exter
static magnetic field and excited by a polarized resonant
diation. The polarization plane of the secondary radiat
emitted by the atoms was turned as compared with the in
excitation polarization and the scattered light was depo
ized. The polarization properties of the secondary radia
essentially depend on the geometry of the experiment e
cially on the light propagation direction as regards the m
netic field direction. In the Faraday geometry these directi
are parallel, whereas in the Voigt geometry they are perp
dicular. Hanle explained his experimental results on the b
of the classical model of a three-dimensional elect
damped oscillator subjected to the action of a magnetic fi
The Hanle effect happened to be a coherent quantum in
ference effect revealed by time-integrated spectroscopy.
not surprising that Bohr and Heisenberg payed attention
this phenomenon from the very beginning.2 It plays an im-
portant role in atomic as well as in solid-sta
spectroscopy.2–4 For the free electrons and holes in semico
ductors the optical spin orientation was considered ra
than the angular moment and its projections.5–7 The optical
orientation of exciton polarization was first revealed expe
mentally by Grosset al.8 The comprehensive review b
Pikus and Ivchenko4 contains earlier results on the Han
effect and information about the exciton polarization and
optical alignment of the exciton transition dipole momen
and will be briefly discussed below.

The main features of the Hanle effect will be demo
strated on the basis of a simple quantum mechanical m
of three degenerated dipole-active exciton levels in a cu
crystal with 2p-type exciton wave functions. The excito
energy level is split by the external magnetic field into
0163-1829/2002/65~6!/064303~15!/$20.00 65 0643
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Zeeman triplet with orbital quantum numberl 51 and mag-
netic quantum numbersm50,61. Polariton effects are ne
glected at the beginning. Their influence is the main issue
this paper. The exciton Zeeman triplet has eigenfuncti
u1,m& of the form

u1,0&5z, u1,61&5
1

A2
~x6 iy !. ~1!

The corresponding eigenfrequencies arev0 and v615v0
6vL . Herev0 is the optical frequency corresponding to th
exciton creation energy andvL is the Larmor frequency. The
quantum transition dipole momentsdm5^0uer u1,m& are de-
termined as the matrix elements of the coordinate vector
5exx1eyy1ezz between the ground state of the crystalu0&
and the exciton statesu1,m&, whereex ,ey ,ez are unit vectors
and e is the electron charge. Taking into account the tim
dependence of the exciton wave functions, the exciton tr
sition dipole momentsdm(t) are

d0~ t!5d0eze
2 iv0t, d61~ t!5d0

1

A2
•~ex6 iey!e

2 iv61t.

~2!

They determine the possibilities to excite the exciton sta
by the incident radiation and at the same time they determ
the polarizations of the secondary radiation. For example,
exciton statesu1,61&, being excited, are able to emit, in th
z direction, circularly polarized waves with counterdirect
rotations and slightly different frequencies.

We will introduce conventionally three stages of the p
larization transformation. The first one is the optical exci
tion of the exciton states. Propagating along the magn
field direction the incident light withex polarization will ex-
cite both Zeeman componentsu1,61& with the same ampli-
tude and phase. Their evolution in time between the m
©2002 The American Physical Society03-1
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ments of excitation and secondary light emission can
considered as a second stage. The most desirable scena
this stage could be the coherent evolution governed by
Schrödinger equation without any phase destruction. Th
in the third stage, the subsequent emission of light wa
with well-defined phases gives rise to their quantum inter
ence. In the second stage the destroying phase process
inevitable due, for example, to exciton-phonon or excito
impurity scatterings. Only if these processes are comp
tively seldom and the corresponding dephasing time, wh
is called also the coherence timetc , is sufficiently large and
comparable with the exciton lifetimetex can one expect the
appearance of coherent light waves and their quantum in
ference. In semiconductors one has also to distinguish
tween the relaxation time of the exciton center of mass,tp ,
the polarization relaxation timetc , and the lifetimetex .
During the elastic scattering only the directions of the wa
vectors are changed, whereas the energies of the part
remain unchanged. The corresponding scattering timetp is
shorter in comparison with another two. The lifetime f
ortho-excitons is due to ortho-para exciton conversion w
phonon participation as well to radiative or nonradiative e
citon recombinations. The coherence time is determined
scattering processes, leading to a change of the polariza
plane. It remains unchanged during the timetc . The influ-
ence of the exciton and photon propagation and their w
vectors on the Hanle effect must also be taken into acco
In the general case the secondary emission of radiation n
a unified microscopic quantum statistical description. Nev
theless, in some cases the dephasing time can be taken
account by introducing phenomenologically the exciton le
broadeningg and the damping of the emitted light intensi
2g5tc

21 . In the framework of this approach we will sup
pose that the amplitudes of the emitted light at the beginn
of the third stage accumulate a dampingg, depending on the
light frequencyv. For two exciton statesu1,61& excited
during the first stage, we can determine the light waves e
ted in the third stage. Their amplitudes are proportiona
their transition dipole momentsd61, both lying in a plane
perpendicular to the light propagation direction. The res
ant electric field strength of the emitted light is

E~ t!>d0~ex1 iey!•e2 iv11t2gt1d0~ex2 iey!•e2 iv21t2gt

52d0e2 iv0t2gt
•@ex cosvLt1ey sinvLt#. ~3!

The quantum interference effect of two circularly polariz
waves in opposite directions in a longitudinal magnetic fi
gives rise to a resultant wave with optical frequencyv0 of
the carrier wave and with linear polarization. Its plane slow
rotates around the axis of the magnetic field with a sm
Larmor frequency~Larmor precession!. This fact leads to a
change of the polarization direction of the emitted light co
pared with the initial polarization of the excitation light. Th
intensities of the emitted light withex and ey polarizations
reveal the quantum beat behavior slowly decreasing in ti

uEx~ t !u2>ud0u2e22gt cos2vLt, uEyu2>ud0u2e22gtsin2 vLt.
~4!
06430
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The time-integrated intensitiesJx andJy of the emitted light
in two ex andey polarizations and the polarization rateR of
the emitted radiation are determined as

Jx52gE
0

`

e22gt cos2vLt dt, Jy52gE
0

`

e22gt sin2 vLt,

R5
Jx2Jy

Jx1JY
5E

0

`

e2x cos 2vLtcx dx5
1

11~2vLtc!
2

.

~5!

This quasiresonant dependence of the polarization rateR on
the magnetic field strength is the main characteristic of
Hanle effect, which appears due to quantum interferen
quantum beats, and precession of the polarization plan
Faraday geometry. In the Voigt geometry there is no prec
sion of the polarization plane, but the quasiresonant dep
dence remains in one linear polarization where the quan
beats exist. For example, in a perpendicular magnetic fi
oriented along theex direction the exciton wave functions ar
u1,0&5x andu1,61&5(1/A2)(y6 iz). The light propagating
along thez direction with ey polarization will excite both
statesu1,61& with the same amplitudes and phases but w
different frequencies. Now their transition dipole momen
are d61(t)5(d0/A2)(ey6 iez)•e2 iv61t2gt. They can gener-
ate a light field propagating along thez direction only withey
polarization and with the resultant electric field strengthE
>d0eye

2 iv0t2gt cosvLt. One can see that the polarization
the resultant wave remains the same as for the incident li
but the intensity of the emitted light undergoes quant
beats in time, which leads to a quasiresonant dependenc
the time-integrated intensity on the magnetic field streng

The optical orientation of the exciton polaritons and t
observation of their polarization are possible only in the c
when they, being excited inside the crystal, succeed in rea
ing its boundary surface without scatterings and dephas
processes. Such a possibility depends on the value of
polariton group velocity and its orientation.4 Just this case
will be considered in the present paper, taking into acco
polariton quantum beats in the presence of a magnetic fi
The influence of a magnetic field on the optical orientation
exciton polaritons was studied experimentally in CdSe cr
tals by Nawrockiet al.9 and Planelet al.10

