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Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
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The interference between extrinsic and intrinsic losses in x-ray absorption fine structure~XAFS! is treated
within a Green’s-function formalism, without explicit reference to final states. The approach makes use of a
quasiboson representation of excitations and perturbation theory in the interaction potential between electrons
and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an
energy-dependent satellite in the spectral function. The x-ray absorption spectra~XAS! is then given by a
convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and
intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak
increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the
observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body
corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function.
The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
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I. INTRODUCTION

The treatment of inelastic losses in x-ray absorption fi
structure~XAFS! has long been of interest.1–3 Two types of
losses are identified.Extrinsic losses occur during the propa
gation of the photoelectron, and are caused by the creatio
excitations such as plasmons, electron-hole pairs, etc.Intrin-
sic losses refer to the creation of excitations by the sud
appearance of the core hole. The intrinsic losses are o
called shake-up and shake-off excitations but are of the s
type as the extrinsic, i.e., plasmons, multielectron exc
tions, etc. Typically these excitations are observed o
weakly in x-ray absorption spectra~XAS!. The extrinsic
losses cause a decrease in intensity in the no loss or prim
channel, which is usually treated phenomenologically
terms of a mean-free pathl. Owing to the difficulty of quan-
titative calculations, these additional losses have usu
been neglected or represented as a constant-amplitude fa
on the understanding that they only give some smooth ba
ground.

The question of possibleinterferencebetween extrinsic
and intrinsic losses has long been unsettled. For photoe
sion spectroscopy, it has been shown4,5 that this interference
is particularly important near excitation thresholds, whe
the losses strongly cancel. This cancellation results from
opposite signs of the coupling between the photoelectron
the core hole to excited states of the valence electrons
particular, for plasmon creation at threshold, only the lon
wavelength plasmons appear, which, due to momentum
servation, makes the recoil of the electron in the extrin
losses small. The intrinsic losses are caused by couplin
the core hole, which cannot recoil. As a result the extrin
and intrinsic couplings become equal at threshold. The s
ation in XAFS is less clear. Fujikawa has discussed this c
cellation using an explicit calculation of matrix elements a
approximate closure relations.6 However, his discussion is
0163-1829/2002/65~6!/064107~13!/$20.00 65 0641
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limited to the vicinity of threshold, while we find that th
cancellation effects extend over a wide energy region.

In this paper, we present a formal analysis of the lo
problem, which is an extension of work by Hedin an
Bardyszewski,2,3,5 together with numerical calculations to i
lustrate the theory. The results here are formulated in te
of an effective one-particle propagator that includes both
elastic losses and interference effects. This propagator
tains an asymmetric quasiparticle peak plus a broad ene
dependent satellite structure. Our approach is essentia
generalization of the ‘‘GW approximation’’~see below!
which, in addition to extrinsic losses, treatsintrinsic losses
and interferenceterms. The formalism also partly accoun
for edge-singularity effects and contains corrections to
final state rule. Although the cumulant expansion was s
cessfully used to describeintrinsic losses in valence-electro
photoemission,7 we have found it more difficult to apply fo
x-ray absorption spectra. For photoemission~PES! the
propagator for a hole and the spectral functionAh(v)
5A(v)u(EF2v) are needed, while in XAS we need th
propagator for a particle and the spectral functionAp(v)
5A(v)u(v2EF). The GW approximation forA(v) was
discussed in Ref. 8~pp. 87, 92!. The satellite of the hole
spectral function is very strong and sharp at the bottom of
band, but decreases in intensity and broadens as one
proaches the Fermi energyEF .8,9 At EF , the satellite for the
particle spectrum is similar to that for the hole spectrum, a
it rapidly becomes weaker and broader with increasing
ergy aboveEF . The GW approximation places the satelli
at about 1.5vp , rather than atvp away from the quasiparti-
cle peak, as is predicted by the cumulant approximation,
born out by PES experiments.7 However, above the Ferm
level the difference between the GW and cumulant appro
mations is less pronounced.

Our formulation clarifies the nature of inelastic losses
XAS and also yields semiquantitative estimates of their
fects, based on the electron-gas approximation. In particu
the theory yields an estimate for the reduction in the XA
©2002 The American Physical Society07-1
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amplitude due to inelastic losses in terms of a phasor s
mation over the spectral function. This results in an ener
dependent reduction factoruS0

2(v)u to the usual XAFS for-
mula, as well as an additional many-body phase shift. N
the excitation threshold, we find that there is apprecia
cancellation of strong extrinsic and intrinsic losses by
interference terms. Correspondingly, the strength of the
mary channel, i.e., the main quasiparticle peak, increa
near threshold. Thus the theory also explains the surpri
weakness of multielectron excitations in the observ
XAS.10 At sufficiently high energies both the extrinsic an
the interference contributions become negligible, and
theory crosses over to the sudden-approximation limit, wh
only intrinsic losses remain. Our theory is illustrated for t
case of Cu metal. This system provides a good test case
our theory since errors in the conventional multiple scat
ing ~MS! expansion and potentials are minimal and accur
experimental data are available.11

II. THEORY

A. Basic expressions

The x-ray absorption coefficientm~v! can be expresse
formally in terms of the many-electron Green’s functio
G(E)51/(E2H1 ig) as

m~v!52
1

p
ImK C0UD†

1

E01v2H1 ig
DUC0L , ~1!

whereuC0& is theN-particle ground state of the total syste
~valence electrons and ion cores!, H the Hamiltonian that
fully includes electron-electron interactions,E0 the ground-
state energy~we consider for simplicity only the case whe
the temperature is zero!, and v the photon energy. We us
atomic unitsm5ueu5\51, where lengths are in Bohr rad
~0.529 Å! and energies in Hartrees~27.2 eV!. Further

D5Sk^kudub&ck
†b1hc, ~2!

is the dipole operator coupling the photon to the electro
system, andg the inverse core-hole lifetime. We have a
sumed that a specific core levelub& on a specific atom is
involved.

The standard way to proceed from Eq.~1! is to insert a
complete set of interacting statesuCn&, which recovers the
golden-rule expression when we takeg as infinitesimal; a
finite g just gives a Lorentzian broadening, i.e.,

m~v!5(
n

u^CnuDuC0&u2d~E01v2En!. ~3!

This expression contains explicit final statesuCn& in which
the excited electron~the photoelectron! is correlated with the
valence electrons. Such states are very difficult to handle
we instead take a different route that leads to an expres
where no explicit final states are involved but instead,
expansion in one-electron Green’s functions, as in conv
tional XAS theory. Our formulation, however, contain
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shake-up effects and extrinsic inelastic losses as well as
terference terms, and not just the damping in the ela
channel.

