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Interactions between Josephson vortices and breathers
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We study vortex-breather collisions in a Josephson-junction ladder array. We have computed parameters
values of the system for which both types of structures coexist in the ladder. In order of increasing bias current,
we have found different possible scenarios for vortex-breather collisionst low bias current, the breather
acts as a pinning center for a single vortéi. Increasing the current, the vortex excites multisite breathers in
its wake and is finally pinned by the breathgii.) At still higher current, a whirling mode front is excited by
the vortex. However, the breather still acts as a pinning center, but now for the (frorat higher values of
the bias, the front is able to destroy the breather. For scefiarizve have also studied thermal activation
properties associated with the presence of the vortex-breather pair in the array.
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[. INTRODUCTION tobreathers have been detected in arrays with a ladder geom-
etry driven by dc external currenfs*3and are robust against

The nonlinear dynamical concept obherent structures thermal and other fluctuations. Interestingly, as prediéted
or coherent excitationBas important consequences when apfamilies of solutions with different voltage symmetries were
plied to condensed matter systemmSpatially or temporally ~found.
coherent structures appear in many nonlinear extended sys- In this paper we will numerically study the simplest inter-
tems. Such structures usually can be characterized by mark&@gtion that occurs when a moving vortex collides with a
particlelike properties. In the past few years, these notion§tationary rotobreather. We first will briefly review the de-
have become fundamental for understanding many problenfi€ription of the system and the simulated equations for the

and their implications extend over different fields of the dynamics of the ladder. Then we present four different sce-
physics of continuous and discrete systems. narios of collisions of a vortex with a rotobreather. In one of

In one dimension, the concept of a soliton is applied tothe cases the result of such a collision is a vortex-breather

intrinsically localized structures with a topological charge.pair. We will then show that a discrete breather acts as a
Examples of a soliton are kinks in discrete systems, discomPinning center to vortex motion, study the equilibrium prop-
mensurations in commensurate-incommensurate transitioffties of such a pair in the presence of temperature, and
theory, or fluxons or vortices in Josephson arrays. Recentigalculate an energy barrier associated with the pair. Finally,
intrinsic localized modes without topological charge, knownWe dedicate two appendixes to review some of the properties
also asdiscrete breatheriDB’s), have been Studie?d'.4 A of a Single vortex and a DB in a JJ ladder array, because it is
DB corresponds to a dynamical solution of a discrete nonlinhecessary to know the parameter values where both a
ear system for which energy remains spatially localized inPreather and a moving vortex can coexist in a ladder.

the lattice. In a single-site DB the order parameter describes
large amplitude oscillations or rotations on one of the sites of
the lattice while small amplitude oscillations occur on the
other sites. This localization is intrinsic and generic in homo- Figure 1 shows the circuit diagram for a Josephson ladder
geneous nonlinear discrete systems and does not carry a@yray where junctions are marked by ax ” This configu-

Il. JOSEPHSON LADDER

associated topological charge. ration differs from the parallel array in the presence of hori-
Linking the subjects of coherent structures and the phys-

ics of condensed matter systems and devices, Josephson- J ; 7

junction- (JJ9 based arrays provide an almost ideal experi- l ext ‘ (pj J @ ‘

mental system to test many of these nonlinear concepts. This — M e ¢ 3¢ S ove —H—

is because JJ's are solid-state realizations of nonlinear oscil- v 7)1k o v

lators which can be easily coupled using standard litho- ? X (pj/ I )x (pj+] )((pN+]

graphic techniques. Indeed, many experimental studies in the —> e XK Xb WK oo A

field have been devoted to investigate the static and propa- ‘ ‘ o. ‘ i

gation properties of vortices in long and small JJ arrays in /

their classical ® or quantum regimes. FIG. 1. The anisotropic ladder array with uniform current injec-

Recently, small JJ arrays have been successfully designedn. Vertical junctiongwith superscripv) have critical current,
for the experimental study of a large family of DB solutions and horizontal junctiongwith superscriptt and b) have a critical
named rotating localized modes or rotobreathers. These raurrentl ., .
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ideal Josephson junction with a critical currentl@f a ca-

(@) - )(( pacitorC;, and a resistancR;. The ideal Josephson junc-
X K [ ] 3 b ) ¢ . J . . i .
1 ; ~ N ‘s 1 tion has a constitutive relation ¢f=1{sing;, whereg; is
T I\ 3( =7 z\ T the gauge-invariant phase difference of the junction. When
there is a voltage across the junctiom,, then v;
j j
l l l l l =(Po/2m)de;/dt.
We will also use the standard Langevin approach to in-
(b) ... e’ @;V/Z/\)‘ O o clude thermal effects. We replace the resistor by a noiseless
e < X ,(@ K resistor in parallel with a Johnson current noise source. The
. ‘2,40 0‘2,4 “\g/ Josephson junctions are then modeled by
oo 2V o L .
- T N_
i i i i l Civj+ﬁj+|£:5m¢j+lj_lexta (1