The Hanle effect based on the interference of polari
wave packets will be the main issue of the present paper
we will take into account the existence of the propagat
quantum beats observed experimentally in Cu2O crystals and
discussed by Frohlichet al.,11,12 Langer et al.,13,14 and
Stolz.15 The quantum beats effect and the Faraday and Ha
effects as well as resonant Raman scattering are closely
lated, being intrinsically interconnected and originating fro
quantum interference effects. One of them is time-resol
and others are time-integrated or stationary phenomena
of them deal with the coherence time and quantum inter
ence of the excited states. These effects will be considere
the present work for the particular case of ortho-excit
states in Cu2O. Comprehensive experimental studies
quantum beats, with participation of ortho-excitons in Cu2O,
3-2
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have been published in Refs. 11–15. The authors of th
papers noticed that the quantum beats originate from the
herent superposition of states, which are simultaneously
coherently excited by a short optical pulse and are charac
ized by a small enough energy splitting. The energy splitt
of the states determines the beating frequency of the em
light. This splitting can be determined with a high resolutio
being independent of the inhomogeneous broadenin15

whereas the phase relaxation times of the excited states
be determined from the damping of the beats.13 The coher-
ence time, which is also known as the dephasing time,
been measured by intervals of time during which the exc
states lose their initial phases. The coherence timetcoh de-
termines the homogeneous broadening of the excited stag
by the relation 2g5\/tcoh , where tcoh is defined by the
elastic collisions, which exclusively affect the phases and
not lead to excited-state depopulation. The total energy
laxation time or the population lifetime is usually measur
by time-resolved luminescence spectroscopy.11–15 As was
emphasized in Ref. 13 the quantum beat method allows
to distinguish between coherent Raman scattering and i
herent hot luminescence. The quantum beats may occur
in the coherent Raman part of the scattering.11,12The exciton
coherence time drastically decreases with the increase o
citon kinetic energy. One-phonon resonant Raman scatte
involving the 1S yellow series (1SY) exciton in Cu2O was
studied for both stationary and pulsed excitations.13,16,17The
polariton character of the ortho-exciton states was negle
in Refs. 16 and 17. Despite its small oscillator strength
polariton concept is necessary to understand the time de
dence of the light scattering.14 Therefore the interference o
two polariton states belonging to two split Zeeman com
nents of theG5

1 level will be considered in the present pap
But even at a rather high magnetic field of the order of 1
the spectral splitting of the exciton quadrupole emission c
not be detected because of inhomogeneous line broade
Only the quantum beat technique makes it possible to re
a very small energy splitting and the interference of t
propagating wave packets which belong to upper and lo
polariton branches with the same group velocities, dem
strating how powerful the method is. These phenomena
came known as propagation quantum beats.11–15,18 Time-
integrated propagation quantum beats will give rise to
propagation Hanle effect.

The 1SY exciton state in Cu2O is formed from an
electron-hole pair in the conduction band with symmetryG6

1

and the valence band with symmetryG7
1 . The exciton state

is split by the electron-hole exchange interaction into a tri
degenerateG5

1 ortho-exciton and nondegenerateG2
1 para-

exciton. The oscillator strength of the exciton-photon co
pling is weak due to the quadrupole-type interaction,f
53.731029.12 In this case a characteristic polariton stru
ture appears due to the remarkably narrow homogene
width of the ortho-exciton recombination line.11 The homo-
geneous linewidth determined by Kono and Nagasawa19 is
2g58, 8 meV at 1,6 K. Contrary to this the dispersio
curve and the propagation beat signal from Cu2O crystal
were calculated in Ref. 12 using a different value of t
06430
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damping constant 2g50, 9 meV. The splitting of the un-
coupled photon and exciton dispersion curves near t
crossing point and the span of the polariton branches w
found at about 120meV in Ref. 12. In spite of the smal
splitting these polariton branches have a very strong dis
sion within a narrow range of wave vectors.11,12As a conse-
quence, the polaritons formed at the front surface of
sample with slightly different energies around the excit
resonance propagate with group velocities which stron
depend on the wave vectorvg(k).14 In the presence of a
magnetic field theG5

1 states split into three componen
characterized by magnetic quantum numbersm50,61. In
the case of the Faraday geometry, when the laser ligh
parallel to the direction of the external magnetic fieldH0,
only the states withm561 are allowed in the quadrupol
transitions interacting with circularly polarized light. Thes
two states show linear Zeeman splittingDE5ugc
1gvumBH0, wheremB is the Bohr magneton and the totalg
factor equals 1.66 accordingly19 or 1.78 accordingly.13

In the present paper we revise a theory of the Hanle ef
with account of the interference of two wave packets w
the same group velocity instead of two monochroma
waves. The spatial dispersion and the existence of additio
waves were not taken into account in a theory of the Ha
effect.4 The theory developed of the propagation Hanle eff
takes into account from the very beginning the existence
propagation quantum beats in Cu2O crystal, as was observe
experimentally in Refs. 11–15. The paper is organized
follows. In Sec. II the polariton dispersion laws in an exte
nal magnetic field are derived. There are three polari
branches in the Voigt geometry: when the polarization is p
allel to the external magnetic field and two in the perpe
dicular polarization. In Sec. III the time-integrated quantu
beats of two quadrupole polariton wave packets are stud
It is shown that the interference of two wave packets in
Voigt geometry leads to the propagation Hanle effect, wh
is, in particular, characterized by the frequency and wa
vector of the carrier waves and by the width and group
locity of the wave packets. We found that the time-integra
intensity of light on the rear side of the sample depends
the strength of the magnetic field due to different chann
One of them is the Zeeman splitting of the exciton level a
another is the difference of the wave vectors of the car
waves, which determines the value of the phase angleQ.
The phase angle plays the role of the argument of the p
odic functions, and due to this, a periodic dependence of
light intensity on the magnetic field strength appears. To
best of our knowledge this phenomenon has not been c
sidered before. In Sec. IV we compare the theoretical dep
dences obtained with the experimental results published
Kono and Nagasawa.19

II. QUADRUPOLE POLARITONS
IN AN EXTERNAL MAGNETIC FIELD

The exciton states, originating from 3d states of Cu1 ions
at the top valence bands of Cu2O crystal, are known to form
triply degenerate states of the irreducible representationG5

1

of the Oh group. They will be designated below asxy, xz,
3-3
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and yz. We introduce also the creation and annihilation o
erators of excitons,axy,k

† , axz,k
† , andayz,k

† , andaxy,k , axz,k ,
and ayz,k , wherek is the exciton wave vector. The dipol
momentsdxy,k , dxz,k , anddyz,k , describing the quadrupol
transitions from the ground state of the crystal into th
ortho-exciton states, depend on the componentski of the
wave vectork and on the unit orthogonal vectorsej , where
j 5x,y,z.20 The polarization vectorsek, j of the light with the
same wave vectork can be expressed through the unit ve
tors ei and obey to the transversality condition (ek, jk)50,
wherej denotes two light transverse polarizations.

Following Ref. 20 the dipole moments can be represen
as

dij ,k5
eAv0

V
•(

p
w~p2ak!•

1

v0
E

v0

ds•Uc,p* ~s!•s•U3d,ij ,p~s!

5B•~eikj1ejki !, ~6!

where iÞ j 5x,y,z. Due to the quadrupole character of th
quantum transitions, the dipole momentsdij ,k are propor-
tional to the componentski of the wave vectork multiplied
by the unit vectorej and vice versa. HereUc,p(s) and
U3d,i j ,p(s) are the Bloch functions of the conduction an
to
al

c-

th
ef

l

-

06430
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valence bands, whereasw(p) is the exciton wave function o
the relative electron-hole motion in momentum represen
tion. V and v0 are the volumes of the crystal and unit ce
correspondingly,a is the ratio of the electron massme to the
exciton translational massmex , and the constantB is propor-
tional to the exciton wave function of the relative motion
coordinate representationc(r ) at the pointr 50. Only small
values of translational wave vectorsk are considered, so tha
B>c(0)Av0, for kaex!1, whereaex is the exciton Bohr
radius.

The oscillator strengths of the corresponding quant
transitions are related to the square of the dipole momen

f i j ,k5
4pm0Eg

3e2\2
uBu2~eikj1ej ki !

