PHYSICAL REVIEW B, VOLUME 65, 064110

Finite-size scaling and corrections in the Ising model with Brascamp-Kunz boundary conditions
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The Ising model in two dimensions with the special boundary conditions of Brascamp and Kunz is analyzed.
Leading and subdominant scaling behavior of the Fisher zeros are determined exactly. The exact finite-size
scaling, with corrections, of the specific heat is determined both at critical and effective ¢psealdocritical
points. The shift exponents associated with the scaling of these effective critical points are not the same as the
inverse correlation length critical exponent. All corrections to scaling are analytic.
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I. INTRODUCTION The specific heatand Fisher zergsof the Ising model
was recently studied numerically on two-dimensional lattices
The Ising model is the simplest statistical physics systenwith other boundary conditions in Refs. 8 and 9. For lattices
displaying critical behavior. In a classic paper, Ferdinand andvith a spherical topology, the correlation length and shift
Fishet used the exactly known partition function of the two- exponents were found to be=1.00+0.06 and\x=1.745
dimensional Ising model on finite lattices with toroidal +0 015, significantly away from /8 This is similar to an
boundary conditiorfsto analytically determine the specific- arlier study reporting. ~1.81° Hoelbling and Lang used a
heat finite-size scalingFS9 to orderL"*. At the infinite  yariety of cumulants as well as Fisher zeros to study the
volgme critical poinig,, this was recently extended to order \niversality of the Ising model on spherelike lattiGeEhe
L~ by Izmailian and H& and independently by Salad pseudocritical pointfrom the specific heat, the real part of

was found that only integer powers bf * occur, with N0 0" joest zero, and from two other types of cumulpigs
logarithmic modificationgexcept of course for the leading not of Ferdinand-Fisher type. While a shift exponent

logarithmic term. That is, ifC, () is the specific heat at an =1.76(7) is consistent with their numerical results, this is

inverse temperaturg for a system of linear extert, not stringent, and pseudocritical FSS of the fdr?In L or

5 Cy evenL 2 is possible Thus, while a possible leading™*
CL(Be)=Codn L+CO+k§1 F (1.3) term almost or completely vanishes and subleading terms are
dominant, the precise nature of these corrections could not
For the toroidal lattice, the coefficien@y,, Co, C1, C; and  be unambiguously decided. In any case, in contrast to the
C; have been determined explicitly:* situation with toroidal boundary conditions, the FSS of the
The FSS of the specific heat is also characterized by thepecific-heat effective critical point does not match the cor-
location of its peakB, and its heightC, (B,). The peak relation length scaling behavior.
pqsition is known as an effectivg critical or ps_eudocritical In another recent studyinvolving Fisher zeros, Bealé%
point and approaches; asL—« in a manner dictated by exact distribution function for the energy of the two-
the shift exponentv with |8, —Bc[~L"". Ferdinand and yimensjonal Ising model was exploited to obtain the exact

Fisher also determined the behavior of the specific-heaj, . o o, square periodic lattices up to size 64. The FSS

pseudocritical point, finding =1=1/» (except for special analysis in Ref. 11 yielded a value for the correlation length

values of the ratio of the lengths of the lattice edges, INitical exponentr, which appeared to approach the exact

which case the scaling behavior was found to be of the form ; Lt
. . . value (unity) as the thermodynamic limit is approached.
L~ 2InL).! Herev is the correlation length critical exponent. (unity) y bp

[ . . Small lattices appeared to yield a correction-to-scaling expo-
The coincidence ok with 1/v is common to most models, P y g exp

o . nent in broad agreement with early estimdtes=1.8 (Ref.
but it is not a consequence of FSS and is not always’true. g y d (

R . . ) 13)]. However, closer to the thermodynamic limit, these cor-
The finite-size behavior of the specific heat is related to )] y

. .~ rections appeared to be analytic with=1.
that of the complex temperatut€ishe) zeros of the parti- h :
tion function® The leading FSS behavior of the imaginary to In the light of these and other recent analysbee wish