FIG. 2. (a) Sketch of a single-vortex configuration in the ladder Where<lj!\'(t)l|’:'(t’))= (2kT/RJ-)5(t—t’)5jk _ This results in

atf=0 andl .=0. In the absence of an external field this configu- the usual current noise spectrum den§;yt 2kTIR
j -

ration is stable only at small values bf (b) Sketch of the single- Anisotropic ladders can be fabricated by varying the area

site DB studied in the paper. The ladder is biased by a dc eXtemaAf the horizontal and vertical junctions. The normal-state re-
current and one vertical and four horizontal junctions rotate while :

) sistance is inversely proportional to the junction area because

the others librate. of the constant R, product. We will usel ., for the hori-

o . ) zontal junction critical current ant},, for the vertical junc-
zontal junctions and can be considered the simplest squa@yn critical current. The anisotropy parametecan then be
two-dimensional2D) array. The JJ parallel array is usually gefined ash=1.,/l,,=Cy/C,=R, /Ry,.
described in terms of the discrete sine-Gordon or The open boundaries imply that the current on the top
Frenkel-Kontorova modéla model which has been paradig- horizontal junctions must be equal but opposite to the current
matic for studying kinks and commensurate-incommensuratg, the bottom horizontal junctions, and this bottom one is

transmonsl.“f’ _ _ . equal to the mesh curreiff'. The junctions in the array are

The static properties of a vortex in the ladder are S'm"arcoupled by means of current conservation and fluxoid quan-
to those of a kirzsklig the Frenkel-Kontorova or dis_crete sine+i-ation. After normalizing the currents bl, we get the
Gordon systerﬁ. There are, however, some differences, ¢, 15ing governing-equations in the self-inductance limit:
the most important of which is the existence of a critical
magnetic fieldf, for which, if f<f., a single vortex is not \
stable in the laddéer Below this critical field the vortex is N(qp}): _{onv—(p})ﬂ—@}-q- @J.b+ 27fl,
expelled from the ladder through the horizontal junctions. h
Thus vortices are stable static solutions of the array at ad-
equate parameter values and, in the absence of external cur-M¢!) =AY, 1= 2" + ¢} 1+ 0| — @] 1— ¢ + @] 1}
rents, a static vortex in the ladder corresponds to a solution
for which the phase of the vertical junctiog$ go from 0 to
21 [see Fig. 2a)]. N

Another important difference between the ladder and par- by v v t b
allel array is tﬁat when biased by dc external currents arl)ad— Me)==plei—efuam gyt o/+2mth @
der sustains discrete breather solutions. A DB in the ladder
corresponds to a dynamical state where one of the vertical e let the functional\{¢) = ¢+T {+sin z,oJriJn represent
junctions is in a resistive rotating state Wh”i t)he others li-the current through a junction. The noise spectruni/ois
brate around some equilibrium position. Figut®)Zshows a _ ,
sketch of such a solution where, in order to satisfy Kirch-i'((lfljg:iflE;hd Xiﬁg?l th?heJgisr;?sgssi%rr]ﬂesesng%ﬁéra-
hoff’s voltage law, the four horizontal junctions next to the o oo _ s
rotating vertical one also rotate. This configuration is thef[ure is thenl =kT/E, . The exte_rnal (_:urrent is normalized as
simplest DB solution within the diversity of states that have!'ext™ /Iy and_f measures, in units °f.th‘? _flux quantum
been numerically and experimentally foultd!*In this pa- by, the magnetlc field flux through each individual cell. The
per we will refer to this type of single-site symmetric discreted@mping isl'= y®o/27rl,R,C,. We note that because the
breather solution where one vertical and four horizontalnisotropy in our arrays is caused by varying the junction
junctions rotate. Although there are other types of discret@réa,l’ is the same for every junction in the arrayis the
breather solutions, we will set our parameter values to théatio between the Josephson inductance and the mesh self-
region of predominance of these symmetric solutions. inductance\ = ®o/(2mlL).

The object of this paper is a numerical study of vortex- In Eq. (2), j=1 to N and, at the open boundarieg;
breather interactions in a JJ ladder array. To carry out our ¢y=0, eh=02=0, ol 1=¢l+2xf, and ¢j=¢}
numerical study we need to derive a model for the array. The- 2= f, where the phases g0 andj=N+1 are for math-
junctions will be modeled by the parallel combination of anematical convenience and do not represent real junctions.

Fiext
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FIG. 4. (a) Ladder array with a breather and an approaching
vortex. (b) At a later time, the vortex is pinned by the breather.

ext

0.2 pinned vortex 1 between breathers and vortices. This overlap will change
with the parameters. For instance, if we increhsthen the
, , ‘ ‘ depinning current would decrease, but the retrapping current
0 1 2 3 4 5 of the breather would increase, so the overlap existence re-
by gion would be smaller. In the next section we present some
) ) ~ results of interaction between breathers and vortices and to
FIG. SH E’;'Ster?cg region of our tyfie (t)r]: breathers ‘:]‘”d a S'I”%'(?avoid any effects of the resonances weNet5 and we will
vortex. The hatched region represents € Space where a la P . : : :
supports 5 single travgling voF;tex alivlyd a?nd 0 The Start with i o,,=0.45. Also, we will set in our simulationE

dashed lines are,_ . and 2, . =0.1,f=0.3, andh=0.5 as explained in Appendix B.

