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A generalized theory of the Hanle effect is developed for the case of propagation quantum beats. Time-
integrated quantum beats of two polariton wave packets with the same group velocities and polarizations
belonging to two different Zeeman components in Voigt geometry of the quadrupole-active ortho-&Xciton
level in Cy,0 crystal give rise to the propagation Hanle effect. It is characterized by a quasiresonant depen-
dence of the emitted light intensity on the magnetic field strength, as well as by a supplementary periodic
dependence. This dependence originates from the difference of the wave vectors of the carrier waves. It has a
period inversely proportional to the sample thickness and can be observed when the propagation way is larger
than the light wavelength and the propagation time is shorter than the dephasing time. The interference of two
monochromatic waves with the same frequencies and amplitudes but with different polarizations in both
Faraday and Voigt geometries is also considered. The dispersion laws of five polariton branches with different
polarizations in both geometries are obtained. The theory developed with account of the effective propagation
way explains recent experimental results on quantum interference,i@.Cu
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[. INTRODUCTION Zeeman triplet with orbital quantum numblet 1 and mag-
netic quantum numbeny=0,*=1. Polariton effects are ne-
Many years ago Hantediscovered a phenomenon which glected at the beginning. Their influence is the main issue of
soon became known as the Hanle effect. It concerned théhis paper. The exciton Zeeman triplet has eigenfunctions
optical properties of Hg atomic gas placed into an externall,m) of the form
static magnetic field and excited by a polarized resonant ra-
diation. The polarization plane of the secondary radiation
emitted by the atoms was turned as compared with the initial
excitation polarization and the scattered light was depolar-
ized. The polarization properties of the secondary radiatiodhe corresponding eigenfrequencies arg and . 1= wg
essentially depend on the geometry of the experiment espe: . Herew, is the optical frequency corresponding to the
cially on the light propagation direction as regards the magexciton creation energy angl_is the Larmor frequency. The
netic field direction. In the Faraday geometry these directionguantum transition dipole momends,=(0|er|1,m) are de-
are parallel, whereas in the Voigt geometry they are perpertermined as the matrix elements of the coordinate vector
dicular. Hanle explained his experimental results on the basis ex+e)y+ e,z between the ground state of the crys@)
of the classical model of a three-dimensional electrorand the exciton statdg,m), whereg,, g, ,€, are unit vectors
damped oscillator subjected to the action of a magnetic fieldand e is the electron charge. Taking into account the time
The Hanle effect happened to be a coherent quantum intedependence of the exciton wave functions, the exciton tran-
ference effect revealed by time-integrated spectroscopy. It isition dipole momentsl,(t) are
not surprising that Bohr and Heisenberg payed attention to
this phenomenon from the very beginniftt. plays an im- . ) .
portant role in atomic as well as in solid-state do(t)=doe€ ", dtl(t):d072'(@t'ey)e_lwﬂt-
spectroscop§.* For the free electrons and holes in semicon- )
ductors the optical spin orientation was considered rather
than the angular moment and its projectidnsThe optical ~ They determine the possibilities to excite the exciton states
orientation of exciton polarization was first revealed experi-by the incident radiation and at the same time they determine
mentally by Grossetal® The comprehensive review by the polarizations of the secondary radiation. For example, the
Pikus and IvchenKbcontains earlier results on the Hanle exciton state$l,+ 1), being excited, are able to emit, in the
effect and information about the exciton polarization and thez direction, circularly polarized waves with counterdirected
optical alignment of the exciton transition dipole momentsrotations and slightly different frequencies.
and will be briefly discussed below. We will introduce conventionally three stages of the po-
The main features of the Hanle effect will be demon-larization transformation. The first one is the optical excita-
strated on the basis of a simple quantum mechanical modd#ibn of the exciton states. Propagating along the magnetic
of three degenerated dipole-active exciton levels in a cubidield direction the incident light witle, polarization will ex-
crystal with 2p-type exciton wave functions. The exciton cite both Zeeman componerjts+1) with the same ampli-
energy level is split by the external magnetic field into atude and phase. Their evolution in time between the mo-

1
[1,00=2z, |1,i1>=ﬁ(xiiy). 1)
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ments of excitation and secondary light emission can b&he time-integrated intensitielg andJ, of the emitted light
considered as a second stage. The most desirable scenariatwo e, ande, polarizations and the polarization reeof
this stage could be the coherent evolution governed by théhe emitted radiation are determined as

Schralinger equation without any phase destruction. Then,
in the third stage, the subsequent emission of light waves E o

with well-defined phases gives rise to their quantum interfer- ‘]XZZYJO e *"cogw tdt, Jy:23’f0 e "sinf w t,
ence. In the second stage the destroying phase processes are

inevitable due, for example, to exciton-phonon or exciton-

e}

impurity scatterings. Only if these processes are compara- _  Jx—Jdy (> _ o dx= 1
tively seldom and the corresponding dephasing time, which "~ 3 13, J, € = €05 47X OX= 1+ (2w, 702
is called also the coherence timg, is sufficiently large and (5)

comparable with the exciton lifetime,, can one expect the

appearance of coherent light waves and their quantum intefFhis quasiresonant dependence of the polarizationRain
ference. In semiconductors one has also to distinguish beéhe magnetic field strength is the main characteristic of the
tween the relaxation time of the exciton center of mags, Hanle effect, which appears due to quantum interference,
the polarization relaxation time,, and the lifetimergy. guantum beats, and precession of the polarization plane in
During the elastic scattering only the directions of the waveFaraday geometry. In the Voigt geometry there is no preces-
vectors are changed, whereas the energies of the particlsfon of the polarization plane, but the quasiresonant depen-
remain unchanged. The corresponding scattering tines ~ dence remains in one linear polarization where the quantum
shorter in comparison with another two. The lifetime for beats exist. For example, in a perpendicular magnetic field
ortho-excitons is due to ortho-para exciton conversion withoriented along the, direction the exciton wave functions are
phonon participation as well to radiative or nonradiative ex-{1,0)=x and|1,+1)=(1/y2)(y*iz). The light propagating
citon recombinations. The coherence time is determined bglong thez direction with g, polarization will excite both
scattering processes, leading to a change of the polarizatigfiates 1,+ 1) with the same amplitudes and phases but with
plane. It remains unchanged during the time The influ-  different frequencies. Now their transition dipole moments
ence of the exciton and photon propagation and their wavare d.. ,(t) = (do/ ﬁ)(eyiiez).e_i‘”tlt_yt. They can gener-
vectors on the Hanle effect must also be taken into accoungte a light field propagating along tkelirection only with

In the general case the secondary emission of radiation neegglarization and with the resultant electric field strength

a unified microscopic quantum statistical description. Never—= doeye*i‘”ot*“ cosw t. One can see that the polarization of
theless, in some cases the dephasing time can be taken infg resultant wave remains the same as for the incident light,
account by introducing phenomenologically the exciton levelpyt the intensity of the emitted light undergoes quantum
broadeningy and the damping of the emitted light intensity peats in time, which leads to a quasiresonant dependence of
2y=1.". In the framework of this approach we will sup- the time-integrated intensity on the magnetic field strength.
pose that the amplitudes of the emitted light at the beginning The optical orientation of the exciton polaritons and the
of the third stage accumulate a dampipgdepending on the observation of their polarization are possible only in the case
light frequencyw. For two exciton state$l,+1) excited when they, being excited inside the crystal, succeed in reach-
during the first stage, we can determine the light waves emiting its boundary surface without scatterings and dephasing
ted in the third stage. Their amplitudes are proportional tqrocesses. Such a possibility depends on the value of the
their transition dipole moments..,, both lying in a plane polariton group velocity and its orientatidnjust this case
perpendicular to the light propagation direction. The resultwill be considered in the present paper, taking into account

ant electric field strength of the emitted light is polariton quantum beats in the presence of a magnetic field.

