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Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA

Shobhana Narasimhan
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, Ind

Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale per la Fisica della Materia,

via Beirut 2-4, I-34014 Trieste, Italy
~Received 31 August 2001; published 3 January 2002!

The thermal properties of bulk copper are investigated by performingab initio density functional theory and
density functional perturbation theory calculations and using the quasiharmonic approximation for the free
energy. Using both the local density approximation~LDA ! and generalized gradient approximation~GGA! for
the exchange-correlation potential, we compute the temperature dependence of the lattice constant, coefficient
of thermal expansion, bulk modulus, pressure derivative of the bulk modulus, phonon frequencies, Gru¨neisen
parameters, and the electronic and phonon contributions to the specific heats at constant volume and constant
pressure. We obtain answers in closer agreement with experiment than those obtained from more approximate
earlier treatments. The LDA and GGA errors in computing anharmonic quantities are significantly smaller than
those in harmonic quantities. We argue that this should be a general feature and also argue that LDA and GGA
errors should increase with temperature.
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I. INTRODUCTION

In any study of the properties of metals, it is obvious
crucial to include the effects of temperature. Thermal exp
sion results from the anharmonicity of the interatomic pot
tials, and this change in the lattice constant upon heatin
metal is accompanied by changes in the elastic and vi
tional properties. Experimental measurements of the t
perature dependence of the lattice constant, elastic mo
phonon frequencies, Gru¨neisen parameters, etc., of most e
emental metals have been available for a few decades
However, it has become possible to calculate these the
properties from first principles only in the last few years.

There are two main issues to be resolved when trying
compute the thermal properties of metals: one is how
describe the interatomic interactions accurately, and the o
is how to incorporate the effects of temperature into t
description.

To date, most computations of the thermal properties
metals have made use of parametrized interatomic poten
This necessarily introduces errors, even when the poten
are semiempirical and include both theoretical and exp
mental values in the fitting database. Self-consistent den
functional theory~DFT! calculations provide the most accu
rate way of computing interatomic interactions from fir
principles. Using the DFT prescriptions to obtain the en
gies as a function of nuclear coordinates avoids the er
introduced by assuming parametrized forms of interato
potentials.

As for computing the effects of temperature, one poss
approach is to perform molecular dynamics simulations
finite temperatures. This approach has, for example, b
combined with empirical and semiempirical potentials to c
culate the thermal properties of metals. In principle, this
proach can be extended by performingab initio molecular
dynamics calculations at finite temperatures for large u
0163-1829/2002/65~6!/064302~7!/$20.00 65 0643
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cells containing many metal atoms. However, the amoun
computational effort required in order to obtain reliable th
modynamic averages makes this difficult, especially for
noble metals and transition metals, which contain tigh
bound valence electrons. Also, since such simulations t
the ionic degrees of freedom classically, the results are
valid at very low temperatures, when zero-point effects
important.

An alternative approach is to compute the vibrational fr
energy using the quasiharmonic approximation, in which
harmonic effects are included via the volume dependenc
phonon frequencies, which can be determined by perform
ab initio calculations. Here too, in order to perform reliab
averages, it is necessary to compute the frequencies for m
wave vectors in the Brillouin zone~BZ!, which is computa-
tionally expensive, especially if the phonon frequencies
calculated using the ‘‘frozen-phonon’’ method. The develo
ment of density functional perturbation theory1 ~DFPT! has
considerably reduced the computational cost of obtain
phonon frequencies throughout the BZ, since unlike
frozen-phonon method, this technique does not require u
large supercells to access wave vectors away from the z
center.

Thus combiningab initio DFPT calculations with a quasi
harmonic treatment of the anharmonicity of vibrations c
rently offers us the most reliable yet practicable approa
towards calculating averaged thermal properties, at leas
to temperatures not too close to the melting point. In rec
years, this combined approach has been shown to be q
successful in predicting the bulk thermal properties of
simple metals Al, Li, and Na,2 and the noble metal Ag.3

However, there remains one important issue that has to
decided when performingab initio calculations: how to de-
scribe the exchange and correlation effects in the elect
electron interactions. The exact form of the exchan
correlation functional is not known, and one has to u
©2002 The American Physical Society02-1
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various approximate schemes; the most widely used o
being the local density approximation~LDA ! and various
versions of generalized gradient approximations~GGA’s!.
The GGA’s are intended to be an improvement on the c
ventional LDA and do indeed perform better in certain si
ations, such as transition states in chemical reactions or
tems containing ‘‘weak’’ bonds. Unfortunately, however, t
GGA’s do not always give answers that are in better agr
ment with experiment.

