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Interactions between Josephson vortices and breathers
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We study vortex-breather collisions in a Josephson-junction ladder array. We have computed parameters
values of the system for which both types of structures coexist in the ladder. In order of increasing bias current,
we have found different possible scenarios for vortex-breather collisions.~i! At low bias current, the breather
acts as a pinning center for a single vortex.~ii ! Increasing the current, the vortex excites multisite breathers in
its wake and is finally pinned by the breather.~iii ! At still higher current, a whirling mode front is excited by
the vortex. However, the breather still acts as a pinning center, but now for the front.~iv! At higher values of
the bias, the front is able to destroy the breather. For scenario~i!, we have also studied thermal activation
properties associated with the presence of the vortex-breather pair in the array.
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I. INTRODUCTION

The nonlinear dynamical concept ofcoherent structures
or coherent excitationshas important consequences when a
plied to condensed matter systems.1 Spatially or temporally
coherent structures appear in many nonlinear extended
tems. Such structures usually can be characterized by ma
particlelike properties. In the past few years, these noti
have become fundamental for understanding many probl
and their implications extend over different fields of t
physics of continuous and discrete systems.

In one dimension, the concept of a soliton is applied
intrinsically localized structures with a topological charg
Examples of a soliton are kinks in discrete systems, disc
mensurations in commensurate-incommensurate trans
theory, or fluxons or vortices in Josephson arrays. Rece
intrinsic localized modes without topological charge, know
also asdiscrete breathers~DB’s!, have been studied.2–4 A
DB corresponds to a dynamical solution of a discrete non
ear system for which energy remains spatially localized
the lattice. In a single-site DB the order parameter descr
large amplitude oscillations or rotations on one of the sites
the lattice while small amplitude oscillations occur on t
other sites. This localization is intrinsic and generic in hom
geneous nonlinear discrete systems and does not carry
associated topological charge.

Linking the subjects of coherent structures and the ph
ics of condensed matter systems and devices, Joseph
junction- ~JJ-! based arrays provide an almost ideal expe
mental system to test many of these nonlinear concepts.
is because JJ’s are solid-state realizations of nonlinear o
lators which can be easily coupled using standard lit
graphic techniques. Indeed, many experimental studies in
field have been devoted to investigate the static and pro
gation properties of vortices in long and small JJ arrays
their classical5–8 or quantum regimes.9

Recently, small JJ arrays have been successfully desig
for the experimental study of a large family of DB solutio
named rotating localized modes or rotobreathers. These
0163-1829/2002/65~5!/054517~10!/$20.00 65 0545
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tobreathers have been detected in arrays with a ladder ge
etry driven by dc external currents10–13and are robust agains
thermal and other fluctuations. Interestingly, as predicte14

families of solutions with different voltage symmetries we
found.

In this paper we will numerically study the simplest inte
action that occurs when a moving vortex collides with
stationary rotobreather. We first will briefly review the d
scription of the system and the simulated equations for
dynamics of the ladder. Then we present four different s
narios of collisions of a vortex with a rotobreather. In one
the cases the result of such a collision is a vortex-brea
pair. We will then show that a discrete breather acts a
pinning center to vortex motion, study the equilibrium pro
erties of such a pair in the presence of temperature,
calculate an energy barrier associated with the pair. Fina
we dedicate two appendixes to review some of the proper
of a single vortex and a DB in a JJ ladder array, because
necessary to know the parameter values where bot
breather and a moving vortex can coexist in a ladder.

II. JOSEPHSON LADDER

Figure 1 shows the circuit diagram for a Josephson lad
array where junctions are marked by an ‘‘3.’’ This configu-
ration differs from the parallel array in the presence of ho

FIG. 1. The anisotropic ladder array with uniform current inje
tion. Vertical junctions~with superscriptv! have critical currentI cv
and horizontal junctions~with superscriptt and b! have a critical
currentI ch .
©2002 The American Physical Society17-1
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zontal junctions and can be considered the simplest sq
two-dimensional~2D! array. The JJ parallel array is usual
described in terms of the discrete sine-Gordon
Frenkel-Kontorova model,8 a model which has been paradi
matic for studying kinks and commensurate-incommensu
transitions.15

The static properties of a vortex in the ladder are sim
to those of a kink in the Frenkel-Kontorova or discrete sin
Gordon system.16–18 There are, however, some difference
the most important of which is the existence of a critic
magnetic fieldf c for which, if f , f c , a single vortex is not
stable in the ladder.19 Below this critical field the vortex is
expelled from the ladder through the horizontal junctio
Thus vortices are stable static solutions of the array at
equate parameter values and, in the absence of externa
rents, a static vortex in the ladder corresponds to a solu
for which the phase of the vertical junctionsw j

v go from 0 to
2p @see Fig. 2~a!#.