The influence of a magnetic field on the optical orientation of

E(t)=dy(e,+ie,)-e 1" "t dy(e i) e 01" exciton polaritons was studied experimentally in CdSe crys-
Y _ Y tals by Nawrockiet al® and Planekt al®

=2doe™ """ [e,cosw t+ g sinw t]. ) The Hanle effect based on the interference of polariton

wave packets will be the main issue of the present paper and
The quantum interference effect of two circularly polarizedwe will take into account the existence of the propagation
waves in Opposite directions in a Iongitudinal magnetic fi6|dquantum beats observed experimenta”y iQ@@rysta|s and
gives rise to a resultant wave with optical frequeney of  discussed by Frohlichet al,**? Langer et al,**!* and
the carrier wave and with linear polarization. Its plane slowlyStolz!® The quantum beats effect and the Faraday and Hanle
rotates around the axis of the magnetic field with a smalkffects as well as resonant Raman scattering are closely re-
Larmor frequencyLarmor precession This fact leads to a |ated, being intrinsically interconnected and originating from
change of the polarization direction of the emitted light com-quantum interference effects. One of them is time-resolved
pared with the initial polarization of the excitation light. The and others are time-integrated or stationary phenomena. All
intensities of the emitted light witle, and e, polarizations  of them deal with the coherence time and quantum interfer-
reveal the quantum beat behavior slowly decreasing in timeznce of the excited states. These effects will be considered in
the present work for the particular case of ortho-exciton
|Ex(D)|?=|do|?e 2" codwit, |E,|?=|do|?e ?"'sirP w t.  states in CpO. Comprehensive experimental studies of
(4) guantum beats, with participation of ortho-excitons in,Gu

064303-2



PROPAGATION HANLE EFFECT OF QUADRUPOLE ... PHYSICAL REVIEW 85 064303

have been published in Refs. 11-15. The authors of thesgamping constant =0, 9 weV. The splitting of the un-
papers noticed that the quantum beats originate from the c@oupled photon and exciton dispersion curves near their
herent superposition of states, which are simultaneously anctossing point and the span of the polariton branches were
coherently excited by a short optical pulse and are charactefeund at about 120ueV in Ref. 12. In spite of the small
ized by a small enough energy splitting. The energy splittingsplitting these polariton branches have a very strong disper-
of the states determines the beating frequency of the emitteglon within a narrow range of wave vectdfs?As a conse-
light. This splitting can be determined with a high resolution,quence, the polaritons formed at the front surface of the
being independent of the inhomogeneous broadetiing, sample with slightly different energies around the exciton
whereas the phase relaxation times of the excited states c&gsonance propagate with group velocities which strongly
be determined from the damping of the bédtShe coher- depend on the wave vectary(k).** In the presence of a
ence time, which is also known as the dephasing time, ha@agnetic field thel's states split into three components
been measured by intervals of time during which the excite@haracterized by magnetic quantum numbers0,=1. In
states lose their initial phases. The coherence tijg de-  the case of the Faraday geometry, when the laser light is
termines the homogeneous broadening of the excited state Parallel to the direction of the external magnetic fiéld,

by the relation Z=%/r.,,, where 7., is defined by the only the states withm= =1 are allowed in the quadrupole

elastic collisions, which exclusively affect the phases and déransitions interacting with circularly polarized light. These

not lead to excited-state depopulation. The total energy rglVo ~ states show linear Zeeman splitting\E=|g,

laxation time or the population lifetime is usually measured, 9,/ usHo, whereus is the Bohr magneton and the togl

by time-resolved luminescence spectrosclpf® As was factor equals 1.66 accordindRor 1.78 accordingly®

e?/n hasized in Ref. 13 the uanturrr)w beat meth.od allows o In the present paper we revise a theory of the Hanle effect
phasize ) q . > Oith account of the interference of two wave packets with

to distinguish between coherent Raman scattering and inc he same group velocity instead of two monochromatic

herent hot luminescence. The quantum bgats may 0CCur onayes. The spatial dispersion and the existence of additional

in the coherent Raman part of the scatterihtf The exciton

. ) : : waves were not taken into account in a theory of the Hanle
coherence time drastically decreases with the increase of eX¥ect® The theory developed of the propagation Hanle effect

citon Kinetic energy. One-phonon resonant Raman scatteringyes into account from the very beginning the existence of

involving the 1S yellow series (BY) exciton in CyO was ; ;
. ; Y 17 propagation quantum beats in {Lucrystal, as was observed
studied for both stationary and pulsed excitatibh®:*'The experimentally in Refs. 11-15. The paper is organized as

polariton character of the ortho-exciton states was neglect llows. In Sec. Il the polariton dispersion laws in an exter-

in Refs. 16 and 17. Despite its small oscillator strength thenal magnetic field are derived. There are three polariton

polariton conc_ept Is necessary to understan_d the time depeBFanches in the Voigt geometry: when the polarization is par-
dence of the light scattering.Therefore the interference of allel to the external magnetic field and two in the perpen-

two polar|ton+states belonging to two split Zeeman CompOicy1ar polarization. In Sec. Il the time-integrated quantum
nents of thd's level will be considered in the present paper. o 45 of two quadrupole polariton wave packets are studied.
But even at a rather high magnetic field of the order of 1 Ty i shown that the interference of two wave packets in the
the spectral splitting of the e>§C|ton quadrupole_em|35|on Canyyigt geometry leads to the propagation Hanle effect, which
not be detected because of inhomogeneous line broadening. i nharticular, characterized by the frequency and wave
Only the quantum beat technique makes it possible t0 reveglacior of the carrier waves and by the width and group ve-
a very small energy splitting and the interference of twojqity of the wave packets. We found that the time-integrated
propagating wave packets which belong to upper and lowefensity of light on the rear side of the sample depends on
polariton branches with the same group velocities, demOnge sirength of the magnetic field due to different channels.
strating how powerful the method is. These ph?Qomena b&ne of them is the Zeeman splitting of the exciton level and
came known as propagation quantum t,’é%ﬂg?' Time- gnother is the difference of the wave vectors of the carrier
mtegrateq propagation quantum beats will give rise to the('/vaves, which determines the value of the phase afigle
propagation Hanle effect. _ The phase angle plays the role of the argument of the peri-
The 1SY exciton state in GO is formed from an e functions, and due to this, a periodic dependence of the
electron-hole pair in the conduction band with symmétly  |ignt intensity on the magnetic field strength appears. To the
and the valence band with symmeffy . The exciton state pest of our knowledge this phenomenon has not been con-
is split by the electron-hole exchange interaction into a triplysidered before. In Sec. IV we compare the theoretical depen-
degeneratd’; ortho-exciton and nondegenerdfg para- dences obtained with the experimental results published by
exciton. The oscillator strength of the exciton-photon cou-Kono and Nagasaw4.
pling is weak due to the quadrupole-type interactidn,

=3.7x 10 °.*? In this case a characteristic polariton struc- Il. QUADRUPOLE POLARITONS

ture appears due to the remarkably narrow homogeneous IN AN EXTERNAL MAGNETIC FIELD

width of the ortho-exciton recombination lif&The homo-

geneous linewidth determined by Kono and Nagasais The exciton states, originating frond3tates of Cii ions

2y=8, 8 ueV at 1,6 K. Contrary to this the dispersion at the top valence bands of &I crystal, are known to form
curve and the propagation beat signal from,Qucrystal  triply degenerate states of the irreducible representdtipn
were calculated in Ref. 12 using a different value of theof the O, group. They will be designated below &g, xz,
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andyz. We introduce also the creation and annihilation op-valence bands, whereagp) is the exciton wave function of
erators of excitonsa), , a),,, anda/,,, anda,y, as,x,  the relative electron-hole motion in momentum representa-
anday,, wherek is the exciton wave vector. The dipole tion. V anduv, are the volumes of the crystal and unit cell,
momentsd,, , dy,x, andd,,,, describing the quadrupole correspondinglyg is the ratio of the electron mass, to the
transitions from the ground state of the crystal into threeexciton translational mass,,, and the constar is propor-
ortho-exciton states, depend on the compondntsf the tional to the exciton wave function of the relative motion in
wave vectork and on the unit orthogonal vectoes, where  coordinate representatiaf(r) at the pointr =0. Only small
j=x,y,2.2° The polarization vectors, j of the light with the  values of translational wave vectdesare considered, so that
same wave vectdk can be expressed through the unit vec-B=(0)\v,, for kas,<1, wherea,, is the exciton Bohr
tors & and obey to the transversality conditiog (k)=0,  radius.
wherej denotes two light transverse polarizations. The oscillator strengths of the corresponding quantum
Following Ref. 20 the dipole moments can be representedansitions are related to the square of the dipole moments,
as