Improving the treatment of exchange and correlation
fects is the holy grail in the field of electronic structure c
culations, and as an aid towards achieving this goal, i
desirable to have a clear picture of the comparative merit
the LDA and GGA in various situations. It has been know
for a long time now that the LDA tends to ‘‘overbind,’’ giv
ing lattice constants that are too small and bulk moduli, p
non frequencies, and cohesive energies that are too la
The GGA’s seem to overcorrect these errors, giving latt
constants that are too large. A recent study4 showed that this
overcorrection is manifested also in the harmonic propert
the GGA gives bulk moduli and phonon frequencies that
systematically lower than the experimental ones. We are
aware of any detailed studies comparing the performanc
the LDA and GGA in describing anharmonic effects, whi
manifest themselves in the temperature dependence o
lattice constant, elastic and vibrational properties, and s
cific heat capacities, and in the values of anharmonic qu
tities such as the Gru¨neisen parameters.

To this end, in this paper, we have performedab initio
calculations to study the thermal properties of bulk copp
using both the LDA and GGA. We have computed the te
perature dependence of the lattice constant, the coefficie
thermal expansion, the isothermal bulk modulus, the pho
frequencies, the individual and overall Gru¨neisen param-
eters, and the specific heat capacities at constant volume
constant pressure.

II. AB INITIO CALCULATIONS

The ab initio calculations were performed using th
PWSCF and PHONON codes.5 Total energies were compute
using DFT, and phonon frequencies using DFPT. The in
action between the ions and valence electrons was desc
using an ultrasoft pseudopotential.6 A plane-wave basis se
with a cutoff of 30 Ry was used; a cutoff of 300 Ry was us
in the expansion of the augmentation charges necessitate
the use of the ultrasoft~non-norm-conserving! pseudopoten-
tial. Brillouin-zone integrations were performed using 60k
points in the irreducible part of the BZ. Phonon dynamic
matrices were computedab initio for a 43434 q-point
mesh; Fourier interpolation was then used to obtain the
namical matrices on a 24324324 q-point mesh. This latter
set was used to evaluate all quantities that involve an i
gration over phonon wave vectorsq.

In order to deal with the possible convergence proble
for metals, a smearing technique was employed using
Methfessel-Paxton~MP! scheme,7 with the smearing param
eter s set equal to 0.05 Ry. However, when evaluating
electronic contribution to the specific heat capacity~as ex-
06430
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plained below! we instead used a Fermi-Dirac~FD! smear-
ing, with the electronic levels occupied according to the F
distribution appropriate to the temperature of interestT. ~In-
cidentally, with this latter scheme, we did not face conv
gence problems even at low values ofT.!

When using the LDA, we used the parametrization
Perdew and Zunger of the results of Ceperley and Alder.8 For
the GGA, we used the Perdew-Burke-Ernzerhof form;9 this
choice was made in part because it is easier to implemen
the DFPT calculations and because it gives a good desc
tion of the linear response of the uniform electron gas.

To summarize, the following were obtained from DF
and DFPT calculations: ~i! Total energies at a range of la
tice constants, using~a! MP smearing and~b! FD smearing,
for a range of temperatures between 1 and 1400 K.~ii ! For
each lattice constant, the dynamical matrices~and thus pho-
non frequencies! for the 43434 set ofq points, using MP
smearing; Fourier interpolation was then used to obtain
dynamical matrices on the 24324324 set ofq points. ~It
was verified that replacing the MP smearing by the F
smearing did not make an appreciable difference to the p
non frequencies: i.e., the latter are not sensitive to the e
tronic temperature.! All of the above quantities were com
puted using both the LDA and GGA. This set of results w
then used to calculate the thermal behavior, as described
low.

