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Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
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The interference between extrinsic and intrinsic losses in x-ray absorption fine strG¢AF8) is treated
within a Green's-function formalism, without explicit reference to final states. The approach makes use of a
guasiboson representation of excitations and perturbation theory in the interaction potential between electrons
and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an
energy-dependent satellite in the spectral function. The x-ray absorption spé€aiBa is then given by a
convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and
intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak
increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the
observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body
corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function.
The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
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[. INTRODUCTION limited to the vicinity of threshold, while we find that the
cancellation effects extend over a wide energy region.
The treatment of inelastic losses in x-ray absorption fine In this paper, we present a formal analysis of the loss
structure(XAFS) has long been of intere&t® Two types of ~ Problem, Wh'C3h5 is an extension of work by Hedin and
losses are identifiedExtrinsiclosses occur during the propa- Bardyszewskf;>® together with numerical calculations to il-

gation of the photoelectron, and are caused by the creation J)lfstrate the_ theory. The_ results here are for_mulated In terms
excitations such as plasmons, electron-hole pairs retin- of an effective one-particle propagator that includes both in-
P ’ P dun elastic losses and interference effects. This propagator con-

sic losses refer to the creation of e>_<C|t§t|(_)ns by the suddep,; s an asymmetric quasiparticle peak plus a broad energy-
appearance of the core hole. The intrinsic losses are oftelependent satellite structure. Our approach is essentially a
called shake-up and shake-off excitations but are of the samgeneralization of the “GW approximation{see below

type as the extrinsic, i.e., plasmons, multielectron excitawhich, in addition to extrinsic losses, treatgrinsic losses
tions, etc. Typically these excitations are observed onlyand interferenceterms. The formalism also partly accounts
weakly in x-ray absorption spectréXAS). The extrinsic for edge-singularity effects and contains corrections to the
losses cause a decrease in intensity in the no loss or primafipal state rule. Although the cumulant expansion was suc-
channel, which is usually treated phenomenologically inc€ssfully used to describetrinsic losses in valence-electron
terms of a mean-free path Owing to the difficulty of quan- photoemissiord,we have found it more difficult to apply for

titative calculations, these additional losses have usually 'Y absorption spectra. For photoemlssmlPlE_S the
been neglected or represented as a constant-amplitude fact Fopagator for a hole and the .sp(.actral functiri(w)
on the understanding that they only give some smooth bac ~A(0)6(Eg ~ ) are needed, while in XAS we .need the
li:)ropagator for a particle and the spectral functid )
ground. . . . =A(w)0(w—Eg). The GW approximation folA(w) was
The question of possiblenterferencebetween extrinsic  jiscussed in Ref. 8pp. 87, 92. The satellite of the hole
and intrinsic losses has long been unsettled. For photoemigneciral function is very strong and sharp at the bottom of the
sion spectroscopy, it has been shdwthat this interference band, but decreases in intensity and broadens as one ap-
is particularly important near excitation thresholds, whereproaches the Fermi ener@ .22 At Er, the satellite for the
the losses strongly cancel. This cancellation results from thgarticle spectrum is similar to that for the hole spectrum, and
opposite signs of the coupling between the photoelectron ang rapidly becomes weaker and broader with increasing en-
the core hole to excited states of the valence electrons. largy aboveEr. The GW approximation places the satellite
particular, for plasmon creation at threshold, only the long-at about 1.m,, rather than ato, away from the quasiparti-
wavelength plasmons appear, which, due to momentum corle peak, as is predicted by the cumulant approximation, and
servation, makes the recoil of the electron in the extrinsidoorn out by PES experimentsHowever, above the Fermi
losses small. The intrinsic losses are caused by coupling tevel the difference between the GW and cumulant approxi-
the core hole, which cannot recoil. As a result the extrinsiomations is less pronounced.
and intrinsic couplings become equal at threshold. The situ- Our formulation clarifies the nature of inelastic losses in
ation in XAFS is less clear. Fujikawa has discussed this canXAS and also yields semiquantitative estimates of their ef-
cellation using an explicit calculation of matrix elements andfects, based on the electron-gas approximation. In particular,
approximate closure relatioisHowever, his discussion is the theory yields an estimate for the reduction in the XAFS
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amplitude due to inelastic losses in terms of a phasor sunshake-up effects and extrinsic inelastic losses as well as in-
mation over the spectral function. This results in an energyterference terms, and not just the damping in the elastic
dependent reduction fact¢®3(w)| to the usual XAFS for- channel.

mula, as well as an additional many-body phase shift. Near Some of the formal results derived here were presented
the excitation threshold, we find that there is appreciabl@reviously in short conference repoftdin this paper, we
cancellation of strong extrinsic and intrinsic losses by thehave concentrated on the shake-up effects of the core-hole
interference terms. Correspondingly, the strength of the pripotential and on the extrinsic losses of the ejected electron.
mary channel, i.e., the main quasiparticle peak, increasebo have a clean picture, we have regarded the core electron
near threshold. Thus the theory also explains the surprisings structureless. Thus we have not considered interesting
weakness of multielectron excitations in the observedoroblems like core-hole degeneracies ang/L,, edges.
XAS.2 At sufficiently high energies both the extrinsic and Such problems are, in principle, complicated Kondo-type
the interference contributions become negligible, and thgroblems. If we, however, limit the treatment to have an ion
theory crosses over to the sudden-approximation limit, wherembedded in a solid-state environment, and only consider the
only intrinsic losses remain. Our theory is illustrated for themultiplet effects for the embedded idhwe think our treat-
case of Cu metal. This system provides a good test case fanent could straightforwardly be extended to this situation.
our theory since errors in the conventional multiple scatter- We take forH the standard “deep-level” Hamiltonian dis-
ing (MS) expansion and potentials are minimal and accurateussed, e.g., by Langréth(cf. Ref. 14, p. 645

experimental data are availatife.

H=H,6+ehb'b+Vbb'. (4)
Il. THEORY Here H, describes the electrons outside the ion cores, i.e.,
A. Basic expressions the valence electrons and the photoelectron, \ankle inter-

) o actions between the outer electrons and the core hole. This
The x-ray absorption coefficieni(w) can be expressed 4n5r0ximation neglects virtual excitations of the core elec-
formally in terms of the many-electron Green’s function .ons hut takes correlations among the outer electrons and
G(E)=U(E-H+iy) as the potentialV from the core hole fully into account. Ne-

L glecting core-valence exchange we have explicitly,
-
A E0+w—H+iyA\IIO>' @

1

plw)== ;Im<\lfo
V=—2 w(r), w(r)=f v(r=r")pp(r)dr’, (5

where| V) is theN-particle ground state of the total system I

(valence electrons and ion coje$l the Hamiltonian that wherev(r) is the Coulomb potential, angl,(r) the charge

fully includes electron-electron interactiortsy the ground-  density of the core electron statd.” The ground state of

state energywe consider for simplicity only the case when H|W¥ ), is thus a product,

the temperature is zexoand w the photon energy. We use

atomic unitsm=|e|=7%=1, where lengths are in Bohr radii | Vo) =|Dg)|b), (6)

(0.529 A and energies in Hartreg®7.2 e\). Further ) _
where |®,) is the correlated wave function fdd, outer

A=3(k|d[b)cib+hc, ?) electrons andb) is the core electron wave function,

= _ )
is the dipole operator coupling the photon to the electronic H,[®o) =Eo|®o), H[Wo)=Eq[Wo), Eo=Eg+ec.

system, andy the inverse core-hole lifetime. We have as-
sumed that a specific core levi) on a specific atom is
involved.