2, ~7!

whereEg is the energy gap between the lower conduct
band and the top valence band of the crystal. The oscilla
strength depends on the orientations of bothk andek, j vec-
tors and was found to be equal tof 53.731029 in the actual
region of wave vectors. The Hamiltonian describing t
ortho-excitons interacting with the photons in the presence
an external magnetic field of the strengthH0 takes the form
H5(
k

Eor~k!@axy,k
† axy,k1axz,k

† axz,k1ayz,k
† ayz,k#1(

k
(
j 51

2

\ckck, j
† ck, j1

i g̃\e

2mc
G(

k
@H0,x~axz,k

† axy,k2axy,k
† axz,k!

1H0,y~axy,k
† ayz,k2ayz,k

† axy,k!1H0,z~ayz,k
† axz,k2axz,k

† ayz,k!#1(
k

(
j 51

2

wk@~dxy,k•ek, j !~ck, j
† axy,k1axy,k

† ck, j !

1~dxz,k•ek, j !~ck, j
† axz,k1axz,k

† ck, j !1~dyz,k•ek, j !~ck, j
† ayz,k1ayz,k

† ck, j !#. ~8!
n

ra-
HereEor(k) denotes the creation energy of the ortho-exci
with wave vectork, which is supposed to be the same for
three statesxy, xz, and yz. The creation and annihilation
operators of the photon with wave vectork and polarization
ek, j areck, j

† andck, j , respectively, wherej 51,2. In the ex-
pression~8! only the orbital Zeeman effect is taken into a
count, whereas the diamagnetic effect is neglected.

The orbital Zeeman effect of the exciton depends on
difference of electron and hole masses through the co
cient g̃5(mh2me)/(mh1me),

21 on the reduced exciton
massm5(mhme)/(mh1me), and on the constantG, which
can be expressed through the totalg factor of conduction and
valence electrons,ugc1gvu. The projections of the externa
magnetic fieldH0 are labeled asHo,i . The constantwk to-
gether with the dipole momentsdi j ,k determine the exciton
photon interaction. Its value equals approximately

~wk!2'
4pEg

v0e`
, c5

c0

Ae`

, ~9!
n
l

e
fi-

wherec andc0 are the light velocity in the medium and i
the vacuum, respectively, ande` is the background dielectric
constant.

The motion equations for the exciton and photon ope
tors are

i\
d

dt
axy,k5Eor~k!axy,k1

i\eg̃G

2mc
~H0,yayz,k2H0,xaxz,k!

1wk•(
j 51

2

~dxy,k•ek, j !ck, j ,

i\
d

dt
axz,k5Eor~k!axz,k1

i\eg̃G

2mc
~H0,xaxy,k2H0,zayz,k!

1wk•(
j 51

2

~dxz,k•ek, j !ck, j ,
3-4
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i\
d

dt
ayz,k5Eor~k!ayz,k1

i\eg̃G

2mc
~H0,zaxz,k2H0,yaxy,k!

1wk•(
j 51

2

~dyz,k•ek, j !ck, j ,

i\
d

dt
ck, j5\ckck, j1wk•@~dxy,k•ek, j !axy,k1~dxz,kek, j !axz,k

1~dyz,kek, j !ayz,k#. ~10!

Below these equations will be considered in two geometr
namely, in the Faraday and Voigt geometries. In the Fara
geometry the light wave vector, which is equal to the exci
wave vector, is parallel to the magnetic fieldkiH0iez . In this
case the dipole moments of the quadrupole transitions
come

dxy,k50, dxz,k5Bex•kz , dyz,k5Bey•kz . ~11!

The motion equations in the Faraday geometry have to
written separately for circular polarizationss6 with complex
polarization vectors (ex6 iey) denoted as (1,6 i ,0), corre-
spondingly

i\
d

dt
~axz,k6 iayz,k!5S Eor~k!7

\eg̃GH0,z

2mc
D ~axz,k6 iayz,k!

1Bwkkz~ck,16 ick,2!,

i\
d

dt
~ck,16 ick,2!

5\ck~ck,16 ick,2!1Bwkkz~axz,k6 iayz,k!,

i\
d

dt
axy,k5Eor~k!axyk . ~12!

The energy splitting of two orbital Zeeman compone
Eor,61(k)5Eor(k)6\vL can be represented in the form

\eg̃GH0,z

mc
5ugc1gvumBH0,z52\vL , ~13!

wheremB is the Bohr magneton andvL is the Larmor fre-
quency. The totalg factor was experimentally determined fo
Cu2O as 1.66~Ref. 19! and 1.78 according to Ref. 12. Tw
ortho-exciton statesEor7\vL are quadrupole active unde
the action of circularly polarized light withs6 polarizations,
correspondingly. The third state of the typexy with the mag-
netic numberm50 remains unchanged by the light becau
the dipole momentdxy,k is zero. The oscillator strengths o
the quadrupole transition in the pointk0, where \ck0
5Eor(k0), are

f xz,k0
5 f yz,k0

5
4pm0Eg

3e2\2
uBu2k0

2 , f xy,k50. ~14!

Let us consider the polariton dispersion branches in
Faraday geometry. In circular polarizations1 there are two
06430
s:
y

n

e-

e

s

e

e

polariton branches related to the exciton levelEor,21(k),
whereas in the circular polarizations2 there is another pair
of polariton branches related to the exciton levelEor,11(k).
Their dispersion curves are derived here without taking i
account the antiresonant terms. They can be described b
common formula but with different exciton energies a
magnetic quantum numbersm561, corresponding to differ-
ent Zeeman components quadrupole active in circular clo
wise and counter clockwise polarizations:

@\v2Eor,61~k!#~\v2\ck!5w2uBu2k2. ~15!

Two pairs of polariton branches are independent of e
other and correspond to different circular polarizations.
many aspects they are similar to the polariton branches in
case of dipole-active exciton states but with one essen
difference, which concerns the longitudinal-transverse sp
ting DLT proportional to the oscillator strength of the corr
sponding exciton quantum transition. In the dipole-act
caseDLT does not depend on wave numberk and it does not
vanish at the pointk50. In the quadrupole-active caseDLT
> f i j ,k>k2 and vanishes at the pointk50. But it is impor-
tant in the actual pointk0 of the intersection of the exciton
and photon branches determined by the equality\ck0
5Eor(k0). The value off i j ,k0

was determined asf i j ,k0
53.7

31029.
The dispersion relation of the quadrupole polariton

which was used in Ref. 12@expression~1! in Ref. 12#, differs
only slightly from formula ~15!. To make our dispersion
relation similar to the above mentioned, one can multiply
left-hand sides of the dispersion relations by the fact
@v1vor,61(k)#(v1ck)/v2, whereas the right-hand side
of the equation must be multiplied by factor of 4. It is th
most probable value of the factors introduced on the le
hand side and corresponds to the intersection pointk0, where
v>vor,61(k0)>ck0, and the relation Eor,61(k)
5\vor,61(k) was used. Using the definitions~7! and~9! of
the oscillator strength and of the coefficientwk

2 , introducing
the background dielectric constant«` instead of the value 1
which corresponds to the vacuum, and the plasmon
quency of the valence band electrons,

vp
25

4pe2

«`v0m0
5

~vp
0!2

«`
, ~16!

we obtain the final expression for the dispersion law, diel
tric constante(k,v), and square refractive indexn2(k,v):

e~k,v!5n2~k,v!5
c0

2k2

v2
5«`1

f or,61~k!~vp
0!2

vor,61
2 ~k!2v2

. ~17!

