
PHYSICAL REVIEW B, VOLUME 65, 064110
Finite-size scaling and corrections in the Ising model with Brascamp-Kunz boundary conditions
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The Ising model in two dimensions with the special boundary conditions of Brascamp and Kunz is analyzed.
Leading and subdominant scaling behavior of the Fisher zeros are determined exactly. The exact finite-size
scaling, with corrections, of the specific heat is determined both at critical and effective critical~pseudocritical!
points. The shift exponents associated with the scaling of these effective critical points are not the same as the
inverse correlation length critical exponent. All corrections to scaling are analytic.
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I. INTRODUCTION

The Ising model is the simplest statistical physics syst
displaying critical behavior. In a classic paper, Ferdinand
Fisher1 used the exactly known partition function of the tw
dimensional Ising model on finite lattices with toroid
boundary conditions2 to analytically determine the specific
heat finite-size scaling~FSS! to order L21. At the infinite
volume critical pointbc , this was recently extended to ord
L23 by Izmailian and Hu3 and independently by Salas.4 It
was found that only integer powers ofL21 occur, with no
logarithmic modifications~except of course for the leadin
logarithmic term!. That is, ifCL(b) is the specific heat at a
inverse temperatureb for a system of linear extentL,

CL~bc!5C00ln L1C01 (
k51

`
Ck

Lk
. ~1.1!

For the toroidal lattice, the coefficientsC00, C0 , C1 , C2 and
C3 have been determined explicitly.1,3,4

The FSS of the specific heat is also characterized by
location of its peakbL and its heightCL(bL). The peak
position is known as an effective critical or pseudocritic
point and approachesbc as L→` in a manner dictated by
the shift exponentl with ubL2bcu;L2l. Ferdinand and
Fisher also determined the behavior of the specific-h
pseudocritical point, findingl5151/n ~except for special
values of the ratio of the lengths of the lattice edges,
which case the scaling behavior was found to be of the fo
L22ln L).1 Heren is the correlation length critical exponen
The coincidence ofl with 1/n is common to most models
but it is not a consequence of FSS and is not always tru5

The finite-size behavior of the specific heat is related
that of the complex temperature~Fisher! zeros of the parti-
tion function.6 The leading FSS behavior of the imagina
part of a Fisher zero is7

Im zj~L !;L21/n, ~1.2!

where z is an appropriate function of temperature and
subscriptj labels the zeros. The real part of the lowest ze
may be viewed as another effective critical or pseudocrit
point, scaling as

uRez1~L !2zcu;L2lzero, ~1.3!

wherez5zc at b5bc .
0163-1829/2002/65~6!/064110~6!/$20.00 65 0641
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The specific heat~and Fisher zeros! of the Ising model
was recently studied numerically on two-dimensional lattic
with other boundary conditions in Refs. 8 and 9. For lattic
with a spherical topology, the correlation length and sh
exponents were found to ben51.0060.06 andl51.745
60.015, significantly away from 1/n.8 This is similar to an
earlier study reportingl'1.8.10 Hoelbling and Lang used a
variety of cumulants as well as Fisher zeros to study
universality of the Ising model on spherelike lattices.9 The
pseudocritical point~from the specific heat, the real part o
the lowest zero, and from two other types of cumulants! is
not of Ferdinand-Fisher type. While a shift exponentl
51.76(7) is consistent with their numerical results, this
not stringent, and pseudocritical FSS of the formL22ln L or
evenL22 is possible.9 Thus, while a possible leadingL21

term almost or completely vanishes and subleading terms
dominant, the precise nature of these corrections could
be unambiguously decided. In any case, in contrast to
situation with toroidal boundary conditions, the FSS of t
specific-heat effective critical point does not match the c
relation length scaling behavior.

In another recent study11 involving Fisher zeros, Beale’s12

exact distribution function for the energy of the two
dimensional Ising model was exploited to obtain the ex
zeros for square periodic lattices up to sizeL564. The FSS
analysis in Ref. 11 yielded a value for the correlation leng
critical exponentn, which appeared to approach the exa
value ~unity! as the thermodynamic limit is approache
Small lattices appeared to yield a correction-to-scaling ex
nent in broad agreement with early estimates@v'1.8 ~Ref.
13!#. However, closer to the thermodynamic limit, these c
rections appeared to be analytic withv51.

