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High-pressure thermoelasticity of body-centered-cubic tantalum
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We have investigated the thermoelasticity of body-centered-cubic~bcc! tantalum from first principles by
using the linearized augmented plane wave and mixed-basis pseudopotential methods for pressures up to 400
GPa and temperatures up to 10 000 K. Electronic excitation contributions to the free energy were included
from the band structures, and phonon contributions were included using the particle-in-a-cell~PIC! model. The
computed elastic constants agree well with available ultrasonic and diamond-anvil cell data at low pressures,
and shock data at high pressures. The shear modulusc44 and the anisotropy change behavior with increasing
pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of
temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast
self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.
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Single crystal elastic constants of solids at high pressu
and temperatures are essential in order to predict and un
stand material response, strength, mechanical stability,
phase transitions. We have studied the high-pressure
temperature elastic constants of body-centered-cubic~bcc!
tantalum, a group V transition metal, from first principle
Because of its high-structural mechanical, thermal, a
chemical stability, Ta is a useful high-pressure standard.1 Ta
has a very high melting temperature 3269 K at ambient p
sure. bcc Ta is stable to 174 GPa, according to diamo
anvil-cell experiments.1 Shock compression experiment2

show no transition other than melting~at around 300 GPa!.
Its stability makes Ta an ideal material for understanding
generic behavior of transition metals under compress
without the complication of phase transitions. Recently,
static properties were studied by full-potential LMT
calculations3 and the thermal equation of state was reporte4

The three elastic constantsc11, c12, andc44 completely
describe the elastic behavior of a cubic crystal. A more c
venient set for computations arec44 and two linear combina-
tions K andcs . The bulk modulus

K5~c1112c12!/3, ~1!

is the resistance to deformation by a uniform hydrosta
pressure; the shear constant

cs5~c112c12!/2, ~2!

is the resistance to shear deformation across the~110! plane
in the @11̄0# direction, andc44 is the resistance to shea
deformation across the~100! plane in the@010# direction.
The bulk modulusK was determined from the equation
state,4 using the Vinet equation.5,6 We obtained the shea
moduli by straining the bcc lattice at fixed volumes usi
volume conserving tetragonal and orthorhombic strains
cs andc44, respectively, and computing the free energy a
function of strain.cs was obtained by applying the followin
isochoric strain
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whered is the magnitude of the strain. Then the strain ene
is

F~d!5F~0!16csVd21O~d3!, ~4!

whereF(0) is the free energy of the unstrained system anV
is its volume. Similarly,c44 was calculated from the follow-
ing strain:

e5S 0 d 0

d 0 0

0 0 d2/~12d2!
D ~5!

with the corresponding strain energy

F~d!5F~0!12c44Vd21O~d4!. ~6!

The quadratic coefficients of strain energy gives the ela
constants. First order terms due to the initial stress~hydro-
static pressure!7 were eliminated by applying isochori
strains. Then, the elastic constantsc11 andc12 were obtained
from cs andK.

We assume that the Helmholtz free energy of the sys
can be separated as8–10

F~V,T!5E0~V!1Fel~V,T!1Fvib~V,T!, ~7!

whereE0(V) is the static zero temperature energy,Fel(V,T)
is the electronic contribution, andFvib(V,T) is the vibra-
tional contribution to the free energy. Our computational p
cedure is based on density functional theory~DFT! general-
ized to finite temperatures by the Mermin theorem.11 The
charge density is temperature dependent through occupa
numbers according to the Fermi-Dirac distribution, givin
the electronic entropy from
©2002 The American Physical Society03-1
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Sel5( f i ln f i1~12 f i !ln~12 f i !, ~8!

where f i5 f i(E2EF ,T) is the Fermi occupation atT for
each statei. The variations off i with temperature were in
cluded from the self-consistent band structures calculate
an electronic temperature of 2000 K varying according to
Fermi-Dirac distribution.