Some of the formal results derived here were presen
previously in short conference reports.2,3 In this paper, we
have concentrated on the shake-up effects of the core-
potential and on the extrinsic losses of the ejected elect
To have a clean picture, we have regarded the core elec
as structureless. Thus we have not considered interes
problems like core-hole degeneracies andL II /L III edges.
Such problems are, in principle, complicated Kondo-ty
problems. If we, however, limit the treatment to have an i
embedded in a solid-state environment, and only consider
multiplet effects for the embedded ion,12 we think our treat-
ment could straightforwardly be extended to this situation

We take forH the standard ‘‘deep-level’’ Hamiltonian dis
cussed, e.g., by Langreth13 ~cf. Ref. 14, p. 645!,

H5Hv1«cb
†b1Vbb†. ~4!

Here Hv describes the electrons outside the ion cores,
the valence electrons and the photoelectron, andV the inter-
actions between the outer electrons and the core hole.
approximation neglects virtual excitations of the core el
trons, but takes correlations among the outer electrons
the potentialV from the core hole fully into account. Ne
glecting core-valence exchange we have explicitly,

V52(
i

w~r i !, w~r !5E v~r2r 8!rb~r 8!dr 8, ~5!

wherev(r ) is the Coulomb potential, andrb(r ) the charge
density of the core electron state ‘‘b.’’ The ground state of
HuC0&, is thus a product,

uC0&5uF0&ub&, ~6!

where uF0& is the correlated wave function forNv outer
electrons andub& is the core electron wave function,

HvuFo&5E0
0uF0&, HuC0&5E0uC0&, E05E0

01«c .

The passive core electrons are not written out explicitly. T
core electrons are easily eliminated, and Eqs.~1!, ~2!, and~6!
give

m~v!52
1

p
Im (

k1 ,k2

^bud†uk1&^k2udub&

3K F0Uck1

1

E01v2Hv81 ig
ck2

† UF0L , ~7!

where

Hv85Hv1V.

Here and elsewhere in this paper, we will use a prime
denote quantities calculated in the presence of a core h
The x-ray absorption is now formally given by a on
electron expression
7-2
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m~v!52
1

p
Im (

k1k2

^bud†uk1&^k1ugeff~v1Ec!uk2&^k2udub&,

~8!

wheregeff (v) is an ‘‘effective’’ one-electron Green’s func
tion

^k1ugeff~v!uk2&5K F0Uck1

1

v2~Hv82E08!1 ig
ck2

† UF0L .

~9!

The quantityE08 is the ground-state energy ofHv8 for Nv
electrons, andEc5«c1E0

02E08 is the renormalized core
electron energy. This Green’s function is not of stand
form sinceuF0& is an eigenfunction ofHv and we haveHv8
in the denominator.

The theory developed so far is quite general, and can e
account for losses, threshold singularity effects, and de
tions from the ‘‘final state rule,’’ i.e., the prescription that th
XAS is given by a one-electron expression with dipo
matrix elements between the initial-core and final-state w
functions calculated in the presence of the core hole.
function m~v! is always positive, andgeff can be written in
terms of a Hermitian spectral function. An approximation f
the ‘‘transient’’ Green’s function in Eq.~9! to describe the
edge shape was given in Ref. 14, p. 674. However, here
want to describe loss processes, and thus we have to dev
different approximations. These approximations, as d
cussed below, can be summed up in the quasiboson repre
tation described in Sec. II C.

To get a qualitative feeling for the properties of the tra
sient Green’s function, we first discuss them in the Hartr
Fock approximation. The ground state ofHv , uF0& then is a
Slater determinant, and the intermediate states in Eq.~9! are
Slater determinants built from orbitals that are self-consis
solutions of a Schro¨dinger equation with the core-hol
HamiltonianHv85Hv1V. We are free to choose any com
plete set to represent the statesk in the optical transition
operatorD5Sk^kudub&ck

†b. Here, we take the states that b
long to Hv , which have the convenient property th
ck

†uF0&50 for k,kF . In Hv8 we single out one termh8 with
orbitals that describe the photoelectron, and oneHv08 with
orbitals for the rest of the system,

Hv85h81Hv08 . ~10!

These two terms both have interactions with the core h
Vpc andVvc , respectively, which are screened versions oV
in Eq. ~5!, since we consider a self-consistent Hartree-Fo
~HF! solution for the core-hole Hamiltonian. In terms of th
old HamiltonianHv5h1Hv0 ,

h85h1Vpc , Hv08 5Hv01Vvc . ~11!

With theh8 orbitals separated from theHv08 orbitals, only the
one-electron operatorh8 can coupleck2

† to ck1
in Eq. ~9!. In

such a case we can use a product space,ck
†uF0&5uF0&uk&,

which then gives for the many-body XAS,
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m~v!52
1

p
Im ^bud†Pgeff~v1Ec!Pdub&, ~12!

where

geff~v!5K F0U 1

v2~Hv82E08!1 igUF0L , ~13!

and the projection operator onto unoccupied one-part
states of the initial state~without a core hole! is

P5 (
k.kF

uk&^ku. ~14!

The separation ofHv8 into h8 andHv08 is clearly an approxi-
mation. However, it makes physical sense and has been
previously, e.g., for photoemission problems.17 In this ex-
pression the coupling between the photoelectron and the
lence electrons is not present, since it is a correlation ef
beyond the HF approximation. This defect is of less imp
tance for a localized system, where HF theory is often qu
useful.

Let us now turn to the correlated case. A correlateduF0&
can, in principle, be calculated from configuratio
interaction theory. ThenuF0& is a sum of Slater determinant
having differing numbers of electron-hole excitations~virtual
excitations!. The Slater determinants with virtual states clo
to the Fermi level have the largest coefficients in this exp
sion. For photoelectron statesk away from this virtual cloud
it is a good approximation to use a product space. For d
niteness we will use

ck
†uF0&'H uF0&uk&, k.kF

0, k,kF
, ~15!

being aware that this is a dangerous approximation fok
.kF . As before we splitHv8 into one parth8 that describes
the photoelectron, and one partHv08 for other excitations of
the valence electrons, and we introduce core-hole poten
as in Eq.~11!. In addition we now also have the dynam
coupling Vpv between the photoelectron and the valen
electrons,

Vpv5 (
k1k2

(
l 1l 2

val

^k1l 1ivik2l 2&ck1

† ck2
@cl 1

† cl 2
2^cl 1

† cl 2
&#.

~16!

The term ^k1l 1ivik2l 2& is an antisymmetrized matrix ele
ment of the Coulomb potentialv(r ), and the expectation
value^cl 1

† cl 2
& is subtracted, since it is already included in t

definition of h8. The stateuF0& is an eigenfunction ofHv0
built from one-electron eigenfunctions without core-hole p
tential whileh8 is built from eigenfunctionsuk8& with a core
hole present,

h85 (
k8.kF

«kuk8&^k8u. ~17!

The statesuk8& are scattering states. There is thus a one
one correspondence betweenuk8& and uk&, and the energies
7-3
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are unchanged. Sinceh8 only has terms bilinear in the pho
toelectron operatorsck , and since there is a linear relatio
between the statesuk8& and uk&, h8 will not take us outside
the product spaceuF0&uk&.

From Eqs.~7! and ~15!, we again obtain Eq.~12! for the
XAS, but with geff(v) in Eq. ~8! replaced by

geff~v!5K F0U 1

v2~Hv08 2E08!2h82Vpv1 igUF0L .