; sh 7 present analytical results which may clarify the situation.
part of a Fisher zero is To this end, we have selected the Ising model with special
Im zj(L)NL*llv, (1.2 boundary conditions due to Brascamp and KthZhese
) _ ) boundary conditions permit an analytical approach to the de-
wherez is an appropriate function of temperature and theiermination of a number of thermodynamic quantities. Re-
subscriptj labels the zeros. The real part of the lowest zerogently, Lu and Wi exploited this fact to determine the den-
may be viewed as another effective critical or pseudocriticakity of Fisher zeros in the thermodynamic limit, a quantity of

point, scaling as relevance to the determination of the strengths of phase
IRezy(L)— 7| ~L "z 1.3 transitionst’ In this paper, we take a complementary ap-
proach, exploiting FSSi) to determine critical exponents,
wherez=z; at 8= 3. (ii) to determine corrections to leading scaling, dind to
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gain experience in the hope of eventual application to other, 2

T 1

less transparent scenarios. The rest of this paper is organized Rez;;=1—-M 727 1+—|+0M ) (2.6)
as follows. In Sec. Il the Brascamp-Kunz boundary condi- o
tions are introduced, and the exact FSS of the Fisher zeros igq
calculated. The specific heat and its pseudocritical point are
analyzed in Sec. lll. Our conclusions are contained in Sec. 2 71(1+C,2)3 7202(14”,2)2
IV and the Appendix contains some calculations of relevancelm z,,= N > - >
to the specific-heat analysis of Sec. lIl. o(1+0°)

+0O(M™3), (2.7
Il. FISHER ZEROS FOR BRASCAMP-KUNZ BOUNDARY . . .

CONDITIONS respectively. Higher-order terms are straightforward to gen-

erate. From the leading term in EQ.7), and from Eq(1.2),
Brascamp and Kunz introduced special boundary condiene has, indeed, that the correlation length critical exponent
tions, for which the Fisher zeros are known for any finite-is 1. Note, however, from Eq2.6) that the leading FSS
size lattice'™® They considered a regular lattice wikh sites  behavior of the pseudocritical point in the form of the real
in thex direction and N sites in they direction. The special part of the lowest zero is
boundary conditions are periodic in tlyedirection and the
2N spins along the left and right borders of the resulting z.—Rez;;=1-Rez;;~M 2, (2.9

cylinder —are fixed to ---++++++--- and Giing a shift exponent ., =2. This value is compatible
-t —+—+—--, respectively. For such a lattice, the \yith the numerical results of Ref. 9 for spherical lattices.
Ising partition function can be rewritten as One further notes that all corrections are powerdof! and
N M in this sense entirely analytic.
_ A2MN 2 In summary, we have observed that for the first zero, the
ZmanN=2 iljl J-Hl [1+2°=z(coso; +cospy)], shift exponent is not 2/and that all corrections are analytic.
(2. An expansion of higher zeros yields the same result.

where z=sinh 28, ;= (2i —1)@/2N and ¢;=jm/(M+1),
and whereB=1/kgT is the inverse temperature. The multi-
plicative form of Eq.(2.1) is of central importance to this In terms of the variable=sinh 28, the specific heat is
paper.

At this point it is convenient to introduce two shape pa- 4kg B2
rameters, in terms of which the FSS of zeros and thermody- C= v
namic functions is naturally expressed. These arand p,
defined through whereV is the volume of the system. The singular behavior

comes from the first term only, the second being entirely
2N=0M, N=p(M+1). (2.2 regular. Thus we may split E¢3.1) into singular and regular
parts, and retain only the former. From E@g.1), this singu-

Brascamp and Kunz showed that the zeros of the partitiofr part of the specific heat for av x 2N lattice is[up to the
function (2.1) are located on the unit circle in the complex  factor (1+ 22 4kg Y

plane(so that the critical point ig=z.=1). These are

N
_ . 1
zj=expliaj)), 23 Ci’I'rjg’.\‘(Z)ZZMN ;1

Ill. SPECIFIC HEAT

#nz dInz
+z
(922 0z

+7%) , (3.1

2,

2
=1 [ 1+ 2%~ z(cos6; + cosp;)