The electronic excitations, both the static energy and
electronic contribution to the free energy, were computed
using the full potential linearized augmented plane wa
~LAPW! method.12,13 The 5p, 4f , 5d, and 6s states were
treated as band states, and the deeper states were trea
soft core electrons. The generalized gradient approxima
~GGA! ~Ref. 14! was used for the exchange-correlation p
tential. The convergence of strain energies with respect to
Brillouin zone integration was carefully checked by repe
ing the calculations for 16316316 and 24324324 meshes
at V516.82 Å3 and we found at most 2 GPa~3%! difference
both for cs and c44. Hence, we used 16316316 special
k-point meshes15 in the full Brillouin zone giving 344 and
612 k points within IBZ of tetragonal and orthorhombic la
tice, respectively. The convergence parameterRKmax was 9
giving about 1800 plane waves and 200 basis functions
atom at zero pressure.

The vibrational free-energy was obtained within t
particle-in-a-cell~PIC! model16 by using an accurate pseud
potential mixed-basis total energy method17 which is compu-
tationally more efficient than the LAPW calculations. In PI
an atom is displaced in its Wigner-Seitz cell in the poten
field of all the other atoms fixed at their equilibrium pos
tions, i.e., the ideal, static lattice except for the wande
atom. The partition function, and hence the free energy
calculated from this potential energy surface via an integ
over the position of a single atom inside the Wigner-Se
cell. The PIC model is essentially an anharmonic Einst
model, and the 3N-dimensional partition function is reduce
to a simple three-dimensional~3D! integral.4,9 The advantage
of the cell model over lattice dynamics based on the qu
harmonic approximation is that anharmonic contributio
from the potential-energy of the system have been inclu
exactly without a perturbation expansion. On the other ha
since we used the classical partition function, and the in
atomic correlations between the motions of different atom
ignored, it is only valid at high temperatures above the D
bye temperature~245 K in Ta!.18 Since the vacancy forma
tion energy is very high in Ta,19 spontaneous formation o
defects is only important after the melting temperature.

For the PIC computations, a supercell with 54 atoms w
used. The pseudopotential mixed-basis calculations were
ried out on this 54 atoms supercell using LDA~Ref. 20! for
exchange-correlations effects and 23232 k-point mesh re-
sulting four specialkW points for BZ integrations. A semirela
tivistic, nonlocal, and norm-conserving Troullier-Martins21

pseudopotential~with associated pseudo atomic orbita!
with nonlinear core corrections22 was used for the Ta atom
as described in detail in our previous study of thermal eq
tion of state of Ta.4 After checking the energy convergenc
550 and 60 eV are used as plane wave energy cutoffs fo
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expansion of the pseudoatomic orbitals as well as FFT g
and low-energy plane waves for additional degrees of fr
dom in basis set, respectively. The canonical partition fu
tion was computed from the potential energy surface a
function of displacements of wanderer atom along spe
symmetry directions.9,23 We used 2 and 4 special direction
for tetragonal and orthorhombic distortions, respective
which integrates exactly up tol 56 lattice harmonics.23 The
potential energy was calculated at 4–6 different displa
ments along each of these special directions, and was fi
an even polynomial up to order six. Details of all the com
putational parameters were described previously.4

The static elastic constants as functions of pressure
presented in Fig. 1 and Table I. The zero pressure values
initial slopes are in good agreement with the ultrasonic
perimental data of Kataharaet al.24,25 Similarly, comparison
with recent SAX~stress/angle-resolved x-ray diffraction! ex-
perimental data26 up to 105 GPa shows good agreement
c11 andc44. Likewise,c12 agrees well at low pressures, b
deviates with increasing pressure. This may be due to
assumed isostress condition for experimental data ana
for all pressures, or due to the large uncertainty on measu
deviatoric stress at high pressures. Note that, the initial sl
of ultrasonic data agrees very well with our calculatedc12.
The anisotropy ratioA5c44/cs ~inset Fig. 1! first decreases
from 1.57 to 0.9 with increasing pressure, and then its sl
reverses and it increases with increasing pressure. This is
to the changes inc44. The change in behavior ofc44 around