In the above expression (vp
0)2 is the square of the plasmo

frequency contrary to a similar expression in Ref. 12. S
posing that the measured value of the quadrupole trans
oscillator strength corresponds to the actual pointk0, one can
write f or,61(k0)53.731029. Then one can conclude tha
the numerator of the dispersion equation~17! is greater than
that in Ref. 12 by the factor (vp

0)2/c2k0
2 , which will be im-

portant for the following numerical estimations of the refra
3-5
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tive indexesn(k,v) and phase angleQ. Only in the case
vp

05c0k0 do these two expressions coincide.
The dispersion curves of two pairs of polariton branch

are presented in Fig. 1. The fifth branch is a pure exci
branch, which does not interact with the light. Each pair
polariton branches is related only to one Zeeman compo
and does not interact with other components. For exam
the polariton branches with the circular polarizations1 are
related to the Zeeman component with magnetic quan
numberm521 and vice versa. One can observe that eve
the absence of spatial dispersion, which means an infi
exciton translational mass (mex5`) at any frequencyv,
there are two polariton branches with opposite circular
larizationss6 and with different wave vectorsk6 . The spa-
tial dispersion effects lead to the appearance of additio
waves, as well as to the necessity to introduce additio
boundary conditions. We will not consider these effects.

Let us consider the dispersion laws in the Voigt geome
Here again the exciton and photon wave vectors are equ
each other and oriented along thez axis, kiezi^0,0,1&. The
magnetic fieldH0 is supposed to be parallel to thex axis,
H0iexi^1,0,0&. This meansH0,xÞ0 and kzÞ0 but other
components are zero. As previously, the dipole moments
dxz,k5Bkzex , dyz,k5Bkzey , anddxy,k50. The motion equa-
tions ~10! can be divided into two groups. One group co
tains only the photon operators withex polarization, and an-
other one contains only the photon operators withey
polarization. The first group consists of three equations

i\
d

dt
~axy,k1 iaxz,k!

5~Eor~k!2\vL!~axy,k1 iaxz,k!1 iwkBkzck,1 ,

FIG. 1. The dispersion curves of two pairs of quadrupole po
iton branches in the Faraday geometry and fors6 polarizations.
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i\
d

dt
~axy,k2 iaxz,k!

5~Eor~k!1\vL!~axy,k2 iaxz,k!2 iwkBkzck,1 ,

i\
d

dt
ck,15\ckck,12

iwkBkz

2
~axy,k1 iaxz,k!

1
iwkBkz

2
~axy,k2 iaxz,k!. ~18!

The second group consists of two equations. It involves
photon operator with polarizationey and the exciton state
with magnetic quantum numberm50. The equations are

i\
d

dt
ayz,k5Eor~k!ayz,k1wkBkzck,2 ,

i\
d

dt
ck,25\ckck,21wkBkzayz,k . ~19!

In the Voigt geometry there are three split Zeeman com
nents with magnetic quantum numbersm50,61 and with
corresponding energiesEor(k) and Eor,61(k)5\vor,61(k)
5Eor(k)6\vL . But contrary to the Faraday geometry the
are constructed from other components of the initial orth
exciton states. The polariton dispersion laws for two line
polarizations are completely different. In the parallel pol
ization exiH0i(1,0,0) the dispersion law consists of thre
branches

~v2ck!@v2vor,11~k!#@v2vor,21~k!#

5
wk

2uBu2k2

\2
@v2vor~k!#, ~20!

which is shown in Fig. 2~a!. The lower polariton branch
~LPB! is situated lower than the Zeeman compone
Eor,21(0), the upper polariton branch~UPB! is situated
higher than the Zeeman componentEor,11(0), whereas the
middle polariton branch~MPB! is situated between two Zee

-

FIG. 2. The quadrupole polariton branches in the case of
Voigt geometry:~a! The case of parallel polarization:~b! The case
of perpendicular polarization.
3-6
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man componentsEor,61(0). Thesplittings between the LPB
and MPB as well as between the MPB and UPB depend
the magnetic field and on the polariton effect. The splitti
between the UPB and LPB consists of two parts. One
them equals the splitting 2\vL between two Zeeman com
ponents and another part is determined by the polariton
fect and the spans of the polariton branches.

The dependencevupb(k) in the vicinity of the frequency
vor,11(0) can be obtained analytically in two limiting case
When Zeeman splitting is more important than the polari
effect, one can approximate the expression@v2vor,21(k)#
by 2vL and the difference@v2vor(k)# by vL . The disper-
sion law for the UPB in this approximation is

~vupb2ck!@vupb2vor,11~k!#5
wk

2uBu2k2

2\2
. ~21!

A similar simplification can be achieved in the range of t
LPB in the vicinity of the frequencyvor,21(0):

~v lpb2ck!@v lpb2vor,21~k!#5
wk

2uBu2k2

2\2
. ~22!

The dispersion laws~21! and ~22! look similar to Eq.~15!
and can be transformed into expressions of the type~17! but
with smaller by factor of 2 oscillator strengths, because
MPB situated between the frequenciesvor,61 becomes more
developed and spread. The oscillator strengths of the q
tum transitions are shared between two adjacent polar
branches. In the opposite limit of small magnetic field, wh
the Zeeman splitting is smaller than the polariton effect o
can put approximately (v2vor,61)>(v2vor) and may re-
duce Eq.~20! to Eq. ~23!, which will be discussed below. In
the perpendicular polarizationey'H0 there are two polariton
branches centered near the exciton frequencyvor(0), which
correspond to them50 Zeeman component. They have t
dispersion law

~v2ck!@v2vor~k!#5
wk

2uBu2k2

\2
, ~23!

which is shown in Fig. 2~b!. One can see from Fig. 2~a! and
2~b! that there is only one wave with a given frequency
each linear polarization if one neglects spatial dispersion
fects. There are two waves with the same frequency but w
different reciprocal perpendicular polarizationsex and ey .
Another feature is the existence of a large spectrum of gr
velocities on the UPB and LPB which alter in the interva
between the light velocity in the background and infinite
mal value when the translational exciton mass is infinite.
was mentioned above only this case will be considered
low. Unlike this the MPB in Fig. 2~a! has only small group
velocities incomparable with the light velocityc and with the
group velocities on the actual parts of the UPB and LPB. J
on these regions designated by loops is it possible to find
wave packets with the same but considerably large gr
velocities comparable with the light velocityc.
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III. INTERFERENCE OF POLARITON WAVES
AND WAVE PACKETS

In this section the main attention will be given to th
time-integrated interference effect of two wave packets w
the same group velocity in the Voigt geometry. We will sho
that this process gives rise to the propagation Hanle ef
and can explain the experimental results by Kono a
Nagasawa.19

For the beginning it should be noticed that in the case
Faraday geometry the interference of two waves with
same frequenciesv and amplitudesA, but with different cir-
cular polarizationss6 and wave vectorsk6 gives rise to one
linearly polarized wave. Its polarization plane is determin
by the azimuth anglew(z), which linearly changes its value
in different pointsz along the propagation direction,22 which
is known as the Faraday effect:

w~z!5
k22k1

2
z5

@n2~v!2n1~v!#v

2c0
z, k65

n6~v!v

c0
.

~24!

The refractive indexesn6(v) can be found using the dispe
sion relation ~17!. For the parametersd50,1 cm, v/c0
5105 cm21, andDn5n2(v)2n1(v)51024 we will find
the azimuthw(d)50,5 rad. In the Voigt geometry the inter
ference of two monochromatic waves with the same f
quency and amplitude, but with different wave vectorsk1
and k2 and polarizationsex and ey , correspondingly, gives
rise to a resultant wave propagating along thez direction
with the same frequency but with a compound effective p
larization

ee f f5
1

A2
~ex1ei (k22k1)zey!. ~25!

It changes its character and orientation, becoming linea
the type (ex6ey)/A2 or circular of the type (ex6 iey)/A2 in
some points of the propagation direction, where the ph
(k22k1)z equals 2pm, p(2m11) and (2m11)p/2, corre-
spondingly. Similar polarization leads to a Sisyfus-type co
ing effect in the case discussed in Ref. 23, promoting
realization of Bose-Einstein condensation of the alkali at
gases.24 Figures 2~a! and 2~b! demonstrate that the most pro
nounced effect can be expected when the frequencyv lies in
the spectral interval between the Zeeman componentsm5
61, where the difference (k22k1) is maximal.

