PHYSICAL REVIEW B, VOLUME 65, 064301

Effect of electronic disorder on phonon-drag thermopower
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Using the quantum-transport equation and Keldysh diagrammatic technique, we investigate the phonon-drag
thermopower in a disordered conductor. We consider phonon drag of three-dimensional electrons, which
interact with longitudinal phonons via the deformation potential. The scattering potential of impurities, bound-
aries, and defects is modeled by quasistatic scatterers and vibrating scatterers, which move in the same way as
host atoms. In thin films and nanostructures the phonons relax mainly in a substrate, and the phonon-drag
thermopower substantially depends on the character of electron scatterers. Vibrating scatterers decrease ther-
mopower, while static scatterers, such as rigid boundaries and heavy impurities, increase it. These changes in
thermopower correlate to the disorder-induced modification of the electron-phonon relaxation rate. In bulk
conductors, phonon-electron scattering dominates in the phonon relaxation, and the phonon-drag thermopower
just slightly varies with electron mean free path.
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[. INTRODUCTION guantum-transport equation or Kubo method can be em-
ployed to take into account the interference of scattering pro-
Quantum transport in disordered systems has been studiggsses in disordered conductors.

for many years, yet many open problems remain. One focus The purpose of this paper is to investigate the effect of the

of these investigations is the disorder-induced modificatiorelastic electron scattering on the phonon-drag thermopower.

of the electron-electron and electron-phonon interacttons. In the pure casegyl>1, the thermoelectric coefficient,

Quantum interference of scattering processes violates the=—Je/VT, is given by2~14 (for details see Sec. I

Mathiessen rule, according to which the contributions to 4

transport coefficients due to a random potential and phonons _ ﬁ e T)T 1)

are additive?® The quantum transport equation based on the 0T 30 p,:u2 '

Keldysh technique has been quite successful in describin\gz
t

transport phenomena, such as the electron relaxatior) e lifetime of a thermal phonon with frequenay,=T, B is

dephasing and temperature-dependent conductivit® . . . .
The electron-phonon interaction is drastically modified inthe dlmer_15|onless electron-phonon cc_JupImg consiaats
the Fermi momentunm the exponent in the frequency de-

disordered conductors. In processes of “pure” electron- d f the ph laxati & ot db.. |
phonon scattering the transferred momentum is of the ord endence ot the phonon relaxation ratgy( wg), andb, is
the numeric coefficient

of the wave vector of a thermal phonagy=T/u (u is the
sound velocity, and the region of the interaction is1/qt. w IN(X)

Elastic electron scattering confines an electron to the inter- bn:f dx X "—=, 2
action region. Diffusive electron motion increases the 0 X

electron-phonon interaction time to Dg? (D is the diffu- N(x)=[exp&)—1]"%. In a degenerate conductor, the
sion coefflmgnl apd (.anhan.c_es the |nteract|o_n. Electron Scat‘electron—phonon coupling constant is given by

tering from vibrating impurities and boundaries generates an-

hereris the electron momentum relaxation time, thg is

other channel of the electron-phonon interaction in a 2e¢c\? v
disordered conductor. Various scattering processes interfere B= 3] 2002 3)

with one another, and the interference results in nontrivial

changes of kinetic and transport coefficients. If impuritieswhere er is the Fermi energyy is the electron density of
and boundaries vibrate in the same way as the host latticstates at the Fermi surface, apds the density.

the electron-phonon relaxation rate is decreased by a factor The measured transport coefficient is the phonon-drag
of g7l (gyl<1,1 is the electron mean free pathbompared thermopowerS=— 5/o, whereo is the electrical conduc-
with the rate in a pure bulk materiaf® This statement is tivity. Considering the phonon drag in disordered systems,
well known as Pippard ineffectiveness conditfSnOn the  we accept that the main mechanism of the electron momen-
contrary, in the presence of a quasistatic scattering potenti&lim relaxation is scattering from boundaries and impurities.
of rigid boundaries or heavy impurities, the relaxation rate isThe electrical conductivity is given by Drude formula,
enhanced by the same factérEven in the pure limitg;l  =e?vvgl/3, wherev is the Fermi velocity. Thus, in the pure
>1, electron scattering from static or vibrating potentialslimit, g+/>1, the phonon-drag thermopower is independent
changes the temperature-dependent resistivity fFéro T?, of the electron mean free path

and theT? term is proportional to the residual resistivit§!* .