In the light of these and other recent analyses,14 we wish
to present analytical results which may clarify the situatio
To this end, we have selected the Ising model with spe
boundary conditions due to Brascamp and Kunz.15 These
boundary conditions permit an analytical approach to the
termination of a number of thermodynamic quantities. R
cently, Lu and Wu16 exploited this fact to determine the den
sity of Fisher zeros in the thermodynamic limit, a quantity
relevance to the determination of the strengths of ph
transitions.17 In this paper, we take a complementary a
proach, exploiting FSS~i! to determine critical exponents
~ii ! to determine corrections to leading scaling, and~iii ! to
©2002 The American Physical Society10-1
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gain experience in the hope of eventual application to ot
less transparent scenarios. The rest of this paper is organ
as follows. In Sec. II the Brascamp-Kunz boundary con
tions are introduced, and the exact FSS of the Fisher zer
calculated. The specific heat and its pseudocritical point
analyzed in Sec. III. Our conclusions are contained in S
IV and the Appendix contains some calculations of releva
to the specific-heat analysis of Sec. III.

II. FISHER ZEROS FOR BRASCAMP-KUNZ BOUNDARY
CONDITIONS

Brascamp and Kunz introduced special boundary con
tions, for which the Fisher zeros are known for any fini
size lattice.15 They considered a regular lattice withM sites
in thex direction and 2N sites in they direction. The specia
boundary conditions are periodic in they direction and the
2N spins along the left and right borders of the resulti
cylinder are fixed to •••111111••• and
•••121212•••, respectively. For such a lattice, th
Ising partition function can be rewritten as

ZM ,2N522MN)
i 51

N

)
j 51

M

@11z22z~cosu i1cosf j !#,

~2.1!

where z5sinh 2b, u i5(2i 21)p/2N and f j5 j p/(M11),
and whereb51/kBT is the inverse temperature. The mul
plicative form of Eq.~2.1! is of central importance to this
paper.

At this point it is convenient to introduce two shape p
rameters, in terms of which the FSS of zeros and thermo
namic functions is naturally expressed. These ares and r,
defined through

2N5sM , N5r~M11!. ~2.2!

Brascamp and Kunz showed that the zeros of the parti
function ~2.1! are located on the unit circle in the complexz
plane~so that the critical point isz5zc51). These are

zi j 5exp~ ia i j !, ~2.3!

where

a i j 5cos21S cosu i1cosf j

2 D . ~2.4!

Using a computer algebra system such as Maple, one
expand Eq.~2.4! in M to determine the FSS of any zero
any desired order. Indeed, the first few terms in the exp
sion for the first zero, which is the one of primary intere
are

a115M 21
pA11s2

A2s
2M 22

ps

A2A11s2
1O~M 23!.

~2.5!

Separating out the real and imaginary parts of the FSS of
first zero yields
06411
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Rez11512M 22
p2

4 S 11
1

s2D 1O~M 23! ~2.6!

and

Im z115
pA2

s~11s2!5/2H M 21
~11s2!3

2
2M 22

s2~11s2!2

2 J
1O~M 23!, ~2.7!

respectively. Higher-order terms are straightforward to g
erate. From the leading term in Eq.~2.7!, and from Eq.~1.2!,
one has, indeed, that the correlation length critical expon
is 1. Note, however, from Eq.~2.6! that the leading FSS
behavior of the pseudocritical point in the form of the re
part of the lowest zero is

zc2Rez11512Rez11;M 22, ~2.8!

giving a shift exponentlzero52. This value is compatible
with the numerical results of Ref. 9 for spherical lattice
One further notes that all corrections are powers ofM 21 and
in this sense entirely analytic.

In summary, we have observed that for the first zero,
shift exponent is not 1/n and that all corrections are analytic
An expansion of higher zeros yields the same result.

III. SPECIFIC HEAT

In terms of the variablez5sinh 2b, the specific heat is

C5
4kBb2

V F ~11z2!
]2ln Z

]z2
1z

] ln Z

]z G , ~3.1!

whereV is the volume of the system. The singular behav
comes from the first term only, the second being entir
regular. Thus we may split Eq.~3.1! into singular and regular
parts, and retain only the former. From Eq.~2.1!, this singu-
lar part of the specific heat for anM32N lattice is@up to the
factor (11z2)4kBb2]

CM ,2N
sing. ~z!5

1

2MN (
i 51

N

(
j 51

M H 2

11z22z~cosu i1cosf j !

