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Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA
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The thermal properties of bulk copper are investigated by perforatingitio density functional theory and
density functional perturbation theory calculations and using the quasiharmonic approximation for the free
energy. Using both the local density approximatit®A) and generalized gradient approximati@GA) for
the exchange-correlation potential, we compute the temperature dependence of the lattice constant, coefficient
of thermal expansion, bulk modulus, pressure derivative of the bulk modulus, phonon frequenaiessesru
parameters, and the electronic and phonon contributions to the specific heats at constant volume and constant
pressure. We obtain answers in closer agreement with experiment than those obtained from more approximate
earlier treatments. The LDA and GGA errors in computing anharmonic quantities are significantly smaller than
those in harmonic quantities. We argue that this should be a general feature and also argue that LDA and GGA
errors should increase with temperature.
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[. INTRODUCTION cells containing many metal atoms. However, the amount of
computational effort required in order to obtain reliable ther-

In any study of the properties of metals, it is obviously modynamic averages makes this difficult, especially for the
crucial to include the effects of temperature. Thermal expannoble metals and transition metals, which contain tightly
sion results from the anharmonicity of the interatomic potenbound valence electrons. Also, since such simulations treat
tials, and this change in the lattice constant upon heating the ionic degrees of freedom classically, the results are not
metal is accompanied by changes in the elastic and vibrasalid at very low temperatures, when zero-point effects are
tional properties. Experimental measurements of the temimportant.
perature dependence of the lattice constant, elastic moduli, An alternative approach is to compute the vibrational free
phonon frequencies, Gneisen parameters, etc., of most el- energy using the quasiharmonic approximation, in which an-
emental metals have been available for a few decades noWwarmonic effects are included via the volume dependence of
However, it has become possible to calculate these thermahonon frequencies, which can be determined by performing
properties from first principles only in the last few years. ab initio calculations. Here too, in order to perform reliable

There are two main issues to be resolved when trying t@verages, it is necessary to compute the frequencies for many
compute the thermal properties of metals: one is how tavave vectors in the Brillouin zonéBZ), which is computa-
describe the interatomic interactions accurately, and the othé¢ionally expensive, especially if the phonon frequencies are
is how to incorporate the effects of temperature into thiscalculated using the “frozen-phonon” method. The develop-
description. ment of density functional perturbation thebFPT) has

To date, most computations of the thermal properties otonsiderably reduced the computational cost of obtaining
metals have made use of parametrized interatomic potentialphonon frequencies throughout the BZ, since unlike the
This necessarily introduces errors, even when the potentiafsozen-phonon method, this technique does not require using
are semiempirical and include both theoretical and experilarge supercells to access wave vectors away from the zone
mental values in the fitting database. Self-consistent densityenter.
functional theory(DFT) calculations provide the most accu-  Thus combiningab initio DFPT calculations with a quasi-
rate way of computing interatomic interactions from first harmonic treatment of the anharmonicity of vibrations cur-
principles. Using the DFT prescriptions to obtain the ener+ently offers us the most reliable yet practicable approach
gies as a function of nuclear coordinates avoids the errorowards calculating averaged thermal properties, at least up
introduced by assuming parametrized forms of interatomic¢o temperatures not too close to the melting point. In recent
potentials. years, this combined approach has been shown to be quite

As for computing the effects of temperature, one possiblesuccessful in predicting the bulk thermal properties of the
approach is to perform molecular dynamics simulations asimple metals Al, Li, and N&,and the noble metal Ag.
finite temperatures. This approach has, for example, been However, there remains one important issue that has to be
combined with empirical and semiempirical potentials to cal-decided when performingb initio calculations: how to de-
culate the thermal properties of metals. In principle, this apscribe the exchange and correlation effects in the electron-
proach can be extended by performialy initio molecular electron interactions. The exact form of the exchange-
dynamics calculations at finite temperatures for large unitorrelation functional is not known, and one has to use
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various approximate schemes; the most widely used ongslained below we instead used a Fermi-DirdED) smear-
being the local density approximatioi.DA) and various ing, with the electronic levels occupied according to the FD
versions of generalized gradient approximatid@&GA's). distribution appropriate to the temperature of intefestin-
The GGA's are intended to be an improvement on the coneidentally, with this latter scheme, we did not face conver-
ventional LDA and do indeed perform better in certain situ-gence problems even at low valuesTof
ations, such as transition states in chemical reactions or sys- When using the LDA, we used the parametrization by
tems containing “weak” bonds. Unfortunately, however, the Perdew and Zunger of the results of Ceperley and Aldrer
GGAs do not always give answers that are in better agreethe GGA, we used the Perdew-Burke-Ernzerhof fSrthis
ment with experiment. choice was made in part because it is easier to implement in