Effects of the electronic disorder cannot be described in Sgr: T BTon(T) T 4)
terms of the effective electron-phonon matrix element. The 2eer(ppu)? -
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In the pure limit, g;I>1, the phonon-electron scattering [I. TRANSPORT EQUATION
ime i ) . -
time i’ To find the phonon-drag thermoelectric coefficiesit we

will calculate the electric current as a response to the tem-

UVE erature gradient in the phonon subsystém:
rone(T) = 3o 5 P J P ySiemen
Je=0E+ VTt 7%V T,. (8)
a4
andb; =47"/15. The last term with the electronic diffusion thermoelectric co-

Thus, if the phonon-electron scattering dominates in theefficientn
phonon relaxationy,,= 7,n.¢, the thermoelectric coefficient
is given by the well-known Gurevitch formdfa®*

df describes the response to the temperature gradi-
ent in the electron subsysteWiT,.

We use the quantum-transport equation method developed
in Ref. 2(for review see Ref. ¥and then generalized in Ref.

oh-e 2w eT 17 for thermoelectric phenomeridetails may be found in
707745 pea® (6 Refs. 18 and 19 This method is based on the Keldysh dia-

grammatic technique for nonequilibrium processes. In the
and thermopower is independent of eIectron-phonorKeldySh technigue the phonon and electron Green functions,

coupling D andG, and the electron self-enerdy are represented by
matrices
4 3
Sgh-e:_ﬂzzi T 3. (7) N 0 DA N EC ER
o 15 e(pgru) “|prR pc) = SA 0 ©)

In the current paper we calculate the phonon-drag therEvery matrix consists of three nonzero components: retarded
mopower in a disordered conductor. We consider three(R), advancedA) and kinetic(C) functions.
dimensional (3D) electrons interacting with longitudinal Assuming that the phonon spectrum has been renor-
phonons via the deformation potential, which is renormal-malized due to the electron-phonon interaction, we may
ized by elastic electron scattering. We study the effects opresent the retarded component of the phonon Green func-
quasistatic and vibrating scattering potentials. The quasistatitons as
potential models rigid boundaries and heavy impurities. The & - -
vibrating potential that moves in the same way as host atoms D7 (Q,@)=(@—wy+i0) "~ (0 +w+i0)" " . (10
qor_responds to the_Plppard model. Note, that in _the PUTE) the presence of the temperature gradient the kinetic-
limit, g7l <1, correction to the thermopower due to inelastic S

. ) ! ; phonon Green function is given by

electron-impurity scattering has been calculated in Ref. 157

Here we take into account all processes of the electron- DC(q,w)=2iF (q,w)ImDR(q,w)+ sDS(q, @) (11)
phonon-impurity/boundary interference at an arbitrary ’ ’ ’ '
concentration of electron scatterers. The second term in Eq1l) has the form of the Poisson

To solve this problem we use the following methods. bracket
First, we employ the quantum-transport equation. The trans-
port equation deals only with electron self-energy diagrams,
while the linear-response methods require more complicated
diagrams to be consideréd&econd, to find the phonon-drag
thermoelectric coefficient, we will calculate the electric cur-
rent of electrons as a response to the temperature gradient in {AB}=VT
the phonon subsystems. Note, that the symmetric problem of
the phonon thermal flux due to the electric field turns out toThus, sD(q, ) is proportional to D)2 and may be ne-
be significantly more difficult, because one should take intgylected.
account specific terms in the form of Poisson brackéts. ~ The phonon distribution function is given by
According to the Onsager relation, both approaches give the

5D%(q,0) = 5 (ReD(A,0) F(w,T(1)}, (12

JA B B aA)

9T 79 a7 o 13

same result for the thermoelectric coefficient. Third, in con- F(q,w)=Fg(w)+Fi(q,mw), (14
sidering the vibrating potential, we will employ the Tsuneto
transformatiort® which allows one to simplify the electron- Fo(®w)=2N,+ 1=coth( w/2T), (15)
phonon-impurity Hamiltonian.

The outline of this paper is as follows. In the following ® d(2N,+1)
section we obtain the quantum-transport equation, which will Fa(@ o) =5 —— 7V Tpn, (16)

be used to calculate the electric current under the phonon

temperature gradient. In Sec. Ill we investigate the effect ofvhere Fy(w) is the equilibrium distribution function,
static scatterers on the drag thermopower. In Sec. IV wé(q,w) is the nonequilibrium function, which is propor-
study the effect of vibrating scatterers. Discussion of outtional to VT, ***3and 7, is the phonon momentum relax-
main results is presented in Sec. V. ation time.
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Our aim is to calculate the electric current initiated by the

temperature gradient in the phonon system r
= — +
d dpde A
Jo=0 'VT=2e WVS(D,E)"‘H G (p,e), (17)
g

wherev is the electron velocity, an8(p, €) is the electron
distribution function, which will be found from the quantum- Ee_ph= ﬁ;
transport equation.