The vorticity n; is defined through the expression ll. VORTEX-BREATHER COLLISIONS
_ v _ v _ t b ind
=(12m){[¢7]-[¢j+1l [‘Pi]’L[‘PJ]}Jrinfd’:f;n . where[¢] To study the interaction between a single vortex and the
represents the phases modulusahd f;™=i, /2. DB we have used a ladder array with 60 cells. We have done

This system of equations has_two !inearized _modes réPréyumerical simulations of Egs(2) using a fourth-order
sented byw, ¢ andw, ¢ as explained in Appendix A. In the  pynge-Kutta algorithm in the absence of noise and a third-
rest of the article, we will refer to these linear modes as therrder one for integrating the stochastic probfEmn this

L,C andL ;C resonances. section we will present simulations in the deterministic limit
In order to study vortex-breather interactions in the lad-(zero temperatuje
der, first we need to study the parameter val(led’, A, f, We have found four main scenarios when increasing the

andi e,y for which DB’s and vortices coexist. We present the external bias current(i) At the lowest current, the vortex
details of this study in two appendixes. The main conclusiorcollides with the breather and gets pinned to it. In this case
is that there exists a wide region in the parameter space fahe breather is acting as a pinning center for the single vortex
the coexistence of vortices and DB’s in the array. (Figs. 4 and B (ii) As the current increases, the vortex
Figure 3 shows the existence region of a breather and @auses some of the vertical junctions to switch and it thereby
vortex in ladder. The hatched region shows the parametesxcites multisite breathers in its wake. The vortex eventually
space where a single moving vortex can exist in the arraycollides with the breather and in the resulting interaction the
The vortex depins atye, and as the current increases it de-vortex escapes the laddgtig. 6). (iii ) At still larger current,
stabilizes at.,=0.5 when the moving vortex resonates with the vortex causes all of the vertical junctions in its wake to
theL;C resonancédot-dashed line The moving vortex can rotate. The resultant state is a whirling mode front which
then excite junctions in its wake to rotate. Above this maxi-collides with the breeather, and due to this interaction the
mum current, the array does not support a single movindront ceases to propaga(€ig. 7). (iv) At higher values of the
vortex and instead the trailing edge of the vortex excitesias, the vortex, accompanied by the excited whirling front,
every vertical junction in its wake. This state can be inter-collides with the breather and annihilategFig. 8).
preted as an advancing front of a whirling mode. In our simulations, a breather is initially placed in vertical
Figure 3 also shows the existence region for the symmetunction 11 and a single vortex is placed at junction 47, so
ric discrete breathers studied here. The bottom solid line aboth are far enough from the edges of the arfay0 and we
iext=0.38 is a rough estimation of the minimum currgas  start with an applied current,=0.45. In this situation the
expected from the retrapping mechanism, B8R)].2° The  vortex moves toward the breather.
top solid line atigw=0.91 is the maximum current of the We can look at the phases to get information on the dy-
breather, Eq(B1). The two curving dashed lines are thgC namics of the array. Figure(@ sketches the situation when
resonances. There are two branches because the horizonttaé vortex is approaching the breather. The solid circle shows
junction rotates at half the voltage of the vertical junction.the vortex location and the arrows the rotating junctions as-
Bl, Bla, and B1B represent different single-site DB sociated with the breather. At this moment, the vortex is
solutions?! There is also a region in Fig. 3 that allows for eight cells from the breather. At a later time, the vortex col-
aperiodic solutions, but in order to simplify the graph, it is lides with the breather and it gets pinned. If the breather is
not shown. centered in vertical junction 11, the vortex gets pinned be-
As shown in Fig. 3, there is a region in the parametertween vertical junction 12 and 13 as shown in Figb)4
plane where a DB can coexist with a single vortex in a lad{Also, although is not showed in the figure, two moving
der. It is this overlap that allows us to study interactionsvortices can be used to describe the DB dynarhics.
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FIG. 5. Vertical junction instantaneous voltage plot of a single  FIG. 6. Vertical junction instantaneous voltage plot of a single
vortex colliding with a breatherig,=0.45). The final state is vortex colliding with a breatheri,~=0.5). The moving vortex
shown in Fig. 4b) switches some of the vertical junctions to rotate. The final state

shows three multisite DB’s with three, six and eight vertical rotating

Another way of extracting information from the simula- junctions, respectively.
tions is to look at the velocities of the phases—instantaneous
voltages—of the vertical junctions. Figure 5 plots these volt- At higher values of the external current the moving vortex
ages as a function of time; the darker regions represer@ixcites to the rotating state all the vertical junction in its
higher voltages. Far from the vortex all the junctions libratewake. Now, instead of multisite breathers, the result is a
around zero except the vertical junction 11 sustaining thavhirling mode front which advances excited by and associ-
breather which oscillates around a nonzero dc value. As the
vortex moves from right to left, it creates a voltage spike 250 —
every time it crosses a junction because a junction phase slij
of 27 occurs. The plot shows these voltage spikes. The plot,
however, does not show that the traveling vortex actually 200
gets pinned when it collides with the breather as shown in
Fig. 4(b).