We will consider now the interference of two wave pac
ets with the same polarization and with the same group
locity, which is important for the propagation Hanle effec
The normalized one-dimensional wave packet can be c
structed following Ref. 25 with the dispersion law of th
wave frequencyv(k) taken into account. Notice that in sam
cases the dispersion of the damping constantg(k) also can
be important and it will be taken into account from the ve
beginning to find the conditions when this dependence ca
can not be neglected@see, e.g., Ref. 26 about the polarito
damping constantsg(k)].

Let us introduce the wave packet as follows:
3-7
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E~z,t !5
1

2DkEk02Dk

k01Dk

E~k!e2 iv(k)t1 ikz2g(k)tdk

>E~k0!e2 iv(k0)t1 ik0z2g(k0)t
@ei (x2 i j)2e2 i (x2 i j)#

2i ~x2 i j!
,

~26!

where we used the power series expansion of the disper
law v(k) and of the damping functiong(k) in the vicinity of
the pointk0 and the notationx andj,

v~k!5v~k0!1vg~k0!~k2k0!, g~k!5g~k0!1s~k0!~k

2k0!,

vg~k0!5
dv~k!

dk Uk5k0
, s~k0!5

dg~k!

dk U
k5k0

,

x5Dk@vg~k0!t2z#, j5Dks~k0!t. ~27!

One can neglect the dispersion ofg(k) if it changes slowly
along the wave packet width 2Dk as well as if it changes
more slowly than the frequencyv(k) in the same region o
wave vectors. This means that the following conditions m
be satisfied:

us~k0!u,
g~k0!

2Dk
, vg~k0!@us~k0!u. ~28!

Taking into account that the decay time of the wave pac
and its coherence~or dephasing! time is @tc51/2g(k0)#, one
can conclude that during the most important period of ti
when the interference effect and quantum beats take pl
the variable j(tc)5Dks(k0)tc5Dks(k0)/2g(k0) is less
than unity. This permits to use the power series expansio
the typee6j516j and to transform Eq.~26! as

E~z,t !5E~k0!e2 iv(k0)t1 ik0z2g(k0)t

3H x sinx

x21j2
1

ixj

x21j2 S sinx

x
2cosxD J . ~29!

For a sufficiently high values of the group velocity,vg(k0)
.2g(k0)d, one can putx>vg(k0)tDk and arrive at the in-
equality x.j in correspondence to the conditions~28!. In
these limits and taking into account the accepted restrictio
the wave packet~29! will be used in the simplified form

E~z,t !5E~k0!e2 iv(k0)t1 ik0z2g(k0)t
sinx

x
. ~30!

According to Eq.~30! the one-dimensional wave packet
represented as a product of two parts, one of them being
carrier wave with the frequencyv(k0), dampingg(k0), and
wave numberk0. The other part (sinx)/x plays the role of the
envelope function. The envelope function depends on
group velocityvg(k0) and on the wave packet widthDk.

To verify the fulfillment of the conditions~28! we will
start with the simplified Hamiltonian~8!, taking into account
only one quadrupole-active exciton state of the type
06430
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Hex2ph5(
k

@\vor~k!ak
†ak1\ckck

†ck

1\ck~ak
†ck1ck

†ak!#, ~31!

where the exciton-photon interaction constant\ck
5wk(dkek) is determined by Eqs.~9! and~11!. At small den-
sity of impurities and at low density of excitations the on
source of the exciton and polariton state damping is
phonons. The exciton-lattice interaction has the form27–29

Hex-l5
i

ANa
(
q,k

Q~q!ak
†ak¿q~bq

†2b2q!, ~32!

where the interaction constantQ(q) is given by the expres-
sions ~32!–~34!.27 Tait and Weiher26 used a simplified ex-
pression forQ(q), which in the case of acoustical phonon
has the form (2\q/9Duv0)1/2C, whereD is the crystal den-
sity, u is the sound velocity,v0 is the unit cell volume, and
Na is the number of unit cells in the crystal of volumeV
3(V5Nav0). C is the difference between the deformatio
potentials for electronCe and for holeCh(C5Ce2Ch).

The polariton states can be introduced into the Ham
tonian ~31!, using the polariton operatorsj1,k and j2,k , in-
troducing the unitary transformation coefficientsuk and vk
and the polariton dispersion lawsv1(k) and v2(k) as fol-
lows:

ak5ukj1,k1vkj2,k , j1,k5ukak2vkck ,

ck5ukj2,k2vkj1,k , j2,k5ukck1vkak ,

uk
25

1

2 S 12
Dk

Vk
D , vk

25
1

2 S 11
Dk

Vk
D , uk

21vk
251,

Dk5vor~k!2ck, Vk5ADk
214ck

2,

v1~k!5
vor~k!1ck

2
2

1

2
Vk ,

v2~k!5
vor~k!1ck

2
1

1

2
Vk . ~33!

Here we marked the LPB and UPB by the numbers 1 an
respectively. One can observe that the coefficientsuk

2 are
small in the regionk,k0 and approach unity in the regio
k>k0, wherek0 is the intersection point of noninteractin
exciton and photon branches and corresponds toDk0

50. The

coefficientsvk
2 have an opposite behavior.

The polariton-phonon interaction is described by the f
lowing Hamiltonian:

Hp2 l5
i

ANa
(
k,q

Q~q!@ukuk1qj1,k
† j1,k1q1ukvk1qj1,k

† j2,k1q

1vkuk1qj2,k
† j1,k1q1vkvk1qj2,k

† j2,k1q#~bq
†2b2q!.
3-8
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Each damping coefficient consists of two partsg i(k)
5g i ,1(k)1g i ,2(k). One of them corresponds to intrabran
scattering, whereas another component corresponds to i
band polariton-phonon scattering.

The damping coefficientsg i(k) can be calculated usin
the Green’s function method, which determines the s
energy part((k,v) and its imaginary partg(k,v). In the
case of exciton-phonon interactions it was made in R
27–29. Another way is to calculate the probabilitiesG i(k) of
the scattering of the polaritons of the correspond
branches. This method was used by Tait and Weiher26 for
both polariton branches in the crystals of the type CdS w
considerable polariton effect. They took into account the
traband and interband scatterings on the acoustical pho
for both polariton branches. The relations between the fu
tions calculated by two methods are

G i~k!52g i~k,v!uv5v i (k)52g i~k!,

G i~k!5(
j 51

2

G i , j~k!, g i~k!5(
j 51

2

g i , j~k!, i 51,2.

In the case of the LPB Tait and Weiher26 found that atT
50 the only contribution toG i(k) results from the term

G11~k,T50!5
8C2k2mex

27pDu\2
, k>k0 .

The dampingG11(k,T50) is even smaller in the rang
k,k0.

Using this expression the dampingg1(k0) and its deriva-
tive s1(k0) can be calculated. For the parametersD
55 g/cm3, u5105 cm/s; C510 eV; andk05105 cm21

one finds G11(k0)>1,63109 s21, \G11(k0)>1 meV,
which is close to the values estimated for quadrupole pol
tons in Cu2O. For the case of the UPB, the damping coe
cientG21(k) is more important but it was not calculated in
way allowing the numerical estimate.26 Now one can esti-
mate the derivatives1(k0)5G11(k0)/k051,63104 cm/s,
which is much smaller than the light velocityc and vg(k0)
'109 cm/s and satisfies one of two conditions~28!. The
second condition~28! is satisfied for wave packet width
Dk,g(k0)/s(k0)553104 cm21. The widths of the wave
packet of interest does not exceed 102 cm21. The above
discussed simplification for the variablex in the crystals of
thicknessd50,5 cm can be made only in the case of wa
packets with group velocityvg(k0)>109 cm/s. The above
estimations allow us to conclude that the approximation
are using is justified for the particular case of quadrup
polaritons in Cu2O crystals.

Tait and Weiher26 noticed that in the expression for th
probability,G2(k)5G22(k)1G21(k), the termG22(k) is very
small because for the case of intraband scattering the
states belong to the photonlike region of the UPB where
group velocity is large but the density of states is small
was shown in Ref. 30 that the density of states in the gi
point of the polariton dispersion law is inversely proportion
to its group velocity. Thus, the main contribution toG2(k)
belongs to the probabilityG21(k).26 Though the numerica
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estimate of the probabilityG21(k) has not been done, th
experiment by Ref. 31 indicates a very small dampings
the UPB. In Ref. 31 the needlelike luminescence line in
frame of the UPB was observed in the ZnTe crystal. T
very sharp luminescence line, observed at the bottom of
UPB near the frequencyv i , testifies to the existence of ver
small dampings on the UPB.