47Tm0E
eVo 1 fii k=———|B|(ek;+ek)?, @)
dij,k:_o'E qp(p—ak)-—f ds- U (8) - S Usgj o(S) KT 322 [BI*(ak; + ek
Vv ) VoJv,
—B- (gk;+6k)) ©6) where E4 is the energy gap between the lower conduction
=B- (ek; D,

band and the top valence band of the crystal. The oscillator
wherei#j=x,y,z. Due to the quadrupole character of the strength depends on the orientations of blotand g, ; vec-
quantum transitions, the dipole momentg, are propor- tors and was found to be equalfte: 3.7x 10" % in the actual
tional to the components; of the wave vectok multiplied  region of wave vectors. The Hamiltonian describing the
by the unit vectore; and vice versa. HerdJ. ,(s) and ortho-excitons interacting with the photons in the presence of
Usq,ij p(S) are the Bloch functions of the conduction and an external magnetic field of the strengdtly takes the form

2 L~
iyhe
_ t t t t t t
H—; Eor(k)[axy,kaxy,k+axz‘kaxzvk+ayz,kayzvk]+; ]Zl ficke] jcy i+ 2ac G; [Hox(a%, k@xyk— Ay @xzk)

T T T T T T
+HO,y(axy,kayZ,k_ayz,kaxy,k)+HO,Z(ayz,kaXZ,k_aXZ,kayZ,k)]+; jzl (Pk[(dxy,k'Q(,j)(ck,jaxy,k+axy,kck,j)

+(Ayk €, (CF Bxakt Arg i) T (dyz i 8 ) (Ch Ay kT a5 i) ]- (8

HereE,, (k) denotes the creation energy of the ortho-excitonwherec andc, are the light velocity in the medium and in
with wave vectok, which is supposed to be the same for all the vacuum, respectively, ard is the background dielectric
three statexy, xz, andyz. The creation and annihilation constant.
operators of the photon with wave vectoand polarization The motion equations for the exciton and photon opera-
g are Cl,j andc, j, respectively, wher¢=1,2. In the ex-  tors are
pression(8) only the orbital Zeeman effect is taken into ac-
count, whereas the diamagnetic effect is neglected.

The orbital Zeeman effect of the exciton depends on the = d
difference of electron and hole masses through the coeffi- 'ﬁaaxy,k:Ec:r(k)"s‘xy,wL W(Ho,yayz,k_HO,xaxzyk)
cient y=(m,—my)/(m,+m,),%t on the reduced exciton
massu = (m,mg)/(m,+mg), and on the constar@®, which
can be expressed through the tajdhctor of conduction and t ek 121 (dey,k i) Ci,j
valence electrondg.+g,|. The projections of the external
magnetic fieldH, are labeled a$l, ;. The constantp, to-
gether with the dipole momenty;  determine the exciton-

2

. : : d iheyG
photon interaction. Its value equals approximately |ﬁaaxzyk: Eor(K)ag,  + W(Ho,xaxy,k_ Hoay2k)
2 47TEg _ CO 9 2
(gok) -~ voem ) C= /—6oc i ( ) +(pk'j21 (dXZ,k'Q(,j)Ck,j ,
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d ifeyG polariton branches related to the exciton le¥g), _(k),
iﬁ&ayzyﬁ Eor(K)ay,k+ ﬁ(Ho,zaxz,k— Hoyaxy,k) whereas in the circular polarizatian™ there is another pair
K of polariton branches related to the exciton leig} . (k).
2 Their dispersion curves are derived here without taking into
+ @ 21 (dyz k- €j)Ck; account the antiresonant terms. They can be described by the
=

common formula but with different exciton energies and
magnetic quantum numbems= = 1, corresponding to differ-
ent Zeeman components quadrupole active in circular clock-

d
ih—c,i=hckc, i+ @ [(dyy -6 )ayy + (d a
dt G+ @i Loy ) Byt (e B ) B wise and counter clockwise polarizations:

+(dyz k8 j)Ayzk]- (10 [hw—Egr +1(K) ](ho—hck)=¢?|B|?k?. (15

Below th_ese equations will be gonsidered _in two geometriesy, pairs of polariton branches are independent of each
namely, in the Faraday and Voigt geometries. In the Faradayyer ang correspond to different circular polarizations. In
geometry the light wave vector, which is equal to the excitony, 5y aspects they are similar to the polariton branches in the
wave vector, is parallel to the magnetic fiédfHole,. Inthis  ca5e" of dipole-active exciton states but with one essential
case the dipole moments of the quadrupole transitions b&giterence, which concerns the longitudinal-transverse split-
come ting A 1 proportional to the oscillator strength of the corre-

_ _ _ sponding exciton quantum transition. In the dipole-active

Gyx=0. =Bz, dyp=Be-kz. (11 czseALngoes not gepend on wave numbeand it dpoes not
The motion equations in the Faraday geometry have to beanish at the poink=0. In the quadrupole-active cagg ¢

written separately for circular polarizations” with complex ~ =fi; k=k? and vanishes at the poikt=0. But it is impor-
polarization vectors *ie,) denoted as (1;i,0), corre- tant in the actual poink, of the intersection of the exciton
spondingly and photon branches determined by the equalitk,
_ =Eq (ko). The value off;; , - was determined af;  =3.7
. i . _he'}’GHO,Z - x 10" °.
'hﬁ(alek—'ayzyk)_ Eor(k)+ 2uC (Axzk*iayzi) The dispersion relation of the quadrupole polaritons,
) which was used in Ref. 1&xpressior(1) in Ref. 12, differs
+Berk,(Cx 1EicCk 2), only slightly from formula (15). To make our dispersion

relation similar to the above mentioned, one can multiply the
left-hand sides of the dispersion relations by the factors
[0+ wor 1(K)](0+CcK)/w?, whereas the right-hand sides
of the equation must be multiplied by factor of 4. It is the
most probable value of the factors introduced on the left-
d hand side and corresponds to the intersection pginivhere
171~y k= Eor(K) ayyk - (12  @=wgrx1(kg)=Cko, and the relation Eg .1(k)
dt =hwe,+1(K) was used. Using the definitiorig) and(9) of
The energy Sp“tung of two orbital Zeeman Componentsthe oscillator Strength and of the CoefﬁCieﬁﬁ, intrOdUCing
Eor ~1(K) =Eq (k) £%w_ can be represented in the form the background dielectric constant instead of the value 1,
which corresponds to the vacuum, and the plasmon fre-
heyGH,, quency of the valence band electrons,
—’:|9C+gv|MBHO,Z:2ﬁva (13

. d .
|ﬁ&(ck'1t|ck,2)

=hck(Cy 1%iCk 2) + Bork(axkFiay, k),

He , 4me® (002

where g is the Bohr magneton and, is the Larmor fre- P (16)
guency. The totad factor was experimentally determined for
Cu,0 as 1.66(Ref. 19 and 1.78 according to Ref. 12. Two we obtain the final expression for the dispersion law, dielec-
ortho-exciton state€,, ¥ w, are quadrupole active under tric constante(k,»), and square refractive inde¥(k,w):
the action of circularly polarized light withr.. polarizations,
correspondingly. The third state of the typsg with the mag- ) cék2 for'ﬂ(k)(wg)2
netic numbem=0 remains unchanged by the light because e(k,w)=n(k,0)=—=¢..+ W (17)
the dipole momentl,,  is zero. The oscillator strengths of @ @or.x1 @
the quadrupole transition in the poirty, where ficky  In the above expressionuf)? is the square of the plasmon
=Eo(ko), are frequency contrary to a similar expression in Ref. 12. Sup-
posing that the measured value of the quadrupole transition
oscillator strength corresponds to the actual phjgnbne can
write fo; +1(Kg)=3.7x107°. Then one can conclude that
the numerator of the dispersion equatid) is greater than