The standard way to proceed from H4@) is to insert a
complete set of interacting statg®,), which recovers the 1
golden-rule expression when we takeas infinitesimal; a wlw)=—=1Im >, (b|dk;}(k,|d|b)
finite y just gives a Lorentzian broadening, i.e., T kiky

The passive core electrons are not written out explicitly. The
core electrons are easily eliminated, and Edj5.(2), and(6)
give

X ®y|cy ———F——0Cf [Dg), 7
(@)= (ViAW) |?8(Eg+ 0—Ey).  (3) < M Eg+tw—H+iy °> “
n

where
This expression contains explicit final statds,) in which

the excited electrofthe photoelectronis correlated with the H' =H. +V.

valence electrons. Such states are very difficult to handle, so o

we instead take a different route that leads to an expressiddere and elsewhere in this paper, we will use a prime to
where no explicit final states are involved but instead, ardenote quantities calculated in the presence of a core hole.
expansion in one-electron Green’s functions, as in conventhe x-ray absorption is now formally given by a one-
tional XAS theory. Our formulation, however, contains electron expression
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1 1
wl@)==—1m > (bld"lky){ky|ger( @+ Ec) k) (kold|b), pw)==—Im(bld"Pge(w+E)Pdb), (12
112
®) where
where g.¢ (w) is an “effective” one-electron Green'’s func- ‘
tion _
geff(w) <(DO w_(Hl’)_Eé)‘l‘l’y’q)O ’ (13)
1 o . .
K KV=( ®.c oo and the projection operator onto unoccupied one-particle
(ke|Qerl(@)|kz) < O ™1y —(H/—Ep) +iy * °> states of the initial statévithout a core holgis
€)
The quantityE{, is the ground-state energy ®f, for N, P:k;@ k) (K. (14)

electrons, andE.=¢.+ES—E{ is the renormalized core-

electron energy. This Green’s function is not of standardlhe separation off; into h’” andH/, is clearly an approxi-
form 3ince|CI)o> is an eigenfunction oH, and we haveHl’} mation. However, it makes physical sense and has been used
in the denominator. previously, e.g., for photoemission probleMsin this ex-

The theory developed so far is quite general, and can evepression the coupling between the photoelectron and the va-
account for losses, threshold singularity effects, and devialence electrons is not present, since it is a correlation effect
tions from the “final state rule,” i.e., the prescription that the beyond the HF approximation. This defect is of less impor-
XAS is given by a one-electron expression with dipole-tance for a localized system, where HF theory is often quite
matrix elements between the initial-core and final-state wavéiseful.
functions calculated in the presence of the core hole. The Let us now turn to the correlated case. A correldieg)
function u(w) is always positive, and.; can be written in  ¢an, in principle, be calculated from configuration-
terms of a Hermitian spectral function. An approximation forinteraction theory. Theft,) is a sum of Slater determinants
the “transient” Green’s function in Eq(9) to describe the having differing numbers of electron-hole excitatigustual
edge shape was given in Ref. 14, p. 674. However, here W@xcitations. The Slater determinants with virtual states close
want to describe loss processes, and thus we have to develtpthe Fermi level have the largest coefficients in this expan-
different approximations. These approximations, as dission. For photoelectron statesaway from this virtual cloud
cussed below, can be summed up in the quasiboson represéhis a good approximation to use a product space. For defi-

tation described in Sec. Il C. niteness we will use

To get a qualitative feeling for the properties of the tran-
sient Green’s function, we first discuss them in the Hartree- cT| )~ [ Do)k}, k>ke (15)
Fock approximation. The ground statekbf , |®,) then is a k™0 0, k<kg '

Slater determinant, and the intermediate states in(®care . . L
Slater determinants built from orbitals that are self-consistenf€"d @ware that this IS ,a_dangerous apprommaﬂo_nkfor
solutions of a Schidinger equation with the core-hole =Kr- As before we spliti, into one parth” that describes
HamiltonianH’ =H,+V. We are free to choose any com- the photoelectron, and one p&tf, for other excitations of
plete set to répresent the staesn the optical transition the valence electrons, and we introduce core-hole potentials

operatorA=2k<k|d|b)ch. Here, we take the states that be- 5 in.Eq.(ll). In addition we now also have the dynamic
long to H,, which have the convenient property that coupling V,, between the photoelectron and the valence

ci|®o)=0 fork<kg. In H! we single out one terrh’ with electrons,

orbitals that describe the photoelectron, and étjg with val
orbitals for the rest of the system, Vi, = (kalellvllkal 2)e e[ e, = (¢l e ).
kika 115
Hi=h'+HJ,. (10 (16

_ _ _ The term(kyl4|jv|ksl,) is an antisymmetrized matrix ele-
These two terms both have interactions with the core holement of the Coulomb potential(r), and the expectation

Vpc andV,, respectively, which are screened version¥of yaye(c/ ¢, ) is subtracted, since it is already included in the
in Eq. (5), since we consider a self-consistent Hartree-Fock L2

- , . . .

(HF) solution for the core-hole Hamiltonian. In terms of the deflnltlon ofh’. The stat_dfl>0> IS an elggnfunctlon OH,o

old HamiltonianH, =h+ H, built from one-electron eigenfunctions without core-hole po-
v vU

tential whileh’ is built from eigenfunctionsk’) with a core
hole present,

h'=h+V,., Hy=H,ot V. (1)
With theh’ orbitals separated from the, , orbitals, only the h'= > gk )}k'|. (17
one-electron operatdr’ can couplecl2 to ¢y, in Eqg. (9). In k'>kg
such a case we can use a product spafieho)=|®)|k), The stategk’) are scattering states. There is thus a one-to-
which then gives for the many-body XAS, one correspondence betweldl) and|k), and the energies
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are unchanged. Sind€ only has terms bilinear in the pho- be replaced by & function and the matrix element reduces
toelectron operators,, and since there is a linear relation to (k'|d|b). We know from photoemissidf that there is
between the statd&’) and|k), h’ will not take us outside little extrinsic scattering at threshold, where this limiting
the product spackb)|k). case should be a good representation of our basic approxi-
From Egs.(7) and(15), we again obtain Eq2) for the = mation given by Eqs(12) and(18).
XAS, but with gei(w) in Eq. (8) replaced by
2. No core hole

geﬁ(w):<cb0 - ,1 - _ |q>o>, When the core-hole potential is neglected,,=H ,

o= (H,0~Eg)—h _va+'7’| 18) h’=h, and we havdtaking y as an infinitesimal
Equations(10), (11), (12), and (18) form the basis for our 1 ‘
analysis of x-ray absorption. It is easy to show that &) eii(@)={ P ©—(H.o—Eg)—h—V +iy\q)° -
gives a nonnegative absorption cross sectigm), as it 0 P (23
should.