- [2z—(cos6; +cosp;)]?
(2.4) [1+ 22— z(cosb; +cosp;)1?)

where

_1< COSH; + COSp; 3.2

a/ij=COS >

It is straightforward to perform the summation first in
Using a computer algebra system such as Maple, one mayq. (3.2). Indeed, Eq(A3) and its derivative yield the exact
expand Eq(2.4) in M to determine the FSS of any zero to result, which is conveniently expressed as
any desired order. Indeed, the first few terms in the expan-

sion for the first zero, which is the one of primary interest, “in 1 1 1 1
are a2 ==St5| 1= 5 |Si— o, (3.3
z z 2z
T 1+0? M-2 7o oMY where
d11— - .
Y \/Ea' \/E\/1+ a? 1 M
29 Sy 2, 9°(1), (3.4
Separating out the real and imaginary parts of the FSS of the a
first zero yields in which g{(z) = d*g;(z)/dZ*, and where
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_tani N cosh (1/z+z—cosp;)] 1 35-1 +[532+1030—2][3So—1]2
9i(2)= e r—cost )1 (3.9 3[S, 145 1] 9[S,+4S—1]°
+0[(z—1)%]. (3.9

One observes at this point that"(1)=0, andg{*(1)

— —3g®(1). Expansion of Eq(3.8) now gives the FSS of the pseudocriti-
! cal point to be
Specific heat at the critical point InM b InM b InM)?
o _ _ 2P 1 g, —— +—2 ta;—— +— 10 (InM7).
The sumS, is given in Eq.(A11) in terms of the ratigp ‘ M2 M2 M3 M3 M4

defined in Eq.(2.2. From Eq.(3.3), this gives for the spe- (3.9

cific heat at the infinite volume critical temperature, . .
P higher terms being of the form M/M* and 1M*. Here

csing. (1 InM(l 1 C; C, Cg o 1 - w2 (3.10
L T A A VA VERNvERR Vel S T 2U3) - 2WE (o)~ AmpWaAp]
(3.6
) 72 6ye+9In2—6 Inm— 27— 1203 (p)
where the coefficients, can be read off from the coeffi- 277 12 _ _ 1
cients of M~X in Eq. (A11). Typical values ofc, are (3 2\/\/2’1(;)) AampWodp) (3.11)
-0.376&..., —0.3508..., and —0.349®... for p '
=1/2, 1, and 2 respectively. Corresponding respective values 2
for c, are 0.2648...,0.2906..., and0.291 & ... . az= 7 , (3.12
So for the critical specific heat, apart from a trivial {(3)—2W3 ((p) —4mpWj A p)
In M/M term, the FSS is qualitatively the same(bhst quan-
titatively different from that of the torus topologysee Eg. 2
(1.1 and Refs. 1, 3, and]4This trivial qualitative difference by=— 23
could, in fact, be avoided by defining the volurieas the
number of links rather than the number of sites which is what 1-2yg—3In2+2 Inw+7— 7l (4 \/E) +4W2 1(p)
we do hergrecall that, with fixed boundary spins, there are X W 1 : ,
M+ 1 links in thex direction. We note that with Brascamp- £(3)=2W3(p) —4mpW3 A p)
Kunz boundary conditions, it is far easier to extract the FSS (3.13

behavior because the partition functiGl1) involves only i _ )
one such product, while that for the torus involves a sum ofVhere ve is the Euler-Mascheroni constant agi®) is the
four such products. Indeed, a determinatiorOgfil/M*) and ~ Riemann zeta function. The functio¥] ,(p) are given in

higher terms proceeds in a similarly straightforward manneEd. (A10). Typical values of the coefficienta, are
in the Brascamp-Kunz case. —-5.6966..., —4.200®..., and —4.105&... for p