Below the interference of two one-dimensional wa
packets with different carrier waves and envelope functio
will be taken in the form of the wave packet, Eq.~30!,

E~z,t !5E1~k1!
sinx1

x1
e2 iv1(k1)t1 ik1z1 iw12g1t

1E2~k2!
sinx2

x2
exp2 iv2(k2)t1 ik2z1 iw22g2t, ~34!

where v i(ki), ki , g i5g i(ki), Dki , and xi5@vg,i(ki)t
2z#Dki , and i 51,2.

For coherent laser radiation, in the presence of a cohe
macroscopic polariton wave, the polariton damping consta
g i were studied in Refs. 32, 27, and 33. The steady-s
solutions of the kinetic equations describing the mean oc
pation numbers of the scattered polaritons as well as of
Fokker-Planck equation describing the coherently exci
polaritons of one selected mode of the crystallite were
tained in Refs. 32 and 27, taking into account the polarit
polariton interaction. The coefficients of these equations
pend on the dispersive and absorptive self-energy pa
which determine the energy spectrum of the interacting
laritons and their damping coefficients. They are determin
by the participation of four polaritons in the scattering pr
cess, two in the initial state and two in the final state. Wh
both two initial polaritons belong to the selected mode a
have the same wave vectork0, the scattered polaritons hav
the wave vectorsk06k. Such a conversion becomes possib
only for well-defined initial and final states due the co
straints imposed by energy and momentum conserva
laws.27 If between four polaritons only one belongs to th
selected mode, the conservation laws can be satisfied ea
The case of the polariton-phonon interaction was inve
gated by Keldysh and Tikhodeev,33 taking into account the
Stokes and anti-Stokes scattering processes with the pa
pation of the acoustical phonons. The stimulat
Mandelstam-Brillouin scattering process was revealed. N
merical estimates of the relevant coefficients for the case
excitons in CdS crystals and polariton-polariton interact
were discussed in Refs. 32 and 27. For the case of qua
pole polaritons in Cu2O crystals, one can notice that there a
two estimates of the summary damping constant 2g5g1
1g2 equal to 8.8meV ~Ref. 19! and 0.9 meV ~Ref. 12!. It
is important that the interference term playing the main r
in the Hanle effect depend only on the summary damp
constant, as will be seen below, and not depend on the da
ing constantsg1 and g2 separately. In our calculations w
will use the experimental results of both Refs. 12 and 19

The intensity of the electric field is
3-9
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I ~z,t !5I 1~k1!
sin2 x1

x1
2

e22g1t1I 2~k2!
sin2 x2

x2
2

e22g2t

12AI 1~k1!I 2~k2!
sinx1

x1

sinx2

x2
cos~Vt2Q!e22gt,

~35!

where

V5v2~k2!2v1~k1!, Q5~k22k1!z1~w22w1!,

2g5g11g2 . ~36!

As was shown in Refs. 11–15, the propagation quan
beats take place only between two wave packets with
same group velocity. They propagate from the illumina
side to the rear side of the sample, achieving the latter sim
taneously and taking part in the quantum interference p
cess. By this reason we will consider below only the case
wave packets with the same group velocity,

vg,1~k1!5vg,2~k2!5vg . ~37!

For the sake of simplicity we will consider only the wav
packets with the same width in the space of wave numb
and putDk15Dk25Dk. The time integral of the expressio
~35! determines the time-averaged intensity of the light em
ted by the illuminated side of the crystal and propagated
the rear side of the sample at the distancez5d, where the
analyzer is located. The resultant interference effects dep
essentially on the value of the crystal thicknessd. One can
note that the interference takes place between many pai
wave packets and each of them has a proper group velo
If they start at the same time on the illuminated side, th
will arrive at the rear side with different time delays. Th
fact was observed experimentally in Cu2O crystal, where the
propagation quantum beats of quadrupole polaritons w
revealed for the first time.11–15The group velocity along the
polariton branches changes in a wide interval of values.
example, on the LPB in the range of wave numbersk smaller
than the wave numberk0 of the intersection of noninteract
ing exciton and photon branches the group velocities
large and comparable with the light velocity, whereas in
rangek.k0 they are small or practically zero, if the spati
dispersion effects can be neglected. Contrary to this, on
UPB the group velocities fork.k0 are of the order of the
light velocity, whereas in the rangek,k0 they are small.
Even in the absence of the spatial dispersion the UPB
persion curve in this region is quadratic. By this reason t
wave packets—one lying on the UPB and another on
LPB, being chosen with a large and equal group velocity
will have a significant frequency splitting. They will arriv
first at the rear side and will result in quantum beats w
relatively small periods of oscillation. They determine t
initial stage of the time-resolved evolution of the propagat
quantum beats. Two polariton wave packets with sma
group velocities will have a smaller frequency splitting. Th
will arrive at the rear side of the sample, if starting at t
same time on the illuminated side, with larger time del
and will result in quantum beats with greater periods of
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cillation. This difference of the oscillation periods at the in
tial and final stages of the time-resolved quantum beat e
lution stimulated the authors of Refs. 11–15 to introduce
notation of propagation quantum beats.

We consider pairs with large group velocities, when th
propagation time through the sample is shorter than the
herence time. In this case the scattering processes ca
neglected. At the same time new features of the propaga
quantum beat and time-integrated evolutions appear. The
havior of the wave packets with small group velocities a
propagation times larger than the coherence time mathem
cally does not differ from the case of two monochroma
waves. But their interference will be destroyed by the sc
terings along the propagation way. These wave packets
not contribute to the propagation Hanle effect. There exis
cutoff from below for the group velocity of the wave pac
ets. The cutoff value depends on the sample thickness.
time integral of the expression~35! cannot be calculated ex
actly due to the envelope functions. Taking into account t
the coherence timetcoh and the corresponding damping co
stant 2g determine the time interval, which gives the ma
contribution to the time integral, one can consider two lim
iting cases. For the case of small group velocityvg,2gd,
when the propagation time is larger than the coherence t
tpr.tcoh , the argument in Eq.~35! can be simplified:

x5~vgt2d!Dk'~vgtcoh2d!Dk>2d Dk. ~38!

In the opposite case of large group velocityvg.2gd and for
tpr,tcoh an estimate forx is

x5~vgt2d!Dk'vgDk t. ~39!

In the first casetpr.tcoh , the time-integrated expressio
~35! is similar to the case of two monochramatic wave
except for an additional constant factor. It follows from th
fact that the wave packets with small group velocities
smooth and nearly monochromatic. In this case the final
pression for the time integral is

2gE
0

`

I ~d,t !dt

5
sin2~dDk!

~dDk!2 F I 1

g

g1
1I 2

g

g2

12AI 1I 2S cosQ
~2g!2

V21~2g!2
1sinQ

2gV

V21~2g!2D G ,

~40!

where

V5v2~k2!2v1~k1!, Q5~k22k1!d1w, w5w22w1 .
~41!

The phase angleQ in Eqs. ~41! depends on the differenc
between the wave numberski , which determine the propa
gation of the considered waves. To select their values i
necessary to have a supplementary condition, which we
discuss below. But even now, one can expect that the ph
3-10
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angleQ will depend on the strength of the magnetic fie
H0. For the large group velocityvg.2gd, the time-
dependent expressionI (d,t) can be obtained using
the dimensionless variablet5vgDk t and the approximation
x't:

I ~p,pi ,Q,t!5
sin2t

t2
@ I 1e2p1t1I 2e2p2t

12AI 1I 2~cosQ cosbt1sinQ sinbt!e2pt#,

~42!

where we used the designations

p5
2g

vgDk
, pi5

2g i

vgDk
, b5

V

vgDk
. ~43!