~18!

Equations~10!, ~11!, ~12!, and ~18! form the basis for our
analysis of x-ray absorption. It is easy to show that Eq.~12!
gives a nonnegative absorption cross sectionm~v!, as it
should.

B. Limiting cases

We start our analysis of the theoretical model develop
above by discussing the two limiting cases:~1! when there is
no extrinsic scattering (Vpv50), and~2! when the core-hole
potential is neglected (Hv08 5Hv0).

1. No extrinsic scattering

In this caseVpv50, and we can put in a complete set
eigenstatesuFn8& to Hv08 with eigenvaluesEn8 and obtain~tak-
ing g as an infinitesimal!

geff~v!5(
n

u^F0uFn8&u
2

v2vn2h81 ig
, ~19!

wherevn5En82E08 . Putting in eigenstatesuk8& of h8, and
taking the imaginary part, we then obtain,

m~v!5(
k,n

u^F0uFn8&u
2u^k8uPdub&u2d~v1Ec2vn2ek!

5E
0

v1Ec2EF
dv8A~v8!m~1!~v1Ec2v8!, ~20!

where the core-hole spectral functionA(v) is

A~v!5(
n

u^F0uFn8&u
2d~v2vn!, ~21!

and the one-electron XAS is

m~1!~v!5 (
k8.kF

u^k8uPdub&u2d~v2ek!. ~22!

A similar result was derived and discussed earlier by R
et al.1 However, an important difference in our formulatio
is the presence of the projection operatorP in the dipole-
matrix element. It is interesting to note thatA(v) contains
the core-electron edge singularityA(v)'va21, wherea is
the singularity index, and thatm (1)(v) is also singular at the
Fermi level,m (1)(v)'(v2EF)b. This latter singularity fol-
lows from the singular behavior of the overlap integ
^k8uk&.15 We also see from Eq.~22! that the final-state rule is
not strictly valid, except well above threshold, whereP can
06410
d

r

l

be replaced by ad function and the matrix element reduce
to ^k8udub&. We know from photoemission16 that there is
little extrinsic scattering at threshold, where this limitin
case should be a good representation of our basic app
mation given by Eqs.~12! and ~18!.

2. No core hole

When the core-hole potential is neglected,Hv08 5Hv0 ,
h85h, and we have~taking g as an infinitesimal!

geff~v!5 K F0U 1

v2~Hv02E0!2h2Vpv1 igUF0L .

~23!

Now geff(v) is equivalent to a standard Green’s functio
g(v). Thek1k2 representation ofg(v) is

^k1ug~v!uk2&5^0u K F0Uck1

1

v2~Hv02E0!2h2Vpv1 ig

3ck2

† UF0L u0&, ~24!

where uF0&u0& is an eigenfunction of the full Hamiltonian
Hv01h1Vpv sinceVpvu0&50. We can expressg in terms of
a spectral functionA(v),

^k1ug~v!uk2&5E
EF

` ^k1uA~v8!uk2&dv8

v2v81 ig

5 K k1U 1

v2h2S~v!
Uk2L . ~25!

This limiting case gives a theory very similar to one-electr
theory, but with an additional complex, energy-depend
one-electron potential(~v!. If we approximate(~v! by a
constant2 iG, which is equivalent to a Lorentzian line shap
for A(v), we recover the conventional XAFS result,
which extrinsic losses are represented by a mean-free
lk'k/G term, i.e., with a factor exp(2R/lk) in each
multiple-scattering path of lengthR. In general,(~v! has
structure at energies away from the quasiparticle energy,
ing rise to satellite effects.

C. Quasiboson representation

We now turn to the general case, in which all three pot
tials Vpv , Vpc , andVvc that couple the three subsystems
the photoelectron, valence electrons, and core electron—
nonzero. To handle this we introduce a quasiboson mo
Hamiltonian,

Hv05(
n

vnan
†an , h85 (

k.kF

ekck
†ck , ~26!

Vvc52(
n

Vbb
n ~an

†1an!, ~27!
7-4
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Vpv5 (
nk1k2

@Vk1k2

n an
†1~Vk1k2

n !* an#ck1

† ck2
. ~28!

This model together with Eqs.~11!, ~12!, and~18! define the
set of approximations that we use in this work. The poten
Vpc never appears explicitly sincehuF0&50, and thus we do
not have to worry about the transform between theh andh8
states.

The quasiboson model has been discussed, e.g., in Re
and 17. The essence is that the electron-hole-type excita
are represented by bosonsan with energiesvn , and the
electron-charge fluctuation coupling is represented by a t
linear in the boson operators, as in Eq.~28!. This is analo-
gous to the usual electron-photon coupling. Equation~27! is
a special case of Eq.~28! with ck1

† ck2
replaced bybb† and a

minus sign, because the core-hole potential is attractive.
quantitiesVn are fluctuation potentials corresponding to e
cited statesn. The Vn can be obtained, e.g., from an RPA
type dielectric function.16 With this simple model Hamil-
tonian we can solve explicitly for the relation between t
ground states ofHv0 andHv08 , i.e.,

uF0&5e2SuF08&, S5
a

2
2(

n

Vbb
n

vn
ãn

† , a5(
n

S Vbb
n

vn
D 2

,

whereãn
† belongs toHv08 5(nvn

†ãn
†ãn . Expanding to second

order in the coupling functionsVn, we obtain

geff~v!5K F08Ue2S† 1

v2~Hv08 2E08!2h82Vpv1 ig
e2SUF08L

5e2aH g~v!1(
n

S Vbb
n

vn
D 2

g~v2vn!

22(
n

Vbb
n

vn
g~v2vn!Vng~v!J , ~29!

where@cf. Eq. ~18!#

g~v!5K F08U 1

v2~Hv08 2E08!2h82Vpv1 igUF08L
[

1

v2h82S~v!1 ig
, ~30!

is the damped Green’s function calculated in the presenc
a core-hole potential. With the above result forgeff(v) we
have achieved our goal of expressingm~v! in Eq. ~12! as an
expansion in one-particle Green’s functions, thus avoid
the calculation of correlated many-body final states. In
next section we take the further step of making a MS exp
sion of the Green’s functions. We note that the limiting e
pressions in Sec. II B, all come out the same if we had c
sen to start with the quasi-boson model.

D. Qualitative discussion of second-order expression

While our basic approximation in Eqs.~12! and~18! gives
positive absorptionm~v!, there is no guarantee that the ind
vidual terms in an expansion in powers of the coupling fu
06410
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tions Vn should be positive. The coupling strength may
gauged by the value of the dimensionless coefficienta de-
fined above. For electron-gas models of solids, counting o
plasmon modes, its value is typically 0.2–0.4, and henc
quite strong. For values ofk close to the Fermi surface th
extrinsic quasiparticle strengthZ is about exp(2a)
'0.8– 0.7. Such values forZ are typical for most solids. The
fact that effects of ordera arenot generally observed in XAS
can be viewed as empirical evidence for strong cancella
effects among the various losses. However, given these l
values ofa, it is not surprising to encounter some nonphy
cal effects in numerical calculations, such as small regi
where the spectral function can become negative, which
due to the neglect of terms higher than second order in
theory.