FIG. 1. Static elastic constants of Ta as a function of press
Open squares are ultrasonic experimental data of Kataharaet al.
~Refs. 24,25! and the dotted lines show the initial slopes. Op
symbols are SAX data of Cynn and Yoo~Ref. 26!. The anisotropy
ratio is shown in the inset.
3-2
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150 GPa is due to the electronic transition evident in
equation of state.4 This indicates that elastic constants can
much more sensitive to changes in the Fermi surface than
equation of state, where the electronic transition was not
parent without examining small residuals in the equation
state fit.

The elastic constants of Ta as functions of temperatur
various pressures are presented in Fig. 2 and Table II
order to compare with experimental data, the computed

TABLE I. The static elastic constants for bcc tantalum. All ela
tic constants as well as pressure units are GPa.

V(Å3) Pressure K c44 cs c11 c12

18.39 -0.76 187.89 66.30 42.12 244.05 159.8
17.66 7.56 220.35 75.13 51.41 288.90 186.0
16.82 19.35 263.82 82.73 62.89 347.68 221.9
15.22 50.88 371.07 101.15 91.30 492.79 310.2
13.01 125.70 598.02 129.18 143.78 789.73 502.
12.43 160.63 696.44 156.64
11.67 202.01 808.93 194.45
11.03 250.90 937.44 253.95 241.48 1259.41 776.
9.83 376.54 1251.81 417.35 335.65 1699.34 1028
9.26 456.48 1443.14 538.35 391.79 1965.52 1181

FIG. 2. The elastic constants of bcc Ta as a function of temp
ture at different pressure from 0 GPa~lowest curve! to 400 GPa
~uppermost curve! with 50 GPa interval.~a! shear moduluscs , ~b!
shear modulusc44, and ~c! adiabatic bulk modulusKS . Dotted
lines are the experimental data from Walkeret al. ~Ref. 28!.
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thermal elastic constants (ci j
T ) are converted to adiabatic con

stants (ci j
S) according to27

ci j
S5ci j

T 1
T

rCV
l il j , ~9!

wherel i5(kakcik
T , ak is the linear thermal expansion ten

sor, CV is the specific heat andr is the density. For cubic
crystals, Eq.~9! simplifies to

c11
S 5c11

T 1D, ~10!

c12
S 5c12

T 1D, ~11!

where

D5T~aKT!2/~rCV!5rCVTg25TaKTg ~12!

with a is the thermal expansion coefficient,g is the Grün-
eisen parameter, andKT is the isothermal bulk modulus. Th
thermodynamic parameters were computed self-consiste
from the thermal equation of state.4 The correction is zero for
c44 andcs . D increases with temperature but decreases w
pressure; at 3000 K it decreases from 5 to 1 % for press
50 to 400 GPa for bulk modulusKT , and at 10 000 KD is 29
and 3 % for the same pressures.

The shear modulics andc44 and adiabatic bulk modulus
KS agree well with the ultrasonic experimental data28 up to
3000 K at zero pressure~Fig. 2!. We find that all three
moduli are primarily functions of volume, and thermal e
fects at constant volume are quite small except at the hig
pressures. There is some softening ofcs with increasing tem-
perature for all pressures.c44 shows a slight softening at th
zero pressure with increasing temperature, but they are ra
flat for other pressures except for very high pressures.
adiabatic bulk modulusKS also softens slightly with tem-
perature at low pressures but becomes flat with increa
pressure.

The anisotropy ratioA5c44/cs is presented as a functio
of temperature for various pressures at Fig. 3.A increases
with increasing temperature at all pressures, but less dr
cally at high pressures. At lower pressures, this increas
divergent after certain temperature, since the softening ocs
is large enough and it approaches zero. The reversal of
slope ofA with pressure shifts to higher pressures with
creasing temperature due to thermal expansivity, and oc
at a fixed volume.