2
@2z2~cosu i1cosf j !#

2

@11z22z~cosu i1cosf j !#
2J . ~3.2!

It is straightforward to perform thei summation first in
Eq. ~3.2!. Indeed, Eq.~A3! and its derivative yield the exac
result, which is conveniently expressed as

CM ,2N
sing. ~z!5

1

z3
S01

1

2 S 12
1

z2D S12
1

2z2
, ~3.3!

where

Sk5
1

M (
j 51

M

gj
(k)~1!, ~3.4!

in which gj
(k)(z)5dkgj (z)/dzk, and where
0-2
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gj~z!5
tanh@N cosh21~1/z1z2cosf j !#

A~1/z1z2cosf j !
221

. ~3.5!

One observes at this point thatgj
(1)(1)50, and gj

(3)(1)
523gj

(2)(1).

Specific heat at the critical point

The sumS0 is given in Eq.~A11! in terms of the ratior
defined in Eq.~2.2!. From Eq.~3.3!, this gives for the spe-
cific heat at the infinite volume critical temperature,

CM ,2N
sing. ~1!5

ln M

p S 11
1

M D1c01
c1

M
1

c2

M2
1

c3

M3
1OS 1

M4D ,

~3.6!

where the coefficientsck can be read off from the coeffi
cients of M 2k in Eq. ~A11!. Typical values ofc0 are
20.376 67 . . . , 20.350 88 . . . , and 20.349 69 . . . for r
51/2, 1, and 2 respectively. Corresponding respective va
for c1 are 0.264 86 . . . , 0.290 65 . . . , and0.291 84 . . . .

So for the critical specific heat, apart from a trivi
ln M/M term, the FSS is qualitatively the same as~but quan-
titatively different from! that of the torus topology@see Eq.
~1.1! and Refs. 1, 3, and 4#. This trivial qualitative difference
could, in fact, be avoided by defining the volumeV as the
number of links rather than the number of sites which is w
we do here~recall that, with fixed boundary spins, there a
M11 links in thex direction!. We note that with Brascamp
Kunz boundary conditions, it is far easier to extract the F
behavior because the partition function~2.1! involves only
one such product, while that for the torus involves a sum
four such products. Indeed, a determination ofO(1/M4) and
higher terms proceeds in a similarly straightforward man
in the Brascamp-Kunz case.

Specific heat near the critical point

The pseudocritical pointzM ,2N
pseudo is the value of the tem-

perature at which the specific heat has its maximum fo
finite M32N lattice. One can determine this quantity as t
point where the derivative ofCM ,2N(z) vanishes.

Expanding expression~3.3! about the critical pointzc
51 yields

CM ,2N~z!5S02 1
2 1~z21!@23S011#1~z21!2@ 3

2 S216S0

2 3
2#1~z21!3@25S2210S012#1O@~z21!4#.

~3.7!

The sumsS0 and S2 are given in Eqs.~A11! and ~A12!,
respectively.

From Eq.~3.7!, the first derivative of the specific heat o
a finite lattice near the infinite volume critical point can
found, and is seen to vanish when
06411
es

t

S

f

r

a

z215
3S021

3@S214S021#
1

@5S2110S022#@3S021#2

9@S214S021#3

1O@~z21!3#. ~3.8!

Expansion of Eq.~3.8! now gives the FSS of the pseudocrit
cal point to be

zM ,2N
pseudo511a2

ln M

M2
1

b2

M2
1a3

ln M

M3
1

b3

M3
1OS ~ ln M !2

M4 D ,

~3.9!

higher terms being of the form lnM/M4 and 1/M4. Here

a252
p2

2@z~3!22W3,1
0 ~r!24prW2,2

1 ~r!#
, ~3.10!

b252
p2

12

6gE19 ln 226 lnp22p212W1,1
0 ~r!

z~3!22W3,1
0 ~r!24prW2,2

1 ~r!
,

~3.11!

a35
p2

z~3!22W3,1
0 ~r!24prW2,2

1 ~r!
, ~3.12!

b352
p2

2

3
122gE23 ln 212 lnp1p2p/~4A2!14W1,1

0 ~r!