Improving the treatment of exchange and correlation efthe DFPT calculations and because it gives a good descrip-
fects is the holy grail in the field of electronic structure cal-tion of the linear response of the uniform electron gas.
culations, and as an aid towards achieving this goal, it is To summarize, the following were obtained from DFT
desirable to have a clear picture of the comparative merits acdind DFPT calculations: (i) Total energies at a range of lat-
the LDA and GGA in various situations. It has been knowntice constants, usinge) MP smearing andb) FD smearing,
for a long time now that the LDA tends to “overbind,” giv- for a range of temperatures between 1 and 1400ilKFor
ing lattice constants that are too small and bulk moduli, phoeach lattice constant, the dynamical matri¢asd thus pho-
non frequencies, and cohesive energies that are too largeon frequencigsfor the 4<4 X4 set ofq points, using MP
The GGA's seem to overcorrect these errors, giving latticesmearing; Fourier interpolation was then used to obtain the
constants that are too large. A recent stuslyowed that this dynamical matrices on the 244x 24 set ofq points. (It
overcorrection is manifested also in the harmonic propertiesvas verified that replacing the MP smearing by the FD
the GGA gives bulk moduli and phonon frequencies that aresmearing did not make an appreciable difference to the pho-
systematically lower than the experimental ones. We are naton frequencies: i.e., the latter are not sensitive to the elec-
aware of any detailed studies comparing the performance dfonic temperaturg¢. All of the above quantities were com-
the LDA and GGA in describing anharmonic effects, which puted using both the LDA and GGA. This set of results was
manifest themselves in the temperature dependence of thken used to calculate the thermal behavior, as described be-
lattice constant, elastic and vibrational properties, and spdew.
cific heat capacities, and in the values of anharmonic quan-
tities such as the Gneisen parameters.

To this end, in this paper, we have performaill initio lll. RESULTS AND ANALYSIS

calculations to study the thermal properties of bulk copper, The static results for lattice constam, the bulk modulus
using both the LDA and GGA. We have computed the temg  and the pressure derivative of the bulk moduBisare
perature dependence of the lattice constant, the coefficient @htained by fitting the results for the static total energies
thermal expansion, the isothermal bulk modulus, the phonomsing MP smearingversus lattice constant to the fourth-

frequencies, the individual and overall Grisen param- rder Birch-Murnaghan equation of stafeUsing the LDA,
eters, and the specific heat capacities at constant volume agg: obtainag=6.71 bohrs B,=1.72 Mbar, and’ =5.0. The

constant pressure. corresponding results with the GGA aag=6.94 bohrs,B,
=1.28 Mbar, andB'=5.11. As expected, the experimental
Il AB INITIO CALCULATIONS values for the lattice constana{= 6.82 bohrs)Ref. 11 and

bulk modulus(1.37 Mbay (Ref. 12 lie sandwiched between

The ab initio calculations were performed using the the LDA and GGA values; it should, however, be noted that
PWSCF and PHONON codes: Total energies were computed the experimental values are at room temperature, and the
using DFT, and phonon frequencies using DFPT. The interealculated values listed above do not yet include the effects
action between the ions and valence electrons was describefl temperature. FoB’, there does not seem to be a consen-
using an ultrasoft pseudopotentiah plane-wave basis set sus on the experimental value, with several values reported
with a cutoff of 30 Ry was used; a cutoff of 300 Ry was usedin the literature. Listed in chronological order, these are
in the expansion of the augmentation charges necessitated By911% 5.31% 4.81°4.116 5,59} and 5.44'¢
the use of the ultrasofhon-norm-conservingpseudopoten- To study the effects of changing temperature, one has to
tial. Brillouin-zone integrations were performed using I60 look at the free energy, incorporating the effects of thermal
points in the irreducible part of the BZ. Phonon dynamicalvibrations(phonons. The free energy at temperatufeand
matrices were computedb initio for a 4X4X4 g-point  lattice constané is given, within the quasiharmonic approxi-
mesh; Fourier interpolation was then used to obtain the dymation, by
namical matrices on a 2424x 24 g-point mesh. This latter
set was used to evaluate all quantities that involve an inte-
gration over phonon wave vectogs F(a,T)= Esta(a)JrkBTz In[ Zsinl‘(