If we increase the current drive abovg,~0.5, then
single moving vortices are not stable in the array because
they resonate with the;C resonance. Instead, some or all of &
the vertical junctions in the vortex wake are switched to the +
whirling mode. 100 —

Figure 6 shows one of these situations whgp=0.5. The
moving vortex causes some, but not all, of the vertical junc-
tions to switch to the rotating mode. These jumps in fact 50 —
corresponds to the excitation of multisite DB’s in the ladder.

At time =170 the vortex collides with the breather. After this

collision, the vortex escapes the ladder, but the result of the

interaction is now a three-site breather state located in junc

tions 11-13. We can see that now the steady state of thi

ladder corresponds from right to left in the figure to a eight-

site DB with junctions 28—35 rotating, a six-site DB located

in junctions 2025, and a three-site DB located in junctions  rg, 7. vertical junction instantaneous voltage plot of a single
11-13. This scenario is dependent on the initial conditiongortex colliding with a breatheri,=0.55). The moving vortex
and other simulation parameters, but it is still interesting toswitches all of the vertical junctions to rotate. In the final state all
note that at the transition between a stable moving vortexhe vertical junctions between the initial position of the vortex and
and a propagating whirling mode, a moving vortex can exthe breather are in the whirling state, while the others are in the
cite breathers in the ladder. superconducting state.

150 —

\ \ \ \ \ \
10 20 30 40 50 60

vertical junction
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FIG. 8. Vertical junction instantaneous voltage plot of a single  FIG. 9. Simulation with temperature of a breather in junction 11
vortex colliding with a breatheri{,=0.59). The vortex switches and a pinned vortex next to [iFig. 4(b)]. At time ~50, the vortex
all of the vertical junctions in its wake and annihilates the breatherdepins and interacts with the single-site breather to form a two-site
breather.

ated with the vortex. Figure 7 shows the result of a simula-

tion with i.,=0.55. At this applied current, the whirling Potential well is given by an Arrhenius formula

mode front collides with the breather and the resulting inter-

action destroys the single site breather at junction 11 and it 7(T)=r,e5a/koT, 3
causes the front propagation to stop. The resulting final state . : . . .
is that all the junctions between the initial position of the WhereE, is the height of the potentlal barrier and IS gener-
breather, junction 11, and the initial position of the vortex,aIIy referreq tp as an a<_:t|vat|on en_elrgy. The tim@) is
junction 47, are in the resistive state meanwhile the othef2lled the lifetime at a gived, and 7, * is the attempt fre-
junctions are in the superconducting state. In fact, such guency- Equation(3) is usually derived from a low-

state corresponds to a large multisite DB which extends frorﬁempe(;ature _I'ml't’ soitis a(;]curate at smal tem_;lj_gr_aturesh
junction 11 to junction 47, In dynamical systems that are not in equilibrium, the

Figure 8 shows the result of a simulation if we increaseProblem can be generalizeq to them_]al escape from_an attrac-
g tor that may not necessarily be a fixed point. For instance,
our DB is not a fixed point, but rather a limit cycle with
some periodicity. In this case, thermally induced escape can
also be modeled by E@3). The notion of an activation en-
ergy can be interpreted as the minimum energy required to
move a noise-free trajectory to the boundary of its attractor.
In the following, we will numerically calculate the activa-
tion energy by performing stochastic simulations and de-
IV. ENERGY BARRIER ASSOCIATED WITH THE velop a simple model that gives an order-of-magnitude esti-
VORTEX-BREATHER PAIR mate for the activation energy.
In order to take into account thermal effects in the system
e included in our model for the dynamics a Johnson noise

the current drive further. Att,,,= 0.59 the vortex and excite
front collide with the breather and destroy the breather. Th
vortex and whirling mode front continue to travel through
the array until all the array to the left of the initial position of
the vortex is in the whirling state with all these vertical junc-
tions rotating.