Another important difference between the ladder and p
allel array is that when biased by dc external currents a
der sustains discrete breather solutions. A DB in the lad
corresponds to a dynamical state where one of the ver
junctions is in a resistive rotating state while the others
brate around some equilibrium position. Figure 2~b! shows a
sketch of such a solution where, in order to satisfy Kirc
hoff’s voltage law, the four horizontal junctions next to th
rotating vertical one also rotate. This configuration is t
simplest DB solution within the diversity of states that ha
been numerically and experimentally found.10–14 In this pa-
per we will refer to this type of single-site symmetric discre
breather solution where one vertical and four horizon
junctions rotate. Although there are other types of discr
breather solutions, we will set our parameter values to
region of predominance of these symmetric solutions.

The object of this paper is a numerical study of vorte
breather interactions in a JJ ladder array. To carry out
numerical study we need to derive a model for the array. T
junctions will be modeled by the parallel combination of

FIG. 2. ~a! Sketch of a single-vortex configuration in the ladd
at f 50 andI ext50. In the absence of an external field this config
ration is stable only at small values ofl. ~b! Sketch of the single-
site DB studied in the paper. The ladder is biased by a dc exte
current and one vertical and four horizontal junctions rotate wh
the others librate.
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ideal Josephson junction with a critical current ofI c
j , a ca-

pacitor Cj , and a resistanceRj . The ideal Josephson junc
tion has a constitutive relation ofI j5I c

j sinwj , wherew j is
the gauge-invariant phase difference of the junction. Wh
there is a voltage across the junction,v j , then v j
5(F0/2p)dw j /dt.

We will also use the standard Langevin approach to
clude thermal effects. We replace the resistor by a noise
resistor in parallel with a Johnson current noise source.
Josephson junctions are then modeled by

Cj v̇ j1
v j

Rj
1I c

j sinw j1I j
N5I ext, ~1!

where^I j
N(t)I k

N(t8)&5(2kT/Rj )d(t2t8)d jk . This results in
the usual current noise spectrum densitySj52kT/Rj .

Anisotropic ladders can be fabricated by varying the a
of the horizontal and vertical junctions. The normal-state
sistance is inversely proportional to the junction area beca
of the constantI cRn product. We will useI ch for the hori-
zontal junction critical current andI cv for the vertical junc-
tion critical current. The anisotropy parameterh can then be
defined ash5I ch /I cv5Ch /Cv5Rv /Rh .

The open boundaries imply that the current on the
horizontal junctions must be equal but opposite to the curr
in the bottom horizontal junctions, and this bottom one
equal to the mesh currenti j

m . The junctions in the array are
coupled by means of current conservation and fluxoid qu
tization. After normalizing the currents byI cv we get the
following governing-equations in the self-inductance limit

N~w j
t !5

l

h
$w j

v2w j 11
v 2w j

t1w j
b12p f %,

N~w j
v!5l$w j 11

v 22w j
v1w j 21

v 1w j
t2w j 21

t 2w j
b1w j 21

b %

1 i ext,

N~w j
b!52

l

h
$w j

v2w j 11
v 2w j

t1w j
b12p f %. ~2!

We let the functionalN(w)5ẅ1Gẇ1sinw1i j
n represent

the current through a junction. The noise spectrum ofi j
n is

Sj52kThjG/EJ , where the Josephson energyEJ

5(F0/2p)I cv and hj5I c
j /I cv . The dimensionless tempera

ture is thenT̃5kT/EJ . The external current is normalized a
i ext5I ext/I cv and f measures, in units of the flux quantu
F0 , the magnetic field flux through each individual cell. Th
damping isG5AF0/2pI cvRv

2Cv. We note that because th
anisotropy in our arrays is caused by varying the junct
area,G is the same for every junction in the array.l is the
ratio between the Josephson inductance and the mesh
inductance,l5F0 /(2pI cL).

In Eq. ~2!, j 51 to N and, at the open boundaries,w0
t

5wN
t 50, w0

b5wN
b 50, wN11

v 5wN
v 12p f , and w0

v5w1
v

22p f , where the phases atj 50 andj 5N11 are for math-
ematical convenience and do not represent real junction

al
e
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INTERACTIONS BETWEEN JOSEPHSON VORTICES AND . . . PHYSICAL REVIEW B65 054517
The vorticity nj is defined through the expressionnj

5(1/2p)$@w j
v#2@w j 11

v #2@w j
t #1@w j

b#%1 f 1 f j
ind , where @w#

represents the phases modulus 2p and f j
ind5 i j

m/2pl.
This system of equations has two linearized modes re

sented byvLsC
andvLJC as explained in Appendix A. In the

rest of the article, we will refer to these linear modes as
LsC andLJC resonances.

In order to study vortex-breather interactions in the la
der, first we need to study the parameter values~h, G, l, f,
andi ext! for which DB’s and vortices coexist. We present t
details of this study in two appendixes. The main conclus
is that there exists a wide region in the parameter space
the coexistence of vortices and DB’s in the array.