Let us consider the polariton dispersion branches in th¢hat in Ref. 12 by the factora(g)zlczké, which will be im-
Faraday geometry. In circular polarizatieri” there are two portant for the following numerical estimations of the refrac-

47Tm0E

fxz,kozfyz,koz 3ezh29|B|2k2’ fxy,kzo- (14
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w(k) wik) w(k).
UPB a) b)
UPB
m=+1. = p— _
MPB
m=0 — _— —_—
1 o~ o~ m=-1l. pP—— - - - K
m = +1.
/®//‘ LPB
LPB
m = 0. 1 -
_Q #
m = -1. - & || Ho & LH,
k k
ot
FIG. 2. The quadrupole polariton branches in the case of the
Voigt geometry:(a) The case of parallel polarizatiofb) The case
of perpendicular polarization.
. d .
ih a(axy,k_ Iaxz,k)
k :(Eor(k)+ﬁwL)(axy,k_iaxz,k)_i‘PkBszk,li
FIG. 1. The dispersion curves of two pairs of quadrupole polar- d i o Bk,
iton branches in the Faraday geometry andddr polarizations. if acm: hcko 1 — T(axy’k+ iayzk)

tive indexesn(k,w) and phase angl®. Only in the case .
0_ i e i okBk, :

wp=Coko do these two expressions coincide. Ay — i) (18)

The dispersion curves of two pairs of polariton branches 2 v '
are pfese”Fed in Fig. 1..The fifth .branch.is a pure expitonrhe second group consists of two equations. It involves the
bralmc_:h, which doe; not interact with the light. Each pair of hoton operator with polarizatiog, and the exciton state
polariton branqhes is relgted only to one Zeeman compone ith magnetic quantum numben=0. The equations are
and does not interact with other components. For example,
the polariton branches with the circular polarizatioh are
related to the Zeeman component with magnetic quantum 17 1 8yzk=Eor(K)ayzx+ orBkeCi 2,
numbem= —1 and vice versa. One can observe that even in
the absence of spatial dispersion, which means an infinite d
exciton translational masan,,==) at any frequencyw, iﬁackyzzﬁckck,ﬁ eBkay, - (19
there are two polariton branches with opposite circular po-
larizationse~ and with different wave vectots. . The spa-  In the \Voigt geometry there are three split Zeeman compo-
tial dispersion effects lead to the appearance of additionatents with magnetic quantum numbers=0,=1 and with
waves, as well as to the necessity to introduce additionatorresponding energies,, (k) andE,, - 1(k) =% wg, +1(K)
boundary conditions. We will not consider these effects. =E_ (k) =7 w_. But contrary to the Faraday geometry they

Let us consider the dispersion laws in the Voigt geometryare constructed from other components of the initial ortho-
Here again the exciton and photon wave vectors are equal &xciton states. The polariton dispersion laws for two linear
each other and oriented along thewxis, k||e,|[(0,0,1). The  polarizations are completely different. In the parallel polar-
magnetic fieldH, is supposed to be parallel to tixeaxis, ization J|Hg(1,0,0) the dispersion law consists of three
Holled[(1,0,0). This meansHy,#0 and k,#0 but other branches
components are zero. As previously, the dipole moments are
dyzk= Bk, dy,=Bk.g,, andd,, ,=0. The motion equa- (w=ck)[@w—wo +1(K) J[0—wor, —1(K)]
tions (10) can be divided into two groups. One group con- 2151212
tains only the photon operators with polarization, and an- _ ¢id Bk [0— w0y (K)] (20)
other one contains only the photon operators wéh 72 of ’

polarization. The first group consists of three equations which is shown in Fig. @). The lower polariton branch

o d _ (LPB) is situated lower than the Zeeman component
17 7 (BeykFi8xzx) Eor —1(0), the upper polariton branc{UPB) is situated
higher than the Zeeman compondgy; ., ,(0), whereas the
=(Eor(K) —frw)(axykt+iay k) +1eBKCy 1, middle polariton branciMPB) is situated between two Zee-
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man componentg,, .;(0). Thesplittings between the LPB lll. INTERFERENCE OF POLARITON WAVES
and MPB as well as between the MPB and UPB depend on AND WAVE PACKETS

the magnetic field and on the polariton effect. The splitting
between the UPB and LPB consists of two parts. One 0{
them equals the splitting72w, between two Zeeman com-

ponents and another part is determined by the polariton e
fect and the spans of the polariton branches.

The dependence (k) in the vicinity of the frequency
wor,+1(0) can be obtained analytically in two limiting cases.
When Zeeman splitting is more important than the poIaritonFa
effect, one can approximate the expresgian- wq, —1(Kk)]
by 2w, and the differencéw — w,(k)] by @, . The disper-
sion law for the UPB in this approximation is

In this section the main attention will be given to the
ime-integrated interference effect of two wave packets with
ft_he same group velocity in the Voigt geometry. We will show
that this process gives rise to the propagation Hanle effect
and can explain the experimental results by Kono and
Nagasawa®
For the beginning it should be noticed that in the case of
raday geometry the interference of two waves with the
same frequencies and amplitudeg\, but with different cir-
cular polarizationgr™ and wave vectork.. gives rise to one
linearly polarized wave. Its polarization plane is determined
221 2 by the azimuth angle(z), which linearly changes its value
¢i|B[%k in different pointsz along the propagation directiGAwhich

(@upb— CK)[@upb— wor,+1(K) = 252 @D is known as the Faraday effect:
A similar simplification can be achieved in the range of the _ k-—ki. [n_(0)—n,(0)]w K Ne(w)o
LPB in the vicinity of the frequencys,, _1(0): ¢(2)=—F—12= 2¢, & KemTmo T
(24)

2 21,2
¢ilBIk (22) The refractive indexes..(w) can be found using the disper-
2h? sion relation (17). For the parametersi=0,1 cm, w/cg
=10° cm !, andAn=n_(»)—n,(w)=10"* we will find
The dispersion law$21) and (22) look similar to Eq.(15)  the azimuthe(d)=0,5 rad. In the Voigt geometry the inter-
and can be transformed into expressions of the tlgebut  ference of two monochromatic waves with the same fre-
with smaller by factor of 2 oscillator strengths, because thejuency and amplitude, but with different wave vectérs
MPB situated between the frequencies ., becomes more andk, and polarizations, ande,, correspondingly, gives
developed and spread. The oscillator strengths of the quamise to a resultant wave propagating along thdirection
tum transitions are shared between two adjacent polaritowith the same frequency but with a compound effective po-
branches. In the opposite limit of small magnetic field, whenlarization
the Zeeman splitting is smaller than the polariton effect one

(wlpb_Ck)[wlpb_wor,—l(k)]:

can put approximatelyd — woy, +1) =(w— wq,) and may re- 1
duce Eq.(20) to Eq. (23), which will be discussed below. In eeffzﬁ(exqL gl kizg ), (25)

the perpendicular polarizaticg | H, there are two polariton

branches centered near the exciton frequangy0), which . . . . .

correspond to then=0 Zeeman component. They have thelt changes its character_ and orientation, becqmlng Ilnear of

dispersion law the type €,+8,)/\/2 or circular of the typed,*ie,)/2 in
some points of the propagation direction, where the phase
(k,—k3)z equals 2rm, 7(2m+1) and (dn+1)7/2, corre-

(23) _spondingly_. Similar polar?zation Iea_ds toa Sisyfus-typg cool-
ing effect in the case discussed in Ref. 23, promoting the
realization of Bose-Einstein condensation of the alkali atom

which is shown in Fig. th). One can see from Fig(& and gase$’ Figures 2a) and 2b) demonstrate that the most pro-

2(b) that there is only one wave with a given frequency fornounced effect can be expected when the frequentgs in

each linear polarization if one neglects spatial dispersion efthe spectral interval between the Zeeman componerts

fects. There are two waves with the same frequency but with- 1, where the differencekg—k;) is maximal.

different reciprocal perpendicular polarizatioes and e, . We will consider now the interference of two wave pack-