Now g.i(w) is equivalent to a standard Green’s function
B. Limiting cases d(w). Thek;k, representation of(w) is

We start our analysis of the theoretical model developed
above by discussing the two limiting casé€b: when there is <k1|g(w)|k2>=(0|<<Do
no extrinsic scattering\p, =0), and(2) when the core-hole
potential is neglectedH, ,=H o).

1
1 w—(Hyo—Eg)—h—Vp, +iy

xck <D0> |0), (24)

1. No extrinsic scattering

_In this caseVy,, =0, and we can put in a complete set of yyhere |d)|0) is an eigenfunction of the full Hamiltonian
eigenstateb ) to H,, with eigenvalue€,, and obtair(tak-  H o+h+V,, sinceV,,|0)=0. We can expresgin terms of

ing y as an infinitesimal a spectral functioA(w),
|<(I)0|(D|f1>|2 ’ ’
Gel( @)= > —————, (19 _ [ {kafAlo)kz)dw
w—w,—h'+iy (kalg(w)[ky)= o
" n ! g w—ow Fiy
where w,=E;—Eg. Putting in eigenstatelk’) of h’, and
taking the imaginary part, we then obtain, =(k ; Kk (25)
Yo—h=3(w)| 2/
m(w)= % [(@o| P ) |?|(K'[PAIb)? (@ + Ec— wn— €) This limiting case gives a theory very similar to one-electron

theory, but with an additional complex, energy-dependent

w+Eq—Ep one-electron potentiak(w). If we approximateZ(w) by a
= fo do’A(e ) u V(0 +E—w'), (200 constant-iT", which is equivalent to a Lorentzian line shape
for A(w), we recover the conventional XAFS result, in
where the core-hole spectral functidfw) is which extrinsic losses are represented by a mean-free path

MNe~KI/T term, ie., with a factor exp{R/\,) in each
B T multiple-scattering path of lengtR. In general,>(w) has
Alw)= ; [(@o|®p)[*6(w—wp), @) structure at energies away from the quasiparticle energy, giv-

ing rise to satellite effects.
and the one-electron XAS is

C. Quasiboson representation

'“(1)(“’):k,zk (k' |Pd|b)|*8(w— €. (22) We now turn to the general case, in which all three poten-
K tials Vi, , Vpe, andV, that couple the three subsystems—

A similar result was derived and discussed earlier by Rehthe photoelectron, valence electrons, and core electron—are
et al! However, an important difference in our formulation nonzero. To handle this we introduce a quasiboson model
is the presence of the projection operabiin the dipole- Hamiltonian,
matrix element. It is interesting to note thal(w) contains
the core-electron edge singulari®(w)~w*™ -, wherea is
the singularity index, and that™®)(w) is also singular at the H,0= 2> onalan, h’:kzk €CkCr (26)
Fermi level,u®(w)~(w—Eg)?. This latter singularity fol- " F
lows from the singular behavior of the overlap integral
(k’|k).*™ We also see from Eq22) that the final-state rule is V,o=—S Vv (al+a) 27)
not strictly valid, except well above threshold, whétean ve n b Tk
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- N . tions V" should be positive. The coupling strength may be
Vo= ;( [Vigk@n T (Vigk,)*@nlCk Ch,r (280 gauged by the value of the dimensionless coefficeute-
ke fined above. For electron-gas models of solids, counting only
This model together with Eq$11), (12), and(18) define the  plasmon modes, its value is typically 0.2—0.4, and hence is
set of approximations that we use in this work. The potentiafjuite strong. For values d&f close to the Fermi surface the
V. never appears explicitly sindg®,)=0, and thus we do extrinsic quasiparticle strengthZz is about exp{a)
not have to worry about the transform between lirend h’ ~0.8—0.7. Such values fat are typical for most solids. The
states. fact that effects of ordest arenotgenerally observed in XAS
The quasiboson model has been discussed, e.g., in Refscan be viewed as empirical evidence for strong cancellation
and 17. The essence is that the electron-hole-type excitatiorsfects among the various losses. However, given these large
are represented by bosoms with energiesw,, and the values ofa, it is not surprising to encounter some nonphysi-
electron-charge fluctuation coupling is represented by a terroal effects in numerical calculations, such as small regions
linear in the boson operators, as in Eg8). This is analo- where the spectral function can become negative, which are
gous to the usual electron-photon coupling. Equat®f is  due to the neglect of terms higher than second order in the
a special case of E@28) with cﬁl Cx, replaced bypb' and a  theory.

minus sign, because the core-hole potential is attractive. The Summarizing our second-order expression, and changing
quantitiesV" are fluctuation potentials corresponding to ex-the definition ofgeq in Eq. (18) by taking out thee™? factor,
cited statesi. The V" can be obtained, e.g., from an RPA- We have for the absorption spectrum,

type dielectric functiort® With this simple model Hamil- a

tonian we can solve explicitly for the relation between the wlw)=— e—lm(b|dTPgeﬁ(w+ EoPdb), (31
ground states ofl,, andH,,, i.e., m

a i no\2 where
Doy=e by, S=--> —2al, a= (ﬁ’> ,
[®o)=e"Ibg), S=5-2 A, a=2 |- Qe @) = o @)+ Goxt @) + G @) + Qi @),

=T " o o ;
whered,, belongs toH (=2 w,a,a,. Expanding to second Ggp( @) + Do ©) =0(),

order in the coupling function§"”, we obtain

Vn 2
1 _ bb
= APSEl -S| P’ g'ntr(w)—z ( ) g(w—wy),
geff(w) <CDOe w_(le)O_E(f))_h/_VpU+i,ye 0> : n Wn
_ Vi 2 Vb
=e M g(0)+> | —| g(0—wp) Oined @) =22 —=g(0—wn)V'g(w), (32
n (O n Wp
Voo account, respectively, for the quasiparticle term, the extrinsic
n . . . . .
-2 g(o—w,)V'g(w)(, (29 and intrinsic loss satellites, and the interference between
n Wp i
them. To handle the one-particle propagatg(®) we as-
where[cf. Eq. (18)] sume that>(w) is diagonal in a representation with eigen-
functions|k’) of h’ that according to calculations with the
()= ®! 1 ‘q;’ GW approximation for the self-energy, is not too Hadror
g %lwo—(H)o—E§)—h"—Vy,+iy ° simplicity we now drop the prime ok’ and write
1 1
= (30 (klg(w)[k)=g(k,w)= (33

w—h —3(w)+iy’ =g (kw)+iy’

is the damped Green'’s function calculated in the presence af/ith k fixed (k|g(w)|k) as a function ofw has a quasiparti-

a core-hole potential. With the above result fps(w) we  cle peak and some more or less pronounced satellite struc-

have achieved our goal of expressia@o) in Eq.(12) as an  ture. Forw near the quasiparticle peak we obtain an asym-

expansion in one-particle Green’s functions, thus avoidingnetric lineshape,

the calculation of correlated many-body final states. In the

next section we take the further step of making a MS expan- Zy

sion of the Green’s functions. We note that the limiting ex- 9(k, )~ (k|gqp(@)[K)= O—Etily’ (34)

pressions in Sec. Il B, all come out the same if we had cho-

sen to start with the quasi-boson model. where E, is defined from E,=k*2+ReI(kE), Ty
=[Im=(k,Ey)| and Z;=[1- 32 (k,0)/dw], ¢, We now