Figure 3 shows the existence region of a breather an
vortex in ladder. The hatched region shows the param
space where a single moving vortex can exist in the ar
The vortex depins ati dep and as the current increases it d
stabilizes ati ext.0.5 when the moving vortex resonates wi
theLJC resonance~dot-dashed line!. The moving vortex can
then excite junctions in its wake to rotate. Above this ma
mum current, the array does not support a single mov
vortex and instead the trailing edge of the vortex exci
every vertical junction in its wake. This state can be int
preted as an advancing front of a whirling mode.

Figure 3 also shows the existence region for the symm
ric discrete breathers studied here. The bottom solid lin
i ext50.38 is a rough estimation of the minimum current@as
expected from the retrapping mechanism, Eq.~B2!#.20 The
top solid line ati ext50.91 is the maximum current of th
breather, Eq.~B1!. The two curving dashed lines are theLsC
resonances. There are two branches because the horiz
junction rotates at half the voltage of the vertical junctio
B1, B1a, and B1b represent different single-site DB
solutions.21 There is also a region in Fig. 3 that allows fo
aperiodic solutions, but in order to simplify the graph, it
not shown.

As shown in Fig. 3, there is a region in the parame
plane where a DB can coexist with a single vortex in a la
der. It is this overlap that allows us to study interactio

FIG. 3. Existence region of our type of breathers and a sin
vortex. The hatched region represents the space where a la
supports a single traveling vortex forh50.5 and f 50.3. The
dashed lines arevLsC

and 2vLsC
.
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between breathers and vortices. This overlap will chan
with the parameters. For instance, if we increaseh, then the
depinning current would decrease, but the retrapping cur
of the breather would increase, so the overlap existence
gion would be smaller. In the next section we present so
results of interaction between breathers and vortices an
avoid any effects of the resonances we letl55 and we will
start with i ext50.45. Also, we will set in our simulationsG
50.1, f 50.3, andh50.5 as explained in Appendix B.

III. VORTEX-BREATHER COLLISIONS

To study the interaction between a single vortex and
DB we have used a ladder array with 60 cells. We have d
numerical simulations of Eqs.~2! using a fourth-order
Runge-Kutta algorithm in the absence of noise and a th
order one for integrating the stochastic problem.22 In this
section we will present simulations in the deterministic lim
~zero temperature!.

We have found four main scenarios when increasing
external bias current.~i! At the lowest current, the vortex
collides with the breather and gets pinned to it. In this ca
the breather is acting as a pinning center for the single vo
~Figs. 4 and 5!. ~ii ! As the current increases, the vorte
causes some of the vertical junctions to switch and it ther
excites multisite breathers in its wake. The vortex eventua
collides with the breather and in the resulting interaction
vortex escapes the ladder~Fig. 6!. ~iii ! At still larger current,
the vortex causes all of the vertical junctions in its wake
rotate. The resultant state is a whirling mode front whi
collides with the breeather, and due to this interaction
front ceases to propagate~Fig. 7!. ~iv! At higher values of the
bias, the vortex, accompanied by the excited whirling fro
collides with the breather and annihilates it~Fig. 8!.

In our simulations, a breather is initially placed in vertic
junction 11 and a single vortex is placed at junction 47,
both are far enough from the edges of the array.T50 and we
start with an applied currenti ext50.45. In this situation the
vortex moves toward the breather.

We can look at the phases to get information on the
namics of the array. Figure 4~a! sketches the situation whe
the vortex is approaching the breather. The solid circle sho
the vortex location and the arrows the rotating junctions
sociated with the breather. At this moment, the vortex
eight cells from the breather. At a later time, the vortex c
lides with the breather and it gets pinned. If the breathe
centered in vertical junction 11, the vortex gets pinned
tween vertical junction 12 and 13 as shown in Fig. 4~b!.
~Also, although is not showed in the figure, two movin
vortices can be used to describe the DB dynamics.13!

le
der

FIG. 4. ~a! Ladder array with a breather and an approach
vortex. ~b! At a later time, the vortex is pinned by the breather.
7-3
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Another way of extracting information from the simula
tions is to look at the velocities of the phases—instantane
voltages—of the vertical junctions. Figure 5 plots these vo
ages as a function of time; the darker regions repres
higher voltages. Far from the vortex all the junctions libra
around zero except the vertical junction 11 sustaining
breather which oscillates around a nonzero dc value. As
vortex moves from right to left, it creates a voltage spi
every time it crosses a junction because a junction phase
of 2p occurs. The plot shows these voltage spikes. The p
however, does not show that the traveling vortex actua
gets pinned when it collides with the breather as shown
Fig. 4~b!.

If we increase the current drive abovei ext;0.5, then
single moving vortices are not stable in the array beca
they resonate with theLJC resonance. Instead, some or all
the vertical junctions in the vortex wake are switched to
whirling mode.