Another feature is the existence of a large spectrum of groupts with the same polarization and with the same group ve-

velocities on the UPB and LPB which alter in the intervalslocity, which is important for the propagation Hanle effect.

between the light velocity in the background and infinitesi-The normalized one-dimensional wave packet can be con-
mal value when the translational exciton mass is infinite. Asstructed following Ref. 25 with the dispersion law of the
was mentioned above only this case will be considered bewave frequency (k) taken into account. Notice that in same
low. Unlike this the MPB in Fig. £a) has only small group cases the dispersion of the damping constgfhf) also can
velocities incomparable with the light velocityand with the  be important and it will be taken into account from the very
group velocities on the actual parts of the UPB and LPB. Jusbeginning to find the conditions when this dependence can or
on these regions designated by loops is it possible to find twoan not be neglecteldee, e.g., Ref. 26 about the polariton
wave packets with the same but considerably large grougamping constants(k)].

velocities comparable with the light velocity Let us introduce the wave packet as follows:

2 B 2k2
<w—ck>[w—wor<k>]=%

064303-7



S. A. MOSKALENKO AND M. A. LIBERMAN PHYSICAL REVIEW B 65 064303

1 [ko+Ak _ ‘ T T
E(z,t)= _ZAkL N E(k)eioMt+ikz—vtg Hex,ph=; [hwq(K)aaxt+hcke.cy
-
~E(K )e—iw(ko)t+ikoz—y(k0)t[ei()ﬁig)_eii(x*ig)] +hip(aletcla)], (31)
- 2ix—ig)

where the exciton-photon interaction constarity,

(26) =, (dyg) is determined by Eq€9) and(11). At small den-
(%ty of impurities and at low density of excitations the only
source of the exciton and polariton state damping is the
phonons. The exciton-lattice interaction has the fdf?

where we used the power series expansion of the dispersi
law w(k) and of the damping functiom(k) in the vicinity of
the pointk, and the notatiorx and &,

w(K)= (ko) +vg(ko) (k—ko),  ¥(K)= (ko) +s(ko) (K i re ot
Heyi=— 2, 0 b,—b_g), 32
o i = % O @ABre(Dg b (32

do(K) dy(k) where the interaction consta@t_(q) is given by the_ expres-
vg(ko)= — g |koky Sk = =g . sions (32)—(34).2” Tait and Weihet® used a simplified ex-
k=kg pression for®(q), which in the case of acoustical phonons
has the form (2q/9Duv,)*2C, whereD is the crystal den-
x=Ak[vg(ko)t—2], £&=Aks(kp)t. (27)  sity, uis the sound velocityy o is the unit cell volume, and
N, is the number of unit cells in the crystal of volunwe
X(V=Navp). C is the difference between the deformation
potentials for electroiC, and for holeC,(C=C,—Cy).
The polariton states can be introduced into the Hamil-
onian (31), using the polariton operatoks , and &y, in-

One can neglect the dispersion gfk) if it changes slowly
along the wave packet widthAX as well as if it changes
more slowly than the frequenay(k) in the same region of
wave vectors. This means that the following conditions mus{

be satisfied: troducing the unitary transformation coefficientg and v
(ko) and the polariton dispersion laweg, (k) and w,(k) as fol-
|S(k0)|<m, vg(ko)>1s(ko)|. (28 lows:
Taking into account that the decay time of the wave packet = U1kt uréoks  E1x=Ukdk— UkC,
and its coherencer dephasingtime is[ .= 1/2y(k) ], one
can conclude that during the most important period of time Ck=Uxéok—Vké1k, Exx=UCktuiay,
when the interference effect and quantum beats take place,
the variable &(7;) = Aks(kg) 7c=Aks(kg)/2y(kg) is less 1 Ay 1 Ay
than unity. This permits to use the power series expansion of u§=§< 1- Q—) vﬁ=§ 1+ .l uZ+ovi=1,
k k

the typee™¢=1+ ¢ and to transform E¢(26) as
E(z,t)=E(ko)e 't +ikoz= ko)t A= wor(K)—ck, Q= AR+ 44y,
{ X sinx ix&é

X

sinx
X

+

_cosx)]. (29 wl(k):wor(kz)‘i‘Ck_; 5

For a sufficiently high values of the group velocity, (ko)
>2v(ko)d, one can puk=v4(ko)tAk and arrive at the in- wy(K) = C"or(k)“LCkJr EQ 33)
equality x> £ in correspondence to the conditiof28). In 2 2 27k

these limits and taking into account the accepted restrictions,
the wave packet29) will be used in the simplified form Here we marked the LPB and UPB by the numbers 1 and 2,

respectively. One can observe that the coefficieuﬁtsare
sinx small in the regiork<<k, and approach unity in the region
: 30 k= ko, wherek, is the intersection point of noninteracting
exciton and photon branches and correspondste-0. The
According to Eq.(30) the one-dimensional wave packet is coefficientsv? have an opposite behavior.
represented as a product of two parts, one of them being the The polari(ton-phonon interaction is described by the fol-
carrier wave with the frequenay(kg), dampingy(koy), and lowing Hamiltonian:
wave numbekg,. The other part (sir)/x plays the role of the
envelope function. The envelope function depends on the
group velocityv 4(ko) and on the wave packet widthk.

E(z,t)=E( ko)e*iw(ko)tﬂkoz— y(ko)t

i
Hyoj=— >, O(q)[UgUy ot +u T
To verify the fulfillment of the conditiong28) we will PN, ;4 (@1t ofindanea® Uicrabinbaeg
start with the simplified HamiltoniafB), taking into account

. . T t t
only one quadrupole-active exciton state of the type T UUk+ g€+ g ViVk+q€2x€2k+ql(Dg—=b—g).
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Each damping coefficient consists of two parig(k) estimate of the probability,;(k) has not been done, the
=7;.1(K) + 7 2(k). One of them corresponds to intrabranch experiment by Ref. 31 indicates a very small dampings on
scattering, whereas another component corresponds to intehe UPB. In Ref. 31 the needlelike luminescence line in the
band polariton-phonon scattering. frame of the UPB was observed in the ZnTe crystal. This
The damping coefficienty;(k) can be calculated using very sharp luminescence line, observed at the bottom of the
the Green’s function method, which determines the selfUPB near the frequenay, testifies to the existence of very
energy part2(k,w) and its imaginary party(k,w). In the  small dampings on the UPB.
case of exciton-phonon interactions it was made in Refs. Below the interference of two one-dimensional wave
27-29. Another way is to calculate the probabilitig¢k) of packets with different carrier waves and envelope functions
the scattering of the polaritons of the correspondingwill be taken in the form of the wave packet, H80),
branches. This method was used by Tait and W&%her
both polariton branches in the crystals of the type CdS with
considerable polariton effect. They took into account the in- sinx
traband and interband scatterings on the acoustical phonons  E(z,1) =Ea(ky)—
for both polariton branches. The relations between the func- !
tions calculated by two methods are sinx,

+Ea(ky)—
Ti(K) =27i(K,®)] o= 0,00 =27i(K), 2

1 aioy(kptrikgztie; =yt

exp—iwz(kz)t+ik22+i<p2— yzt' (34)

2 2
, where w(k), ki, yi=7(k), Ak, and x;=[vg(k)t
ri(k):;1 I (k) yi(k)=;1 yii(k), =12 Ak i, i i=Lvg,ik
_ ) For coherent laser radiation, in the presence of a coherent
In the case of the LPB Tait and Weil&found that atT  macroscopic polariton wave, the polariton damping constants

=0 the only contribution td’j(k) results from the term yi were studied in Refs. 32, 27, and 33. The steady-state
- solutions of the kinetic equations describing the mean occu-
8CK Mey pation numbers of the scattered polaritons as well as of the

Ik T=0)= ——~ =K.