Summarizing our second-order expression, and chang
the definition ofgeff in Eq. ~18! by taking out thee2a factor,
we have for the absorption spectrum,

m~v!52
e2a

p
Im^bud†Pgeff~v1Ec!Pdub&, ~31!

where

geff~v!5gqp~v!1gextr~v!1gintr~v!1ginter~v!,

gqp~v!1gextr~v!5g~v!,

gintr~v!5(
n

S Vbb
n

vn
D 2

g~v2vn!,

ginter~v!522(
n

Vbb
n

vn
g~v2vn!Vng~v!, ~32!

account, respectively, for the quasiparticle term, the extrin
and intrinsic loss satellites, and the interference betw
them. To handle the one-particle propagatorsg(v) we as-
sume that(~v! is diagonal in a representation with eige
functions uk8& of h8 that according to calculations with th
GW approximation for the self-energy, is not too bad.17 For
simplicity we now drop the prime onk8 and write

^kug~v!uk&[g~k,v!5
1

v2«k2S~k,v!1 ig
. ~33!

With k fixed ^kug(v)uk& as a function ofv has a quasiparti-
cle peak and some more or less pronounced satellite s
ture. Forv near the quasiparticle peak we obtain an asy
metric lineshape,

g~k,v!'^kugqp~v!uk&5
Zk

v2Ek1 iGk
, ~34!

where Ek is defined from Ek5k2/21Re((k,Ek), Gk

5uIm ((k,Ek)u and Zk5@12]((k,v)/]v#v5Ek

21 . We now

make an on-shell approximation, defining functions ofv,

Z~v!5Zk , DE~v!5DEk , G~v!5Gk ,

with the relation betweenk andv given implicitly through
7-5
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v5Ek . ~35!

Strictly speaking( is defined fromh1(5t1VH1(, where
t is the kinetic energy andVH the Hartree potential. Often w
would like to use, e.g.,VLDA rather thanVH to generate basis
functions. We then have to replace( by (2VLDA1VH in
our expressions. With this on-shell approximation we hav

^kugqp~v!uk&' K kU Z~v!

v2h82DE~v!1 iG~v!1 igUkL ,

~36!

and since theuk& are eigenfunctions ofh8, the operator
gqp(v) becomes

gqp~v!5
Z~v!

v2h82DE~v!1 iG~v!1 ig
. ~37!

With this form for the quasiparticle propagatorgqp(v) we
can use the MS expansion to treat the XAFS.10 We write
h85t1V081Vscatt wheret is the kinetic-energy operator,V08
the potential in the central cell with its core hole, andVscatt
the total scattering potential from all the neighboring ce
~excluding inelastic losses!. In the MS expansion we can
e.g., useh05t1V082 iG(v)2 ig to obtain the propagator fo
the central absorber and then treatVscatt as the perturbation.

From Eqs.~31! and~32!, the quasiparticle contribution to
the x-ray absorption is

mqp~v!52
e2a

p
Im^bud†Pgqp~v!Pdub&, ~38!

where the propagatorgqp(v) is given by Eq.~37!. This is
similar to the standard one-electron formula for the x-r
absorptionm (1)(v) with mean-free-path effects from th
damping parameterG~v!, except for a complex amplitud
factor Z(v)5exp(if)uZ(v)u with a many-body phase shiftf
and a wave-function overlap reduction by the factore2a.
With G and a both zero andZ51, the quasiparticle XAS
mqp(v) becomes identical to the one-particle absorpt
m (1)(v) in Eq. ~22!.

To evaluate the total absorptionm~v! including intrinsic
losses and interference, we can, correct to terms of sec
order in the fluctuation potentialsVn, replace g(v) by
gqp(v) in gintr(v) and ginter(v). For definiteness we defin
the extrinsic satellite functiongextr(v) as the difference be
tween the full propagatorg(v) and the quasiparticle propa
gatorgqp(v) ~see Appendix A!. As noted above, the projec
tion operatorP in Eq. ~31! and Eq. ~22! is necessary to
account for edge singularity effects, but does not sign
cantly affect the fine structure. In Appendix A we also sho
that the many-body expression for the x-ray absorptionm~v!
can be expressed as a convolution of an effective spe
function Aeff(v,v8), and the quasiparticle absorptionmqp
from Eq. ~38!, i.e.,

m~v2Ec!5E dv8 Aeff~v,v8!mqp~v2v8!, ~39!

wherev8 is the excitation energy.
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To evaluate our theory numerically in real systems is
heavy undertaking, and we will here only carry out som
rough estimates that illustrate the theory and yield n
negligible corrections to the usual XAFS procedure.10 To
simplify these calculations we rely on electron-gas the
within the plasmon-pole approximation to evaluate the va
ous contributions to the effective spectral function, and th
use these results to estimate the corresponding contribu
to m~v!. Since our aim here is only to carry out a pilot stud
which is at best semiquantitative, such an approximate mo
seems appropriate. However, our approach is more gen
and could be refined at the expense of much heavier ca
lations.

III. MODEL CALCULATIONS

In this section we present electron-gas model calculati
based on the plasmon-pole approximation~Appendix B! for
the various contributions to the effective spectral functi
Aeff . They can be represented as a sum of quasiparticle
terference, intrinsic, and extrinsic satellite terms defined
Appendix A, i.e.,

Aeff~v,v8!5@112a~v!#d~v8!1Asat~v,v8!, ~40!

where

Asat~v,v8!5Aextr~v,v8!1Aintr~v,v8!22Ainter
sat ~v,v8!.

~41!

Since we make comparisons to XAFS experiments for
Cu metal, we have setr s51.80, that corresponds to the mea
interstitial electron density. For this density, the dimensio
less constanta relating the strength of the electron-plasm
coupling to the plasmon excitation energy is 0.31. Ne
threshold the net weight of each of the contributionsAextr,
Ainter

sat and Aintr is equal toa and their shapes are similar, s
that the sum of all of these contributions tend to cancel. A
near threshold,Z'exp(2a) and the interference contributio
to the quasiparticle peaka(v)'a. Thus the net strength o
the main peak at threshold in our second-order theory
Z exp(2a)(112a)→11O(a2).

As noted above, the asymmetricquasiparticlespectrum
Aqp(k,v)5(21/p)Im gqp(k,v) @see Eq.~34!#, gives rise to
a net reduction in the XAFS amplitude as well as an ad
tional phase shift compared to one-electron theory. Th
effects are due to the behavior of the complex renormal
tion constantZ(v), which givesA(v) an asymmetric Fano
lineshape. In Fig. 1 we plot the modified quasiparticle sp
trum Aqp

mod(k,v), where long-range contribution from th
imaginary part ofZk is cut off in Aqp

mod @cf. Appendix A and
Eq. ~A18!#, i.e.,

Aqp
mod~k,v1Ek!5

1

p

Gk ReZk2ve2~v/2vp! Im Zk

v21Gk
2 .