=1/2, 1, and 2, respectively. The corresponding values for
3 N _ b, are 3.7584..., 2430 ..., and2.3602... . Thus
Specific heat near the critical point there is no leading M or InM/M term in the FSS of the
The pseudocritical point’,ff%‘,@"is the value of the tem- SPecific-heat pseudocritical point and the specific-heat shift

perature at which the specific heat has its maximum for £*Ponent does not coincide withyk 1. This is consistent
finite M x 2N lattice. One can determine this quantity as the'ith result(2.8) for the finite-size scaling of the real part of
point where the derivative oF,, ,(z) vanishes. the Fisher zeros. One notes, however, that, in contrast to Eq.
Expanding expressiof3.3) about the critical pointz, (2.9, Ioganthmlc_ corrections are present to all orders in the
=1 yields FSS of the specific-heat pseudocritical point.
Inserting Eq.(3.9) for the pseudocritical point into Eq.
(3.7) gives the FSS behavior of the peak of the specific heat.

Cuan(2)=Sy— 5+(z—1)[-3Sp+1]+(z—1))[$S,+6S,  This s

~ A+ (1) -85~ 108+ 2]+ Ol(z- 1] ng pseiq MM (L) el ()2
@n  CMREGET =TIy ety T
The sumsS, and S, are given in Eqs(All) and (A12), In M
respectively. +0 IYeak (3.19

From Eq.(3.7), the first derivative of the specific heat on
a finite lattice near the infinite volume critical point can be Higher-order terms are of the form M7, (InM)%M3,
found, and is seen to vanish when InM/M3, and 1M3. Herecj=c,, c;=c4, and
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3 1 infinitely largeR. Now F(z) has 2N simple poles inside the
dézT n . (319 contour along the real axis and a further two poles coming
{(3)—2W3 ((p) —4mpW; A p) from the simple zeros of its denominator. The residue theo-

One remarks that, up ©©0(1/M), Eq.(3.14) is quantitatively rem then gives the exact result

the same as the critical specific-heat scaling of Bd). The N
higher-order terms of Eq(3.14 differ from those in Eq. 1 1 1 .

(3.6) in that there are logarithmic modifications of the form N ;1 Z—cost;, ,/z?_lLan“N cosii"z).  (A3)
(In MYM' (with integerk and]).

This result is also implicitly contained in Ref. 19. Differen-
IV. CONCLUSIONS tiation of Eq.(A3) with respect t&Z gives the suniAl), with

. . o larger values ok.
We have derived exact expressions for the finite-size scal- The purpose of the remainder of this appendix is to cal-

ing of the Fisher zeros, the critical specific heat, the effectivejate the two sums, andS, whereS, is defined in Egs.
critical points, and the specific-heat peak for the Ising mode{3 4) and (3.5). It is convenient to rewritey;(2) as
with Brascamp-Kunz boundary conditions. The FSS of the
specific heat at criticality is qualitatively similar to that on a
torus>>*All corrections to scaling are analytic. 9:(2)
The shift exponents, characterizing the scaling of the ef- !
fective critical (pseudocriticadl point isA =2 and is not the
same as the inverse of the correlation length critical exponer¥here
1/v=1. That\ does not match 1/ was observed numeri-
cally in Refs. 8—10. Our exact approach, however, yields the
integral nature(up to logarithms of the critical exponents ~ hj(m)= 5 ——{exf 2N cosh *(2+m?
and correction exponents. Such precision is not attainable V(2+m —c0sy)"~1
through the numerical means of Refs. 8—10. —cos¢j)]+1}*1, (A5)
The first few terms for the FSS of the specific-heat peak
are also derived. Again all corrections are analytic, but inand wherem?=1/z+z— 2. We first consider the sum of the
contrast to the specific heat at the critical point, they includeirst terms in Eq.(A4), and we are interested in the limit
logarithms. —0. This may be calculated by a direct application of the
Euler-Maclaurin formula. In fact, the more general summa-
ACKNOWLEDGMENTS tion with m= /(M + 1), has been calculated in Ref. fi&e