Figure 6 shows one of these situations wheni ext50.5. The
moving vortex causes some, but not all, of the vertical ju
tions to switch to the rotating mode. These jumps in f
corresponds to the excitation of multisite DB’s in the ladd
At time .170 the vortex collides with the breather. After th
collision, the vortex escapes the ladder, but the result of
interaction is now a three-site breather state located in ju
tions 11–13. We can see that now the steady state of
ladder corresponds from right to left in the figure to a eig
site DB with junctions 28–35 rotating, a six-site DB locat
in junctions 20–25, and a three-site DB located in junctio
11–13. This scenario is dependent on the initial conditio
and other simulation parameters, but it is still interesting
note that at the transition between a stable moving vo
and a propagating whirling mode, a moving vortex can
cite breathers in the ladder.

FIG. 5. Vertical junction instantaneous voltage plot of a sin
vortex colliding with a breather (i ext50.45). The final state is
shown in Fig. 4~b!
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At higher values of the external current the moving vort
excites to the rotating state all the vertical junction in
wake. Now, instead of multisite breathers, the result is
whirling mode front which advances excited by and asso

FIG. 6. Vertical junction instantaneous voltage plot of a sing
vortex colliding with a breather (i ext50.5). The moving vortex
switches some of the vertical junctions to rotate. The final st
shows three multisite DB’s with three, six and eight vertical rotati
junctions, respectively.

FIG. 7. Vertical junction instantaneous voltage plot of a sing
vortex colliding with a breather (i ext50.55). The moving vortex
switches all of the vertical junctions to rotate. In the final state
the vertical junctions between the initial position of the vortex a
the breather are in the whirling state, while the others are in
superconducting state.
7-4
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INTERACTIONS BETWEEN JOSEPHSON VORTICES AND . . . PHYSICAL REVIEW B65 054517
ated with the vortex. Figure 7 shows the result of a simu
tion with i ext50.55. At this applied current, the whirling
mode front collides with the breather and the resulting int
action destroys the single site breather at junction 11 an
causes the front propagation to stop. The resulting final s
is that all the junctions between the initial position of t
breather, junction 11, and the initial position of the vorte
junction 47, are in the resistive state meanwhile the ot
junctions are in the superconducting state. In fact, suc
state corresponds to a large multisite DB which extends fr
junction 11 to junction 47.

Figure 8 shows the result of a simulation if we increa
the current drive further. Ati ext50.59 the vortex and excited
front collide with the breather and destroy the breather. T
vortex and whirling mode front continue to travel throug
the array until all the array to the left of the initial position
the vortex is in the whirling state with all these vertical jun
tions rotating.

IV. ENERGY BARRIER ASSOCIATED WITH THE
VORTEX-BREATHER PAIR

We have seen~Figs. 4 and 5! that if the current drive is
small enough, the DB appears to act as a pinning cente
we consider the effects of additive noise, then a fluctuat
may cause the vortex to overcome the breather energy ba
and so the breather and vortex can combine in some fash
Equivalently, in general, a trajectory in phase space m
move from one basin of attraction to another under the p
ence of noise. We are both interested in the mean escape
from the basin of attraction that corresponds to Fig. 4~b!,
which is a vortex pinned by a breather and the final st
after the vortex interacts with the breather.

In systems under equilibrium, the rate of escape from

FIG. 8. Vertical junction instantaneous voltage plot of a sin
vortex colliding with a breather (i ext50.59). The vortex switches
all of the vertical junctions in its wake and annihilates the breath
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potential well is given by an Arrhenius formula

t~T!5taeEa /kbT, ~3!

whereEa is the height of the potential barrier and is gene
ally referred to as an activation energy. The timet(T) is
called the lifetime at a givenT, andta

21 is the attempt fre-
quency. Equation~3! is usually derived from a low-
temperature limit, so it is accurate at small temperatures

In dynamical systems that are not in equilibrium, t
problem can be generalized to thermal escape from an at
tor that may not necessarily be a fixed point. For instan
our DB is not a fixed point, but rather a limit cycle wit
some periodicity. In this case, thermally induced escape
also be modeled by Eq.~3!. The notion of an activation en
ergy can be interpreted as the minimum energy required
move a noise-free trajectory to the boundary of its attrac

In the following, we will numerically calculate the activa
tion energy by performing stochastic simulations and
velop a simple model that gives an order-of-magnitude e
mate for the activation energy.

In order to take into account thermal effects in the syst
we included in our model for the dynamics a Johnson no
current sourceI j

N(t) with ^I j
N(t)I j

N(t8)&52kT/Rjd(t2t8).
After normalizations, the value for the dimensionless te
perature~see Sec. II! is T̃5kT/EJ. For typical junctions,
I cv596mA/h whereh50.5. ThenEJ54.53103 K and with
this normalization 4.2 K equalsT̃'9.331024.