~42!

For comparison, we also show the total extrinsic spec
function including both quasiparticle and satellite parts. N
that Aqp

mod(k,v) has nothing to do with the different contr
7-6
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butions toAeff . The real and imaginary parts of the reno
malization constantZ(v) are plotted in Fig. 2.

The intrinsic contribution Aintr(v,v8) to Aeff(v,v8) is in-
dependent ofv and gives a well-defined satellite structu
peaking at an energyvp away from the quasiparticle~Fig. 3!.
AlthoughAintr turns on sharply, this singular structure is su
pressed by broadening and interference terms as desc
below. Theinterferencebetween extrinsic and intrinsic losse
results in a net shift of spectral weight away from the sa
lite and to the quasiparticle peak, overall spectral weight
ing conserved. The rough cancellation of the satellite te
due to interference is clearly illustrated by the behavior
Ainter

sat in Fig. 3. Note that the interference satellite amplitu
is maximal near threshold and slowly decreases with incre
ing energy over a range of severalvp .

The behavior of the extrinsic satellite spectral function
illustrated in Fig. 4. In the plasmon-pole, electron gas mo
used here, theextrinsic satellitespectral function sometime

FIG. 1. Quasiparticle spectral functionAqp
mod(k,v1Ek) in Eq.

~42! plotted vsv for different values of the wave numberk ~solid
line!; and the spectral function@cf. Eq. ~33!# (21/p)Im g ~dashed
line!. All parameters are calculated using a plasmon-pole dielec
function for an electron gas at the mean interstitial electron den
in Cu r s51.80.

FIG. 2. Real~solid line! and imaginary~dashed! parts of the
quasiparticle renormalization constantZ(v)51/(12]S/]v), cal-
culated at the quasiparticle peak, for the GW plasmon-pole s
energyS of an electron gas atr s51.80. The sharp structure occu
at the onset of plasmon excitations.
06410
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ed
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exhibits a complicated structure. Close to the Fermi ene
the structure simplifies and consists of a peak at an ene
about vp above the quasiparticle energyv and a smooth
structure that falls off gradually with increasing energy. F
v near the onset of plasmon losses, there is still a p
nounced satellite peak, but there is also an additio
‘‘anomalous’’ structure near the quasiparticle peak. Indeed
seems ambiguous whether the structure close to the quas
ticle energy should be considered as part of the satellite
the main peak, as the structure accounts for a substa
portion of the extrinsic weight@12Z(v)# that is not in-
cluded in the quasiparticle peak. This indicates that
anomalously low and singular behavior ofZ(v) in this re-
gion is partly due to the singular structure of the plasmo
pole approximation and largely an artifact of thead hoc
method used to separate the main peak and the ‘‘satel
spectral function. Above the onset of plasmon losses,

ic
ty

lf-

FIG. 3. Intrinsic ~solid line! and interference satellite~dashed!
spectral functionsAintr(v,v8) andAinter

sat (v,v8), plotted againstv8
for selected values ofv. Note that the interference contribution
negative and tends to cancel the intrinsic satellite. These quan
are both calculated using the plasmon-pole dielectric function fo
electron gas at densityr s51.80, and broadened by a Lorentzian
width 0.2vp .

FIG. 4. Extrinsic satellite spectral functionAextr(v,v8) obtained
as described in Appendix A for selected values ofv i vs v8. The
curve forv50.7EF andv51.5EF lie before the onset of plasmo
excitations. The result forv51.5EF illustrates the anomalous struc
ture seen in this region, and that forv56EF lies well beyond the
onset. All results are based on a plasmon-pole dielectric func
with r s51.80.
7-7
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anomalous structure disappears, and is replaced by a s
tail that extends to the vicinity of the quasiparticle pea
Moreover, as the quasiparticle energy increases, the extr
satellite weight becomes progressively smaller.

IV. IMPLICATIONS FOR XAFS

We can now obtain rough estimates for the effect of
trinsic and intrinsic losses and interference on the XA
spectrum. In the usual MS theory,10 the XAFS spectrum
x (1)(v) is a rapidly varying energy dependent factor in t
one-particle expression for the x-ray absorption,

m~1!~v!5m0
~1!~v!@11x~1!~v!#, ~43!

wherem0
(1) is the generally smooth absorption from the ce

tral atom alone, in the absence of MS. The conventio
~broadened! one-particle absorptionm (1)(v) is obtained
from Eq. ~12!, with geff(v)51/@v2h2 iG(v)#, i.e., with a
damped one-particle propagator with mean-free-path eff
taken into account in terms ofG~v!. This one-particle MS
theory is generally in good agreement with experime
However, there remains a residual discrepancy of about 1
in overall XAFS amplitudes and a systematic shift in pe
positions compared to experiment. This shift is only par
accounted for by including the real part of an electron-g
self-energy in the one-particle propagator.

In the present theory, the many-body effects of losses
interference can be represented as in Eq.~39!, i.e., as a con-
volution of mqp(v) with the effective spectral function
Aeff(v,v8) including contributions from both primary an
satellite channels, as discussed in Appendix A. As no
above, the difference between the behavior ofm (1)(v) and
mqp(v) is qualitatively minor and results primarily from
constant wave function overlap factor exp(2a), a complex
renormalization factorZ(v)5uZ(v)uexp(if), and an energy
shift DE(v). The phasefactorf can be absorbed by addin
f/2 to the central atom phase factor in the XAFS formula

To extract the XAFSx~v! corrected for many-body ef
fects, we first use a similar MS factorization ofmqp(v)
5mqp

0 @11xqp(v)# to split off a central cell contribution
mqp

0 (v), which yields a many-body expression for the atom
background absorption

m0~v!5E dv8 Aeff~v,v8!mqp
0 ~v2v8!

'mqp
0 ~v!E

2`

v2EF
dv8 Aeff~v,v8!. ~44!

Heremqp
0 (v);u^fk

qpuPdub&u2 is the absorption from the cen
tral atom alone, in the absence of other scatterers, and
have neglected the variation ofmqp

0 (v) over the dominant
integration range ofv8. This is usually a good approxima
tion, since the one-particle atomic background is usuall
smooth, monotonically decreasing function of energy. Th
one expects that the satellite structure in the spectral func
due to many-body excitations will generally have minor
fects onm0(v), which is consistent with experimental ob
servations. However, the existence of sharp atomic re
06410
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nances in the one-particle absorptionmqp
0 may lead to

exceptions. The many-body XAFS functionx(v)5(m
2m0)/m0 then becomes

x~v!'E dv8 Ãeff~v,v8!xqp~v2v8!, ~45!

where the spectral functionÃeff is now normalized to unity,

Ãeff~v,v8!5Aeff~v,v8!/N~v!, ~46!

and N(v)5*dv8Aeff(v,v8). With this normalization in
x~v!, the wave function renormalization factor exp(2a) and
the magnitude of the quasiparticle strengthuZu cancel out,
while the phasef and the energy shiftDE(v) both remain.