) _ _ ) Eq. (B52) therein. That sum is given by
R.K. would like to thank Wolfgang Grill for his hospital-

ity during an extended stay at Leipzig University in the

2hi(m),  (A4)

e m?—cosp;)?— 1

M
framework of thelnternational Physics Studies Program E 1
where this work was initiated. M+1 =1 \/ 7 \2 2
2+ —cos¢j) -1
APPENDIX M-+1
Consider, first, the sum In(M+1) 1 31n2 \/517
=——+—| yg—Inm+ —+Go| —
N T T 2 T

1 1 (A1)

N =1 (z—cos6,)~ 11 In(M+1) 7}_2+1;
where ;= (2i —1)m/2N, k is a positive integer and>1 is M+14\2 (M+1)% 47 2 (M+1)2
independent of. We first treat the cask=1. We follow a - \/— 4 \/—
similar calculation in Ref. 18 and construct x[ w1 ( 277) N 7 Y ( 27’)

a4 V1 — M
6|12 3
Ao cotrz 2 - i 3m T
z)= ) -
L 7 3n2 2 [(\27) 1
COST —Z yE—In T+ +§G0 - _5
Integrate 7(z) along the rectangular contour bounded by
Rez=1/2+ e, Rez=2N+1/2+¢, and Imz=*+iR, whereR . 1 3\2 X InM
is some large real constant ardis a small real number (M+_1)3 Y —(M+1)4
which we take to be positive. Because of the periodic nature
of the integrand, the integrals along the left and right edges 1
of the contour cancel. Further, due to the sotterm, the +0O| ——|, (AB)
integrand and hence the full integral vanishes in the limit of (M+1)*%
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where yg is the Euler-Mascheroni constant, ah(«),
Gi(@) andH4(a) are remnant functions and are given in
Ref. 18. Settingyp=0, one has the first component of the
sum appearing irsy:

1 M 1

M+1 12’1 V(2—cosp))?—1

_In(M+1)+1 | +3In2
B T T ye—inm 2
1 1 1 T

(A7)

- + — +0| ——|.
M+142 (M+1)2144 (M+1)4)

Next we consider the contribution of the second term in

Eq. (A4) to the sumS,. To calculate this we firstly expand
h;(m) viz.

bt 1 1 7%t X
M=%y, "Mt 2453y, 8,
Y. —1 4:4
L 1+Xj2 +0| ——|,
12 v2 | x? (M+1)3
(A8)
where X;= 2 7?+7%j? and Yj=exp(%X;)+1. Dominant

contributions to the sum come from the smjaterms. The
sum may thus be replaced B"_;h;(7).*® Taking the limit

as n—0 gives the second component of the sum appearing

in Sp:
V Lo
Z 0)=— WY ((p)+ m[—l—z\/\’%,l@)
2
P !
+ 6 Wzyz(p)}ﬁ-o (M+1)4),

(A9)
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where

©

>

n=1 nl(e?™+ 1)K

are rapidly converging sums which may be computed nu-
merically. For example, atp 1, W(l)l~0 00186..
W°,,~0.0018D..., and W', ,~0.0018%.... FlnaIIy,
from Egs.(3.4), (A4), (A7), and(A9), the deswed result is

e2p77|n

Wi (p)= (A10)

InM
—+

1 3In2 Ml

S —In7—2W} (p) | +

Yet

+11
o

P
M2\ 27
1/1
VELC
1
M)

The sumS, is calculated by taking appropriate derivatives
of Egs.(A6) and (A8). The result forS, is

31In2

it l——
2 n ——

4\2

2

%ng,l(l))_%

YEtT—H5—

2W(1),1(P))

w

144+ WEZ,Z(p))

o

o Twe

2
144 6 1l(p 3 W12,2(p))

+0 (A1)

2
S,—— MZ;M(?’)_ 2W3 ((p) —4mpW; A p)]
6 InM
_M;[g(S)—ZWg (p)— 47TPW22(P)]_ .
+0(1), (A12)

where {(3) is the Riemann zeta function. Typical values of
these rapidly converglng sums appearing here W%
~0.00186... andW22~O 00184... atp=1.
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