We have done simulations of the ladder with an add
Johnson noise. We start our simulation with the initial co
dition shown in Fig. 4~b!. This is a steady-state solutio
where the vortex is pinned next to the breather. We th
integrate our ladder equation with the added noise sou

r.

FIG. 9. Simulation with temperature of a breather in junction
and a pinned vortex next to it@Fig. 4~b!#. At time ;50, the vortex
depins and interacts with the single-site breather to form a two-
breather.
7-5
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until the vortex overcomes the barrier and combines with
breather. Figure 9 shows the plot of a simulation with no
of a breather in junction 11 and a pinned vortex. We have
our normalized temperature to 531023. We see that in this
particular simulation at time equal to 50 the vortex ov
comes the barrier and the single-site breather becomes a
site breather. The final state depends on the tempera
Sometimes the single breather turns into anm-site breather
with m.2. If the temperature is large, then the vortex c
escape through the top horizontal junction and thereby
interact with the breather. At the low normalized temperat
of ,531023 the breather and vortex almost always form
two-site breather after a finite amount of time.

At any given temperature, there will be a distribution
times for the vortex to depin. Numerically, we can define t
depinning event when the junction separating the vortex
the breather slips overp. In this way we are able to calculat
a series of histograms for a given temperature.

Figure 10 plots the average escape time for the vorte
a function 1/T. Each temperature is the average of hundr
of events. The slope of this line is the activation energy a
is equal toEa50.0048. Also,ta523.5. We can now calcu
late the lifetime of the pinned vortex. For example, the li
time of the vortex at 4.2 K ist523.5e0.0048/0.00046'43103

in normalized units.
To find the unnormalized values, we use typical expe

mental parameters. The maximum critical current isI c
5(96mA)/h, and the capacitance isC5360 fF/h. Also, for
these simulationsh50.5. Our equations have time norma
ized by 1/ALJC'0.931012. Therefore the lifetime at 4.2 K
is 4.431029 seconds or;225 MHz. This lifetime will be
smaller~and the corresponding frequency larger! as the tem-
perature is increased. Conversely, atT5300 mK the lifetime
is longer than the age of the universe. Also, the unnormali
activation energy isEa522 K.

To develop a simple model it is instructive to plot th
phase of vertical junction 12: that is, the junction that se
rates the vortex from the breather when the vortex is pin

FIG. 10. Escape time for the vortex as a function of 1/T. The
slope ofEa50.0048 is the activation energy. Error bars repres
distribution of times within one standard deviation of the me
value.
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by the breather@Fig. 4~b!#. Figure 11 shows the phase as
function of time. When the breather is essentially isolat
this phase oscillates at a mean value of 0.058p. When the
vortex becomes pinned by the breather at aboutt;120, the
mean phase increases by 0.41p to 0.467p.

Figure 12 shows the circuit diagram of the breather.
will estimate the mean phase^w12

v &5w r by using a dc circuit
approximation. Thenv t5v l /2 implies i t5hil /2. Using cur-
rent conservation in nodea, i ext52i t1 i l , we get

i t5
h

2h12
i ext. ~4!

We can also assume that far from the breather, the curren
the vertical junctions is uniform and equal toi ext.

We let the current of the first quiet vertical junction to th
right of the breather be sinwr, i h5h sinwh is the current of
the horizontal junction, and, as an approximation, the n
quiet vertical junction current isi ext. We apply current con-
servation at nodeb,

sinw r5 i t2 i h1 i ext ~5!

and, using Eq.~4!,

w r5sin21S 3h12

2h12
i ext2h sinwhD . ~6!

t FIG. 11. Time evolution of the phase of vertical junction 1
between the pinned vortex and the breather.

FIG. 12. Breather circuit diagram. The rotating junctions a
marked by an ‘‘3’’: other quiet junctions are marked by shorts. A
of the vertical junctions in the array are biased by the exter
current.
7-6
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To satisfy fluxoid quantization far from the breath
where the currents are uniform,wh must bep f . We take
wh5p f as a first approximation, and substituting the para
eters of the simulations into Eq.~6!, w r50.038p.

A better approximation can be made by taking flux qua
tization of the cell into account,

w r2sin21i ext22wh522p f , ~7!

where we have neglected the induced flux in this cell~this
flux is exactly zero in thel5` limit.! Then sin(sin21 iext
12wh22p f )5sinwr, but 2wh22p f is small, so we linear-
ize the sine term of the left-hand side. We also substitute
the current sinwr and find

A12 i ext
2 ~2wh22p f !5

h

2h12
i ext2h sinwh. ~8!

We can solve forwh by linearizing the sine, and this resul
in

wh5
hiext/~2h12!12p fA12 i ext

2

h12A12 i ext
2

. ~9!

Substituting the parameters of the simulations,wh

50.82p f , and from Eq.~6!, w r50.057p, which is essen-
tially the simulated value.