To find the time-integrated expression~42! we will use Ref.
35 as well as the method proposed by Khadzhi,34 to obtain
the following formula:

J~p,pi ,Q,b!5p$I 1Jc~p1,0!1I 2Jc~p2,0!

12AI 1I 2@cosQ Jc~p,b!1sinQ Js~p,b!#%.

~44!

Integrals in Eq.~44! are

Jc~p,b!5E
0

`sin2x

x2
cosbx exp~2px!dx

5
b12

4
arctan

b12

p
1

b22

4
arctan

b22

p

2
b

2
arctan

b

p
1

p

8
ln

p21b2

~b12!21p2

1
p

8
ln

p21b2

~b22!21p2
, ~45!

Js~p,b!5E
0

` sin2x

x2
sinbx exp~2px!dx

5
p

4
arctan

b12

p
1

p

4
arctan

b22

p
2

p

2
arctan

b

p

1
b12

8
ln@~b12!21p2#1

b22

8
ln@~b22!21p2#

2
b

4
ln~b21p2!. ~46!

These expressions but without a square of the envelope f
tion are35
06430
c-

2gE
0

`

exp~22gt !cosVt dt5
~2g!2

V21~2g!2
,

2gE
0

`

exp~22gt !sinVt dt5
2gV

V21~2g!2
. ~47!

Equation~44! can be applied in both cases of light polariz
tion ex andey . However, forex polarization the energy split
ting between the polariton branches in Fig. 2 is determin
by the Zeeman and polariton effects and increases with
increase of the magnetic fieldH0. In case ofey polarization
V andb do not depend onH0 and are determined only by th
polariton splitting. As was mentioned above, the express
~40! as the function ofV has an explicit quasiresonant form
Similar structure but with one essential difference has
~44!. Namely in Eq.~40! the valueV is comparable to the
damping 2g, whereas in Eq.~44! the parameterb is deter-
mined by Eq.~43!. It shows that the splittingV is divided by
the wave packet spectral widthvgDk. This feature becomes
clear if we use the power series expansions of the integ
Ji(p,b):

Jc~p,0!5arctan
2

p
1

p

4
ln

p2

~p214!
,

Jc~p,b→0!5Jc~p,0!2
b2

p~p214!
,

Js~p,b→0!5
b

4
ln

~p214!

p2
,

lim
b→`

Ji~p,b!50, i 5c,s. ~48!

Then the light intensityJ(p,Q,b) depends on the dimension
less variableb→0 as

J~p,piQ,b→0!

5p@ I 1Jc~p1,0!1I 2Jc~p2,0!12AI 1I 2cosQJc~p,0!#

12AI 1I 2F2cosQ
b2

p214
1sinQ

b

4
p ln

p214

p2 G . ~49!

In the opposite limitb→`, we find

lim
b→`

J~p,pi ,Q,b!5p@ I 1Jc~p1,0!1I 2Jc~p2,0!#. ~50!

To obtain an increasing dependence ofJ(p,pi ,Q,b) on b,
with a very slight asymmetry, as was observed experim
tally by Kono and Nagasawa,19 it is necessary to suppos
that the following inequalities cosQ,0 and sinQ >0 hold.
The validity of these inequalities will be discussed in Sec.
geometry.
3-11
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IV. FREQUENCY SPLITTING AND PHASE ANGLE
IN VOIGT GEOMETRY

The frequency splittingV and phase angleQ in the Voigt
geometry andex polarization can be determined on the ba
of the third-order equation~20!. The dispersion laws in the
ranges of the UPB and LPB can be determined appr
mately on the basis of the more simple Eqs.~21! and ~22!
with one-half of the oscillator strength in the case of a stro
magnetic field and on the basis of an equation of the t
~23! with full oscillator strength in the case of a weak ma
netic field. Both these limiting cases can be united in
form of Eqs.~21! and~22! with effective oscillator strengths
They will be determined using the perturbation theory wh
the polariton effect exceeds the Zeeman splitting. Equa
~20! in the range of the UPB can be rewritten in the form

~vu2ck!~vu2vor,11!5
F0~k!

4

~vu2vor!

~vu2vor,21!
, ~51!

where the constantF0(k) is related to the oscillator strengt
of the exciton quadrupole transitionf (k) as follows:

f ~k!vp
2

4
5

wk
2uBu2k2

\2
, F0~k!5 f ~k!vp

2 . ~52!

This definition of f (k) differs by a factor ofp/3 from the
early introduced expressions~7! and~14!. Here the light ve-
locity and the plasma frequency are taken in the mediu
whereas in Eq.~17! their vacuum values are used. The ze
order approximation in the case of a weak magnetic fi
permits us to write the equation for the UPB in the form~21!.
The most actual values of the UPB lie in the vicinity of th
point ku,0 , which obeys the equalitycku,05vor,11. At this
point the UPB frequency equalsvu(ku,0)5vor,11

1 1
2 AF0(ku,0). The valueAF0(ku,0) determines the role o

the polariton effect in the vicinity of the pointku,0 , where
the propagating wave packets are selected. Substitu
vu(ku,0) into the right-hand side of Eq.~52!, we obtain the
dispersion equation in the first-order approximation. T
right-hand side of Eq.~52! becomes

F~k!

4
5

F0~k!

4

AF0~ku,0!12vL

AF0~ku,0!14vL

5
F0~k!

4
h~H0 ,ku,0!,

h~H0!5h~H0 ,k0!5
AF0~k0!12vL

AF0~k0!14vL

. ~53!

A similar result can be obtained for the LPB in the vicinity
the point kl ,0 , where ckl ,05vor,21 and v l(kl ,0)5vor,21

2 1
2 AF0(kl ,0). The two expressionsh(H0 ,ku,0) and

h(H0 ,kl ,0) are substituted by a single expressionh(H0)
with the same wave vectorku,0.kl ,0.k0, whereck05vor .
The difference of three points is small in the range of m
netic fields, where the inequality 2vL<AF0(k0) holds. The
frequencies and wave numbers are designed asvu andku on
the UPB andv l andkl on the LPB, correspondingly. In th
first-order approximation they obey
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~vu2cku!~vu2vor,11!5
f ~k!vp

2

4
h~H0!,

~v l2ckl !~v l2vor,21!5
f ~k!vp

2

4
h~H0!. ~54!

Using Eqs.~54! one can find the approximate dispersio
laws on the UPB and LPB inex polarization:

vu~ku!5
cku1vor,11

2
1

1

2
A~cku2vor,11!21F,

v l~kl !5
ckl1vor,21

2
2

1

2
A~ckl2vor,21!21F. ~55!

Below, the dependencef (k) on k will be neglected becaus
the derivatived f(k)/dk is small in the range of smallk. We
are interested in the values ofku and kl not so far situated
from the pointk0 corresponding to the intersection of th
exciton and photon branchesck05vor . Then the group ve-
locities on two branches are

vg,u~ku!5
c

2
1

c

2

cku2vor,11

A~cku2vor,11!21F
,

vg,l~kl !5
c

2
2

c

2

ckl2vor,21

A~ckl2vor,21!21F
. ~56!

Now we can determine the parameters of two wave pac
with the same group velocities. The starting condition is
equality

vg,u~ku!5vg,l~kl !5vg5
c

2
~11x!, ~57!

where 0<uxu,1. The wave numbers and frequencies a
determined by

cku2vor,115
x

A12x2
AF,

ckl2vor,2152
x

A12x2
AF ~58!

and

vu~ku!5vor,111
1

2
A11x

12x
AF,

v l~kl !5vor,212
1

2
A11x

12x
AF. ~59!

The frequency splittingV(x) and phase angleQ(x) depend
on the group velocity parameterx:

V~x!5vu~ku!2v l~kl !52vL1A11x

12x
AF, ~60!
3-12
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Q~x!5~ku2kl !d1w5
2vLd

c
1

2xd

cA12x2
AF1w, ~61!

where

AF5vpAf ~k0!h~H0!, f ~k0!53.731029,

2\vL5ugc1gvumBH0 , 0<uxu,1, w52p. ~62!