We have seeliFigs. 4 and bthat if the current drive is
small enough, the DB appears to act as a pinning center. N : Noox s Nyor ,
we conside? the effects ?)? additive noise, tr?en a ?IuctuationCurrent sourf:elj.(t) with (17 ()1(t )>:2|.(T/Ri é(t_t ).
may cause the vortex to overcome the breather energy barrifiter normalizations, _‘h‘i value for the d|n_1ens.|onle_ss tem-
and so the breather and vortex can combine in some fashioRerature(see Sec. M is T=KkT/E;. For typical junctions,
Equivalently, in general, a trajectory in phase space mayc,=96#A/h whereh=0.5. ThenE,;=4.5x 10°K and with
move from one basin of attraction to another under the preshis normalization 4.2 K equai§~9.3x 10 4,
ence of noise. We are both interested in the mean escape time We have done simulations of the ladder with an added
from the basin of attraction that corresponds to Figh)4 Johnson noise. We start our simulation with the initial con-
which is a vortex pinned by a breather and the final statalition shown in Fig. 4b). This is a steady-state solution
after the vortex interacts with the breather. where the vortex is pinned next to the breather. We then

In systems under equilibrium, the rate of escape from antegrate our ladder equation with the added noise sources
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FIG. 10. Escape time for the vortex as a function of.1The
slope of E,=0.0048 is the activation energy. Error bars represent FIG. 11. Time evolution of the phase of vertical junction 12
distribution of times within one standard deviation of the meanbetween the pinned vortex and the breather.
value.
by the breathefFig. 4(b)]. Figure 11 shows the phase as a

until the vortex overcomes the barrier and combines with thdunction of time. When the breather is essentially isolated,

breather. Figure 9 shows the plot of a simulation with noisehis phase oscillates at a mean value of 0@58/hen the

of a breather in junction 11 and a pinned vortex. We have sefortex becomes pinned by the breather at aliott20, the

our normalized temperature to<5l0~3. We see that in this Mean phase increases by Omtb 0.467r.

particular simulation at time equal to 50 the vortex over- Figure 12 shows the circuit diagram of the breather. We

comes the barrier and the single-site breather becomes a tw@ill estimate the mean phage?,) = ¢" by using a dc circuit

site breather. The final state depends on the temperaturapproximation. Then'=v'/2 impliesi‘=hi'/2. Using cur-

Sometimes the single breather turns intorasite breather —rent conservation in nod&, ie=2i'+i', we get

with m>2. If the temperature is large, then the vortex can

escape through the top horizontal junction and thereby not " h

interact with the breather. At the low normalized temperature P = oht 2 ext: )

of <5x10 3 the breather and vortex almost always form a

two-site breather after a finite amount of time. We can also assume that far from the breather, the current of
At any given temperature, there will be a distribution of the vertical junctions is uniform and equal itg.

times for the vortex to depin. Numerically, we can define this  We let the current of the first quiet vertical junction to the

depinning event when the junction separating the vortex angight of the breather be sig, i"=hsin¢" is the current of

the breather slips over. In this way we are able to calculate the horizontal junction, and, as an approximation, the next

a series of histograms for a given temperature. quiet vertical junction current ik.,;. We apply current con-
Figure 10 plots the average escape time for the vortex aservation at nodé,

a function 1T. Each temperature is the average of hundreds

of events. The slope of this line is the activation energy and sing" =i'—iM+igy (5

is equal toE,=0.0048. Also,7,=23.5. We can now calcu-

late the lifetime of the pinned vortex. For example, the life-and, using Eq(4),

time of the vortex at 4.2 K ig-=23,50.0048/0.0004& 4 5 1 ?

in normalized units. 3h+2
To find the unnormalized values, we use typical experi- o'=sint miext—hsincph . (6)
mental parameters. The maximum critical currentlis
=(96 «A)/h, and the capacitance =360 fFh. Also, for )
these simulation®i=0.5. Our equations have time normal- ’ml ¢ <Ph ®f
ized by 14/L;C~0.9x 10*2 Therefore the lifetime at 4.2 K % @ 3¢ ®
is 4.4<10 %seconds or~225 MHz. This lifetime will be Lot (plx o Ylew
smaller(and the corresponding frequency langas the tem- s 3¢
perature is increased. ConverselyTat 300 mK the lifetime ‘
is longer than the age of the universe. Also, the unnormalized
activation energy i€,=22K. FIG. 12. Breather circuit diagram. The rotating junctions are

To develop a simple model it is instructive to plot the marked by an %”: other quiet junctions are marked by shorts. Al
phase of vertical junction 12: that is, the junction that sepaof the vertical junctions in the array are biased by the external
rates the vortex from the breather when the vortex is pinnedurrent.
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To satisfy fluxoid quantization far from the breather  With this phenomenological model, it should be possible
where the currents are uniforng” must berf. We take to find the activation energies for other parameters and other
o"=xf as a first approximation, and substituting the paramvortex-breather states without the need to do time-consuming

eters of the simulations into E¢6), ¢'=0.0387. stochastic simulations.
A better approximation can be made by taking flux quan-
tization of the cell into account, V. CONCLUSION
o —sin i — 2¢"=—27f, @) We have studied, by means of numerical simulations, dif-

ferent scenarios of the collision between a moving vortex
where we have neglected the induced flux in this ¢#lis ~ and discrete breather in a Josephson-junction ladder array.
flux is exactly zero in the\=c limit.) Then sin(sinti,,, We found that it is possible for them to coexist and con-
+2¢"—27f)=sing', but 2o"— 27 f is small, so we linear- structed phenomenological models so as to derive expres-
ize the sine term of the left-hand side. We also substitute fopions for the bounds of the coexistence region. Single vorti-
the current sir" and find ces have a maximum velocity associated with thgC
resonance of the ladder and breathers have a minimum
h damping and current. By a careful choice of the parameters
\/1—iezxt(2<ph—21-rf )= miem—hsincp“. (8) we have managed to numerically collide traveling vortices
with breathers.
We find that at some values of the parameters the discrete