III. RESULTS AND ANALYSIS

The static results for lattice constanta0 , the bulk modulus
B0 , and the pressure derivative of the bulk modulusB8 are
obtained by fitting the results for the static total energ
~using MP smearing! versus lattice constant to the fourth
order Birch-Murnaghan equation of state.10 Using the LDA,
we obtaina056.71 bohrs,B051.72 Mbar, andB855.0. The
corresponding results with the GGA area056.94 bohrs,B0
51.28 Mbar, andB855.11. As expected, the experiment
values for the lattice constant (a056.82 bohrs)~Ref. 11! and
bulk modulus~1.37 Mbar! ~Ref. 12! lie sandwiched between
the LDA and GGA values; it should, however, be noted th
the experimental values are at room temperature, and
calculated values listed above do not yet include the effe
of temperature. ForB8, there does not seem to be a conse
sus on the experimental value, with several values repo
in the literature. Listed in chronological order, these a
3.91,13 5.3,14 4.8,15 4.1,16 5.59,17 and 5.44.18

To study the effects of changing temperature, one ha
look at the free energy, incorporating the effects of therm
vibrations~phonons!. The free energy at temperatureT and
lattice constanta is given, within the quasiharmonic approx
mation, by

F~a,T!5Estat~a!1kBT(
ql

lnH 2sinhS \vql~a!

2kBT D J . ~1!

Here, the first term on the right-hand side is the static ene
Estat(a), and the second term is the vibrational free ener
The sum is over all three phonon branchesl and over all
2-2
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AB INITIO CALCULATION OF THE THERMAL . . . PHYSICAL REVIEW B 65 064302
wave vectorsq in the BZ ~we will use the 24324324 q
mesh in evaluating this!, \ is Planck’s constant,kB is Boltz-
mann’s constant, andvql(a) is the frequency of the phono
with wave vectorq and polarizationl, evaluated at lattice
constanta.

The lattice constant at temperatureT, a0(T), is obtained
by minimizing F(a,T) with respect toa. The linear expan-
sion e(T) is then given by

e~T!5
a0~T!2a0~Tc!

a0~Tc!
, ~2!

whereTc is the reference temperature of 298.15 K.
Figure 1 shows the results fore(T) ~expressed as a pe

centage! using both the LDA and GGA, compared to th
experimental value.19 It is seen that the agreement with e
periment is quite good, though the LDA slightly underes
mates the expansion and the GGA slightly overestimate
This becomes more obvious upon differentiating the res
for a0(T) to obtain the coefficient of linear expansion:

a~T!5
1

a0~Tc!
S da0~T!

dT D . ~3!

@Note that this definition ofa(T) is the one used for experi
mental data. When usinga(T) in thermodynamic relations
a0(Tc) should be replaced bya0(T) in the right-hand side of
the above equation.# Figure 2 compares the calculated a

FIG. 1. Linear thermal expansione as a function of temperature
referred to a reference temperatureTc of 298.15 K. The experimen
tal values are from Ref. 19. It is seen that both the LDA~solid line!
and GGA~dashed line! results are close to the experimental valu

FIG. 2. Coefficient of linear thermal expansiona as a function
of temperature. Both the LDA and GGA values are reasonably c
to the experimental values; however, the LDA underestimates
the GGA overestimates the thermal expansion. Experimental va
are from Ref. 19.
06430
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experimental values19 for a(T) up to a temperature of 140
K ~the experimental value for the bulk melting temperature
1357 K!. Once again, it is clear that the experimental valu
lie sandwiched between the LDA and GGA values, thou
they lie somewhat closer to the LDA values, especially
high temperature. However, it should be pointed out that
calculated values may be inaccurate at very high temp
tures for two reasons: ~i! The use of the quasiharmoni
approximation may not be justified at temperatures just
low the melting point, as this is expected to be a region
high anharmonicity.~ii ! A part of the experimentally mea
sured thermal expansion at high temperatures results f
the formation of vacancies; this effect is not included in o
calculations, where we assume that the crystal remains de
free at all temperatures.