The importance of multielectron excitations can
gauged by the net spectral weight in main peak and in
satellite structure from all losses. A plot of the normaliz
integrated satellite spectral weight,

ãsat~v!5E dv8 Ãsat~v,v8!, ~47!

whereÃsat(v,v8)5Asat/N(v) is given in Fig. 5. Also plot-
ted is the total weight of the primary peak,

ã0~v!5@112a~v!#/N~v!. ~48!

Note, in particular, the slow trend of the satellite weight t
wards the sudden approximation limit@a exp(2a)# with in-
creasing energy over a range of a few hundred eV. In th
plots we have lumped the contributions to the spectral fu
tion that lie below the plasmon onset into the primary pe
The anomalous behavior of the weights near the plasm
onset energy is due to the ambiguity of separating the sa
lite and quasiparticle contributions, and does not lead to
gular structure in the overall absorption.

FIG. 5. Normalized total spectral weights of the net prima
peak~solid! and satellite terms~dashed! including interference, i.e.,
the integrated quantitiesãsat(v) and ã0(v) of Eq. ~47! and Eq.
~48!. The anomalous structure at low energies is an artifact of
method used to separate primary and satellite terms in the spe
function. All results are obtained for the model of this paper w
r s51.80. The horizontal line represents the high-energy limit of
satellite weight~i.e., the sudden approximation!.
7-8
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The net effect of the convolution over a normalized, po
tive spectral amplitudeÃeff(v,v8) of Eq. ~45! is clearly a
decreased XAFS amplitude and a phase-shifted oscilla
signal compared to the one-particle XAFSx (1). In the single
scattering approximation the oscillatory energy depende
of xqp(v) enters primarily through the complex exponent
exp@i2k(v)R#, whereR is an interatomic distance andk(v)
5A2(v2EF) is the photoelectron wave vector. The result
the convolution can be written in terms of a complex amp
tude factor S0

2(v,R)5uS0
2(v,R)uexp„iF(v,R)…, which is

given by an energy dependent ‘‘phasor sum’’ over the eff
tive normalized spectral function,

S0
2~v,R!5E

0

v

dv8Ãeff~v,v8!exp$ i2@k~v2v8!2k~v!#R%.

~49!

The qualitative behavior ofS0
2(v,R) can be understood a

follows: At very low energies compared with the excitatio
energyvp , the satellite terms strongly cancel soA(v,v8)
'd(v2v8) and hence,S0

2(v,R)→1. At high energies, the
sudden approximation prevails, andA'Aqp1Aintr , which
has a strong satellite structure. However, the phase differe
2@k(v2v8)2k(v)# between the primary channel and sa
ellite becomes small at high energies (v8@vp) and hence
also S0

2(v,R)→1. At intermediate energies, however, th
value of S0

2(v,R) has a minimum. A plot of the magnitud
and phase ofS0

2(v,R) for our electron-gas model is given i
Fig. 6, for the first neighbor distance of Cu metalR
52.55 Å.

In order to compare these results with experiment,
isolate the first shell of the experimental EXAFS sign
x(v,R) by Fourier filtering over the range 1.75,R
,2.80 Å in position-spaceR ~conjugate to 2k), with a
smooth sine window, and then back transforming tok space.
For this comparison, we use the usual EXAFS convent
for the wave numberk5A2(E2EF), as measured from th
threshold Fermi energy. Our estimate of the experime
S0

2(v,R) is then given by the ratio of this back-transform
experimental first-shell XAFS signalx(v,R) to a similarly
Fourier filtered and back-transformed theoretical first-sh
signalx̃ (1)(v,R). The latter is obtained fromab initio XAFS
calculations using theFEFF8 code.18 The FEFF8 calculations
include only extrinsic losses, i.e., the mean-free-path l
calculated from a Hedin-Lundqvist plasmon-pole self-ene
model. The results, from both theory and experiment are
plotted in Fig. 6. Due to the Fourier filtering, fine details
the theoretical phasor sum forS0

2(v,R) in Fig. 6, are lost.
Also plotted, in Fig. 6, is the back-transformed XAFS am
plitude ux„v(k),R…u for the first nearest neighbor of Cu. Th
illustrates both where the amplitude reduction is importan
analysis, and also wherex is small, and hence theS0

2(v,R)
extracted from experiment may have significant errors du
experimental noise. Given the rough, electron-gas appr
mations used in our model calculations, the overall agr
ment with experiment for Cu metal is reasonably good. T
result also suggests that the conventional procedure of
proximatingS0

2(v,R) by a constantS0
2'0.9 is not unreason
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able. The biggest discrepancies are at low energies, and
likely due both to experimental noise and to the approxim
tion used for the mean-free-path at low energies inFEFF8,
which often has too much loss. We have also plotted
many-body correction to the XAFS phase, which varies
about 10.2 radians over the XAFS experimental range
,k,20 Å21. By comparing with the phase of the renorma
ization constantZ ~Fig. 2!, one sees that much of the pha
shift arises from the asymmetry of the quasiparticle pe
The sign of the phase shift is consistent with a reduction
the strength of the self-energy due to cancellation effe
The approximate linear variation of the phase withk can lead
to errors in distance determinations from XAFS measu
ments of aboutdR5DF/2Dk'10.006 Å which is compa-
rable to systematic errors typically encountered in exp
mental XAFS analysis.

Finally, we plot in Fig. 7 a comparison with experiment o
the full absorption resultm~v! obtained by convoluting the
spectral functionAeff with the quasiparticle resultmqp(v).
These calculations were carried out using full-multiple sc
tering calculations for a cluster of 300 Cu atoms using
FEFF8 code. To compensate for errors in our second-or

FIG. 6. Upper curves: magnitudeuS0
2u ~solid! of the XAFS

many-body amplitude reduction factor due to all inelastic losses
calculated using a phasor summation over the total spectral func
for the model in this work, and plotted vs the EXAFS wave numb
k5A2(v2EF) for the first neighbor distanceR52.55 Å in Cu.
Shown for comparison are the experimental~dots! and theoretical
~dashes! amplitude reduction obtained by Fourier filtering~see
text!. Note that the largest discrepancy between theory and exp
ment occurs whereux̃ (1)(k,R)u, the Fourier filtered and back
transformed complex XAFS amplitude, is small and experimen
noise dominates. Lower curves: phaseF of S0

2(k,R) ~solid!, and
comparison, the many body phase shift of the asymmetric quas
ticle peak~dashes!, i.e., f5tan21@Im Z/ReZ#. The sharp structure
neark'2 is an artifact of the sudden plasmon onset in the plasm
pole model used here.
7-9
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L. CAMPBELL, L. HEDIN, J. J. REHR, AND W. BARDYSZEWSKI PHYSICAL REVIEW B65 064107
expression for the spectral function,Aeff was normalized to
unity in this convolution; also sincemqp is real, the asymme
try in the quasiparticle peak in Eq.~42! was represented by
term P Im Z/v ~where P denotes the principal part! rather
than a complex phase factor expif. Although it is not clear
how reliable such a calculation is at the edge, given the s
plicity of our model calculations, the agreement with expe
ment does markedly improve.