In order to deal with the possible convergence problems ax
for metals, a smearing technique was employed using the
Methfessel-PaxtofiMP) schemé, with the smearing param- Here, the first term on the right-hand side is the static energy
eter o set equal to 0.05 Ry. However, when evaluating theEg,{(a), and the second term is the vibrational free energy.
electronic contribution to the specific heat capacag ex- The sum is over all three phonon branchesnd over all

h (Dq)\(a)
2T

]. (1)
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FIG. 1. Linear thermal expansianas a function of temperature,
referred to a reference temperatiigof 298.15 K. The experimen-
tal values are from Ref. 19. It is seen that both the LB4lid line)
and GGA(dashed lingresults are close to the experimental values.

FIG. 3. Variation with temperature of the bulk modulBg. At
all temperatures, the LDAsolid line) overestimateB, and the
GGA (dashed linpunderestimates it; howeverB,/JT is approxi-
mately the same for the LDA, GGA, and experimental values. The

wave vectorsg in the BZ (we will use the 2&K24x24 q experimental values are from Ref. 21.

mesh in evaluating thjs# is Planck’s constankg is Boltz-
mann’s constant, andg, (a) is the frequency of the phonon
with wave vectorq and polarization\, evaluated at lattice
constant.

The lattice constant at temperatufeay(T), is obtained
by minimizing F(a,T) with respect toa. The linear expan-
sion €(T) is then given by

experimental valués for a(T) up to a temperature of 1400
K (the experimental value for the bulk melting temperature is
1357 K). Once again, it is clear that the experimental values
lie sandwiched between the LDA and GGA values, though
they lie somewhat closer to the LDA values, especially at
high temperature. However, it should be pointed out that the
calculated values may be inaccurate at very high tempera-
ao(T)—a(Te) tures for two reasons: (i) The use of the quasiharmonic
T’ (2 approximation may not be justified at temperatures just be-
o le low the melting point, as this is expected to be a region of
whereT, is the reference temperature of 298.15 K. high anharmonicity(ii) A part of the experimentally mea-
Figure 1 shows the results fe(T) (expressed as a per- sured thermal expansion at high temperatures results from
centage using both the LDA and GGA, compared to the the formation of vacancies; this effect is not included in our
experimental valué® It is seen that the agreement with ex- calculations, where we assume that the crystal remains defect
periment is quite good, though the LDA slightly underesti-free at all temperatures.
mates the expansion and the GGA slightly overestimates it. By fitting the results for the free energy from E@) to
This becomes more obvious upon differentiating the resultshe fourth-order Birch-Murnaghan equation of stdteye
for ag(T) to obtain the coefficient of linear expansion: also obtain the variation in temperature of the bulk modulus
By and the pressure derivative of the bulk moduis We
1 (dao(T)) find that the quality of the fit is noticeably better with the
ag(Ty)\ dT J°

fourth-order equation of state than with the Murnaghan equa-
_ _ _ _ tion of staté® or with the third-order Birch-Murnaghan equa-
[Note that this deflnmo_n Oh(T.) is the one usec_i for EXPETl~ion, especially at higher temperatures. The result8fgi)
mental data. When using(T) in thermodynamic relations, - 5. piotted in Fig. 3, from which it can be seen that though,
ao(Tc) should be replaced bgo(T) in the right-hand side of ot 5| temperatures, the absolute valueBg{T) is overesti-
the above equatioh. Figure 2 compares the calculated and mated by the LDA and underestimated by the GGA, the rate
of change oB, with temperature is approximately the same

e(T)=

a(T)= )

4x10° ‘ ‘ I for both, and moreover, this rate agrees well with that mea-
o - g%’; e sured experimentall?: Figure 4 shows the results &' (T);

8107 oot /,// | it can be seen th&' depends noticeably on the temperature.

