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High-pressure thermoelasticity of body-centered-cubic tantalum
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We have investigated the thermoelasticity of body-centered-ditni¢ tantalum from first principles by
using the linearized augmented plane wave and mixed-basis pseudopotential methods for pressures up to 400
GPa and temperatures up to 10000 K. Electronic excitation contributions to the free energy were included
from the band structures, and phonon contributions were included using the particle-ifRi€ethodel. The
computed elastic constants agree well with available ultrasonic and diamond-anvil cell data at low pressures,
and shock data at high pressures. The shear modujuend the anisotropy change behavior with increasing
pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of
temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast
self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.
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Single crystal elastic constants of solids at high pressures S 0 0
and temperatures are essential in order to predict and under-
stand material response, strength, mechanical stability, and e=| 0 9 0 3
phase transitions. We have studied the high-pressure and 0 0 (1+6)2%-1
:antgﬁjrr?]t,u;e gﬁ?jgcvct?gr?ts?t?;z ?r: e?;)l%g?:tﬁrftdpiml es. yvhere5 is the magnitude of the strain. Then the strain energy
Because of its high-structural mechanical, therrgal, an
chemical stability, Ta is a useful high-pressure standdara. _ 2
has a very high melting temperature 3269 K at ambient pres- F(8)=F(0)+6cV5*+0(5%), @
sure. bcc Ta is stable to 174 GPa, according to diamondwhereF(0) is the free energy of the unstrained system ¥nd
anvil-cell experiments. Shock compression experimehts is its volume. Similarlyc,, was calculated from the follow-
show no transition other than meltirigt around 300 GBa  ing strain:
Its stability makes Ta an ideal material for understanding the
generic behavior of transition metals under compression, 0 o 0
without the complication of phase transitions. Recently, its e=| 6 0 0 (5)
static properties were studied by full-potential LMTO 5 5
calculations and the thermal equation of state was repofted. 0 0 &/(1-5%)

The three elastic constants;, €1, andc,y completely  wjith the corresponding strain energy
describe the elastic behavior of a cubic crystal. A more con-
venient set for computations acg, and two linear combina- F(8)=F(0)+2cy,V 5%+ 0(86%. (6)

tionsK andcg. The bulk modulus _ - . . .
The quadratic coefficients of strain energy gives the elastic

K=(cy;+2¢49)/3, 1) constants. First order terms due to the initial strésalro-
_ _ _ _ _static pressupé were eliminated by applying isochoric
is the resistance to deformation by a uniform hydrostaticstrains. Then, the elastic constants andc,, were obtained
pressure; the shear constant from ¢ andK.
We assume that the Helmholtz free energy of the system
Cs=(Cu~C12)/2, @ can be separated %g°

is the resistance to shear deformation acrosq1hé) plane

in the [110] direction, andcy, is the resistance to shear
deformation across th€l00) plane in the[010] direction.  whereEy(V) is the static zero temperature energyy(V,T)

The bulk moduluK was determined from the equation of is the electronic contribution, anB,;,(V,T) is the vibra-
state? using the Vinet equation® We obtained the shear tional contribution to the free energy. Our computational pro-
moduli by straining the bcc lattice at fixed volumes usingcedure is based on density functional thedT) general-
volume conserving tetragonal and orthorhombic strains foized to finite temperatures by the Mermin theorEnihe

Cs andc,,, respectively, and computing the free energy as aharge density is temperature dependent through occupation
function of straincg was obtained by applying the following numbers according to the Fermi-Dirac distribution, giving
isochoric strain the electronic entropy from

F(V,T)=Eo(V)+Fe(V,T)+Fyip(V,T), )
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2000 T T
Se=2, filnfi+(1—f)In(1—f,), ) - -
where f;=f,(E—Eg,T) is the Fermi occupation at for
each stateé. The variations off; with temperature were in-
cluded from the self-consistent band structures calculated a
an electronic temperature of 2000 K varying according to the 1500 1 ]