277Duh?’ Fokker-Planck equation describing the coherently excited
polaritons of one selected mode of the crystallite were ob-

The dampingl'y;(k,T=0) is even smaller in the range tained in Refs. 32 and 27, taking into account the polariton-
k<ko. polariton interaction. The coefficients of these equations de-

Using this expression the damping(ko) and its deriva-  pend on the dispersive and absorptive self-energy parts,
tive s;(kg) can be calculated. For the parametdds which determine the energy spectrum of the interacting po-
=5 glen?, u=10° cm/s; C=10 eV; andk,=10° cm '  |aritons and their damping coefficients. They are determined
one finds Iyy(kg)=1,6x10° st #l'yy(ko)=1 weV, by the participation of four polaritons in the scattering pro-
which is close to the values estimated for quadrupole polarieess, two in the initial state and two in the final state. When
tons in CyO. For the case of the UPB, the damping coeffi-both two initial polaritons belong to the selected mode and
cientI', (k) is more important but it was not calculated in a have the same wave vectkg, the scattered polaritons have
way allowing the numerical estimaté.Now one can esti- the wave vectork,+ k. Such a conversion becomes possible
mate the derivatives; (ko) =TI13(Ko)/ko=1,6X10" cm/s, only for well-defined initial and final states due the con-
which is much smaller than the light velocityandv (ko) straints imposed by energy and momentum conservation
~10° cm/s and satisfies one of two conditiof@8). The  laws?’ If between four polaritons only one belongs to the
second condition(28) is satisfied for wave packet widths selected mode, the conservation laws can be satisfied easier.
Ak<y(ko)/s(kg)=5x10* cm 1. The widths of the wave The case of the polariton-phonon interaction was investi-
packet of interest does not exceed” 1@m 1. The above gated by Keldysh and TikhodedVtaking into account the
discussed simplification for the varialbkein the crystals of Stokes and anti-Stokes scattering processes with the partici-
thicknessd=0,5 cm can be made only in the case of wavepation of the acoustical phonons. The stimulated
packets with group veIocity;Q(ko)zlo9 cm/s. The above Mandelstam-Brillouin scattering process was revealed. Nu-
estimations allow us to conclude that the approximation wemnerical estimates of the relevant coefficients for the case of
are using is justified for the particular case of quadrupolesxcitons in CdS crystals and polariton-polariton interaction
polaritons in CyO crystals. were discussed in Refs. 32 and 27. For the case of quadru-

Tait and Weihe?® noticed that in the expression for the pole polaritons in CsO crystals, one can notice that there are
probability, I"5(K) =T"55(k) + T'»4(k), the termI",5(K) is very  two estimates of the summary damping constamt=2y,
small because for the case of intraband scattering the finat vy, equal to 8.8 ueV (Ref. 19 and 0.9 neV (Ref. 12. It
states belong to the photonlike region of the UPB where thés important that the interference term playing the main role
group velocity is large but the density of states is small. Itin the Hanle effect depend only on the summary damping
was shown in Ref. 30 that the density of states in the giverronstant, as will be seen below, and not depend on the damp-
point of the polariton dispersion law is inversely proportionaling constantsy, and y, separately. In our calculations we
to its group velocity. Thus, the main contribution Kg(k)  will use the experimental results of both Refs. 12 and 19.
belongs to the probability",,(k).?® Though the numerical The intensity of the electric field is
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SirP x, SirP x, cillation. This difference of the oscillation periods at the ini-
1(z,t)=11(k)—— e 27+ 1,(ky) > g 272t tial and final stages of the time-resolved quantum beat evo-
X1 X2 lution stimulated the authors of Refs. 11-15 to introduce the
. . notation of propagation quantum beats.
sinx; sinx, B ; ; . . :
+ 211k 15(Ky) cogQt—0)e 2", We consider pairs with large group velocities, when their
X1 X2 propagation time through the sample is shorter than the co-

(35)  herence time. In this case the scattering processes can be
neglected. At the same time new features of the propagation
where quantum beat and time-integrated evolutions appear. The be-
_ _ o _ havior of the wave packets with small group velocities and
Q= wz(kg) —w1(ky),  O=(kp=ky)zt (92~ 1), propagation times larger than the coherence time mathemati-
2y=v,+v,. (36) cally does not differ from the case of two monochromatic
] ] waves. But their interference will be destroyed by the scat-
As was shown in Refs. 11-15, the propagation quantunferings along the propagation way. These wave packets do
beats take place only between two wave packets with theot contribute to the propagation Hanle effect. There exists a
same group velocity. They propagate from the illuminatedcytoff from below for the group velocity of the wave pack-
side to the rear side of the sample, achieving the latter simukts. The cutoff value depends on the sample thickness. The
taneously and taking part in the quantum interference protme integral of the expressioi5) cannot be calculated ex-
cess. By this reason we will consider below only the case Ofctly due to the envelope functions. Taking into account that

wave packets with the same group velocity, the coherence time,,, and the corresponding damping con-
)= o) — 3 stant 2y determine the time interval, which gives the main
vga(ki) =vga(ks) =vg. (37 contribution to the time integral, one can consider two lim-

For the sake of simplicity we will consider only the wave iting cases. For the case of small group velocity<2yd,
packets with the same width in the space of wave number¢hen the propagation time is larger than the coherence time
and putAk,=Ak,=Ak. The time integral of the expression Tpr>Tcon, the argument in E¢(35) can be simplified:

(35) determines the time-averaged intensity of the light emit-
ted by the illuminated side of the crystal and propagated to x=(vgt—d)Ak=(vgTcon—d)Ak=—d Ak. (38

the rear side of the sample at the distameed, where the | the opposite case of large group veloaity>2yd and for
analyzgr is located. The resultant mterfergnce effects depen,dp < Teon N estimate fox is

essentially on the value of the crystal thickneés€ne can

note that the interference takes place between many pairs of x=(vgt—d)Ak=vg4Akt. (39
wave packets and each of them has a proper group velocity.

If they start at the same time on the illuminated side, the;,}/n the first caser, > 7o, the time-integrated expression
will arrive at the rear side with different time delays. This (39 is similar to the case of two monochramatic waves,
fact was observed experimenta”y in mjcrystaL where the except for an additional Const.a.nt factor. It follows from the
propagation quantum beats of quadrupole polaritons weract that the wave packets with small group velocities are
revealed for the first tim&~*°The group velocity along the Smooth and nearly monochromatic. In this case the final ex-
polariton branches changes in a wide interval of values. FoPression for the time integral is

example, on the LPB in the range of wave numbessnaller

than the wave numbdy, of the intersection of noninteract- zij| (d,t)dt
ing exciton and photon branches the group velocities are " Jo

large and comparable with the light velocity, whereas in the

rangek>k, they are small or practically zero, if the spatial ~_ SIP(dAK) |y y

dispersion effects can be neglected. Contrary to this, on the (dAk)? 17_1+ 27_2

UPB the group velocities fok>k, are of the order of the

light velocity, whereas in the rande<k, they are small. (2y)? _ 2v0

Even in the absence of the spatial dispersion the UPB dis- +2\I415| cos® ————+sin®@ ———— | |,
persion curve in this region is quadratic. By this reason two 0%+(2y) Q%+ (2y)

wave packets—one lying on the UPB and another on the (40
LPB, being chosen with a large and equal group velocity—

will have a significant frequency splitting. They will arrive where

first at the rear side and will result in quantum beats W'thQ=w2(k2)—wl(k1), O=(ky—k)d+ ¢, ©=@r 1.

relatively small periods of oscillation. They determine the
= ) . . (41
initial stage of the time-resolved evolution of the propagation

guantum beats. Two polariton wave packets with smalleThe phase angl® in Egs.(41) depends on the difference
group velocities will have a smaller frequency splitting. Theybetween the wave numbeks, which determine the propa-
will arrive at the rear side of the sample, if starting at thegation of the considered waves. To select their values it is
same time on the illuminated side, with larger time delay,necessary to have a supplementary condition, which we will
and will result in quantum beats with greater periods of osdiscuss below. But even now, one can expect that the phase
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angle ® will depend on the strength of the magnetic field

Ho. For the large group velocityy>2yd, the time-

dependent expressiori(d,t) can be obtained using
the dimensionless variable=v Ak t and the approximation

X~ T

sintr
[(p,p;,©,7)=———[l1& P17+ 16 P27
T

+2+/1115(cos® cosbr+sin® sinb7)e P7],

(42)
where we used the designations
2y 2 Q
= vgAK’ pi_ngk’ b= vgAK’ “3)

To find the time-integrated expressioi?) we will use Ref.