D. Qualitative discussion of second-order expression make an on-shell approximation, defining functionswof

While our basic approximation in Eq&l2) and(18) gives Z(w)=7 AE(w)=AE T -T
positive absorptionu(w), there is no guarantee that the indi- (@) =2y, (@) o D)=l
vidual terms in an expansion in powers of the coupling func-with the relation betweek and w given implicitly through
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w=E,. (35) To evaluate our theory numerically in real systems is a
heavy undertaking, and we will here only carry out some
Strictly speaking® is defined fromh+X =t+V,+X, where  rough estimates that illustrate the theory and yield non-
tis the kinetic energy an\iH the Hartree potential. Often we neg||g|b|e corrections to the usual XAFS proced%ﬂ'e’[o
would like to use, e.gVpa rather thavy, to generate basis simplify these calculations we rely on electron-gas theory
functions. We then have to replageby =~V pa+Vy in within the plasmon-pole approximation to evaluate the vari-
our expressions. With this on-shell approximation we have ous contributions to the effective spectral function, and then
use these results to estimate the corresponding contributions
(K| Gl @) | K)~ < K Z(w) _ _ k> to /:L(w)'. Since our ai_m here is'only to carry out a pilot study,
ap wo—h"—AE(w)+il'(w)+i y\ ' which is at best semiquantitative, such an approximate model
(36) seems appropriate. However, our approach is more general,
and could be refined at the expense of much heavier calcu-
lations.

and since thelk) are eigenfunctions of’, the operator
ggp(@w) becomes

Z(w) 37 IIl. MODEL CALCULATIONS

i —AE(w)+il(w)+iy In this section we present electron-gas model calculations
based on the plasmon-pole approximati&ppendix B for

the various contributions to the effective spectral function

Agii- They can be represented as a sum of quasiparticle, in-
terference, intrinsic, and extrinsic satellite terms defined in

Appendix A, i.e.,

With this form for the quasiparticle propagatgg,(w) we
can use the MS expansion to treat the XARSVe write
h'=t+V{+ Vg Wheret is the kinetic-energy operatov,,
the potential in the central cell with its core hole, avig .
the total scattering potential from all the neighboring cells
(excluding inelasticllosséaslp the MS_ expansion we can, A @,0")=[1+2a(0)]8(0' )+ AN w,0'), (40)
e.g., usdy=t+V,—il'(w)—iy to obtain the propagator for
the central absorber and then tr&at,;as the perturbation. where

From Egs.(31) and(32), the quasiparticle contribution to

the x-ray absorption is AN w,0")=Agi @,0") + A 0,0") —2A2 (0,0").
(41
e*a
Mgp( @)= — —|m(b|dTqup(w)Pd|b), (38)  Since we make comparisons to XAFS experiments for fcc
an

Cu metal, we have set=1.80, that corresponds to the mean
where the propagatayy,(w) is given by Eq.(37). This is interstitial electron density. For this density, the dimension-
similar to the standard one-electron formula for the x-rayl€SS constana relating the strength of the electron-plasmon
absorption u(w) with mean-free-path effects from the coupling to the plasmon excitation energy is 0.31. Near
damping parameteF(w), except for a complex amplitude thsra(?shold the net weight of each pf the contrlbuu'mn,
factor Z(w) = exp(¢)|Z(w)| with a many-body phase shifs ~ Ainer 21d Ainy IS €qual toa and their shapes are similar, so
and a wave-function overlap reduction by the factor. that the sum of all of these contributions tend to cancel. Also
With T and a both zero andZ=1, the quasiparticle XAS near threshpIdZ§exp(—a) and the interference contribution
qu(w) becomes identical to the one-particle absorptionf© the quasiparticle peak(w)~a. Thus the net strength of
wD(w) in Eq. (22. the main peak at threshzold in our second-order theory is

To evaluate the total absorptiqu(w) including intrinsic £ 8Xp(-&)(1+2a)—1+0(&). o
losses and interference, we can, correct to terms of second AS noted above, the asymmetmiasiparticle spectrum
order in the fluctuation potential¥”, replaceg(w) by  Agqpk,®)=(—1/m)Iimgy(k o) [see Eq(34)], gives rise to
9ap(@) N Ging(@) and gl @). For definiteness we define 2 net reduction in the XAFS amplitude as well as an addi-
the extrinsic satellite functione,,(w) as the difference be- tional phase shift compared to one-electron theory. These
tween the full propagatog(w) and the quasiparticle propa- effects are due to the behavior of the complex renormaliza-

gatorgqy(w) (see Appendix A As noted above, the projec- tion constanZ(w), which givesA(w) an asymmetric Fano

tion operatorP in Eq. (31) and Eg.(22) is necessary to lineshape. In Fig. 1 we plot the modified quasiparticle spec-
mod,

account for edge singularity effects, but does not signifi-'um Ag, (K@), where long-range contribution from the
cantly affect the fine structure. In Appendix A we also showimaginary part oz, is cut off in A7 [cf. Appendix A and
that the many-body expression for the x-ray absorptiéa)  Ed. (A18)], i.e.,

can be expressed as a convolution of an effective spectral
function Ag(w,0’), and the quasiparticle absorptign,,

from Eq.(38), i.e.,

1 Fk ReZk— a)e_(“’/zwp) Im Zk

mo —
A d(k,w+Ek)—; e

p

(42)

M(w_Ec):f do' Agi(@,0" ) pug(w—w"), (39  For comparison, we also show the total extrinsic spectral
function including both quasiparticle and satellite parts. Note
wherew' is the excitation energy. that A;n;d(k,w) has nothing to do with the different contri-
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FIG. 1. Quasiparticle spectral functioh?Yk,w+E,) in Eq. o . . .
(42) plotted vs for different values of tr?zgn\evave numkbkr(solid FIG. 3. Intrinsic(solid line) and |tnterference satellitelashed
H ’ sal ’ H !
line); and the spectral functiofcf. Eq. (33)] (— 1/7)Im g (dashed spectral functiongiy(w,o’) andAi”te'(‘."’w ), plotted ag"’."““f’ .
line). All parameters are calculated using a plasmon-pole dielectrifor selected values ab. Note that the interference contribution is

function for an electron gas at the mean interstitial electron densi,[);1egative and tends to cancel the intrinsic satellite. These quantities
in Cur.=1.80 are both calculated using the plasmon-pole dielectric function for an
<=1.80.