By fitting the results for the free energy from Eq.~1! to
the fourth-order Birch-Murnaghan equation of state,10 we
also obtain the variation in temperature of the bulk modu
B0 and the pressure derivative of the bulk modulusB8. We
find that the quality of the fit is noticeably better with th
fourth-order equation of state than with the Murnaghan eq
tion of state20 or with the third-order Birch-Murnaghan equa
tion, especially at higher temperatures. The results forB0(T)
are plotted in Fig. 3, from which it can be seen that thou
at all temperatures, the absolute value ofB0(T) is overesti-
mated by the LDA and underestimated by the GGA, the r
of change ofB0 with temperature is approximately the sam
for both, and moreover, this rate agrees well with that m
sured experimentally.21 Figure 4 shows the results forB8(T);
it can be seen thatB8 depends noticeably on the temperatu
~Incidentally this temperature dependence is considera
underestimated if one uses the Murnaghan equation or
third-order Birch-Murnaghan equation.! At 300 K, the
LDA and GGA values forB8 are 5.21 and 5.40, respectivel
compared to the static values of 5.00 and 5.11. These va
agree well with some of the room-temperature experime
values cited above,13–18though there is a considerable scat
in the experimentally reported values.

Since we know how the phonon frequencies vary witha0
and howa0 varies withT, it is now a simple matter to get th
phonon frequencies at any desired temperature. In Fig. 5
calculated and measured22 phonon frequencies, at a temper

.

e
d

es

FIG. 3. Variation with temperature of the bulk modulusB0 . At
all temperatures, the LDA~solid line! overestimatesB0 and the
GGA ~dashed line! underestimates it; however,]B0 /]T is approxi-
mately the same for the LDA, GGA, and experimental values. T
experimental values are from Ref. 21.
2-3
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SHOBHANA NARASIMHAN AND STEFANO de GIRONCOLI PHYSICAL REVIEW B65 064302
tureT580 K, are plotted along several high-symmetry dire
tions in the Brillouin zone. At this temperature, the LD
gives a056.73 bohrs and the GGA givesa056.96 bohrs
~since the temperature is relatively low, there is not an
preciable change from the static values!. Yet again, it can be
seen that the experimental values lie in between the LDA
GGA values. The overestimation~underestimation! of the
frequencies by the LDA~GGA! can be traced back to th
underestimation~overestimation! of the lattice constant. In
fact, if the phonon frequencies are computed at theexperi-
mental lattice constant, the situation is reversed, and
GGA frequencies arehigher and the LDA frequencieslower
than experiment, though the latter are closer to the exp
mental values than the former.

We can also compute the temperature dependence o
specific heat capacities at constant volume and constant
sure, as described below. The specific heat at constant
ume has two contributions: one from the phonons and
other from the electrons. The former is given by

CV
ph~T!5(

ql
Cv~ql!

5kB(
ql

S \vql„a0~T!…

2kBT D 2

sinh22S \vql„a0~T!…

2kBT D .

~4!

The electronic contribution to the specific heat,CV
el(T), is

obtained from the self-consistent DFT calculations using

FIG. 4. Variation with temperature of the pressure derivative
the bulk modulusB8. The solid line is the LDA result, and th
dashed line is the GGA result.

FIG. 5. Phonon dispersion along high-symmetry directions
the BZ, at 80 K. The solid and dashed lines are the results obta
using the LDA and GGA, respectively, and the solid circles are
experimental values from Ref. 22. ‘‘L’’ and ‘‘ T’’ denote the longi-
tudinal and transverse branches, respectively.
06430
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smearing corresponding to a temperatureT, by computing
the derivative with respect to the smearing temperatureT of
the electronic entropy, evaluated at the corresponding lat
constanta0(T). The total specific heat at constant volume
thenCV

tot(T)5CV
ph(T)1CV

el(T).
Cp , the specific heat at constant pressure, can then

computed by using the relation

Cp~T!5CV
tot~T!1

9

4
a2~T!B0~T!a0~T!T. ~5!

Figures 6~a! and 6~b! show the results thus obtained fo
CV

ph(T), CV
el(T), CV

tot(T), and Cp(T), computed using the
LDA and GGA, respectively. As expected, the electron
contribution to the specific heat,CV

el(T), is much smaller
than the phonon contributionCV

ph(T), though not negligible.
The experimental values forCp(T) ~Ref. 19! are also plotted.
It is seen that for both the LDA and GGA the agreement w
experiment is excellent up to about 600 K. Above this te
perature, the agreement remains very good for the LDA,
is poorer for the GGA. Note that at these high temperatu
CV

ph(T) has reached its saturation value of 3kB per atom, and
the LDA and GGA values forCV

ph(T) are therefore identical
For the difference betweenCp andCV , the error due to the
underestimation~overestimation! of a by the LDA ~GGA! is
to some extent canceled out by the overestimation~underes-
timation! of B0 .