35 as well as the method proposed by Khad?hi obtain
the following formula:

J(pv pi ,,b) = p{l 1\]c(p1,o) +1 ZJC(pZ!O)

+2l415[cos® J.(p,b)+sin® I (p,b)]}.
(44)
Integrals in Eq.(44) are

cosbxexp — px)dx

spb)= |

0 x2

b—2
arctan

b+2 b+2 b-2

= ——arctan 5 2

b b p?+b?
— sarctan-+ s In————
2 P 8 (b+2)%+p?

p2+b2

"b-2)2+p? 49

p
+§|

* SiPx

sinbxexp( — px)dx

Js(p,b)=J

0o x?

b+2 b—2 p b
= —arctan—— +-—arctan——— —~arctan-
Z p 4 p 2 p

b+2 b—2
+ T|n[(b+ 2)%+p?]+ T|n[(b—2)2+ p?]

- Zln(b2+ p?). (46)
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2 jwexq—z t)cothdt=ﬂ
7Ja 4 0%+ (29)2’

2yQ

Q%+ (2y)% 0

27] exp—2yt)sinQtdt=
0

Equation(44) can be applied in both cases of light polariza-
tion e, ande, . However, fore, polarization the energy split-
ting between the polariton branches in Fig. 2 is determined
by the Zeeman and polariton effects and increases with the
increase of the magnetic field,. In case ofe, polarization

) andb do not depend ohl and are determined only by the
polariton splitting. As was mentioned above, the expression
(40) as the function of) has an explicit quasiresonant form.
Similar structure but with one essential difference has Eq.
(44). Namely in Eq.(40) the value() is comparable to the
damping 2y, whereas in Eq(44) the parameteb is deter-
mined by Eq(43). It shows that the splittin€ is divided by

the wave packet spectral width,Ak. This feature becomes
clear if we use the power series expansions of the integrals

Ji(p.b):

2

J(p0)=arctan%+Eln P
o P4 (p?+4)’

2

Jo(p,b—0)=J(p,0)— ————,
(p )=J¢(p,0) (02 4)

b (p?+4)
J(pb=0)=7In=——,

limJ;(p,b)=0, i=c,s. (48

b—ee

Then the light intensity(p,®,b) depends on the dimension-
less variabldb—0 as

J(p,pi®,b—0)

=P[113c(P1,0) +12J¢(P2,0) +2 V111,050 J¢(p,0) |

b? b 2
+24l41,| —cos® 5 +sin®—p|np
p-+4 4

> (49)

In the opposite limith— o, we find

lim J(p,p;,0,b)=p[113:(p1,0) +123:(p2,0)]. (50

b—

To obtain an increasing dependenceJgp,p;,0,b) on b,
with a very slight asymmetry, as was observed experimen-
tally by Kono and Nagasawd, it is necessary to suppose
that the following inequalities cd8<0 and sin® =0 hold.

These expressions but without a square of the envelope fundhe validity of these inequalities will be discussed in Sec. IV.

tion are®

geometry.
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IV. FREQUENCY SPLITTING AND PHASE ANGLE f(k) w?
IN VOIGT GEOMETRY (0= Cky)(@y = wor,+1)=— P n(Ho),
The frequency splitting) and phase angl® in the \Voigt
geometry and, polarization can be determined on the basis f(k)wg
of the third-order equatiof20). The dispersion laws in the (@1 =Ck) (@1~ wor,—1) =—7— 7(Ho). (54)

ranges of the UPB and LPB can be determined approxi-

mately on the basis of the more simple E¢&l) and (22) Using Egs.(54) one can find the approximate dispersion
with one-half of the oscillator strength in the case of a strondaws on the UPB and LPB ie, polarization:

magnetic field and on the basis of an equation of the type

(23) with full oscillator strength in the case of a weak mag- wy(ky) = Ckyt @or, +1 +1\/(cku—w =

netic field. Both these limiting cases can be united in the u 2 or.+1
form of Eqgs.(21) and(22) with effective oscillator strengths.

They will be determined using the perturbation theory when ck+wo -1 1 >
the polariton effect exceeds the Zeeman splitting. Equation wi(k)=————- E\/(Ckl_wor,fl) +F. (59
(20) in the range of the UPB can be rewritten in the form

Below, the dependenddk) on k will be neglected because
Fo(k) (w,—wgr) the derivatived f(k)/dk is small in the range of smal. We
, (51 are interested in the values kf andk; not so far situated
from the pointky corresponding to the intersection of the
where the constarfty(k) is related to the oscillator strength exciton and photon branches,= w,,. Then the group ve-
of the exciton quadrupole transitidifk) as follows: locities on two branches are

(@u= ek (@™ wor +1) == 1 =0

f(k)wp  ¢ilB|?K? ¢ ¢ ck—wori
= . Fo(k)=f(k)w?3. 52 v )=5+3 ’ :
i~ PoloTilep 52 )72 2 ok wo s )P F
This definition of f(k) differs by a factor ofz/3 from the c ¢ ck— wgr 1
early introduced expressioiig) and(14). Here the light ve- vgi(k)= 575 o = (56)
locity and the plasma frequency are taken in the medium, \/(Ckl_wor,fl) +F

whereas in Eq(17) their vacuum values are used. The zero-
order approximation in the case of a weak magnetic fiel
permits us to write the equation for the UPB in the fqi2i).
The most actual values of the UPB lie in the vicinity of the
point k, o, which obeys the equalitgk, o= wq,, +1. At this c
point the UPB frequency equalsw,(Kyo)=wor +1 vgu(ky) =vg (k) =vy=75(1+x), (57)
+3\Fo(ky ). The valueFy(k, ) determines the role of

the polariton effect in the vicinity of the poirk, o, where  where 0<|x|<1. The wave numbers and frequencies are
the propagating wave packets are selected. Substitutindetermined by

wy(ky,) into the right-hand side of Eq52), we obtain the

ow we can determine the parameters of two wave packets
ith the same group velocities. The starting condition is the
equality

dispersion equation in the first-order approximation. The X
right-hand side of Eq(52) becomes Cku_wor,-%—l:ﬁ\/ﬁa
F(k):Fo(k) \/Fo(ku,o)+2wL_ o(k) (H ), X
4 4 VFO(ku,O)+4wL 4 e UO Ckl_wor'il:_ 1—)(2\/E (58)
(Ho)= n(Ho ko) = ‘_kO 2o, gy
n(Ho 0:Ko
O ko +4(1)|_ 1+X
wu(ky)= worm T—xF.

A similar result can be obtained for the LPB in the vicinity of

the point K o, where ckj g=wq, —1 and wi(K o) = wor, -1

—3\VFo(kig). The two expressionsy(Hg,k,o and B 1 /1+x
7(Ho.K o) are substituted by a single expressigiH,) wl(kl)_wor,—l_z m\/E
with the same wave vectd, o=k ;=kq, wherecky= w,, .