electron gas at density=1.80, and broadened by a Lorentzian of
_ S width 0.20,,.
butions toA.. The real and imaginary parts of the renor-
malization constanZ(w) are plotted in Fig. 2. exhibits a complicated structure. Close to the Fermi energy,
Theintrinsic contribution Ay (w, ") 10 Aeg(w,w") isin-  the structure simplifies and consists of a peak at an energy
dependent ofw and gives a well-defined satellite structure about w, above the quasiparticle energy and a smooth
peaking at an energy, away from the quasiparticiig. 3.  structure that falls off gradually with increasing energy. For
Although Ay, turns on sharply, this singular structure is sup-w near the onset of plasmon losses, there is still a pro-
pressed by broadening and interference terms as describedunced satellite peak, but there is also an additional
below. Theinterferencebetween extrinsic and intrinsic losses “anomalous” structure near the quasiparticle peak. Indeed, it
results in a net shift of spectral weight away from the satelseems ambiguous whether the structure close to the quasipar-
lite and to the quasiparticle peak, overall spectral weight beticle energy should be considered as part of the satellite or
ing conserved. The rough cancellation of the satellite termghe main peak, as the structure accounts for a substantial
due to interference is clearly illustrated by the behavior ofportion of the extrinsic weighf1—Z(w)] that is not in-
A, in Fig. 3. Note that the interference satellite amplitudecluded in the quasiparticle peak. This indicates that the
is maximal near threshold and slowly decreases with increasenomalously low and singular behavior B{w) in this re-
ing energy over a range of severa) . gion is partly due to the singular structure of the plasmon-
The behavior of the extrinsic satellite spectral function ispole approximation and largely an artifact of tle hoc
illustrated in Fig. 4. In the plasmon-pole, electron gas modemethod used to separate the main peak and the “satellite”
used here, thextrinsic satellitespectral function sometimes spectral function. Above the onset of plasmon losses, the

1.0 T . . 4.0

30

05 | 1 20 . . Nw=6.0EF

3, 5 0 W' |Ep
N = M\ =156
< 10 :

00 -3 T 0 5w [Ep
“ll ___________________ 0.0 } M: 0'7EF'=
e 0 5 W'/ EFp
%0 5.0 10.0 15.0 20.0 -10
w/Ep FIG. 4. Extrinsic satellite spectral functid,(w,»"’) obtained

as described in Appendix A for selected valuesawpfvs w’. The
FIG. 2. Real(solid line) and imaginary(dashed parts of the curve foro=0.7E; and w= 1.5 lie before the onset of plasmon
guasiparticle renormalization constabfw)=1/(1-9%/dw), cal- excitations. The result fap= 1.5E illustrates the anomalous struc-
culated at the quasiparticle peak, for the GW plasmon-pole selfture seen in this region, and that fer=6E lies well beyond the
energyZ, of an electron gas at=1.80. The sharp structure occurs onset. All results are based on a plasmon-pole dielectric function
at the onset of plasmon excitations. with r=1.80.
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anomalous structure disappears, and is replaced by a small 10 - - -
tail that extends to the vicinity of the quasiparticle peak. = w\/\\
Moreover, as the quasiparticle energy increases, the extrinsic g 08} ;
satellite weight becomes progressively smaller. -
;5 06 |
IV. IMPLICATIONS FOR XAFS i
@ p]
We can now obtain rough estimates for the effect of ex- ~ 047
trinsic and intrinsic losses and interference on the XAFS <
spectrum. In the usual MS theofy,the XAFS spectrum @ 02f
xP(w) is a rapidly varying energy dependent factor in the = S USRS
one-particle expression for the x-ray absorption, ~ o0 Aot :
0.0 5.0 10.0 15.0 20.0
pP(w)=pg"(0)[1+xP(0)], (43 w/Er

wherep (" is the generally smooth absorption from the cen-  FiG. 5. Normalized total spectral weights of the net primary
tral atom alone, in the absence of MS. The conventionapeak(solid) and satellite termédashedi including interference, i.e.,
(broadenell one-particle absorptionu*)(w) is obtained the integrated quantiti€&®®{w) and@,(w) of Eq. (47) and Eq.
from Eq. (12), with geg(w)=1[w—h—iT(w)], i.e., with a  (48). The anomalous structure at low energies is an artifact of the
damped one-particle propagator with mean-free-path effect®@ethod used to separate primary and satellite terms in the spectral
taken into account in terms df(w). This one-particle MS function. All results are obtained for the model of this paper with
theory is genera”y in good agreement with experiment_rsz 1.80. The horizontal line represents the high-energy limit of the
However, there remains a residual discrepancy of about 10%tellite weighti.e., the sudden approximatipn
in overall XAFS amplitudes and a systematic shift in peak
positions compared to experiment. This shift is only partlynances in the one-particle absorptiqzﬁp may lead to
accounted for by including the real part of an electron-gasexceptions. The many-body XAFS functiog(w)=(u
self-energy in the one-particle propagator. — mo)l mo then becomes

In the present theory, the many-body effects of losses and
interference can be represented as in B§), i.e., as a con- _ > , N
volution of uq(w) with the effective spectral function X(“’)Nf do’ Act(w, ") xgpl 0= "), (45
Aeii(w,0") including contributions from both primary and -
satellite channels, as discussed in Appendix A. As notedvhere the spectral functiofey is now normalized to unity,
above, the difference between the behaviouéP(w) and 5
rap(®) is qualitatively minor and results primarily from a Aci( 0, 0") = Agi(@,0")IN(w), (46)
constant wave function overlap factor ex@), a complex
renormalization factoZ (w) =|Z(w)|expi¢), and an energy
shift AE(w). The phasefactoy can be absorbed by adding
¢/2 to the central atom phase factor in the XAFS formula.