P g ° (Incidentally this temperature dependence is considerably

a (K"

underestimated if one uses the Murnaghan equation or the
third-order Birch-Murnaghan equation.At 300 K, the
LDA and GGA values foB’ are 5.21 and 5.40, respectively,

\ \ \ compared to the static values of 5.00 and 5.11. These values
0 400 800 1200 agree well with some of the room-temperature experimental
T values cited abov&*8though there is a considerable scatter

FIG. 2. Coefficient of linear thermal expansianas a function N the experimentally reported values.
of temperature. Both the LDA and GGA values are reasonably close Since we know how the phonon frequencies vary veigh
to the experimental values; however, the LDA underestimates an@nd howa, varies withT, it is now a simple matter to get the
the GGA overestimates the thermal expansion. Experimental valugghonon frequencies at any desired temperature. In Fig. 5, the
are from Ref. 19. calculated and measuréghonon frequencies, at a tempera-

1x10°

0
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FIG. 4. Variation with temperature of the pressure derivative of %
the bulk modulusB’. The solid line is the LDA result, and the $ 30|
dashed line is the GGA result. ;ﬁ
=20t
tureT=80K, are plotted along several high-symmetry direc- 56) ol
tions in the Brillouin zone. At this temperature, the LDA g
gives ap=6.73bohrs and the GGA givea,=6.96 bohrs 0.0 femecnmeo- azmmmmmmemo alainindn
(since the temperature is relatively low, there is not an ap- 0 400 800 1200
preciable change from the static valuedet again, it can be T(K)

seen that the experimental values lie in between the LDA and
GGA values. The overestimatiofunderestimation of the
frequencies by the LDAGGA) can be traced back to the
underestimation(overestimatioh of the lattice constant. In
fact, if the phonon frequencies are computed atekperi-
mental lattice constant, the situation is reversed, and th

FIG. 6. Calculated values &, andC, , in units ofkg per atom,
obtained using thé¢a) LDA and (b) GGA. The dot-dashed lines
show CE", the thin dashed lines sho@¢, and the thick dashed
lines show their sunCY'. The solid lines show the calculated val-
ues forC,, obtained fronC\{* by using Eq.(5). The dots show the

eexperimental results fo€,, as given in Ref. 19.

GGA frequencies arbigherand the LDA frequencielwer P
than experiment, though the latter are closer to the experi- ) ) }
mental values than the former. smearing corresponding to a temperatiiteby computing

We can also compute the temperature dependence of tiB€ derivative with respect to the smearing temperaiueé
specific heat capacities at constant volume and constant pre§i€ €lectronic entropy, evaluated at the corresponding lattice
sure, as described below. The specific heat at constant vo‘F—OﬂStat”tao(T)- ;I'he tota‘ specific heat at constant volume is
ume has two contributions: one from the phonons and théhen Cy(T)=CU(T) + Cy(T).
other from the electrons. The former is given by C,. the specific heat at constant pressure, can then be

computed by using the relation

CO(T)=2 C,(an)
gA

9
_kE(ﬁw%(ao(T)))z- —z(ﬁ“’quao(T))) Co(M=CV(M+7a(MBo(MaoMT. (5
T B 2kgT 2kgT

(4) Figures 6a) and Gb) show the results thus obtained for
h | tot, H
The electronic contribution to the specific he@fi(T), is CUI(T), CU(T), CY(T), and Cy(T), computed using the

obtained from the self-consistent DFT calculations using FO-PA @nd GGA, respectively. As etlexpec_ted, the electronic
contribution to the specific hea€y/(T), is much smaller

8.0  — on than the phonon contributioﬁ{’,h(T), though not negligible.
o0 et L/ e The experimental values f@,(T) (Ref. 19 are also plotted.

60 L N 7 It is seen that for both the LDA and GGA the agreement with
) o 21\ ,' experiment is excellent up to about 600 K. Above this tem-
'35 40 I’ Nt g perature, the agreement remains very good for the LDA, but

20 T N T is poorer for the GGA. Note that at these high temperatures,

T CE,“(T) has reached its saturation value &;3er atom, and
the an values fo are therefore identical.