z~3!22W3,1
0 ~r!24prW2,2

1 ~r!
,

~3.13!

wheregE is the Euler-Mascheroni constant andz~3! is the
Riemann zeta function. The functionsWj ,k

l (r) are given in
Eq. ~A10!. Typical values of the coefficienta2 are
25.696 64 . . . , 24.200 05 . . . , and 24.105 62 . . . for r
51/2, 1, and 2, respectively. The corresponding values
b2 are 3.758 41 . . . , 2.430 67 . . . , and 2.360 72 . . . . Thus
there is no leading 1/M or lnM/M term in the FSS of the
specific-heat pseudocritical point and the specific-heat s
exponent does not coincide with 1/n51. This is consistent
with result ~2.8! for the finite-size scaling of the real part o
the Fisher zeros. One notes, however, that, in contrast to
~2.8!, logarithmic corrections are present to all orders in t
FSS of the specific-heat pseudocritical point.

Inserting Eq.~3.9! for the pseudocritical point into Eq
~3.7! gives the FSS behavior of the peak of the specific he
This is

CM ,2N
sing. ~zM ,2N

pseudo!5
ln M

p S 11
1

M D1c081
c18

M
1d28

~ ln M !2

M2

1OS ln M

M2 D , ~3.14!

Higher-order terms are of the form 1/M2, (ln M)2/M3,
ln M/M3, and 1/M3. Herec085c0 , c185c1, and
0-3
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d285
3p

4

1

z~3!22W3,1
0 ~r!24prW2,2

1 ~r!
. ~3.15!

One remarks that, up toO(1/M ), Eq. ~3.14! is quantitatively
the same as the critical specific-heat scaling of Eq.~3.6!. The
higher-order terms of Eq.~3.14! differ from those in Eq.
~3.6! in that there are logarithmic modifications of the for
(ln M)k/Ml ~with integerk and l ).

IV. CONCLUSIONS

We have derived exact expressions for the finite-size s
ing of the Fisher zeros, the critical specific heat, the effec
critical points, and the specific-heat peak for the Ising mo
with Brascamp-Kunz boundary conditions. The FSS of
specific heat at criticality is qualitatively similar to that on
torus.1,3,4 All corrections to scaling are analytic.

The shift exponents, characterizing the scaling of the
fective critical ~pseudocritical! point is l52 and is not the
same as the inverse of the correlation length critical expon
1/n51. That l does not match 1/n was observed numeri
cally in Refs. 8–10. Our exact approach, however, yields
integral nature~up to logarithms! of the critical exponents
and correction exponents. Such precision is not attaina
through the numerical means of Refs. 8–10.

The first few terms for the FSS of the specific-heat pe
are also derived. Again all corrections are analytic, but
contrast to the specific heat at the critical point, they inclu
logarithms.
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APPENDIX

Consider, first, the sum

1

N (
i 51

N
1

~Z2cosu i !
k
, ~A1!

whereu i5(2i 21)p/2N, k is a positive integer andZ.1 is
independent ofi. We first treat the casek51. We follow a
similar calculation in Ref. 18 and construct

F~z!5
cotpz

Z2cos
~2z21!p

2N

. ~A2!

IntegrateF(z) along the rectangular contour bounded
Rez51/21e, Rez52N11/21e, and Imz56 iR, whereR
is some large real constant ande is a small real numbe
which we take to be positive. Because of the periodic nat
of the integrand, the integrals along the left and right ed
of the contour cancel. Further, due to the cotpz term, the
integrand and hence the full integral vanishes in the limit
06411
l-
e
l

e
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e
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f

infinitely largeR. Now F(z) has 2N simple poles inside the
contour along the real axis and a further two poles com
from the simple zeros of its denominator. The residue th
rem then gives the exact result

1

N (
i 51

N
1

Z2cosu i
5

1

AZ221
tanh~N cosh21Z!. ~A3!

This result is also implicitly contained in Ref. 19. Differen
tiation of Eq.~A3! with respect toZ gives the sum~A1!, with
larger values ofk.