Sound velocities are related to the elastic constants by
Christoffel equation29

~ci jkl njnk2rv2d i j !ui50, ~13!

whereci jkl is the elastic constants tensor,nW is the propaga-
tion direction,uW is the polarization vector, andv is the ve-
locity. Our elastic constants are those appropriate for
equations of motion under hydrostatic reference stress.7 For
@110# wave propagation direction in a cubic lattice, the lo
gitudinal mode is

rv25~c111c1212c44!/2 ~14!

-

4
4

a-
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TABLE II. The elastic constants for bcc tantalum at various temperatures. All elastic constants un
GPa.

T ~K! cs c44 c11
T c11

S c12
T c12

S KT KS

0 44.05 70.26 249.68 249.68 161.59 161.59 190.95 190.9
947 43.58 56.24 221.71 233.41 134.55 146.27 163.61 175.3
2053 38.61 59.39 189.66 211.95 112.44 134.72 138.18 160.
3000 31.57 62.48 162.55 192.74 99.41 129.60 120.46 150.6
3947 28.72 64.47 142.15 179.77 84.70 122.32 103.85 141.4
5052 18.34 59.70 107.55 154.15 70.87 117.47 83.10 129.7
6000 0.31 62.05 64.91 120.03 64.29 119.40 64.50 119.6
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and two transverse modes are

rv25c44 ~15!

and

rv25~c112c12!/25cs ~16!

polarized along@001# and@11̄0# directions, respectively. Fo
polycrystalline sample, the average isotropic shear mod
G can be determined from single crystal elastic consta
according to the Voigt-Reuss-Hill scheme,30 and the isotro-
pically averaged aggregate velocities are given by

vP5@~K14/3G!/r#1/2, ~17!

vS5~G/r!1/2, ~18!

vB5~K/r!1/2, ~19!

wherevP , vS , andvB are the compressional, shear, and b
sound velocities. The sound velocities of Ta along the Hu
niot calculated from elastic constants are shown in Fig

FIG. 3. The anisotropy ratio of elastic constants of Ta a
function of temperature at different pressures from 0 to 400 G
with 50 GPa interval.
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and are compared with the shock sound velocity data fr
Brown et al.31 As seen in Fig. 4, there is excellent agreeme
with shock data. The calculated compressional velocityvP
agrees very well with experimental data up to 200 GPa,
then after 300 GPa the bulk velocityvB matches the data
well. This is because the shocked solid melts around
GPa, so the liquid velocity might be represented byVB . The
deviation between 200 and 300 GPa is probably due to
melting effects.

In conclusion, the elasticity of bcc Ta is investigated fro
first principles for pressures up to 400 GPa and temperat
up to 10 000 K. The calculated static elastic constants ar
good agreement with available ultrasonic and SAX expe
mental data. The shear modulusc44 and the anisotropy ratio
A change behavior with increasing pressure around 150 G
Although, the shear moduluscs softens with increasing tem
perature at all pressures,c44 andKS soften with temperature
at low pressures but then they are rather flat at higher p
sures. The main effect of temperature for the thermoelasti

a
a

FIG. 4. Sound velocities of Ta along the Hugoniot calculat
from elastic constants. Solid lines are the longitudinal and t
transverse sound velocities in the@110# direction from single crystal
elastic constants. The polarization of the shear waves are give
brackets. The isotropic aggregate velocities are shown by da
lines.vP , vB , andvS are the compressional, bulk, and shear sou
velocities. Filled dots are the shock data from Brown and Sha
~Ref. 31!.
3-4
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of Ta is due to thermal expansivity. The calculated sou
velocities along the Hugoniot shows an excellent agreem
with shock-wave experimental data.
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