To estimate the phase increase when a vortex coll
with the breather, we calculate the leading phase of the s
vortex from Eq.~A2!. We can solve forw t by first letting
w t52p/21d and linearizing sind. The result is

w t52
p

2
1

i h1h2cosp f

sinp f
. ~10!

The leading phase of the vortex is justw l5w t2p f 2p. If
we let i h5h sinpf, then we find thatw t520.38p and w l

50.32p. This is a good estimate for the static vortex. In o
case the vortex is pinned against the breather, soi h should
include a current term due to the breather. We leti h

5h sinpf1sinwt. Thenw t520.35p andw l50.35p. There
is still a problem in that in this situation we have broken t
left-right symmetry so thatw l1w rÞ22p, though numeri-
cally we find that it is approximately true.

As a rough estimate,w l50.35p is how much the phase o
the vertical junction 12 increases when the vortex collid
with the breather. Our rough estimate for the final pha
value is (0.05710.35)p'0.41p, which is 90% of the simu-
lated value.

To estimate the activation energy, we calculate how m
energy is needed to make the junction reach its critical c
rent. This will be of the order ofE5LJI

2/2. To reach the
critical current the phase must equalp/2. Let Dw5p/2
2^w12&, which will in general be small. In terms of th
current it is sinDw'Dw and the energy is simply the linea
ized Josephson energyEa5LJ(Dw)2/2. Using the simulated
valuesDw50.0033p, we find thatEa'0.005, which is what
was calculated in Fig. 10.
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With this phenomenological model, it should be possib
to find the activation energies for other parameters and o
vortex-breather states without the need to do time-consum
stochastic simulations.

V. CONCLUSION

We have studied, by means of numerical simulations,
ferent scenarios of the collision between a moving vor
and discrete breather in a Josephson-junction ladder a
We found that it is possible for them to coexist and co
structed phenomenological models so as to derive exp
sions for the bounds of the coexistence region. Single vo
ces have a maximum velocity associated with theLJC
resonance of the ladder and breathers have a minim
damping and current. By a careful choice of the parame
we have managed to numerically collide traveling vortic
with breathers.

We find that at some values of the parameters the disc
breathers act as pinning centers for moving vortices. A
vortices get pinned by the breather, they interact with
breather when thermally activated. We have calculated
activation energy for a set of array parameters. For typ
experimental values, we find that the activation energy
Ea522 K.

One possible future experiment would be to use a sc
ning superconducting quantum interference device~SQUID!
microscope to image this interaction. The array would
imaged first when only the breather is excited and then a
a vortex has been injected in the ladder. Depending on
parameters and temperature, a vortex would either bec
pinned or would collide and interact with the breather.

Also, other states could be excited to test the scena
shown in the previous sections. Briefly, these scenarios
respond to the excitation by the vortex of multisite breath
in its wake and the excitation by the vortex of a whirlin
mode front. In the latter case, depending on the intensity
the external current, the breather either impedes the prop
tion of the front or is destroyed as the front propagates.
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APPENDIX A: SINGLE VORTEX IN A LADDER

In this appendix we review some of the properties o
single vortex in a Josephson ladder. The ground-state p
lem and the static properties of a JJ ladder16–18are similar to
those of the Frenkel-Kontorova or discrete sine-Gord
~DSG! model. There exists, however, some important diff
ences. For instance, depending on the value ofl, there exists
a critical field f c for which, if f , f c , a single vortex is not
stable in the ladder. At large values ofl, if the field is
smaller than the critical value, the vortex is expelled from t
ladder through the horizontal junctions. At smaller values
7-7
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l, self-field effects are more important in the ladder a
vortices are stable at any value of the field. The critical va
of l for which this stability transition occurs isl.1 in an
array withh51.17

Sometimes it is physically acceptable to reduce the eq
tions of the ladder@Eqs. ~2!# to a simpler expression. Fo
instance, when studying static solutions, if we use curr
conservation and linearize the phases of the horizontal ju
tions around the solution, expressions for thew j

t(b)2w j 21
t(b)

terms are obtained. Linearizing aroundw j
h50, we get

N~w j
v!5

hl

h12l
~w j 11

v 22w j
v1w j 21

v !1 i ext. ~A1!

This is the DSG equation with a renormalized discreten
parameter ofleff5hl/(h12l) and is equivalent to the gov
erning equations of a Josephson-junction parallel array
the presence of an external field we can linearize aroundw j

t

52w j
b5p f and we get a similar expression where no

leff5hcos(pf )l/@hcos(pf )12l#.
Figure 13 shows a schematic of the ladder. If we plac

static vortex in a ladder that can be approximated by
~A1!, its core will be in one cell, but the vortex will exten
over a length roughly determined byleff . If leff is small,
then most of the vortex properties will be determined fro
this core cell. The interesting thing about the ladder a
these square geometries in general is thatleff is bounded by
h/2 in thel5` limit. So in some sense the vortex is alwa
localized. This is in contrast to the parallel array where
vortex size is unbounded. It is worth reiterating that in squ
geometries where every branch has a Josephson junctionl is
not the size of the vortex~unlessl is small andh51!.