To extract the XAFSy(w) corrected for many-body ef-

and N(w)=fdo’'Ag(w,o0’). With this normalization in

x(w), the wave function renormalization factor exg#) and

the magnitude of the quasiparticle strend#h cancel out,

while the phasep and the energy shiAE(w) both remain.

fects, we first use a similar MS factorization @f,(w) The importance of multielectron excitations can be
' ap gauged by the net spectral weight in main peak and in the

_#qp[1+xqp(w)_] to split off a central C?" contr|but|on_ satellite structure from all losses. A plot of the normalized
Hap{@), Which yields a many-body expression for the atom'cintegrated satellite spectral weight,
background absorption

= sal = d /’Asa o), 4
ol @)= [ o’ Auw,0) i 0o') o= [ do Ao.0) 0
o—Ep whereAs(w,w’)=A%IN(w) is given in Fig. 5. Also plot-
mﬂgp(w)f do’ Ao, 0"). (44)  ted is the total weight of the primary peak,

Here ug(w)~[( " Pd|b)|? is the absorption from the cen- do(w)=[1+2a(w))/N(0). (48)

tral atom alone, in the absence of other scatterers, and Weote, in particular, the slow trend of the satellite weight to-
have neglected the variation gm‘gp(w) over the dominant wards the sudden approximation linfia exp(—a)] with in-
integration range of’. This is usually a good approxima- creasing energy over a range of a few hundred eV. In these
tion, since the one-particle atomic background is usually glots we have lumped the contributions to the spectral func-
smooth, monotonically decreasing function of energy. Thugion that lie below the plasmon onset into the primary peak.
one expects that the satellite structure in the spectral functiolhe anomalous behavior of the weights near the plasmon
due to many-body excitations will generally have minor ef-onset energy is due to the ambiguity of separating the satel-
fects onuo(w), which is consistent with experimental ob- lite and quasiparticle contributions, and does not lead to sin-
servations. However, the existence of sharp atomic resaggular structure in the overall absorption.
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The net effect of the convolution over a normalized, posi- ' y T
tive spectral amplitudé.q(w,w’) of Eq. (45) is clearly a [
decreased XAFS amplitude and a phase-shifted oscillatory
signal compared to the one-particle XARS". In the single
scattering approximation the oscillatory energy dependence
of xq(w) enters primarily through the complex exponential
exfdi2k(w)R], whereR is an interatomic distance andw)

|56l

=2(w— Eg) is the photoelectron wave vector. The result of 0.4 ]
the convolution can be written in terms of a complex ampli- I
tude factor Si(w,R)=|S3(w,R)|expi®(w,R)), which is 02 b . ]

given by an energy dependent “phasor sum” over the effec-
tive normalized spectral function,

S(w,R)= f:dw'ﬂeﬁ(w,w')exp{i2[k(w—w')—k(w)]R}.

(49
The qualitative behavior oS%(w,R) can be understood as -06 L L L
) ! : - 0.0 5.0 10.0 15.0 20.0
follows: At very low energies compared with the excitation
energyw,, the satellite terms strongly cancel sdw,w’) EXAFS W ber k(A-1
~d(w—w') and henceSﬁ(w,R)—&. At high energies, the avenumber ( )
sudden approximation prevails, amd~Aq,+ Ay, which FIG. 6. Upper curves: magnitudsi| (solid) of the XAFS

has a strong satellite structure. However, the phase differen¢gany-body amplitude reduction factor due to all inelastic losses, as
2[k(w—w'") —Kk(w)] between the primary channel and sat- calculated using a phasor summation over the total spectral function
ellite becomes small at high energies’'é w,) and hence for the model in this work, and plotted vs the EXAFS wave number
also S%(w,R)—>1. At intermediate energies, however, the k=y2(w—Eg) for the first neighbor distancR= 2.55A in Cu.
value OfSS(w,R) has a minimum. A plot of the magnitude Shown for comparison are the experimen(@bts and theoretical
and phase oﬁg(w,R) for our electron-gas model is given in (dashep amplitude reduction obtained by Fourier filterifgee .
Fig. 6, for the first neighbor distance of Cu metdl text). Note that the Ielr?lt)ast discrepancy bthe(_an theory and experi-
—> 55 A ment occurs whergx'*(k,R)|, the Fourier filtered and back-

. . transformed complex XAFS amplitude, is small and experimental
In order to compare these results with experiment, we

. . . . hoise dominates. Lower curves: phabeof SS(k,R) (solid), and
isolate the first s'hell .Of t.he experimental EXAFS Slgnalcomparison,the many body phase shift of the asymmetric quasipar-
x(w,R) by Fourier filtering over the range 1.¥R

A | " - X ticle peak(dashey i.e., ¢=tan [Im Z/ReZ]. The sharp structure
<2.80A in position-spaceR (conjugate to R), with @  heare~2 js an artifact of the sudden plasmon onset in the plasmon

smooth sine window, and then back transforming &pace.  pole model used here.
For this comparison, we use the usual EXAFS convention

for the wave numbek=y2(E—Eg), as measured from the 510 The biggest discrepancies are at low energies, and are

thzresholq Fermi energy. Our estimate of the experimentajq|y que both to experimental noise and to the approxima-
So(w,R) is then given by the ratio of this back-transformed +jon " used for the mean-free-path at low energieserFg
experimental first-shell XAFS signal(w,R) to a similarly  \which often has too much loss. We have also plotted the
Fourier filtered and back-transformed theoretical first-shelhqany_body correction to the XAFS phase, which varies by
signaly™(w,R). The latter is obtained frorb initio XAFS  ahout +0.2 radians over the XAFS experimental range 3
calculations using theerrs codel® The FerFs calculations <k<20A~1. By comparing with the phase of the renormal-
include only extrinsic losses, i.e., the mean-free-path 10S§ation constani (Fig. 2), one sees that much of the phase
calculated from a Hedin-Lundqyvist plasmon-pole self-energyift arises from the asymmetry of the quasiparticle peak.
model. The results, from both theory and experiment are alsghe sign of the phase shift is consistent with a reduction in
plotted in Fig. 6. Due to the Fourier filtering, fine details of the strength of the self-energy due to cancellation effects.
the theoretical phasor sum f&(w,R) in Fig. 6, are lost.  The approximate linear variation of the phase viitran lead
Also plotted, in Fig. 6, is the back-transformed XAFS am-to errors in distance determinations from XAFS measure-
plitude| x(w(k),R)| for the first nearest neighbor of Cu. This ments of abouttR=A®/2Ak~ +0.006 A which is compa-
illustrates both where the amplitude reduction is important inrable to systematic errors typically encountered in experi-
analysis, and also whepgis small, and hence thSé(w,R) mental XAFS analysis.

extracted from experiment may have significant errors due to Finally, we plot in Fig 7 a comparison with experiment of
experimental noise. Given the rough, electron-gas approxithe full absorption resuljx(w) obtained by convoluting the
mations used in our model calculations, the overall agreespectral functionAg; with the quasiparticle resujtq(w).
ment with experiment for Cu metal is reasonably good. ThisThese calculations were carried out using full-multiple scat-
result also suggests that the conventional procedure of apering calculations for a cluster of 300 Cu atoms using the
proximatingsé(w,R) by a constanS§~0.9 is not unreason- FEFF8 code. To compensate for errors in our second-order
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100 | proportional to the photoyield. This is indeed true in one-

’ electron theory, and is also observed to be approximately true
—~ 400} experimentally in many cases. There is, however, no theoret-
-*é ical justification for assuming this to be the case in general.
S 080 | If we examine the problem formally, the XAS is related to
> . . . . . .
§ 060 | the Q|electr|c.respon.se functlcﬁne.., th_e density-density cor-
= relation function, while the PES is given by a three-current
:% 040 | correlation function, and there are no simple connections be-
: tween these quantities. More physically we can point at the