00 he LDA and GGA values fo€P(T) herefore identical

r X W X K r L

For the difference betwee@, andC,,, the error due to the
FIG. 5. Phonon dispersion along high-symmetry directions inunderestimatiorfoverestimationof « by the LDA(GGA) is

the BZ, at 80 K. The solid and dashed lines are the results obtaind® SOme extent canceled out by the overestimatiomleres-

using the LDA and GGA, respectively, and the solid circles are thelimation) of By.

experimental values from Ref. 221" and “ T” denote the longi- The anharmonicity of the vibrations can be examined by

tudinal and transverse branches, respectively. computing the mode Gneisen parameters, defined by
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FIG. 7. Calculated dispersion curves for the individual mode 0.0 0 460 860 12'00
Gruneisen parameterg,, for the same high-symmetry directions in T(K)
the BZ as in Fig. 5. The values have been evaluated at the static
lattice constant; the discrepancy between the LB@lid line9 and FIG. 8. Overall Grmeisen parametey as a function of tempera-
GGA (dashed linesresults is small. L” and “T" denote the lon-  ture. The solid and dashed lines are the results obtained using the
gitudinal and transverse branches, respectively. LDA and GGA, respectively. The experimental value is taken from
Ref. 24.
Y= op(V) v 4.8%, respectively, at room temperature. In comparison, the

3, . _ LDA and GGA results for the bulk moduluglotted in Fig.
whereV=a>/4 is the volume of the unit cell. Figure 7 shows 3) differ from each other by 30%—50% over the same tem-

the results for the G'neisen parameters f_or the same high,‘perature range, with the LDA and GGA erraisith respect
symmetry modes for which the frequencies were plotted in, experimentbeing 18.8% and 13.7%, respectively, at room
Fig. 5. They have been evaluated at the static lattice CONemperature.

stants. Though the LDA and GGA static lattice constants are

different, it can be seen that the discrepancy in the corre-

sponding Grueisen parameters is small, considerably IV. COMPARISON WITH EARLIER CALCULATIONS
smaller than the differences in phonon frequencies. For ex-
ample, at theX point (zone edge alon{l00)), the discrep-
ancy between the LDA and GGA results for the phonon fre
quencies is 10.7% and 12.5% for the transverse an
longitudinal branches, respectively, whereas the correspon

ing Grinesien parameters differ by only 0.4% and 2.1%, Sb initio. H h | off
respectively. It is interesting to compare Fig. 7 with Fig. 3 of &€ compute initio. However, thermal eflects are com-

Ref. 3, which shows the corresponding result for Ag. Thougl‘f:.)ljte‘_j 'usin% a [r)]ebye ;nodel aqd various apﬁ)roignr;?;e rela-
the phonon dispersion curves of Ag and Cu are very similafo"S; I-€., the phonon frequencies are not calcu -

in shape and structure, our curves for the @sien param- go' In_bthde gh'rd calcul_a_tloln,f the Lﬂtetre.m:n'; potentials are
eters of Cu look quite different, in some areas of the BZ,bezCrl ?f ty andert?]mncal ofrfmt a miu tesdsome ”f‘.af‘ty'
from those reported earlier for Ag. ody effects, an ermal effects are treated using finite-

We also compute the overall Greisen parametey, ter?p(i;]at_uretngjolec;u:ﬁr dt)k/]namlzs S|mu_lat|ons. i £
which is obtained by averaging over the individual &ru ? z'r quc(%/ O) et | erl\rr/1|o énamll((j: pr%pe’\; |esDo é%ce-
eisen parametergg, of all the modes, using the equation centered-cubiaicc) metals, Vacbonald and viaconaid

have described the interatomic interactions using a modified

S Y Cv(aN) Morse potential fit to expgrimgntal data such as the Debye
TS Culan) (7)  temperature®, the sublimation energy, and the thermal
o ~vid expansion in the neighborhood @fp (342 K). The elec-
where the contribution from each modg\() is weighted by  tronic contribution toC,, is estimated using free-electron
Cy(gn), its contribution to the specific heat, as defined intheory. Though the thermal expansion is fit to agree with
Eqg. (4). This quantity is of interest because it appears inexperiment at low temperatures; is underestimated by