V. CONCLUDING REMARKS

We have developed a semiquantitative theory for the
fects of extrinsic and intrinsic losses and the interfere
between them on x-ray absorption spectra. The theor
based on a quasiboson representation for the excitations
perturbation theory to second order in the electron-bo
coupling. These losses lead to an asymmetric broadenin
the main quasiparticle peak, plus a broad energy-depen
satellite in the spectral function due to the boson excitati
We find that the interference terms strongly suppress the
ellite terms and enhance the main quasiparticle peak. Th
results thereby explain the general weakness of multielec
excitations in XAS. We have applied the theory within t
electron-gas approximation to estimate the many-body
rections to the XAFS. By using a phasor summation over
spectral function, the theory yields an approximation to
reduction in the XAFS amplitude beyond the usual extrins
mean-free path, together with an additional many-bo
phase shift. Pilot model calculations based on the elect
gas approximation and our formalism are in semiquantita
agreement with XAFS experiment.

Our results illustrate a striking difference with those f
losses in photoemission. In core electron photoemission
metals there is also a strong extrinsic contribution to
losses for all energies, and a strong interference effect
tween extrinsic and intrinsic losses up to energies in the k
region.16 In contrast, we found the extrinsic losses to hav
very small influence on XAS. This at first seems to be
paradox, since photoabsorption is usually considered to

FIG. 7. Comparison of the full calculated many-body XASm~v!
~solid! obtained by convoluting the spectral functionAeff for the
model of this paper with the one-particle XASm (1)(v) ~dashes!
calculated using theFEFF8code, and the result from Cu experime
~dots!.
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proportional to the photoyield. This is indeed true in on
electron theory, and is also observed to be approximately
experimentally in many cases. There is, however, no theo
ical justification for assuming this to be the case in gene
If we examine the problem formally, the XAS is related
the dielectric response function~i.e., the density-density cor
relation function!, while the PES is given by a three-curre
correlation function, and there are no simple connections
tween these quantities. More physically we can point at
fact that in PES we measure a sharp, well-defined photoe
tron; i.e., we can describe PES by the golden rule with w
defined final states. In XAS the photoelectrons are ne
measured, and photoelectron states are not sharp, the
decaying states with a finite lifetime. Further all electro
that are photoexcited do not leave the solid, and some P
current that leaves the solid is due to secondary electrons
cannot come back and interfere at the photoexcited atom.
never consider these secondary electrons since we do
allow our quasibosons to decay. If we could put in we
defined intermediate states with a photoelectron in
density-density correlation function we would indeed ha
the same matrix elements that enter in PES but that is
possible except perhaps approximately, very close to thre
old when the quasiparticle lifetime is long.

Finally we would like to comment on similarities and di
ference between our approach and a model studied
Schrieffer.19 That work considered an Anderson-Newns-li
model for PES from a valence level on an adsorbed at
coupled to surface plasmons. Schrieffer studied photoabs
tion, and by cutting the polarization diagram, he identified
PES final state and obtained a perfect-square expressio
the PES current, including interference effects. His res
agree precisely with what we have in our model both
XAS and when applied to PES. However, the results
XAS cannot be expressed as a perfect square, as need
have a close correspondence with PES. This is due to
differences in the signs of the imaginary parts, as can be s
by comparing Eqs.~7!, ~13!, and ~14a! in Ref. 19. Thus
photobsorption and photoyield are only approximately
lated, even for a finite system where the quasiparticle as
does not enter.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
SPECTRAL FUNCTION

In this appendix we derive expressions for the differe
parts in the spectral weight functionAeff[Aqp1Aextr1Aintr
1Ainter that appears in the convolution expression for t
x-ray absorption in Eq.~39!. Starting from Eq.~31!, we have
7-10
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m~v2Ec!52
e2a

p (
k

u^bud†Puk&u2 Im geff~k,v!,

~A1!

provided geff @see Eq.~32!# is diagonal in the one-particle
index k. From GW calculations we know thatg andgqp are
approximately diagonal,17 and this is hence a reasonable a
proximation for all contributions togeff exceptginter, which
requires a special treatment as described later in this ap
dix. We first introduce the real spectral weight functio
Aeff(k,v) by representing Imgeff(k,v) as

Im geff~k,v!5E dv8 Aeff~k,v8!Im gqp~k,v2v8!.

~A2!

Next we make the on-shell approximation of replacingk in
Aeff(k,v8) by k5k(v2v8), with k(v) defined in Eq.~35!.
With Aeff(v,v8)[Aeff„k(v2v8),v8… depending only onv
andv8, we can perform the summation overk, and obtain

m~v2Ec!5E dv8Aeff~v,v8!mqp~v2v8!, ~A3!

wheremqp(v) is defined in Eq.~38!. Thus the quasi-particle
contribution to Aeff(v,v8) is simply a delta function,
Aqp(v,v8)5d(v8).

For theintrinsic contribution, it is clear from Eq.~32! that
Aintr is simply a sum of energy-shiftedd functions,

Aintr~v,v8!5(
n

S Vbb
n

vn
D 2

d~v82vn!, ~A4!

which is independent ofv. In the electron-gas, plasmon-po
approximation the explicit expression forAintr can easily be
found ~Ref. 14, p. 655!,

Aintr~v,v8!5
vp

2u~v82vp!

p~v8!3q~v8!
, ~A5!

whereq(v8) is a solution tovq5v8. The intrinsic spectral
function contributes only at energies nearvp above the elec-
tron quasiparticle energy, and gives a well-defined satell

The interference contributionto geff in Eq. ~32! contains a
product g(v2vn)Vng(v), and sinceVn can transfer mo-
mentum, is not diagonal ink space even wheng is. One can
evaluateginter(v), e.g., by doing MS expansions of the tw
propagators, but this does not yield a result of the form
Eq. ~39!. To force it into that form we make some furthe
approximations. First we take the fluctuation potentials
plane waves, and in a plane wave basis we then have^k
1q8uVquk&5V0

qdqq8 . Also taking the Green’s functions a
diagonal in a plane wave basis, Eqs.~31! and ~32! give

m inter~v!5
2e2a

p
Im (

kq

uV0
qu2

vq
^bud†Puk1q&

3^k1qug~v2vq!uk1q&^kug~v!uk&^kuPdub&.

~A6!
06410
-

n-

.

n

s

Taking the quasiparticle approximation in Eq.~34! for g(v)
and neglecting theq-dependence in the dipole-matrix ele
ment, we have

m inter~v!5
2e2a

p
Im(

kq

uV0
qu2

vq
u^kuPdub&u2

Zk1qZk

vq1Ek1q2Ek

3F 1

v2vq2Ek1q1 iGk1q
2

1

v2Ek1 iGk
G ,

~A7!

where we have made the approximation thatGk1q.Gk in the
denominator of the prefactor before the term in brackets.
now have a difference between two Green’s functions, a
provided we treat the prefactor of this difference as a r
number ~e.g., neglecting the imaginary part ofZ! we can
again writem inter(v) as a convolution withmqp, i.e.,

m inter~v!