0.20 fact that in PES we measure a sharp, well-defined photoelec-

000 . . tron; i.e., we can describe PES by the golden rule with well-

' 9000 9050 defined final states. In XAS the photoelectrons are never

Energy (eV) measured, and photoelectron states are not sharp, they are

decaying states with a finite lifetime. Further all electrons
FIG. 7. Comparison of the full calculated many-body XAGv) that are photoexcited do not leave the solid, and some PES

(solid) obtained by convoluting the spectral functidq; for the  current that leaves the solid is due to secondary electrons that
model of this paper with the one-particle XA8'Y(w) (dashes  cannot come back and interfere at the photoexcited atom. We
calculated using theerrgcode, and the result from Cu experiment never consider these secondary electrons since we do not
(dots. allow our quasibosons to decay. If we could put in well-

defined intermediate states with a photoelectron in the
expression for the spectral functioAet was normalized to  density-density correlation function we would indeed have
unity in this convolution; also sincg, is real, the asymme-  the same matrix elements that enter in PES but that is not
try in the quasiparticle peak in E#2) was represented by a possible except perhaps approximately, very close to thresh-
term PImZ/w (where P denotes the principal partather  o|d when the quasiparticle lifetime is long.
than a complex phase factor eixp Although it is not clear Finally we would like to comment on similarities and dif-
how reliable such a calculation is at the edge, given the simference between our approach and a model studied by
plicity of our model calculations, the agreement with experi-Schrieffer'® That work considered an Anderson-Newns-like

ment does markedly improve. model for PES from a valence level on an adsorbed atom,
coupled to surface plasmons. Schrieffer studied photoabsorp-
V. CONCLUDING REMARKS tion, and by cutting the polarization diagram, he identified a

PES final state and obtained a perfect-square expression for

We have developed a semiquantitative theory for the efy,o pEg cyrrent, including interference effects. His results

fects of extrinsic and intrinsic losses and the interferenc%gree precisely with what we have in our model both for
between them on x-ray absorption spectra. The theory 'XAS and when applied to PES. However, the results for
based on a quasiboson representation for the excitations, a S cannot be expressed as a perfect square, as needed to
perturbation theory to second order in the eIectron-bosmﬂ ve a close correspondence with PES. This ,is due to the
coupllng. Thesg Iogses lead to an asymmetric broadening ifferences in the signs of the imaginary parts, as can be seen
the main quasiparticle peak, plus a broad energy-dependegg, comparing Eqs(7), (13), and (143 in Ref. 19. Thus

satellite in the spectral function due to the boson excitation hotobsorption and photoyield are only approximately re-

W.e find that the interference terms strongly SUppress the S%3ted, even for a finite system where the quasiparticle aspect
ellite terms and enhance the main quasiparticle peak. The es not enter

results thereby explain the general weakness of multielectron
excitations in XAS. We have applied the theory within the
electron-gas approximation to estimate the many-body cor-
rections to the XAFS. By using a phasor summation over the
spectral function, the theory yields an approximation to the We thank T. Fujikawa for useful remarks and G. Strinati
reduction in the XAFS amplitude beyond the usual extrinsiCfor critical comments long ago when two of @#/.B. and
mean-free path, together with an additional many-body .H.) started thinking about this problem. This work was

phase shift. Pilot model calculations based on the electronsypported in part by DOE Grant DE-FG03-97ER45623/
gas approximation and our formalism are in semiquantitativen000 (L.W.C. and J.J.R.

agreement with XAFS experiment.

Our results illustrate a striking difference with those for
losses in photpemission. In core elgctron pho'toer'nission for  APPENDIX A: DERIVATION OF THE EFFECTIVE
metals there is alsp a strong extrinsic contribution to the SPECTRAL FUNCTION
losses for all energies, and a strong interference effect be-
tween extrinsic and intrinsic losses up to energies in the keV In this appendix we derive expressions for the different
region?® In contrast, we found the extrinsic losses to have garts in the spectral weight functioles=Agpt Acxat Aintr
very small influence on XAS. This at first seems to be a+ Ay, that appears in the convolution expression for the
paradox, since photoabsorption is usually considered to beray absorption in Eq39). Starting from Eq(31), we have
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e @ ; ) Taking the quasiparticle approximation in E84) for g(w)
,U«(w—Ec):—7Zk [(b[d"P[k)[* Im gegi(k, w), and neglecting therdependence in the dipole-matrix ele-
ment, we have

(A1)
provided g« [see Eq.(32)] is diagonal in the one-particle _2e® W& 5 Zkrqlk
indexk. From GW calculations we know thatandg, are Minted @) = Im% wq [(kIPd[b)| wqt Egsq— Ex
approximately diagonal, and this is hence a reasonable ap-
proximation for all contributions t@gs exceptginer, Which 1 1
requires a special treatment as described later in this appen- X w—wg— Ek+q+irk+q_ w—E+ily )’
dix. We first introduce the real spectral weight function
Aci(k,w) by representing Ingeq(k,w) as (A7)
where we have made the approximation that ,=I", in the
_ / / o denominator of the prefactor before the term in brackets. We
m QEﬁ(k’w)_J do” Aer(k, @)IM ggpk, 0 = ). now have a difference between two Green’s functions, and

(A2)  provided we treat the prefactor of this difference as a real

Next we make the on-shell approximation of replackm nurr?rtﬁ:lgﬁ.g-,. neglecting thivmrat?irr]]av?i/t e (izD e e
As(k') by k=k(w— '), with k(w) defined in Eq.35). 292N Witexine{w) as a convolution withp, i.e.,
With Agi(w,0")=Aci(k(w—o'),w’) depending only onw

f . . Minted @)
andw’, we can perform the summation overand obtain

, , , ~2 a(a)),qu(w)—f dw'Aisna;ter(w,w’),qu(w—w’)},
M(w_Ec):J do'Agi(w,® )qu(w_w ), (A3)
(A8)
where uq,(w) is defined in Eq(38). Thus the quasi-particle with
contribution to Ag(w,w’) is simply a delta function,
Aglo0)=a). V82 1Zed |
For theintrinsic contribution it is clear from Eq(32) that a(w)= E TE. _E ‘ , (A9)
Ainr is simply a sum of energy-shifted functions, a @ @7 EktaT Bkli=ko)
ng 2 sat "o |V8|2 |Zk—q| ‘
A0, ):; (w_n) o' —wp), (A4) Ained @, © )_Eq: wq ‘*’q+Ek—Ek7q|k=k(w,wr>
which is independent ab. In the electron-gas, plasmon-pole X (@' = wg). (A10)
approximation the explicit expression fé,, can easily be o )
found (Ref. 14, p. 655 To further simplify the calculations, we assume that
Zyiq~Z¢. Thus we have separated the resulting spectral
020w —w,) function into a term proportional ta(w) that adds to the
nN_ P P . . . t
Ao, 0") = (@%@’ (A5)  quasiparticle peak, and a term proportionahffj, that con-