some useful thermodynamic relatiotes discussed below about 20% at 1200 Kin comparison, our results for at
and experimental papers often report this overall value. Th&200 K, with no fit to data on thermal expansion, differ from
temperature dependence gfcomes from the temperature experiment by—12% when using the LDA and29% when
dependence of both the individual Grisen parametersg,, using the GGA. The absolute value d, agrees well with
(which depend on the lattice constant and henc&loand  experiment(which is to be expected, given the fitting to
that of the specific heat. 0Op); however,dBy(T)/JT is underestimated. The magnitude
Figure 8 shows the results for the results for the variatiorof the electronic contribution t&,,, estimated from free-
of the overall Grmeisen parametey as a function of tem- electron theory, is similar to what we obtain from our more
perature. It is seen that the percentage difference between tegact approach, and the agreement between the calculated
LDA and GGA results is small, ranging from 2.5% at 100 K and experimental values f@, is fairly good, similar to that
to 5.3% at 1300 K. The discrepancy with experiment is alsmbtained by us. The value gfchanges from 1.947 at 100 K
quite small, with the LDA and GGA errors being 2.8% andto 2.127 at 1000 K, which is comparable to our results. How-

We compare our results to those of three previous calcu-
lations. In the first, interatomic potentials are described by a
Rair potential fit to experimental data, and thermal effects are
reated by formulas that are valid in the high-temperature
Imit. In the second, the static energies at zero temperature

Y T)=
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ever, it should of course be kept in mind that in our calcula- YT)CW(T)

tions we do not fit to any empirical data at all. a(T)= 3By (T) 8
Moruzzi, Janak, and Schwafzhave computed the bulk 0

binding curve [i.e., Egs(@)] by performing ab initio From Fig. 8, it is seen that the discrepancy between the

augmented-spherical-wave method calculations. They useDA and GGA values ofy(T) is small and that both are
this to obtainB, (and thus an approximat@p) andy (inde-  close to experiment. Any error i8,(T) is negligible, espe-
pendent ofl). The free energy is then evaluated in the Debyecially at temperatures above the Debye temperature, where
model, with the volume dependence of the frequencies bein@,, has reached its saturation value &g3per atom. There
determined byy. They evaluatex only up to T=300K, remains the large error iBy(T). At a temperature of 1000
getting a value ofx that is too low at 300 K by 20%. Our K, for example, the LDA and GGA values far, By, anda
calculation improves upon this one in that we do not use dliffer by 4%, 41%, and 32%, respectively, which is consis-
Debye model and do not assume that all modes have tHent with our argument that the discrepancydrarises al-
same degree of anharmonicity, since we calculate individumost entirely from the discrepancy By,.

ally and exactly the values aé,(a). This is probably why If we assume that the main source of the LDA and GGA
our calculated values far are closer to experiment: at 300 errors in the values of physical quantities is the wrong value
K, our errors in the calculated are —14% (LDA) and  obtained for the lattice constant, then it is indeed consistent
+14% (GGA). that the errors in anharmonic quantities should be smaller

Cagn et al?® have used the empirical Sutton-Chen poten-than those in harmonic quantities. If the energy of a crystal is
tial to describe the interatomic interactions. The potentiakexpanded as a Taylor series in powers of the lattice constant,
parameters are fit to the cohesive energy, bulk modulus, etdhen the error arising from evaluating derivatives at the
at 0 K. Temperature effects are determined by performingvrong lattice constant get progressively less for higher de-
molecular dynamics simulations. As a comparison, let ugivatives. (For example, if the expansion were truncated at
consider the values for the thermal expansiomt 1000 cubic order, then the error in the second derivative is propor-
K: they obtain a result of 2.42%, compared to our values ofional to the error in the lattice constant, whereas there would
1.22%(LDA) and 1.64%GGA), and the experimental value be no error in the third derivative. Thus errors arising
of 1.37%. Our values are clearly closer to experiment; in thigrom using a wrong lattice constant are manifested to lesser
case, their larger errors presumably arise from deficiencies iand lesser degrees as one goes to higher-order anharmonic
their interatomic potential. properties.