The retardedadvancegcomponent of the electron Green  FIG. 1. Renormalization of the electron-phonon vertex due to

function, taking into account the elastic electron scattering, ilastic electron scattering. Electron self-energy diagram.
given by

I1l. STATIC ELECTRON SCATTERERS
Ga(p,e)[Gh(p,e)]* =(e—&p+il2r) L, (18)

Where§p=(p2— pﬁ)/Zm. The momentum relaxation raterl/
is determined by electron scattering from impurities, defects
and boundaries.

In equilibrium, the electron distribution function is
Sy(€) = —tanh(T). In the presence of the temperature gra-
dient, the electron distribution functid®(p, €) is determined
from the transport equation

Heavy impurities and rigid boundaries may be considered
as quasistatic electron scatterers. In the model with static
scatterers the electron-phonon interaction is renormalized via
elastic scattering in the same way as the electron-electron
interaction>°>®We consider the Hamiltonian, which includes
electron-phonon interaction and electron scattering from
static potential

55 Hmﬁ% g(ach, Cp(bgnt b gn)
E il
—(v-VTy) ? z = Ie-imp[s] +1 e-ph-im;{ SF], (29

+ > VKICh coexp—ik-R,), (23
wherel ¢.inp andl ¢ pp-impare the collision integrald.g im, de- Pk-Ry
scribes the electron-impurityfboundary scattering, and
| e.phimptakes into account electron-phonon scattering and alfVherecy is the electron creation operatby, , is the creation
interference processes. As we discussed above, the electroffiR€rator of a phonon with a wave vectprand polarization
diffusion thermopower is conditioned by the temperature"dex n, V(k) is the scattering potential, anl, are the
gradient in the electron subsystei¥T,), while the phonon  POsitions of static scatterers. , L
drag thermopower arises due to the temperature gradient in 1 1€ vertex of the electron-phonon interaction is given by
the phonon subsystem. In the kinetic equation for electron
distribution function, the phonon temperature appears only in _ 2€F 9-& k (24)
the collision integral ¢ pn.imf S.F(Tpr) ]. Assuming that the 3 (2pw)TRTii
elastic electron scattering from impurities, boundaries, and
defects dominates in the electron momentum relaxation, on@hereec is the Fermi energye,, is the phonon polarization

can linearize the transport equation in the following way: ~Vector, andp is the denS|t.y . _
In the Keldysh technique, vertices are tensors with an

, , — upper phonon index and lower electron indices in the
'eiml $1+ ephim SoF 2] =0, 20 Keldysh space. The vertdxis given by
where ¢(p,e) is the nonequilibrium electron distribution
funcnon. Employingr approximation for electron-impurity 0= gKIl , (25
scattering, we get
where K= 8 /vZ, and Kf=(oy);;/v2. In what follows,
d(p,€) =7l ¢_pheimg So,F1]- (21)  we will present vertex components with phonon index
k=2, because only these components give a term with
The collision integral is expressed through the electrorP2;=DC, which is proportional to the phonon distribution

self-energy as function, i.e., to the phonon temperature gradient.
The vertex of elastic electron scattering may be expressed
| e-phimp= —i[SC-S(EA-3R)]. (22) through the corresponding momentum relaxation rate
The nonequilibrium corrections in the form of the Poisson = 7N V2, (26)

bracket betweer® and G are absent, because we consider

response to the temperature gradient in the phonon subwvhereNg. is the concentration of short-range scatterers.
system. Using powerful arsenal of the Keldysh diagram- Diffusion enhancement of the electron-phonon interaction
matic technique, we calculate the corresponding electrois described by the vertex dressed by “impurity” laddsee
self-energies and fingd(p, ) in the following sections. Fig. 1). The dressed vertex is given by
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I2,=0, I'’=I2%=ig/V2, dpdqdedw
” o 7oV T=2er J —m VFLG0)[So(e )~ So(e)]
2 19 Xg*ImDR(g,w)Rg (1~ ¢) 'GA(p)GF
E g*[So(fercu) So(€)]. (27) 9°ImDR(q,w)RE(1-¢) (PG (p+a)].
(35
Here we introduce the following notations for integrals of , )
electrons Green functions Integrating the electron Green functions, we get
ep it q s IN(oq) We(al)
&= 7TWJ(zTr)ay“GA(p €)GR(p+g,et+w), (29 s Gapeu?T ) V% o Tor(wq)Wel(al),
(36)