We can solve forp" by linearizing the sine, and this results - . )
; breathers act as pinning centers for moving vortices. After

in
vortices get pinned by the breather, they interact with the
breather when thermally activated. We have calculated this
h:h'eXt/(zthz)“LZWf V1=15a 9) activation energy for a set of array parameters. For typical
? h+2‘/1_iezxt ' experimental values, we find that the activation energy is
E,=22K.
Substituting the parameters of the simulations One possible future experiment would be to use a scan-
=0.82xf, and from Eq.(6), ¢"=0.0577, which is essen- ning superconducting quantum interference dey®@UID)
tially the simulated value. microscope to image this interaction. The array would be

To estimate the phase increase when a vortex collidegnaged first when only the breather is excited and then after
with the breather, we calculate the leading phase of the stati@ vortex has been injected in the ladder. Depending on the
vortex from Eq.(A2). We can solve forp! by first letting ~ parameters and temperature, a vortex would either become

o'=—m/2+ & and linearizing sid. The result is pinned or would collide and interact with the breather.
Also, other states could be excited to test the scenarios
+  i"th—cosmf shown in the previous sections. Briefly, these scenarios cor-
o'=- 2 + ~sinaf (10 respond to the excitation by the vortex of multisite breathers

in its wake and the excitation by the vortex of a whirling
mode front. In the latter case, depending on the intensity of
the external current, the breather either impedes the propaga-
tion of the front or is destroyed as the front propagates.

The leading phase of the vortex is just=¢'— 7f— . If
we leti"=hsin#f, then we find thatp'= —0.387 and ¢'
=0.32r. This is a good estimate for the static vortex. In our
case the vortex is pinned against the breathei,"sshould
include a current term due to the breather. We ilet ACKNOWLEDGMENTS
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As a rough estimatep = 0.357 is how much the phase of 4 Spain.

the vertical junction 12 increases when the vortex collides
with the breather. Our rough estimate for the final phase
value is (0.05# 0.35)7~0.41s, which is 90% of the simu-
lated value. In this appendix we review some of the properties of a
To estimate the activation energy, we calculate how muchingle vortex in a Josephson ladder. The ground-state prob-
energy is needed to make the junction reach its critical curtem and the static properties of a JJ ladfef®are similar to
rent. This will be of the order oE=L,1%/2. To reach the those of the Frenkel-Kontorova or discrete sine-Gordon
critical current the phase must equal2. Let Ap=n/2  (DSG model. There exists, however, some important differ-
—(¢12, which will in general be small. In terms of the ences. For instance, depending on the valug, tfiere exists
current it is simMe~A¢ and the energy is simply the linear- a critical field f, for which, if f<f_, a single vortex is not
ized Josephson enerd, =L ;(A¢)?/2. Using the simulated stable in the ladder. At large values af if the field is
valuesA ¢=0.0033r, we find thatE,~0.005, which is what smaller than the critical value, the vortex is expelled from the
was calculated in Fig. 10. ladder through the horizontal junctions. At smaller values of

APPENDIX A:  SINGLE VORTEX IN A LADDER
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FIG. 13. Avortex in an anisotropic ladder. The large solid circle 0.2
represents a vortex.

\, self-field effects are more important in the ladder and
vortices are stable at any value of the field. The critical value
of \ for which this stability transition occurs %=1 in an % 0.2 04 06 0.8 1
array withh=1.1" b

Sometimes it is physically acceptable to reduce the equa-
tions of the laddefEqgs. (2)] to a simpler expression. For FIG. 14. Critical field needed to allow a single vortex to exist in
instance, when studying static solutions, if we use curreng ladder. Solid circles are numerically calculated from full ladder
conservation and linearize the phases of the horizontal junatynamics withhA =5. Solid line is the theoretical result from Eq.
tions around the solution, expressions for ) —¢!®)  (A3).
terms are obtained. Linearizing aroum?i'i: 0, we get

i"=hsing'—sing'cosnf+cosp'sinaf.  (A2)

Mej)= h+ 2\ (¢]+172¢] T ¢ ) Fien (AL To solve forf, we need to know". Far from the vortex
core, the vertical junctions are zero and fluxoid quantization

i isfi h— i i i i .
This is the DSG equation with a renormalized discreteness’ satisfied whenp™= . This results in a circulating cur

parameter ol =hN/(h+2\) and is equivalent to the gov- renlfc ?;2 \Sllc:]rg ,iA;’s tznegggrcéxlrr?:t;rnawfhlr%f;:# frllgtg unc-
erning equations of a Josephson-junction parallel array. In t P y 9 P)

. . . tion, thene' must be—7/2. We can then solve for the critical
the presence of an external field we can linearize arop,fnd

=—(pjb=7Tf and we get a similar expression where nowlc in Eq. (A2),
Nei=hcos(@rf )N[hcos(rf )+ 2\ ].