In case of the Voigt geometry andey polarization formulas
similar to Eqs.~61! and ~62! may be used withvL50 and
h(H0)51. One can see that inex polarization the frequency
splitting V(x) consists of two positive parts. One is dete
mined by the magnetic field, and the other one is determi
by the polariton effect and depends on the sign ofx. The
phase angleQ(x) consists of three parts including the initi
difference of phasesw and two propagation parts, which de
pend on the magnetic field, on the polariton effect, and
the thickness of the crystald. This means that for the sam
value ofx, the phase angleQ and the resultant quasiresona
or periodic behavior of the light intensity is different in th
crystals of different thicknesses depending on the magn
field strength. Now we will use the model of the quadrupo
polariton in Cu2O crystal discussed in Ref. 12. It is chara
terized by the span of the polariton branches and by
splitting between the UPB and LPB. In the intersection po
k0 of the bare 1S, G5

1 exciton level and photon branch th
value of this splitting was evaluated approximately
100 meV. The homogeneous dampingG52g in this model
was taken to be 0.9meV and the totalg factor ugc1gvu was
taken as 1.78. We will see how these parameters can
changed to obtain better agreement with the experiment.
difference of phasesw5w22w1 of two coherent polariton
waves is2p in the case of condensed mixed states of ex
tons and photons.27,36 It is the same in our case, because t
properties of coherent macroscopic waves and class
waves coincide. Gathering the expressions~44!, ~45!, ~61!,
and ~62! one obtains the full set of necessary formulas
scribing the propagation Hanle effect. For the sake of s
plicity we will put I 15I 25I andp15p25p and will calcu-
late the expression

A[
J„p~x!,Q~x,y!,b~x,y!…

2Ip~x!

5Jc„p~x!,0…1cosQ~x,y!Jc„p~x!,b~x,y!…

1sinQ~x,y!Js„p~x!,b~x,y!…. ~63!

The expressionsQ(x,y), b(x,y), andp(x) are

Q~x,y!5Q~x,y;z,s!5zF0.7y1
13.56xs

A12x2
As10.1y

s10.2yG1p,

b~x,y!5b~x,y;q,s!5qF 0.028y

~11x!
1

0.271s

A12x2
As10.1y

s10.2yG ,

p~x!5p~x:q,r !5
2.4431023qr

11x
, ~64!
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wherey and the parametersx, q, r, ands and z are intro-
duced as follows:

H050.1yT5103y G, d50.5z cm,

vg5
c

2
~11x!, c5

c0

Ae`

, e`56.5,

vg50.5931010~11x! ~cm/sec!,

Dv5vg Dk55.931011
~11x!

q
~sec21!,

Dk5
102

q
~cm21!,

2\g50.9r ~m eV!, 2g51.443109r ~sec21!,

AF5AF0h~H0!, \AF05100s ~m eV!,

AF051.6s31011 ~sec21!,

h~H0!5
s10.1y

s10.2y
, ugc1gvu51.78,

mB50.93310220 ~cgs!,

tpr5
0.85310210z

11x
~sec!, tcoh5

7

r
10210 ~sec!,

2vL51.655y31010 ~sec21),
2vL

Dv
50.028

q•y

11x
,

AF0

Dv
50.27

qs

11x
. ~65!

Snoke, Wolfe, and Mysyrowicz37 observed the anomalou
ballistic 1sY exciton propagation and the existence of sta
envelope wave packets below some critical temperature
given level of excitation as well as above some critical le
of excitation at a given temperature in Cu2O crystal~see also
papers by Fortinet al.,38 Mysyrowiczet al.,39 and Fortin and
Mysyrowicz40!. The wave number widthDk of these wave
packets was about 102 cm21. In our theoretical evaluation
of Dk we take the same order of magnitude. From Eqs.~62!,
one can see that the trigonometric functions change peri
cally as a function of the magnetic field strengthH0. This
periodicity approximately has the period

DH05
2p\c

dugc1gvumB
, ~66!

which means a periodicity of the trigonometric functions
dependence on the variabley with the periodDy equal to 9,
when the thickness of the sampled equals to 0.5 cm and the
total g factor equal to 1.78. This can be observed when
magnetic field strength changes in intervals of 1 T. Whend
50.1 cm, the periodDy equals 45 and the periodicity ca
3-13
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be observed only in the much greater interval of the m
netic field, about 4.5 T. Let us illustrate this by the numeri
example shown in Fig. 3. We start with the cased50, when
the propagation effects are completely excluded. The ph
angleQ equalsp, which guarantees the increasing charac
of the quasiresonant dependence onH0. But the slope of this
dependence is small; see Eq.~44! for a definition of the
parameterb. Whend increases and equals to 0.1 cm, whi
meansz50.2, the character of the dependence remains
same but with increasing slope. This means that the per
icity appears, though the periodDy545 is very large. Other
parametersx, r, q, ands have a negligible influence. In Fig
4 two curves corresponding toz50.5 andd50.25 cm are
shown. They demonstrate explicitly the appearance of
periodic dependence with the periodDy518, which prevails
over the quasiresonant behavior. Now the influence of o
parameters is considerable. For example, the increase o
damping constant by one order of magnitude (r 510) leads
to the decrease of the amplitude of the oscillations, wher
the change of the group velocity parameterx influences on
the starting value of the resultant curve at the pointH050.
More evident periodic dependence is demonstrated by t
curves in Fig. 5. They correspond toz51, which meansd

FIG. 3. The light intensity vs the magnetic field strength. Line
corresponds tox50.1, q51, s51, z50.2, andr 51. Line 2 cor-
responds tox520.2, q51, s50.2, z50.2, andr 510. Line 3
corresponds tox50.1, q51, s51, z50, andr 51.

FIG. 4. The light intensity vs the magnetic field strength. Line
corresponds tox520.2, q51, s50.2, z50.5, andr 510. Line 2
corresponds tox50.1, q51, s51, z50.5, andr 510.
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50.5 cm and the periodDy59. This periodicity can be ob-
served when the magnetic field strength changes in the in
val of 1 T. In this case influence of the parametersx, q, r, and
s is much more important and even can change the slo
sign at the initial part of the curve. If one compares t
curves in Figs. 3, 4, and 5 with the experimental results19

one can notice that only the quasiresonant dependence i
interval of about 0.5 T was observed though the sam
thickness was considerable,d50.5 cm. We believe that for
such thicknesses the periodic dependence could be obse
A possible explanation of this discrepancy is the necessit
take into account the time needed for the quadrupole po
iton formation. It is determined by (AF)21 and the order of
magnitude is 10211 sec. During this time light propagate
about 0.1 cm. Presumably, the quadrupole polariton w
packets appear after the band-to-band transition and elec
hole pair creation with such a time delay and begin to pro
gate, starting on the inner surface inside the crystal, but
on the external illuminated side, as one can expect. By th
reasons the effective propagation way for them can be
than the crystal thickness.

The developed theory is applicable if the main conditi
vg.2gd holds. This means the existence of a group veloc
cutoff from below, so that the propagation time is less th
the coherence timetpr,tcoh . In all the cases considered i
Figs. 3, 4, and 5 these conditions fulfilled. Another conditi
is the restriction of comparably small magnetic fields det
mined by the inequality 2vL<AF0(k0). This means that the
polariton effect even in the case of quadrupole transitio
prevails Zeeman splitting of the ortho-exciton level. All ne
essary parameters describing this system are given by
~66!. The magnetic field strengths up to 1 T obey this
quirement. In the experiment19 the magnetic field was inside
the above-mentioned interval, but the calculations w
made for the values of 2 T, where, strictly speaking, t
approximation~54! is not applicable, but can be treated as
extrapolation. Another problem is the possibility to take in
account simultaneous propagation of many pairs of w
packets with different group velocities, obeying the main c
terion discussed above. These aspects will be studied e
where.

FIG. 5. The light intensity vs the magnetic field strength. Line
corresponds tox50.1, q51, s51, z51, andr 51. Line 2 corre-
sponds tox50.5, q51, s51, z51, andr 51. Line 3 corresponds
to x520.5, q51, s51, z51, andr 51.
3-14
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