where y=pqg/(pqg). The particle-hole asymmetry is de-
scribed by the parametey/(2pg). In the first order in
a/(2pg) the integrals,, are given by

where

2 (x°—1)arctarix) +x

fl y" ( qy) WelX)= 7 X(x—arctafx]) 37
= d - 1-—|. (29

n -1 y1+|q|(y—q/2pF) 2pg In the limiting cases this function is given by

The factor (:-qy/2pg) is due to the energy dependence of 1+7/(2x), x>1

the electron density of states. ' (39

t— .
The vertex I'2, consists of a factor 1/(%(3), its = [ 8l(mx), x<1

mptoti havior is given . - .
asymptotic behavior is given by Therefore, in the pure limitgy{l>1, the correction to the

Re1 1)1 1+ 7/(2x), x>1 - thermoelectric coefficient due to elastic electron scattering is
~ 60 = 2 .
3/X y X<1; Nst— Mo ar bn,]_ u
=27b, T (39
. 7l(2x2), x>1 o n
m(1-¢g5) = p 6/x3, x<1, 3D where numeric coefficientb, are given by Eq(2). For n

=0, the ratiob_, /by is 5.89.

wherex=ql. . . o In the impure limit,g{l <1, the thermoelectric coefficient
The electron self-energy diagram with vertides shown  is given by

in Fig. 1. Calculating the electron self-energy with the non-
equilibrium phonon distribution functionF,(q,w) [EQq. st 8 by_q U
(14)], we get = =

(40)

7 m b, TI'
dqde Thus, the phonon-drag thermopower in a disordered conduc-
A - _ 2 R '
Im=%(p, €)= J (2m)* 9°F1(g,@)ImD(q,®) tor with static scatterers is
XImGA(p+q,e+ w), (32 o 2b, 17T
" erclppu 4y
FPF

dgdw
C,=—2'f—2F ,0)ImDR(q,
2(pe) I (2m)* 9°F1(q.@)IMDHq.0) If phonon relaxation is determined by the phonon-electron

GA(p+ e+ 0)[ Syl e+ ) — £* So( )] scattering, the phonon-electron scattering time is givei by

(1-¢%) ' 1 u; qlarctariql)
(33 Tohe 2B “a, - gql—arctariql) " (42

XIm

Using Egs(32) and(33), we find the corresponding collision In this case the thermoelectric coefficient is
integral[Eq. (22)] and determine the nonequilibrium electron

distribution function[Eq. (21)] erveTe aN( )
AT J xx— —Wg(arlx), (43
dqdw )
d’st(pae):_ZTJ’ Wg F1(d,0)[Sp(e+ w) —Sy(e)] where
XImDR(q,w)Im[(1—¢*) " 'GA(p+q,etw)]. ) (y?>—1)arctarfy) +y
Wely)= 2 (44)
(34) y-arctarty)
Calculating the electric currenfEq. (17)], we find the The function W2"™(q+l) is shown in Fig. 2. As seen, it
thermoelectric coefficient weakly depends on the electronic disorder.
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144
ph-e ph-e
13 Wst ’ Wvb T =R ¢ :ﬂ:
0 T N A W A
) 1 2

1.1+

e

1.0+

09 3
0.8: ;': FIG. 3. Vertices and self-energy diagrams describing electron-
07-;’ phonon scattering in the presence of the vibrating potential of

boundaries and impurities.

o 2 4 & 8 10 12 14 16 . . :
wherelj is the vertex at which an electron is scattered from

a p to p+q,
FIG. 2. FunctionsV2ql) [Egs.(43) and(44)] andWEL(ql) . [(2p+9)-qll(2p+)-e]
[Eq. (61)] which describe corrections to the Gurevitch formjia. I'y= 7 Kjj - (49
®)] 4p™ g
IV. VIBRATING ELECTRON SCATTERERS Screening of the verteK, results in the vertex
Vibrating in the same way as a host lattice, electron scat- I=g+1,. (50)

terers (boundaries and impuritigsweaken the electron-

phonon interaction. The phonon-electron scattering rate is i . )
given by the Pippard formut&~®2° As we already mentioned, after the transformation given