Figure 13 shows a schematic of the ladder. If we place a

static vortex in a ladder that can be approximated by Eq.

(A1), its core will be in one cell, but the vortex will extend

over a length roughly determined By.g. If Ao is small,  In reality,i" is not exactlyh sin#f, but as long a$ is small
then most of the vortex properties will be determined fromso that\ o is small and the vortex is localized, then the effect
this core cell. The interesting thing about the ladder andf i" will also be small.

these square geometries in general is iatis bounded by Figure 14 shows a comparison of E@3) and the nu-

h/2 in thex = limit. So in some sense the vortex is always merically calculated . for a ladder wher\ =5. The numeri-
localized. This is in contrast to the parallel array where thecal calculations where performed by placing a vortex in the
vortex size is unbounded. It is worth reiterating that in squarestatic equations whefi=0.5. Then we reduceéwhile track-
geometries where every branch has a Josephson junct®n ing the eigenvalues of the Jacobian. Whenever an eigenvalue
not the size of the vortexunlessh is small andh=1). becomes greater than one then the underlying fixed point

Suppose we place a vortex in the middle of the ladder abecomes unstable. The value folvhere single vortex loses
depicted in Fig. 13. We first want to know if the vortex will stability is f.. Figure 14 shows that the approximate calcu-
be stable. The criterion for stability is that the applied fieldlated f, is fairly accurate only wheh<0.5.
must be greater than some critical fielld; otherwise, the Many of the properties of a vortex in the ladder are re-
vortex will escape through the horizontal junction. We canlated to the existence of a pinning barrier. All Josephson
do a rough estimation for this field working in the large- arrays present a pinning barrier to the single-vortex matfon.
limit. We will see that this calculus is valid at small values of The depinning current sets a lower limit on the applied cur-
h. rent needed to move a vortex.

Current conservation at the top left node of the core cell This depinning current can be estimated from our single-
of the vortex in Fig. 13 yield$"=sin¢'+hsin¢', when the  cell analysis when the vortex is highly localized. Now the
bias currents are zero. We will assume up-down symmetryanalysis becomes more difficult because, by applying a cur-
so ¢'=—¢° and also a leftright symmetry¢' rent and a field, we lose the left-right mirror symmetry of the
=—¢'mod(27). Or ¢'+¢'=—21 for a positive vortex. solutions. However, we will still explore the similarities be-
From fluxoid quantization of the cell with the vortex, we tween the ladder and the DSG system to study the vortex
then find thate'= @'~ 7f — 7 in the A—oo limit. Current  depinning current. Figure 15 shows the depinning current for
conservation on the top node can now be written as the DSG equation as a function ©f;. We see that wheRg«

1 1( 1-h?
: (A3)

fe=2 i T2
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1 ' ' ' ' wf c=F+\F?-G, (A4)
08 of c=F—F?-G, (A5)
0.6 where F=[1+2\/h+4\ sin(@@2)?]/2 and G=4\ sin(z/2)?
& and from physical grounds we expect the wavelength to be
- 0.4l . : % s well approximated by=2f, i.e., the average distribution
A h of vortices in the array.
The L;C resonance occurs at smaller frequencies.
0.2¢ Thereby, it gets excited first in the square afayherefore,
a vortex becomes unstable when the ripples in the wake ex-
% o2 04 Y 08 " cite theL ;C resonances of the junctions. DependingIon

by andh, this sets an upper limit of the applied current where a
eff localized vortex can dynamically exist.
FIG. 15. Depinning current for a sine-Gordon equation as a
function of the square of the penetration depXi. Solid circles APPENDIX B: VORTEX AND BREATHER EXISTENCE

in insets(a) and (b) are numerically calculated depinning currents REGION
of ladder when(a) h=0.5 and(b) A =5. Solid lines are from the ) )
sine-Gordon equation using they value. We now have a way of calculating the parameter regime

where a vortex is stable and what its maximum traveling
velocity is. We will do a similar analysis for the discrete
is zero, the depinning current is 1 and in the laxge limit breather.
the depinning current goes to zero. For the breather to exist in the array, the junctions must be
We will now compare this vortex depinning current to the underdamped. This sets a limit dh The minimum current
depinning current of a vortex in the ladder. Solid circles inand maximum current for the the breather have been
Fig. 15a) showiyepas a function ol whenh=0.5 for the calculated® The maximum current is
ladder. We have placed a vortex in the middle of the array

and found the current where the pinned state loses stability. P = h+1 (B1)
To compare this numerical result to the DSG, first we calcu- * 2h+1°

late a\ ¢ for each point and then the correspondigg, for while the minimum current is

the DSG. The solid line igye, calculated from the equivalent

\eif Of the DSG. We see that the,; estimation gives a very 4

good approximation at this value bf i_=2(h+1)—T. (B2)