The anharmonicity of the vibrations can be examined
computing the mode Gru¨neisen parameters, defined by

f

n
ed
e

FIG. 6. Calculated values ofCp andCv , in units ofkB per atom,
obtained using the~a! LDA and ~b! GGA. The dot-dashed lines
show CV

ph, the thin dashed lines showCV
el , and the thick dashed

lines show their sumCV
tot . The solid lines show the calculated va

ues forCp , obtained fromCV
tot by using Eq.~5!. The dots show the

experimental results forCp , as given in Ref. 19.
2-4
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gql52
V

vql~V!

]vql~V!

]V
, ~6!

whereV5a3/4 is the volume of the unit cell. Figure 7 show
the results for the Gru¨neisen parameters for the same hig
symmetry modes for which the frequencies were plotted
Fig. 5. They have been evaluated at the static lattice c
stants. Though the LDA and GGA static lattice constants
different, it can be seen that the discrepancy in the co
sponding Gru¨neisen parameters is small, considera
smaller than the differences in phonon frequencies. For
ample, at theX point ~zone edge along@100#!, the discrep-
ancy between the LDA and GGA results for the phonon f
quencies is 10.7% and 12.5% for the transverse
longitudinal branches, respectively, whereas the corresp
ing Grünesien parameters differ by only 0.4% and 2.1
respectively. It is interesting to compare Fig. 7 with Fig. 3
Ref. 3, which shows the corresponding result for Ag. Thou
the phonon dispersion curves of Ag and Cu are very sim
in shape and structure, our curves for the Gru¨nesien param-
eters of Cu look quite different, in some areas of the B
from those reported earlier for Ag.

We also compute the overall Gru¨neisen parameterg,
which is obtained by averaging over the individual Gru¨n-
eisen parametersgql of all the modes, using the equation

g~T!5
(qlgqlCV~ql!

(qlCV~ql!
, ~7!

where the contribution from each mode (ql) is weighted by
CV(ql), its contribution to the specific heat, as defined
Eq. ~4!. This quantity is of interest because it appears
some useful thermodynamic relations~as discussed below!,
and experimental papers often report this overall value.
temperature dependence ofg comes from the temperatur
dependence of both the individual Gru¨neisen parametersgql

~which depend on the lattice constant and hence onT! and
that of the specific heat.

Figure 8 shows the results for the results for the variat
of the overall Gru¨neisen parameterg as a function of tem-
perature. It is seen that the percentage difference betwee
LDA and GGA results is small, ranging from 2.5% at 100
to 5.3% at 1300 K. The discrepancy with experiment is a
quite small, with the LDA and GGA errors being 2.8% a

FIG. 7. Calculated dispersion curves for the individual mo
Grüneisen parametersgql for the same high-symmetry directions
the BZ as in Fig. 5. The values have been evaluated at the s
lattice constant; the discrepancy between the LDA~solid lines! and
GGA ~dashed lines! results is small. ‘‘L’’ and ‘‘ T’’ denote the lon-
gitudinal and transverse branches, respectively.
06430
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4.8%, respectively, at room temperature. In comparison,
LDA and GGA results for the bulk modulus~plotted in Fig.
3! differ from each other by 30%–50% over the same te
perature range, with the LDA and GGA errors~with respect
to experiment! being 18.8% and 13.7%, respectively, at roo
temperature.

IV. COMPARISON WITH EARLIER CALCULATIONS

We compare our results to those of three previous ca
lations. In the first, interatomic potentials are described b
pair potential fit to experimental data, and thermal effects
treated by formulas that are valid in the high-temperat
limit. In the second, the static energies at zero tempera
are computedab initio. However, thermal effects are com
puted using a Debye model and various approximate r
tions; i.e., the phonon frequencies are not calculatedab ini-
tio. In the third calculation, the interatomic potentials a
described by an empirical form that includes some ma
body effects, and thermal effects are treated using fin
temperature molecular dynamics simulations.