Fermi-Dirac distribution. - EO?GPa) 400
The electronic excitations, both the static energy and theg
electronic contribution to the free energy, were computed by2
using the full potential linearized augmented plane wave £
(LAPW) method'?*® The 5p, 4f, 5d, and & states were
treated as band states, and the deeper states were treated§
soft core electrons. The generalized gradient approximatioryg
(GGA) (Ref. 14 was used for the exchange-correlation po-
tential. The convergence of strain energies with respect to thdu
Brillouin zone integration was carefully checked by repeat-
ing the calculations for 18 16X 16 and 24 24X 24 meshes 500
atV=16.82 & and we found at most 2 GRa%) difference
both for cg and cyy. Hence, we used 616X 16 special
k-point meshe¥ in the full Brillouin zone giving 344 and
612k points within IBZ of tetragonal and orthorhombic lat-
tice, respectively. The convergence param&&,,, was 9
giving about 1800 plane waves and 200 basis functions pe %5 100 200 300
atom at zero pressure. Pressure (GPa)
The vibrational free-energy was obtained within the
particle-in-a-cel(PIC) model® by using an accurate pseudo-  FIG. 1. Static elastic constants of Ta as a function of pressure.
potential mixed-basis total energy methbahich is compu- ~ OPen squares are ultrasonic experimental data of Katatoah
tationally more efficient than the LAPW calculations. In PIC, (Refs. 24,25 and the dotted lines show the initial slopes. Open
an atom is displaced in its Wigner-Seitz cell in the potentialSYMPols are SAX data of Cynn and YéRef. 26. The anisotropy
field of all the other atoms fixed at their equilibrium posi- "al¢ is shown in the inset.

tions, i.e., the ideal, static lattice except for the Wandere@xpansion of the pseudoatomic orbitals as well as FFT gnd
atom. The partition function, and hence the free energy isind low-energy plane waves for additional degrees of free-
calculated from this potential energy surface via an integrajom in basis set, respectively. The canonical partition func-
over the position of a single atom inside the Wigner-Seitzjon was computed from the potential energy surface as a
cell. The PIC model is essentially an anharmonic EinSteirfunction of disp]acements of wanderer atom a|0ng Specia|
model, and the R-dimensional partition function is reduced symmetry dire(;’[iongv_23 We used 2 and 4 Specia| directions
to a simple three-dimension@D) integral®® The advantage for tetragonal and orthorhombic distortions, respectively,
of the cell model over lattice dynamics based on the quasiwhich integrates exactly up to=6 lattice harmonic$é® The
harmonic approximation is that anharmonic contributionspotential energy was calculated at 4—6 different displace-
from the potential-energy of the system have been includeghents along each of these special directions, and was fit to
exactly without a perturbation expansion. On the other handgn even polynomial up to order six. Details of all the com-
since we used the classical partition function, and the interpytational parameters were described previofisly.

atomic correlations between the motions of different atoms is  The static elastic constants as functions of pressure are
ignored, it is only valid at high temperatures above the Depresented in Fig. 1 and Table I. The zero pressure values and
bye temperatur¢245 K in T9.'® Since the vacancy forma- initial slopes are in good agreement with the ultrasonic ex-
tion energy is very high in T&) spontaneous formation of perimental data of Katahat al?*?° Similarly, comparison
defects is only important after the melting temperature.  with recent SAX(stress/angle-resolved x-ray diffractjoex-

For the PIC Computations, a Supercell with 54 atoms Wa%erimenta| da@ up to 105 GPa shows good agreement for
used. The pseudopotential mixed-basis calculations were Caéil and Caa. |_ikewise,cl2 agrees well at low pressures, but
ried out on this 54 atoms supercell using LDRef. 20 for  deviates with increasing pressure. This may be due to the
exchange-correlations effects andt2X 2 k-point mesh re-  assumed isostress condition for experimental data analysis
sulting four speciak points for BZ integrations. A semirela- for all pressures, or due to the large uncertainty on measured
tivistic, nonlocal, and norm-conserving Troullier-Martths ~ deviatoric stress at high pressures. Note that, the initial slope
pseudopotentiallwith associated pseudo atomic orbijals of ultrasonic data agrees very well with our calculatagl.
with nonlinear core correctiofSwas used for the Ta atoms The anisotropy ratitA=c,,/c; (inset Fig. 1 first decreases
as described in detail in our previous study of thermal equafrom 1.57 to 0.9 with increasing pressure, and then its slope
tion of state of Td. After checking the energy convergence reverses and it increases with increasing pressure. This is due
550 and 60 eV are used as plane wave energy cutoffs for th® the changes in,,. The change in behavior af,, around
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TABLE |. The static elastic constants for bcc tantalum. All elas- thermal elastic Constamsk) are converted to adiabatic con-
tic constants as well as pressure units are GPa. stants (:ﬁ) according 8’