by Eqg. (47) all phonon scatterers are motionless. Therefore,
the effect of elastic electron scattering is reduced to the

u; ( gqlarctariql) 3 renormalization of the verteK by the impurity ladder, as it
Tph-e:2 wq; ql—arctariql) ql)° (45 s shown in Fig. 3. The renormalized vertex is given by
2 _ 2 _ 2
To take into account vibrations of electron scatterers, one (T')1= (T 1=(T')10, (51)

should defineR,, in HamiltonianH;,; [Eq. (23)] as equilib-

rium positions of scatterers. Also, one should add the addi- ()2 _i9 (=, g 30 , | Soletw)—Sp(e)
tional term corresponding to electron scattering from the Vs {o =30 Pe a 1-8 :
potential shifted fronRR, (Refs. 3 and 8 (52)
: K-&n 4 + Compared to functions, [Eq. (29)], functionsZ,, consist of
H”b_p,k,q%yRo -V (pr)l;chcp_k(bq,ﬁ bqn) an additional factor (% g/pg) via the energy dependence of
_ Ty
xexd —i(k=q)Ro]. (46) Three possible electron self-energy diagrams with vertices

I's andI’; are shown in Fig. 1. The contribution of the third

Thus, the Hamiltonian consists of three terms, which dediagram is zero due to the structure f in the Keldysh
scribe interactions in the electron-phonon-impurity %ystemspacdsee Eq(5D)]. S _

This gives rise to a very complex interference picttifé° The nonequilibrium electron distribution functiofEq.
Considering the vibrating potential, it is convenient to treat(21)] corresponding to the first diagram is given by

the electron-phonon interaction in the frame of reference, dqde

which moves locally with the lattice. As suggested by ,é)z_sz_r%: ,)[Sy(€+ w)— Syl €)
Tsuneto'® the transformation of electron coordinates is ulp (2m)* "0 10 ) Sl So(€)]
defined according to % Im DR(q, ) IM[GA(p+ q, e+ w)]. (53

Fi—ri+u(r), (47 The contribution of the second diagram is
where u(r;) is the displacement of the ion with a co-

dgdw
ordinater; . After this transformation, electron scatterers are ®2(P.€)= —ZTJ (ZT)A,ngl(qaw)[SO(E+ w)—Sy(€)]
motionless and the Hamiltonian is significantly simplified

, . 1M DR(q, eyl 20328 +6(@2pe) 13
ng To(q)chCog(bgntb on) (g0 -2
+ > VedK)che,_kexp(—ik-R,),  (48) XGA(p+0) . (54)
p.k-R,
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Substituting the nonequilibrium distribution functio,,  energy loss and transport phenomena.
=¢1+ ¢, in Eg. (17) and integrating the electron Green  Electron-energy loss and temperature-dependent resistiv-

functions we get ity in disordered metallic films have been studied in Refs.
11,21, and 22. By fitting experimental data to the théay,
D= €pT do.w? IN(@q) o @) Wen(q), the coupling constants independently determined from resis-
Y GWDFUZT aa dwq A tivity and hot-electron measurements have been found to be
(59 in a good agreement.
where Very recently it has been realized that study of the
phonon-drag thermopower is also a convenient way to deter-
W,5(X) = 2[ (— 5x8— 11x*+ 39x>+ 15)[ arctarix)]? mine electron-phonon couplirfg?* Coupling of a two-

- s 3 6 dimensional electron gas in a Si metal-oxide-semiconductor
+(5x'+17x°—78x"— 90x) arctarix) — 11x field-effect transistor in the temperature range 0.3—4 K has
+30x*+ 45¢2 /[ mx3(1+ x2) {x— arctarix)}2]. been investigated using the phonon-drag thermopower and
energy loss rate. On the basis of this well-developed theory,
(56) good agreement has been found at the temperature fange