In their study of the thermodynamic properties of fac
centered-cubic~fcc! metals, MacDonald and MacDonald23

have described the interatomic interactions using a modi
Morse potential fit to experimental data such as the De
temperatureQD , the sublimation energy, and the therm
expansion in the neighborhood ofQD ~342 K!. The elec-
tronic contribution toCV is estimated using free-electro
theory. Though the thermal expansion is fit to agree w
experiment at low temperatures,a is underestimated by
about 20% at 1200 K~in comparison, our results fora at
1200 K, with no fit to data on thermal expansion, differ fro
experiment by212% when using the LDA and129% when
using the GGA!. The absolute value ofB0 agrees well with
experiment~which is to be expected, given the fitting t
QD!; however,]B0(T)/]T is underestimated. The magnitud
of the electronic contribution toCV , estimated from free-
electron theory, is similar to what we obtain from our mo
exact approach, and the agreement between the calcu
and experimental values forCp is fairly good, similar to that
obtained by us. The value ofg changes from 1.947 at 100 K
to 2.127 at 1000 K, which is comparable to our results. Ho

tic
FIG. 8. Overall Gru¨neisen parameterg as a function of tempera

ture. The solid and dashed lines are the results obtained using
LDA and GGA, respectively. The experimental value is taken fro
Ref. 24.
2-5
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SHOBHANA NARASIMHAN AND STEFANO de GIRONCOLI PHYSICAL REVIEW B65 064302
ever, it should of course be kept in mind that in our calcu
tions we do not fit to any empirical data at all.

Moruzzi, Janak, and Schwarz24 have computed the bulk
binding curve @i.e., Estat(a)# by performing ab initio
augmented-spherical-wave method calculations. They
this to obtainB0 ~and thus an approximateQD! andg ~inde-
pendent ofT!. The free energy is then evaluated in the Deb
model, with the volume dependence of the frequencies be
determined byg. They evaluatea only up to T5300 K,
getting a value ofa that is too low at 300 K by 20%. Ou
calculation improves upon this one in that we do not us
Debye model and do not assume that all modes have
same degree of anharmonicity, since we calculate indivi
ally and exactly the values ofvql(a). This is probably why
our calculated values fora are closer to experiment: at 30
K, our errors in the calculateda are 214% ~LDA ! and
114% ~GGA!.

Çaǧin et al.25 have used the empirical Sutton-Chen pote
tial to describe the interatomic interactions. The poten
parameters are fit to the cohesive energy, bulk modulus,
at 0 K. Temperature effects are determined by perform
molecular dynamics simulations. As a comparison, let
consider the values for the thermal expansione at 1000
K: they obtain a result of 2.42%, compared to our values
1.22%~LDA ! and 1.64%~GGA!, and the experimental valu
of 1.37%. Our values are clearly closer to experiment; in t
case, their larger errors presumably arise from deficiencie
their interatomic potential.

To summarize, though our results do not agree exa
with experiment, we still do a better job than earlier calc
lations. This is because we have eliminated the errors du
the utilization of parametrized interatomic potentials and
approximate treatment of the lattice vibrations. The~smaller!
errors that remain in our calculations are due to the choic
exchange-correlation potential~and, possibly, the use of th
quasiharmonic approximation, though we believe these
rors to be small!.

V. DISCUSSION OF RESULTS

From the results presented in Sec. III, it is clear that
approximations used for the exchange-correlation poten
introduce much smaller errors in anharmonic quantities s
as g, B8, and ]B0(T)/]T than in harmonic properties like
the bulk modulus and phonon frequencies.

At first sight, the relatively large discrepancy between
LDA and GGA values for the coefficient of thermal expa
sion a may seem to contradict this statement. However,a is
not a purely anharmonic quantity. For example, in a o
dimensional anharmonic potential given byV(x)5 1

2 cx2

2 1
6 gx3, we havea}g/c2 ~Ref. 12!; i.e., a depends on both

the harmonic coefficientc and the anharmonic coefficientg,
and an error in the former will be manifested as an ev
larger error ina. For the present case, where we have
average over a number of normal modes in three dimensi
it is possible to derive11 a corresponding equation relatinga
to the averaged anharmonic quantityg and harmonic quan
tity B0 :
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g~T!CV~T!

3B0~T!
. ~8!