V(A% Pressure K Cas Cs Cit Cio

cﬁ=cﬁ+imj, (9)
18.39 -0.76 187.89 66.30 42.12 244.05 159.82 pCy

17.66 7.56 220.35 75.13 51.41 288.90 186.08
16.82  19.35 263.82 8273 62.80 347.68 221.90
1522  50.88 371.07 101.15 91.30 492.79 310.20

13.01 125.70 598.02 129.18 143.78 789.73 502.17

where)\i=2kakcﬁ(, ay is the linear thermal expansion ten-
sor, Cy is the specific heat and is the density. For cubic
crystals, Eq(9) simplifies to

1243 160.63 696.44 156.64 S =cl A, (10
11.67 20201 808.93 194.45
11.03  250.90 937.44 253.95 241.48 1250.41 776.46 S =cl+A, (11)

9.83 376.54 1251.81 417.35 335.65 1699.34 1028.04
9.26 456.48 1443.14 538.35 391.79 1965.52 1181.94where

A=T(aKp)?(pCy)=pCyTy*=TaKry (12

150 GPa is due to the electronic transition evident in the .. s the thermal expansion coefficient,is the Grin-

equation of stat& This indicates that elastic constants can beeisen parameter, argh is the isothermal bulk modulus. The
much more sensitive to changes in the Fermi surface than ﬂ} ! )

equation of state, where the electronic transition was not a ﬁermodynamic parameters were computed self-consistently
grent without e>’<aminin small residuals in the equation Oa"rom the thermal equation of statdthe correction is zero for
gtate fit 9 q Caq4 @ndc. A increases with temperature but decreases with
The élastic constants of Ta as functions of temperature ressure; at 3000 K it decreases from 5 to 1% for pressures
0 to 400 GPa for bulk modulus;, and at 10 000 KA is 29

various pressures are presented in Fig. 2 and Table II. "é‘md 3% for the same pressures.

order to compare with experimental data, the computed iso- The shear modulé, andc,, and adiabatic bulk modulus
Ks agree well with the ultrasonic experimental ditap to
3000 K at zero pressurérig. 2. We find that all three

300 F a) | moduli are primarily functions of volume, and thermal ef-
fects at constant volume are quite small except at the highest

200 1 b pressures. There is some softening oWith increasing tem-
perature for all pressures,, shows a slight softening at the
100 ’—'—‘—\N zero pressure with increasing temperature, but they are rather

¢, (GPa)

= flat for other pressures except for very high pressures. The

0 L A ' adiabatic bulk modulu¥Kg also softens slightly with tem-
T y i . perature at low pressures but becomes flat with increasing
m pressure.
__ 400 _:__m The anisotropy ratid\=c44/Cg iS presented as a function
e p . T of temperature for various pressures at FigA3increases
e ? . with increasing temperature at all pressures, but less drasti-
& 200 %, . -~ cally at high pressures. At lower pressures, this increase is
" .| divergent after certain temperature, since the softeningy of
0 S . * . is large enough and it approaches zero. The reversal of the
r r r — slope of A with pressure shifts to higher pressures with in-
— — e J.C creasing temperature due to thermal expansivity, and occurs
1000 F—— . - - | at a fixed volumg. _
5 * * - — Sound velocities are related to the elastic constants by the
] Christoffel equatiof’
¥ 500 1

(CijN;N—pv28;j)u; =0, (13

0 1 I I I
0 2000 4000 6000 8000 10000
Temperature (K)

wherec; is the elastic constants tensarjs the propaga-

tion direction,u is the polarization vector, and is the ve-

locity. Our elastic constants are those appropriate for the
FIG. 2. The elastic constants of bce Ta as a function of temperaéquations of motion under hydrostatic reference strd:

ture at different pressure from 0 GRawest curve to 400 GPa [110] wave propagation direction in a cubic lattice, the lon-

(uppermost curvewith 50 GPa interval(a) shear modulusg, (b) gitudinal mode is

shear modulug,,, and (c) adiabatic bulk moduluKXg. Dotted

lines are the experimental data from Walletral. (Ref. 28. pv2=(CyFC1pt2Cy) /2 (14
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TABLE II. The elastic constants for bcc tantalum at various temperatures. All elastic constants units are

GPa.