'2Fa~v!mqp~v!2E dv8Ainter
sat ~v,v8!mqp~v2v8!G ,

~A8!

with

a~v!5(
q

uV0
qu2

vq

uZk1qu
vq1Ek1q2Ek

U
k5k~v!

, ~A9!

Ainter
sat ~v,v8!5(

q

uV0
qu2

vq

uZk2qu
vq1Ek2Ek2q

U
k5k~v2v8!

3d~v82vq!. ~A10!

To further simplify the calculations, we assume th
Zk1q'Zk . Thus we have separated the resulting spec
function into a term proportional toa(v) that adds to the
quasiparticle peak, and a term proportional toAinter

sat that con-
tributes to the satellite structure. ApproximatingEk by k2/2,
we obtain

a~v!5
vp

2uZku

4pk
E

0

`

dv8
1

v8vq
2 lnFvq1v81kq

vq1v82kq
G , ~A11!

whereq5A2v8 andk5A2v. Similarly

Ainter
sat ~v,v8!5

uZk8uvp
2

2pk8q2v82

3 lnFv82q2/21k8q

v82q2/22k8qGu~v82vp!,

~A12!

whereq5A2(v82vp) andk85A2(v2v8).
For theextrinsic contribution, we have from Eq.~A2!,

ImFgextr~k,v!

Zk
2E Aextr~k,v8!dv8

v2v82Ek1 iGk
G50. ~A13!
7-11
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The integral gives an analytic function ofv in the half-plane
above the line v5Ek2 iGk . If we also assume tha
gextr(k,v)5g(k,v)2gqp(k,v) is analytic in this region, we
can make a shift in the origin forv by Ek2 iGk1 id (d
→01) without crossing the analyticity line. This gives

ImFgextr~k,v1Ek2 iGk1 id!

Zk
2E Aextr~k,v8!

dv8

v2v81 idG
50, ~A14!

from which we obtain

Aextr~k,v!52
1

p
ImFgextr~k,v1Ek2 iGk1 id!

Zk
G .

~A15!

The analyticity ofgextr(k,v) follows if it can be described by
a sum of discrete poles or by a contour integration be
v5Ek2 iGk . This is a reasonable approximation since t
satellite peak is broader than the quasiparticle one. If
gqp(k,v) we take the expression valid forv close to the
quasiparticle energy

gqp~k,v!5
Zk

v2Ek1 iGk
, ~A16!

and use it for allv, we have

gextr~k,v!5
1

v2«k2S~k,v!
2

Zk

v2Ek1 iGk
. ~A17!

Since Zk has a fairly large imaginary part, this leads to
substantial Fano-type asymmetry and substantial~cancelling!
negative contributions in the spectral functions forgextr and
gqp. The expression to use forgqp is not well defined excep
very close to the quasiparticle energy. To avoid a nega
spectral density for the extrinsic satellite we introduce
Gaussian cutoff to the imaginary part ofZk in Im gqp, i.e.,

Im gqp~k,v1Ek2 iGk1 id!

5
2d ReZk1ve2~v/2vp!2

Im Zk

v21d2 . ~A18!

If we further replaceZk by uZku in Eq. ~A15!, we obtain for
v@d

Aextr~k,v!52
1

puZku
H @Gk1Im S~k,v1Ek!#

31/@@v1DEk2ReS~k,v1Ek!#
2

1@Gk1Im S~k,v1Ek!#
2#2

ImZk

v
e2~v/2vp!2J ,

~A19!

whereDEk5ReS(k,Ek). We have neglected theiGk in the
argument forS, and we have only consideredv@d since
gextr(k,v) is small aroundv50 when the true complex qua
siparticle energy is used. this result can be compared with
first-order result from Eq.~A2!, i.e., the result obtained b
06410
e
r

e
a

he

takingGk→0. With Gk50 and neglecting the phase inZk we
have Imgqp(k,v)52puZkud(v2Ek), and thus from Eq.
~A2! Aextr(k,v2Ek)521/(puZku)Im gextr(k,v). This is the
same result as in Eq.~A19! with Gk50. Since the GW ap-
proximation puts the extrinsic satellite at a slightly differe
position than the interference and intrinsic satellite term
~which leads to numerical problems such as small regi
where the spectral function is negative! we shiftedAextr to
make the peaks coincide.

In summary we have found that

m~v2Ec!5E dv8 Aeff~v,v8!mqp~v2v8!, ~A20!

where

Aeff~v,v8!5@112a~v!#d~v8!1Aextr~v,v8!1Aintr~v,v8!

22Ainter
sat ~v,v8!. ~A21!

APPENDIX B:
PLASMON-POLE, ELECTRON-GAS MODEL

In this appendix, we briefly outline some properties of t
electron-gas model used in our calculations. In order to e
mate the many-body effects on XAFS spectra, we need
make some simplifying approximations. By choosing
work with an electron-gas model, many of the formulas
our model can be found analytically, greatly simplifying th
calculations. We further choose to use a plasmon-pole die
tric function. Although the model exhibits some nonphysic
singular structure and no loss at low energies, it neverthe
gives mean-free paths and self-energy shifts in reason
agreement with experiment. Under this approximation,
fluctuating potentialsVn are plane waves

Vn~r !5Vq~r !5V0
qeiqr .

In the case of coupling to the core hole~at r50) this yields
Vbb

q 5V0
q . According to the plasmon-pole model20

V0
q5S 2pe2vp

2

q2vqV D 1/2

, ~B1!

whereV is the system volume. For the case when the pl
mon dispersion has the formvq

25vp
21aq21q4/4, the

imaginary part ofSGW(k,v) can be obtained analytically
i.e.,

Im S~k,v!52
vp

4k
lnF q2

2

vp1q2
2

vp1q1
2

q1
2 Gu~v2v th!,

~B2!

wherev th is the threshold for plasmon excitation, andq1 and
q2 are limiting values of the inequalitiesvq1(q2k)2/2
2v,0 andvq1(q1k)2/22v.0, and hence are solution
to a cubic equation,
7-12
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kq31S v1a2
3

2
k2Dq21~k322vk!q

1S vp
22v21vk22

k4

4 D50, ~B3!

with the constraints, min(q1,q2)50, and max(q1,q2)50 satis-
fies vq5v1k2/22kF

2/2. The real part is then obtained by
Kramers-Kronig transformation,

ReS~k,v!5Vex~k!1
P

p E Im S~k,v8!dv8

v2v8
, ~B4!
ys

06410
where

Vex~k!52
2

p FkF

2
1

kF
22k2

4k
lnUk1kF

k2kF
UG , ~B5!

is the energy-independent part inS, i.e., the Hartree-Fock
exchange energy. In the calculations presented in this w
we have chosen the plasmon dispersion as in Ref. 20,
a52/3, which is the same as that used in the extrinsic l
calculations in theFEFF8code.
-
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