The difference of three points is small in the range of mag-The frequency splittind)(x) and phase angl®(x) depend
netic fields, where the inequalitya® < \/Fo(ko) holds. The ~©n the group velocity parametgr

frequencies and wave numbers are designed asndk, on

the UPB andw, andk; on the LPB, correspondingly. In the _ _ _ /l+x
first-order approximation they obey D)= wyky) (k) =20+ 1—X\/E' (60

(59
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2w|_d

Ox)=(ky—k)d+ ="

+Ld\/f+ (61)
cy1—x2 @
where
VF=wp\T(ko) n(Ho),

2hw =|g.+9,|usHo, p=—m. (62

In case of the Voigt geometry arg} polarization formulas
similar to Egs.(61) and (62) may be used witho, =0 and
n(Hg)=1. One can see that & polarization the frequency
splitting 2(x) consists of two positive parts. One is deter-
mined by the magnetic field, and the other one is determined
by the polariton effect and depends on the sigrnxofrhe
phase angl® (x) consists of three parts including the initial
difference of phaseg and two propagation parts, which de-
pend on the magnetic field, on the polariton effect, and on
the thickness of the crystal This means that for the same
value ofx, the phase angl® and the resultant quasiresonant
or periodic behavior of the light intensity is different in the
crystals of different thicknesses depending on the magnetic
field strength. Now we will use the model of the quadrupole
polariton in CyO crystal discussed in Ref. 12. It is charac-
terized by the span of the polariton branches and by the
splitting between the UPB and LPB. In the intersection point

f(ko)=3.7X10°9,

0=|x|<1,

PHYSICAL REVIEW 85 064303

Ho=0.lyT=1Cy G, d=0.5 cm,
®(1+x) % 6.5

Vg=5 X), C=—=—, €,=6.5,
2 EOC

vy=0.59x10"(1+x) (cm/seg,

1+x
Aw=ngk=5.9><1011( )(sec‘l),
107
Ak= F (Cm_l),

2% y=0.9(u eV),
VE=\Fon(Hy),

JFo=1.60x10" (sec’l),

2y=1.44x10°r (sec!),

#i\Fo=1000 (u eV),

_o+0.ly

n(Ho)= o102’ |9¢+9,|=1.78,

wherey and the parameters g, r, ando and{ are intro-
duced as follows:

ko Of the bare B, I's exciton level and photon branch the

wp=0.93x10"%° (cgs),

value of this splitting was evaluated approximately as

100 peV. The homogeneous dampihg= 21y in this model

~ 0.85<10° %

7

was taken to be 0.«eV and the totag factor|g.+g,| was TorT T 14 x (se0,  7cop=110 10 (seo,
taken as 1.78. We will see how these parameters can be
changed to obtain better agreement with the experiment. The 20, q-y
difference of phaseg=¢,— ¢, of two coherent polariton 2w =1.655/x10" (sec?), 1, 0028,
waves is— 7 in the case of condensed mixed states of exci-
tons and photon§*° It is the same in our case, because the JEe
properties of coherent macroscopic waves and classical A_OIO 271ng_ (65)

® X

waves coincide. Gathering the expressiofd), (45), (61),

and (62) one obtains the full set of necessary formulas de-

scribing the propagation Hanle effect. For the sake of sim
plicity we will put 1,=1,=1 andp,=p,=p and will calcu-
late the expression

J(p(x),0(x,y),b(Xx,y))
21p(x)
=Jc(p(x),0)+cosO (x,y)Ic(p(X),b(X,y))
+sinO(x,y)Js(P(X),b(x,y)).
The expression®(x,y), b(x,y), andp(x) are

A=

(63)

0Oy =B vt o=z oy s 135K foroyy|
(Xay)_ (nyafﬂ)—f 7y m 0_+0.2y T,
b _b _ _ 0.028 0.27l0 [o+0.ly
(X,Y)— (X,y,q,(r)—q (1+X) +m 0'+O.2y ’
. 2.44x10%qr 64
PO)=p(X:Q,r) = —— (64)

Snoke, Wolfe, and MysyrowicZ observed the anomalous
ballistic 1sY exciton propagation and the existence of stable
envelope wave packets below some critical temperature at a
given level of excitation as well as above some critical level
of excitation at a given temperature in Lucrystal(see also
papers by Fortiret al,*® Mysyrowiczet al,*® and Fortin and
MysyrowicZ'%). The wave number widtihk of these wave
packets was about #0cm™ 2. In our theoretical evaluation

of Ak we take the same order of magnitude. From EG3),

one can see that the trigonometric functions change periodi-
cally as a function of the magnetic field strendily. This
periodicity approximately has the period

AH.= 2mhc
® dlgctg,lus’

which means a periodicity of the trigonometric functions in
dependence on the variablevith the periodAy equal to 9,
when the thickness of the sampleequals to 0.5 cm and the
total g factor equal to 1.78. This can be observed when the
magnetic field strength changes in intervals of 1 T. WHen
=0.1 cm, the period\y equals 45 and the periodicity can

(66)
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2 ! i i 15 ! i i

0 5 10 15 y 2 0 5 10 15 y 2

FIG. 3. The light intensity vs the magnetic field strength. Line 1 FIG. 5. The light intensity vs the magnetic field strength. Line 1
corresponds ta=0.1,q=1, =1, {=0.2, andr=1. Line 2 cor- corresponds ta=0.1,9=1, =1, {=1, andr=1. Line 2 corre-
responds tax=—-0.2, q=1, ¢=0.2, {=0.2, andr=10. Line 3  sponds tx=0.5,q=1, 0=1, {=1, andr=1. Line 3 corresponds
corresponds ta=0.1,q=1, =1, (=0, andr=1. tox=-0.5,9=1, o=1, (=1, andr=1.

be observed only in the much greater interval of the mag=0-5 ¢m and the periody=9. This periodicity can be ob-
netic field, about 4.5 T. Let us illustrate this by the numericalS€rved when the magnetic field strength changes in the inter-
example shown in Fig. 3. We start with the cake0, when ~ Val of 1 T. In this case influence of the parameters, 1, and

the propagation effects are completely excluded. The phas@ IS much more important and even can change the slope’s
angle® equalsw, which guarantees the increasing characteSign at the initial part of the curve. If one compart;f? the
of the quasiresonant dependence-tp But the slope of this  CUrves in Figs. 3, 4, and 5 with the experimental restilts,
dependence is small; see E@4) for a definition of the ©ON€ can notice that only the quasiresonant dependence in the
parameteb. Whend increases and equals to 0.1 cm, which!ntérval of about 0.5 T was observed though the sample
means{=0.2, the character of the dependence remains thElckness was considerablé=0.5 cm. We believe that for
same but with increasing slope. This means that the period‘:lUCh th_|cknesses th_e perlod_|c d_ependence_could be obs_erved.
icity appears, though the periddy =45 is very large. Other A posgble explanation .of this discrepancy is the necessity to
parameters, r, g, ando have a negligible influence. In Fig. take into account the time needed for the quadrupole polar-
4 two curves corresponding #=0.5 andd=0.25 cm are iton formation. It is determined byy{F) ~* and the order of
shown. They demonstrate explicitly the appearance of th&agnitude is 10** sec. During this time light propagates
periodic dependence with the periay = 18, which prevails about 0.1 cm. Presumably, the quadrupole polariton wave
over the quasiresonant behavior. Now the influence of othep@Ckets appear after the band-to-band transition and electron-
parameters is considerable. For example, the increase of tfi0!e pair creation with such a time delay and begin to propa-
damping constant by one order of magnitude-(0) leads ~9ate, starting on the inner surface inside the crystal, but not
to the decrease of the amplitude of the oscillations, wherea@" the external illuminated side, as one can expect. By these
the change of the group velocity parametenfluences on  €asons the effective propagation way for them can be less
the starting value of the resultant curve at the peig=0.  than the crystal thickness. . . . »
More evident periodic dependence is demonstrated by three The developed theory is applicable if the main condition

curves in Fig. 5. They correspond fe=1, which meangd vy>27vd holds. This means the existence of a group velocity
cutoff from below, so that the propagation time is less than

the coherence time, <7... In all the cases considered in
Figs. 3, 4, and 5 these conditions fulfilled. Another condition
is the restriction of comparably small magnetic fields deter-
mined by the inequality @, < \Fy(kp). This means that the
polariton effect even in the case of quadrupole transitions
prevails Zeeman splitting of the ortho-exciton level. All nec-
essary parameters describing this system are given by Eq.
(66). The magnetic field strengths up to 1 T obey this re-
quirement. In the experimefitthe magnetic field was inside
the above-mentioned interval, but the calculations were
made for the values of 2 T, where, strictly speaking, the
\ . . . approximation(54) is not applicable, but can be treated as an
“o 5 10 15 20 extrapolation. Another problem is the possibility to take into
account simultaneous propagation of many pairs of wave

FIG. 4. The light intensity vs the magnetic field strength. Line 1 packets with different group velocities, obeying the main cri-
corresponds ta=—0.2,q=1, 0=0.2, /=0.5, andr=10. Line 2  terion discussed above. These aspects will be studied else-
corresponds ta«=0.1,q=1, =1, {=0.5, andr=10. where.

A 15
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