tributes to the satellite structure. Approximatifig by k?/2,
whereq(e') is a solution tow,=w’. The intrinsic spectral We obtain
function contributes only at energies negy above the elec-

tron quasiparticle energy, and gives a well-defined satellite. _ ‘*’§|Zk| =01 wqto’+kq
Theinterference contributiono g in Eq. (32) contains a2 w)= 4k fo @ w,wzln wgt+ o' —kq|’ (ALD)
productg(w— w,)V"g(w), and sinceV" can transfer mo- d a
mentum, is not diagonal ik space even whegis. One can  whereq= 20’ andk= 2. Similarly
evaluategiy{w), €.9., by doing MS expansions of the two
propagators, but this does not yield a result of the form in sat ) |Zk,|w§
Eq. (39). To force it into that form we make some further Aimel @, 0") = 570707,72
approximations. First we take the fluctuation potentials as
plane waves, and in a plane wave basis we then Kave o' —g%2+k'q )
+q'|VIk)=V§3,q - Also taking the Green’s functions as XIn ' —%12—K'q 0w’ = wp),
diagonal in a plane wave basis, E¢31) and (32) give (AL2)
2e7? Ivg|? whereq=2(o —wy) andk’ =2 (0—w').
Minted @) = Im % g (bld"P[k-+q) For theextrinsic contributionwe have from Eq(A2),
X(k+0q|g(w—wq)|k+a)(klg(w)[k)(k|Pd]|b). m gextr(kaw)_J Aextr(’kvw,)d.w/ _0. (A19
(AB) Zy w—w' —E+ily
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The integral gives an analytic function afin the half-plane  takingI',— 0. WithI",=0 and neglecting the phase4n we
above the linew=E,—il' . If we also assume that have Imgy(k,0)=—7|Z|8(w—Ey), and thus from Eq.
Jextl K, ) =g(k, 0) —gqn(K, ®) is analytic in this region, we  (A2) Agxlk,w—Ey) = —1/(7|Zy])IM Gexi(k, ). This is the
can make a shift in the origin foo by E,—il',+id (§  same result as in EqA19) with I',=0. Since the GW ap-
—07) without crossing the analyticity line. This gives proximation puts the extrinsic satellite at a slightly different
position than the interference and intrinsic satellite terms,

m Jext( K, @+ Eg— 1T +i6) JA (ko) do’ (which leads to numerical problems such as small regions
Zy et @ e 1o where the spectral function is negativee shiftedAgy, to
make the peaks coincide.
=0, (A14) In summary we have found that
from which we obtain
Jext(K, 0+ E—iT+i6) M(w—Ec)=fdw’Aeﬁ(w,w’)qu(w—w’), (A20)

1
Aextr(k,(l))z_glm|: Zk

(A15)  where

The analyticity ofge,(K,®) follows if it can be described by ) . ) ,
a sum of discrete poles or by a contour integration belowAei(@,0") =[1+2a(w)]6(w") + Aeul @, 0") + Ay @, @)
w=E—IiI'y. This is a reasonable approximation since the _opsat /
satellite peak is broader than the quasiparticle one. If for 2Aime @, ") (A21)
gqp(k, @) we take the expression valid fas close to the
guasiparticle energy APPENDIX B:

PLASMON-POLE, ELECTRON-GAS MODEL

Zy
Igp(k @)= w—E+il}’ (A16) In this appendix, we bri.efly outline some properties of the_
. electron-gas model used in our calculations. In order to esti-
and use it for allo, we have mate the many-body effects on XAFS spectra, we need to
1 2 make some simplifying approximations. By choosing to
k

Goxr( K, @) = _ . (A17) work with an electron-gas moqlel, many of th_e fo_rm_ulas in
w—g—2(kw) w—E+il'y our model can be found analytically, greatly simplifying the
calculations. We further choose to use a plasmon-pole dielec-
tric function. Although the model exhibits some nonphysical
negative contributions in the spectral functions gar, and si_ngular structure and no loss at low energigs, it' nevertheless
gives mean-free paths and self-energy shifts in reasonable

Jgp- The expression to use .f%P is not well def'”.ed except agreement with experiment. Under this approximation, the
very close to the quasiparticle energy. To avoid a negatlv?luctuating potentiald/" are plane waves

spectral density for the extrinsic satellite we introduce a
Gaussian cutoff to the imaginary part 8f in Imgg,, i.e.,

Since Z, has a fairly large imaginary part, this leads to a
substantial Fano-type asymmetry and substafdaicelling

V(r)=Vi(r)=Vie,
Im gqp(k,w+ Ek—iFk-i- i0)
In the case of coupling to the core hdkg r=0) this yields

_ —6ReZi+we " ImZ, Vi,=V3. According to the plasmon-pole mod|
= o2t 52 . (A18)
2 2\1/2
If we further replacez, by |Z,| in Eq. (A15), we obtain for V= 2me°wp B1
0 2 , (B1)
w>6 q°wq()

where(} is the system volume. For the case when the plas-
mon dispersion has the forrrmg:wf,Jr ag®+q*4, the
imaginary part of2gw(k,w) can be obtained analytically,
ie.,

1
Acx(K,0)=— m [T+ Im2(k,o+Ey)]

X 1/[[ o+ AE,—Re3 (k,w+E)]?

ImZk

w

T IMS (K, o+ Ey) 2] — —— e (@/20p)°

2 2
q; wptd)
i v
wp+q2 ay

@p
Im3(K,w)=——"In

a4k 0((1)_(1)th),

(A19)

where AE,=ReX(k,E). We have neglected thd", in the

argument forX, and we have only considerad>§ since  wherewy, is the threshold for plasmon excitation, aqpdand
Jexu( K, ) is small arounds =0 when the true complex qua- 0, are limiting values of the inequalities)q+(q—k)2/2
siparticle energy is used. this result can be compared with the « <0 andwy+(gq+ k)2/2— w>0, and hence are solutions
first-order result from Eq(A2), i.e., the result obtained by to a cubic equation,

(B2)
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3 where
kg®+ w+a—§k2 g+ (k3—2wk)q
. , K VoK) 2 [ ke k'é—kzI k+ ke -
+| op— 0+ ok -7 =0, (B3) exl )——; ?+Tnk——k,: ; (B5)

with the constraints, miigg,g,)=0, and maxg; ,g,)=0 satis-
fies wg=w+ k?/2— k§/2. The real part is then obtained by a is the energy-independent part Xy i.e., the Hartree-Fock

Kramers-Kronig transformation, exchange energy. In the calculations presented in this work

P Im3(ko')d we have chosen the plasmon dispersion as in Ref. 20, i.e.,

. m o')do’ a=2/3, which is the same as that used in the extrinsic loss
Rex(k,0)=Velk)+ T f w—ow' . (B4 calculations in theerrFgcode.
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