In the limiting cases this function is given by >1.5K, which corresponds to the pure limi;l>1. At
lower temperatures, wheml <1, the available theory ig-
1+[w/2=32(5m)]/x, x>1 noring the interference of interactions does not provide a
Vb~ 104x/ (w175, x<1’ (57) consistent_ description of bo';h phenomena. The paper in Ref.
23 has raised a number of issues about the role of electron-
In the pure limit,q+I>1, the correction to the thermoelectric phonon-impurity/boundary interference in the phonon-drag
coefficient due to elastic electron scattering is and energy loss phenomena.
The current work is concerned with effects of elastic elec-
o 70 :(Z_ 2)@ u (58  tron scattering on the phonon-drag thermopower in 3D de-
7o 2 5w b, TI generate conductors. The quantum-transport equation is ex-

where numeric coefficients,, are given by Eq(2). For n tended to study phonon-drag effects. The electric current is
—0, the ratiob_; /by is 5.89 calculated as a response of electrons to the temperature gra-

dient in the phonon subsystem. This approach allows one to

In the impure limit,gtl <1, the thermoelectric coefficient . . d
P ar avoid complex diagrams in the Kubo method and numerous

is ; ) . A
Poisson bracket corrections, if response to the electric field is
e 104 bo.q TI calculated®!® The developed method is also convenient to
%= 1757 b. u’ (59 study drag effects in coupled electron syste(fias a recent
n

review see Ref. 25
Thus, the phonon-drag thermopower in the impure limit is Note that, as all other thermoelectric coefficients, the
s phonon-drag thermopower is proportional to the particle-
r_ 104, 1B7pnTT (60) hole asymmetry, i.e., to the difference between parameters of
b 175e(pFu)3 ' electron states insidg and outsidep the Fermi surface. In

the pure limit,q71>1, the phonon-drag thermopower origi-

If phonon relaxation is determined by the phonon-electron, gteg only due to asymmetry in the electron eneggst &
scattering and the phonon-electron relaxation time is givens £,=E=0ve|p—pe|, the phonon-drag thermopower is ab-

by Eq.(45), the thermoelectric coefficient may be presentedseny. 1n our isotropic model with quadratic electron spec-
as trum, the asymmetry is given by&(. — &)/&~ar/pe
IN(X) ~T/6p, where 0 is the Debye temperature. Calculating
WP glx). (61)  drag effects in the impure limit, one should take into account
24 particle-hole asymmetry in all other electron characteristics,
The functionW?l¥(ql) is shown in Fig. 2. As seen, correc- Such as density of stat¢gq. (29)] and the velocity. For this
tions to the Gurevitch formuldEq. (6)] due to electron réason thermopower in a disordered conductor is more

erveT?
= f dx x*

T IE

scattering from the vibrating potential are small. sensitive to peculiarities of electron parameters.
We demonstrate that in bulk samples, where phonon-
V. CONCLUSIONS electron scattering dominates in the phonon relaxation, the

phonon-drag thermopower is just slightly modified due to
The electron-phonon interaction determines the electronelastic scatteringEgs. (43) and (61)]. Thus, Gurevitch for-

energy loss rate and also manifests itself in the electromula [Eq. (6)] provides the adequate description of
transport. In a pure conductor, the electron-energy anthe phonon-drag thermopower even in disordered bulk
momentum-relaxation rates are described by the same matroonductors.
element of the electron-phonon interaction. In a disordered In thin film structures phonons mainly scatter in a sub-
conductor, the inter-relation of inelastic and elastic scatteringtrate, and thermopower is strongly affected by elastic elec-
processes is complicated by the interference of scatteringjon scattering from boundaries, impurities, and defects. The
mechanisms. This requires consistent quantum description efbrating electron scattering potential substantially decreases
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the thermopower. In the impure limit,l/u<1, the phonon- interaction increases the energy loss rate by the factor

drag thermopower is of the order of |/u) Sy [Eq. (60)]. On  u/(T1).?6?"The results of Sec. Ill show that the phonon-drag

the contrary, static scatterers, such as rigid boundaries arntiermopower is also increased by the same factor. Thus, cor-

heavy impurities, increase the thermopower by a factor ofelated disorder-induced changes in the energy loss and in

u/(TI) [Eq. (41)]. Such modification correlates to the effect thermopower are also expected for the piezoelectric poten-

of elastic electron scattering on the electron-phonortial. Very recently the effect of elastic scattering on the en-

relaxation™>® ergy loss rate has been observed in gated GaAS/®@é4,
While our results are not directly applicable to the S5-doped quantum well It would be interesting to

electron-phonon interaction via the piezoelectric potentialinvestigate the phonon-drag thermopower in these structures.

we may evaluate the disorder-induced modification of the

thermopower in the following way. According to Refs. 26

and 27, the renormalization of the piezoelectric vertex by ACKNOWLEDGMENTS

elastic electron scattering is exactly the same as the renor-

malization of the deformation-potential vertex by static scat- We acknowledge helpful discussions with M. Reizer. The

terers[Eq. (27)]. Diffusion enhancement of the piezoelectric research was supported by the NASA and NSF grants.
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