The purpose of the remainder of this appendix is to c
culate the two sumsS0 and S2 whereSk is defined in Eqs.
~3.4! and ~3.5!. It is convenient to rewritegj (z) as

gj~z!5
1

A~21m22cosf j !
221

22hj~m!, ~A4!

where

hj~m!5
1

A~21m22cosf j !
221

$exp@2N cosh21~21m2

2cosf j !#11%21, ~A5!

and wherem251/z1z22. We first consider the sum of th
first terms in Eq.~A4!, and we are interested in the limitm
→0. This may be calculated by a direct application of t
Euler-Maclaurin formula. In fact, the more general summ
tion with m5h/(M11), has been calculated in Ref. 18@see
Eq. ~B52! therein#. That sum is given by

1

M11
(
j 51

M 1

AS 21S h

M11
D 2

2cosf j D 2

21

5
ln~M11!

p
1

1

p
FgE2 lnp1

3 ln2

2
1G0S A2h

p
D G

2
1

M11

1

4A2
2

ln~M11!

~M11!2

h2

4p
1

1

2

1

~M11!2

3H p

6
F 1

12
2G1S A2h

p
D G1

h4

3p3
H1S A2h

p
D

2
h2

2p
FgE2 ln p1

3 ln 2

2
1

2

3
G0S A2h

p
D 2

1

3
G J

1
1

~M11!3

3A2

64
h21OS ln M

~M11!4D
1OS 1

~M11!4D , ~A6!
0-4
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where gE is the Euler-Mascheroni constant, andG0(a),
G1(a) and H1(a) are remnant functions and are given
Ref. 18. Settingh50, one has the first component of th
sum appearing inS0:

1

M11 (
j 51

M
1

A~22cosf j !
221

5
ln~M11!

p
1

1

p FgE2 ln p1
3 ln 2

2 G
2

1

M11

1

4A2
1

1

~M11!2

p

144
1OS 1

~M11!4D . ~A7!

Next we consider the contribution of the second term
Eq. ~A4! to the sumS0. To calculate this we firstly expan
hj (m) viz.

hj~m!5
M11

XjYj
1

1

M11 H 1

24

p4 j 4

Xj
3Yj

2
Xj

8Yj

1
r

12

Yj21

Yj
2 S p4 j 4

Xj
2

1Xj
2D J 1OS 1

~M11!3D ,

~A8!

where Xj5A2h21p2 j 2 and Yj5exp(2rXj)11. Dominant
contributions to the sum come from the smallj terms. The
sum may thus be replaced by( j 51

` hj (h).18 Taking the limit
ash→0 gives the second component of the sum appea
in S0:

1

M11 (
j 51

M

hj~0!5
1

p
W1,1

0 ~r!1
1

~M11!2 F2
p

12
W21,1

0 ~r!

1
rp2

6
W22,2

1 ~r!G1OS 1

~M11!4D ,

~A9!
S

a
,

06411
g

where

Wj ,k
l ~r!5 (

n51

`
e2rp ln

nj~e2rpn11!k
~A10!

are rapidly converging sums which may be computed
merically. For example, atr51, W1,1

0 '0.001 865 . . . ,
W21,1

0 '0.001 870 . . . , and W22,2
1 '0.001 874 . . . . Finally,

from Eqs.~3.4!, ~A4!, ~A7!, and~A9!, the desired result is

S05
ln M

p
1

1

p S gE1
3 ln 2

2
2 ln p22W1,1

0 ~r! D1
ln M

M

1

p

1
1

M

1

p S gE1
3 ln2

2
2 ln p112

p

4A2
22W1,1

0 ~r!D
1

1

M2 S 1

2p
1

p

144
1

p

6
W21,1

0 ~r!2
rp2

3
W22,2

1 ~r! D
2

1

M3 S 1

6p
1

p

144
1

p

6
W21,1

0 ~r!2
rp2

3
W22,2

1 ~r! D
1OS 1

M4D . ~A11!

The sumS2 is calculated by taking appropriate derivativ
of Eqs.~A6! and ~A8!. The result forS2 is

S252M2
2

p3
@z~3!22W3,1

0 ~r!24prW2,2
1 ~r!#

2M
6

p3
@z~3!22W3,1

0 ~r!24prW2,2
1 ~r!#2

ln M

2p

1O~1!, ~A12!

wherez~3! is the Riemann zeta function. Typical values
these rapidly converging sums appearing here areW3,1

0

'0.001 864 . . . andW2,2
1 '0.001 861 . . . atr51.
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