From Fig. 8, it is seen that the discrepancy between
LDA and GGA values ofg(T) is small and that both are
close to experiment. Any error inCV(T) is negligible, espe-
cially at temperatures above the Debye temperature, wh
CV has reached its saturation value of 3kB per atom. There
remains the large error inB0(T). At a temperature of 1000
K, for example, the LDA and GGA values forg, B0 , anda
differ by 4%, 41%, and 32%, respectively, which is cons
tent with our argument that the discrepancy ina arises al-
most entirely from the discrepancy inB0 .

If we assume that the main source of the LDA and GG
errors in the values of physical quantities is the wrong va
obtained for the lattice constant, then it is indeed consis
that the errors in anharmonic quantities should be sma
than those in harmonic quantities. If the energy of a crysta
expanded as a Taylor series in powers of the lattice cons
then the error arising from evaluating derivatives at t
wrong lattice constant get progressively less for higher
rivatives. ~For example, if the expansion were truncated
cubic order, then the error in the second derivative is prop
tional to the error in the lattice constant, whereas there wo
be no error in the third derivative.! Thus errors arising
from using a wrong lattice constant are manifested to les
and lesser degrees as one goes to higher-order anharm
properties.

One can also argue that the LDA and GGA errors made
computing physical properties should increase with tempe
ture: At T50, the LDA underestimatesa0 and the GGA
overestimates it. Upon heating, the LDA underestimates
thermal expansion~because of the overestimation ofB0! and
the GGA overestimates it~because of the underestimation
B0!. Thus, as the temperature is increased, the underest
tion by the LDA and the overestimation by the GGA of th
lattice constant are both aggravated further, resulting in
creasingly unreliable results for physical properties, thou
the errors are smaller for anharmonic properties than h
monic ones. To avoid this, we suggest that when perform
ab initio DFT calculations at high temperatures in syste
that display large errors in the calculated bulk modulus, i
perhaps a good idea to use the experimental values of
thermal expansion, regardless of whether one is using
LDA or GGA. It is also useful to keep in mind that the erro
in the static value for the bulk modulus is already a go
indicator of the magnitude of the error that will be made
the coefficient of thermal expansion; thus, if in a particu
case, either the LDA or GGA gives a better value for t
static value ofa0 andB0 , it will probably also give a better
description of finite-temperature properties.

VI. SUMMARY

To summarize, we have performedab initio calculations
to study the thermal properties of bulk copper, using phon
frequencies computed using DFPT, and the quasiharm
approximation for the vibrational free energy. We have c
culated the temperature dependence of the lattice cons
2-6
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a0 , the thermal expansione, the coefficient of thermal ex
pansiona, the bulk modulusB0 , the pressure derivative o
the bulk modulusB8, the overall Gru¨neisen parameterg, and
the lattice and electronic contributions to the specific h
capacities at constant volume and pressure,CV andCp . We
have also presented results for the dispersion, along h
symmetry directions in the BZ, of the phonon frequenc
and mode Gru¨neisen parameters. All of the above have be
computed using both the local density approximation a
generalized gradient approximation.

Neither the LDA nor GGA is clearly to be preferred
this case, with both giving errors of comparable magnitu
~though generally of opposite sign!. At all temperatures, the
LDA systematically underestimates the lattice constant
the coefficient of thermal expansion, and the GGA overe
mates these. In contrast, the LDA always overestimates
bulk modulus and phonon frequencies, and the GGA un
estimates them. The electronic contribution to the spec
heat is found to be considerably smaller than the phono
contribution, though not neglible. The results forCp agree
very well with experiment, except for the GGA results
high temperatures. However, the discrepancy between
LDA and GGA results~and their discrepancy with exper
n
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ment! is considerably lower for anharmonic quantities su
asg, B8, and]B0(T)/]T than for the harmonic properties. I
any event, our results are closer to experiment than thos
earlier calculations in which the interatomic interactio
and/or thermal effects were treated approximately.

We have argued that if the main source of errors can
attributed to the wrong value obtained for the lattice const
resulting from the approximate nature of the exchan
correlation potential, then it is indeed reasonable that
errors in anharmonic quantities should be smaller than th
in harmonic quantities. We have also argued that the L
and GGA errors should increase with temperature, sugg
ing the need for care and caution when performingab initio
calculations at high temperatures.
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