T(K) Cs Cag iy o Cl ct Kr Ks

0 44.05 70.26 249.68 249.68 161.59 161.59 190.95 190.95
947 43.58 56.24 221.71 233.41 134.55 146.27 163.61 175.33
2053 38.61 59.39 189.66 211.95 112.44 134.72 138.18 160.46
3000 31.57 62.48 162.55 192.74 99.41 129.60 120.46 150.65
3947 28.72 64.47 142.15 179.77 84.70 122.32 103.85 141.47
5052 18.34 59.70 107.55 154.15 70.87 117.47 83.10 129.70
6000 0.31 62.05 64.91 120.03 64.29 119.40 64.50 119.61

and two transverse modes are

and are compared with the shock sound velocity data from
Brown et al3! As seen in Fig. 4, there is excellent agreement

pUZ=Cyy (15  with shock data. The calculated compressional velogity
and agrees very well with experimental data up to 200 GPa, and
then after 300 GPa the bulk velocityy matches the data
- _ well. This is because the shocked solid melts around 300
pv°=(C11—C1p)/2=Cqs (16)

GPa, so the liquid velocity might be representedMay. The

deviation between 200 and 300 GPa is probably due to pre-

polarized along001] and[ 110] directions, respectively. For melting effects.

polycrystalline sample, the average isotropic shear modulus In conclusion, the elasticity of bcc Ta is investigated from
G can be determined from single crystal elastic constantfirst principles for pressures up to 400 GPa and temperatures
according to the Voigt-Reuss-Hill scherifeand the isotro-  up to 10000 K. The calculated static elastic constants are in

pically averaged aggregate velocities are given by good agreement with available ultrasonic and SAX experi-
mental data. The shear moduleig, and the anisotropy ratio
vp=[(K+4/3G)/p]*? (17)  Achange behavior with increasing pressure around 150 GPa.

Although, the shear modulus softens with increasing tem-

vs=(Glp)*?, (18

perature at all pressures,, andKg soften with temperature
at low pressures but then they are rather flat at higher pres-

sures. The main effect of temperature for the thermoelasticity

vg=(K/p)*? (19

wherevp, vg, andvg are the compressional, shear, and bulk
sound velocities. The sound velocities of Ta along the Hugo-
niot calculated from elastic constants are shown in Fig. 4,

8.0

5 -
40 . , E
1 = 1
—e 0 GPa K S
e 50 GP2 ! %
o--+100GPa K > 4
32} o—0150GPa Fa 2
o -—+ 200 GPa K 3
o—o 250 GPa / U°7
o——e 300 GPa 1
& == 350 GPa
-~ o~ — 400 GPa
03 2.4 Walker etal E
1]
<
1.0 . . .
0.0 100.0 200.0 300.0
1.6 Pressure (GPa)
FIG. 4. Sound velocities of Ta along the Hugoniot calculated
from elastic constants. Solid lines are the longitudinal and two
0.8 v . v . transverse sound velocities in theL0] direction from single crystal
0 2000 4000 6000 8000 10000 . o . .
Temperature (K) elastic constants. The polarization of the shear waves are given in

brackets. The isotropic aggregate velocities are shown by dashed

FIG. 3. The anisotropy ratio of elastic constants of Ta as dines.vp, vy, andvg are the compressional, bulk, and shear sound
function of temperature at different pressures from 0 to 400 GPaelocities. Filled dots are the shock data from Brown and Shaner
with 50 GPa interval. (Ref. 3)).

064103-4



HIGH-PRESSURE THERMOELASTICITY OF BODY. .. PHYSICAL REVIEW B 65 064103

of Ta is due to thermal expansivity. The calculated soundy DOE ASCI/ASAP Subcontract No. B341492 to Caltech

velocities along the Hugoniot shows an excellent agreemerOE Grant No. W-7405-ENG-48. Computations were per-

with shock-wave experimental data. formed on the Cray SV1 at the Geophysical Laboratory, sup-
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