Suppose we place a vortex in the middle of the ladde
depicted in Fig. 13. We first want to know if the vortex w
be stable. The criterion for stability is that the applied fie
must be greater than some critical fieldf c ; otherwise, the
vortex will escape through the horizontal junction. We c
do a rough estimation for this field working in the largel
limit. We will see that this calculus is valid at small values
h.

Current conservation at the top left node of the core c
of the vortex in Fig. 13 yieldsi h5sinwl1hsinwt, when the
bias currents are zero. We will assume up-down symme
so w t52wb, and also a left-right symmetryw l

52w rmod(2p). Or w l1w r522p for a positive vortex.
From fluxoid quantization of the cell with the vortex, w
then find thatw l5w t2p f 2p in the l→` limit. Current
conservation on the top node can now be written as

FIG. 13. A vortex in an anisotropic ladder. The large solid circ
represents a vortex.
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i h5h sinw t2sinw t cosp f 1cosw t sinp f . ~A2!

To solve for f c we need to knowi h. Far from the vortex
core, the vertical junctions are zero and fluxoid quantizat
is satisfied whenwh5p f . This results in a circulating cur
rent of h sinpf. As an approximation we leti h5h sinpf.

If the vortex is to escape the array through the top ju
tion, thenw t must be2p/2. We can then solve for the critica
f in Eq. ~A2!,

f c5
1

p
sin21S 12h2

11h2D . ~A3!

In reality, i h is not exactlyh sinpf, but as long ash is small
so thatleff is small and the vortex is localized, then the effe
of i h will also be small.

Figure 14 shows a comparison of Eq.~A3! and the nu-
merically calculatedf c for a ladder whenl55. The numeri-
cal calculations where performed by placing a vortex in
static equations whenf 50.5. Then we reducef while track-
ing the eigenvalues of the Jacobian. Whenever an eigenv
becomes greater than one then the underlying fixed p
becomes unstable. The value off where single vortex loses
stability is f c . Figure 14 shows that the approximate calc
lated f c is fairly accurate only whenh,0.5.

Many of the properties of a vortex in the ladder are
lated to the existence of a pinning barrier. All Josephs
arrays present a pinning barrier to the single-vortex motio23

The depinning current sets a lower limit on the applied c
rent needed to move a vortex.

This depinning current can be estimated from our sing
cell analysis when the vortex is highly localized. Now th
analysis becomes more difficult because, by applying a
rent and a field, we lose the left-right mirror symmetry of t
solutions. However, we will still explore the similarities be
tween the ladder and the DSG system to study the vo
depinning current. Figure 15 shows the depinning current
the DSG equation as a function ofleff . We see that whenleff

FIG. 14. Critical field needed to allow a single vortex to exist
a ladder. Solid circles are numerically calculated from full ladd
dynamics withl55. Solid line is the theoretical result from Eq
~A3!.
7-8
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is zero, the depinning current is 1 and in the largeleff limit
the depinning current goes to zero.

We will now compare this vortex depinning current to t
depinning current of a vortex in the ladder. Solid circles
Fig. 15~a! show i dep as a function ofl whenh50.5 for the
ladder. We have placed a vortex in the middle of the ar
and found the current where the pinned state loses stab
To compare this numerical result to the DSG, first we cal
late aleff for each point and then the correspondingi dep for
the DSG. The solid line isi depcalculated from the equivalen
leff of the DSG. We see that theleff estimation gives a very
good approximation at this value ofh.

Figure 15~b! shows the numerically calculatedi dep for a
vortex in the ladder as a function ofh whenl55. Again, for
every point we can calculate aleff and the corresponding
depinning current from the DSG equation. This is plotted
the solid line. We see that theleff results in good approxi-
mation.

Figure 15 shows that we can estimate the depinning
rent of a ladder by using a single parameterleff .

Once the vortex depins, it can move through the ladd
The vortex dynamics in this regime is analogous to that o
massive particle traveling through a viscous medium.24 The
current serves as the force, the capacitance energy is a
gous to the mass of the vortex, and the viscosity repres
the energy loss of the vortex to the array. There are
parallel channels that lead to a viscous drag. One is the
ergy dissipated by the resistors as the voltage profile of
vortex passes through the junctions. The other is the en
lost through the ripples in the vortex wake that are som
times referred to as spin waves.