Figure 18b) shows the numerically calculateg,, for a &
vortex in the ladder as a function biwhen) =5. Again, for We will useI’=0.1. This an an experimentally realizable

every point we can calculate B and the corresponding aue and most of the ladder arrays we have measured have
depinning current from the DSG equation. This is plotted aSpproximately this damping. Also, fdr< ., the single vor-

the solid line. We see that the, results in good approxi- tex is unstable in the array. Since we want to study vortex

matipn. _ o breather collisions, we choo$e=0.3 so as to provide a large
Figure 15 shows that we can estimate the depinning Curenough barrier for the vortex to remain in the ladder. This
rent of a ladder by using a single parametey;. implies from Eq.(A3) thath>0.3. We leth=0.5.

Once the vortex depins, it can move through the ladder. There is still the choice of. Figure 3 shows the existence
The vortex dynamics in this regime is analogous to that of aegion of a breather and vortex in ladder. The solid circles in
massive particle traveling through a viscous medfifihe  Fig. 3 show simulation results for a ladder with periodic
current serves as the force, the capacitance energy is analoeundary conditions with an initial condition of a single
gous to the mass of the vortex, and the viscosity represenginned vortex. As the current increases, the vortex first be-
the energy loss of the vortex to the array. There are twegomes depinned afe,. As the current increases, it destabi-
parallel channels that lead to a viscous drag. One is the erizes atio=0.5 when the moving vortex resonates with the
ergy dissipated by the resistors as the voltage profile of thé ;C resonance. The solution then evolves into a whirling
vortex passes through the junctions. The other is the energyode front so that above this maximum current the array
lost through the ripples in the vortex wake that are somedoes not support a single moving vortex. The hatched region
times referred to as spin waves. in Fig. 3 shows the parameter space where a single moving

In an infinite array, as the current increases the velocity ofortex can exist in the array.
the vortex increases until the vortex becomes unstable. In As \ decreases, the pinning barrier increases as expected
general, the vortex becomes unstable when it excites a resérom Fig. 15, but the maximum vortex current stays rela-
nance in the array. For instance, in a parallel array, the vortetively unchanged. The horizontal dashed lineé &= 0.52 is
excites theL ,C resonance. However, in square arrays likecalculated from assuming that the flux-flow resistance fis 2
our ladder, there are two resonante€ andL;C:*® and thel-Vis v = (2 f )(iex—ig4ep Wherev is thel ;,C reso-
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nance and we solve fog,. This is a rough calculation since to current, we have used the approximate equation of the
the flux-flow resistance should increase\agoes to zero. To  1-V.*3In the figure we have also marked three different DB
approximate, we take the—c limit, so we usél 4,~0.36 solutions?! Bla is the breather solution when theC reso-
and 2f for the flux-flow resistance. Sindge,increases as  nances is above the junction voltages,@dxists when the
goes to zero, we expect the maximum current to increase dsC resonance are between the voltage of the vertical and
well, but the flux-flow resistance also increases and this wilhorizontal junction, and B1 is the solution when theC
tend to reduce this maximum current. Therefore, the maxiresonance are below the array the voltages. There is also a
mum current increases at a slower rate than the depinninggion in Fig. 3 that allows for aperiodic breathers, but in
current. This implies that there is a critical valuedoWhere  grder to simplify the graph it is not shown.
the array does not allow a moving vortex. The mln'lmum The main point of Fig. 3 is that there is a region in the
for these _paramet_ers appears to-b@4 and can be estimated parameter plane where a DB can coexist with a single vortex
from the mte:sectlr?n of tr:‘eJC_ resonance a”?dep churves. in a ladder. It is this overlap that allows us to study interac-
, Itzlguref?l;as?hs °Vﬁ1t s (:(lstenclz rlfagpn_o(; t386. S3t’rr1nmetﬂons between breathers and vortices. This overlap will
%Cin?lnl?nﬁrg crjrarlenetrsthat eis Oein:aifeld If?(in@&?hé reltsra ein change with the parameters. For instance, if we incréase

. pecte raPPNGi e, the depinning current would decrease, but the retrapping
mechanism, Eq(B2). The top solid line at.,=0.91 is the . :

. current of the breather would increase so the overlap exis-
maximum current current of the breather, Eg1). The two tence reaion would be smaller. In this paper we have pre-
curving dashed lines are theC resonances. There are two 9 . . pap P

h%ented some results of interaction between breathers and

branches because the horizontal junction rotates at half t ) . ,
voltage of the vertical junction. Thus resonances occurdOrtices and to avoid any effects of the resonances we fixed

whenv or v/2= w c. To convert from the resonant voltage A=
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