To summarize, though our results do not agree exactly One can also argue that the LDA and GGA errors made in
with experiment, we still do a better job than earlier calcu-computing physical properties should increase with tempera-
lations. This is because we have eliminated the errors due tore: At T=0, the LDA underestimatea, and the GGA
the utilization of parametrized interatomic potentials and arpverestimates it. Upon heating, the LDA underestimates the
approximate treatment of the lattice vibrations. Thmalle) thermal expansiofbecause of the overestimationB®§) and
errors that remain in our calculations are due to the choice dhe GGA overestimates {because of the underestimation of
exchange-correlation potentiédnd, possibly, the use of the Bg). Thus, as the temperature is increased, the underestima-
guasiharmonic approximation, though we believe these etion by the LDA and the overestimation by the GGA of the
rors to be small lattice constant are both aggravated further, resulting in in-

creasingly unreliable results for physical properties, though
the errors are smaller for anharmonic properties than har-

V. DISCUSSION OF RESULTS monic ones. To avoid this, we suggest that when performing
. . ab initio DFT calculations at high temperatures in systems
From the results presented in Sec. Ill, it is clear that thehat display large errors in the calculated bulk modulus, it is

approximations used for the exchange-correlation potentialserhaps a good idea to use the experimental values of the
introduce much smaller errors in anharmonic quantities SUCtherma| expansion, regarc”ess of whether one is using the
asy, B’, and dBy(T)/dT than in harmonic properties like |DA or GGA. Itis also useful to keep in mind that the error
the bulk modulus and phonon frequencies. in the static value for the bulk modulus is already a good
At first sight, the relatively large discrepancy between theindicator of the magnitude of the error that will be made in
LDA and GGA values for the coefficient of thermal expan-the coefficient of thermal expansion; thus, if in a particular
sion @ may seem to contradict this statement. Howeuels  case, either the LDA or GGA gives a better value for the
not a purely anharmonic quantity. For example, in a onestatic value ofa, andBy, it will probably also give a better
dimensional anharmonic potential given BY(x)=3cx*  description of finite-temperature properties.
—39x%, we haveaxg/c? (Ref. 12; i.e., « depends on both
the harmonic coefficient and the anharmonic coefficiegt
and an error in the former will be manifested as an even
larger error ina. For the present case, where we have to To summarize, we have performedb initio calculations
average over a number of normal modes in three dimensionsy study the thermal properties of bulk copper, using phonon
it is possible to derivE a corresponding equation relatiag  frequencies computed using DFPT, and the quasiharmonic
to the averaged anharmonic quantjtyand harmonic quan- approximation for the vibrational free energy. We have cal-
tity By: culated the temperature dependence of the lattice constant

VI. SUMMARY
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ag, the thermal expansiog, the coefficient of thermal ex- men) is considerably lower for anharmonic quantities such
pansiona, the bulk modulusB,, the pressure derivative of aswy, B', anddBy(T)/dT than for the harmonic properties. In
the bulk modulud3’, the overall Grueisen parametey, and  any event, our results are closer to experiment than those of
the lattice and electronic contributions to the specific heaearlier calculations in which the interatomic interactions
capacities at constant volume and pressGxgandC,. We  and/or thermal effects were treated approximately.
have also presented results for the dispersion, along high- We have argued that if the main source of errors can be
symmetry directions in the BZ, of the phonon frequenciesattributed to the wrong value obtained for the lattice constant
and mode Groeisen parameters. All of the above have beerresulting from the approximate nature of the exchange-
computed using both the local density approximation andorrelation potential, then it is indeed reasonable that the
generalized gradient approximation. errors in anharmonic quantities should be smaller than those
Neither the LDA nor GGA is clearly to be preferred in in harmonic quantities. We have also argued that the LDA
this case, with both giving errors of comparable magnitudeand GGA errors should increase with temperature, suggest-
(though generally of opposite sigrAt all temperatures, the ing the need for care and caution when performaiginitio
LDA systematically underestimates the lattice constant andalculations at high temperatures.
the coefficient of thermal expansion, and the GGA overesti-
mates these. In contrast, the LDA always overestimates the
bulk modulus and phonon frequencies, and the GGA under-
estimates them. The electronic contribution to the specific S.N. gratefully acknowledges support from the Associate-
heat is found to be considerably smaller than the phononiship program of the Abdus-Salam International Center for
contribution, though not neglible. The results 10, agree  Theoretical Physics, Trieste, Italy, that made this collabora-
very well with experiment, except for the GGA results attion possible. S.d.G. has been supported in part by MURST
high temperatures. However, the discrepancy between thender COFIN99, and by thiiziativa Trasversale Calcolo
LDA and GGA results(and their discrepancy with experi- Parallelo of INFM.
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