In an infinite array, as the current increases the velocity
the vortex increases until the vortex becomes unstable
general, the vortex becomes unstable when it excites a r
nance in the array. For instance, in a parallel array, the vo
excites theLsC resonance. However, in square arrays l
our ladder, there are two resonancesLsC andLJC:13

FIG. 15. Depinning current for a sine-Gordon equation a
function of the square of the penetration depth (leff). Solid circles
in insets~a! and ~b! are numerically calculated depinning curren
of ladder when~a! h50.5 and~b! l55. Solid lines are from the
sine-Gordon equation using theleff value.
05451
y
ty.
-

s

r-

r.
a

lo-
ts
o
n-
e

gy
-

f
In
o-
x

vLsC
2 5F1AF22G, ~A4!

vL jC
2 5F2AF22G, ~A5!

where F5@112l/h14l sin(z/2)2#/2 and G54l sin(z/2)2

and from physical grounds we expect the wavelength to
well approximated byz52p f , i.e., the average distribution
of vortices in the array.

The LJC resonance occurs at smaller frequenci
Thereby, it gets excited first in the square array.25 Therefore,
a vortex becomes unstable when the ripples in the wake
cite the LJC resonances of the junctions. Depending onG
andh, this sets an upper limit of the applied current where
localized vortex can dynamically exist.

APPENDIX B: VORTEX AND BREATHER EXISTENCE
REGION

We now have a way of calculating the parameter regi
where a vortex is stable and what its maximum travel
velocity is. We will do a similar analysis for the discre
breather.

For the breather to exist in the array, the junctions mus
underdamped. This sets a limit onG. The minimum current
and maximum current for the the breather have be
calculated.13 The maximum current is

i 15
h11

2h11
, ~B1!

while the minimum current is

i 252~h11!
4

p
G. ~B2!

We will useG50.1. This an an experimentally realizab
value and most of the ladder arrays we have measured
approximately this damping. Also, forf , f c , the single vor-
tex is unstable in the array. Since we want to study vor
breather collisions, we choosef 50.3 so as to provide a larg
enough barrier for the vortex to remain in the ladder. T
implies from Eq.~A3! that h.0.3. We leth50.5.

There is still the choice ofl. Figure 3 shows the existenc
region of a breather and vortex in ladder. The solid circles
Fig. 3 show simulation results for a ladder with period
boundary conditions with an initial condition of a sing
pinned vortex. As the current increases, the vortex first
comes depinned ati dep. As the current increases, it destab
lizes ati ext.0.5 when the moving vortex resonates with t
LJC resonance. The solution then evolves into a whirli
mode front so that above this maximum current the ar
does not support a single moving vortex. The hatched reg
in Fig. 3 shows the parameter space where a single mo
vortex can exist in the array.

As l decreases, the pinning barrier increases as expe
from Fig. 15, but the maximum vortex current stays re
tively unchanged. The horizontal dashed line ati ext50.52 is
calculated from assuming that the flux-flow resistance isf
and theI -V is v5(2 f )( i ext2 i dep) wherev is theLJC reso-

a
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nance and we solve fori ext. This is a rough calculation sinc
the flux-flow resistance should increase asl goes to zero. To
approximate, we take thel→` limit, so we usei dep50.36
and 2f for the flux-flow resistance. Sincei dep increases asl
goes to zero, we expect the maximum current to increas
well, but the flux-flow resistance also increases and this
tend to reduce this maximum current. Therefore, the ma
mum current increases at a slower rate than the depin
current. This implies that there is a critical value ofl where
the array does not allow a moving vortex. The minimuml
for these parameters appears to be;0.4 and can be estimate
from the intersection of theLJC resonance andi dep curves.

Figure 3 also shows the existence region for the symm
ric type of breathers. The bottom solid line ati ext50.38 is the
minimum current that is expected from the retrappi
mechanism, Eq.~B2!. The top solid line ati ext50.91 is the
maximum current current of the breather, Eq.~B1!. The two
curving dashed lines are theLsC resonances. There are tw
branches because the horizontal junction rotates at half
voltage of the vertical junction. Thus resonances occ
whenv or v/2.vLsC

. To convert from the resonant voltag
en

-

its

.

a-

D
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to current, we have used the approximate equation of
I -V.13 In the figure we have also marked three different D
solutions:21 B1a is the breather solution when theLsC reso-
nances is above the junction voltages, B1b exists when the
LsC resonance are between the voltage of the vertical
horizontal junction, and B1 is the solution when theLsC
resonance are below the array the voltages. There is al
region in Fig. 3 that allows for aperiodic breathers, but
order to simplify the graph it is not shown.

The main point of Fig. 3 is that there is a region in th
parameter plane where a DB can coexist with a single vo
in a ladder. It is this overlap that allows us to study intera
tions between breathers and vortices. This overlap w
change with the parameters. For instance, if we increash,
then the depinning current would decrease, but the retrap
current of the breather would increase so the overlap e
tence region would be smaller. In this paper we have p
sented some results of interaction between breathers
vortices and to avoid any effects of the resonances we fi
l55.
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