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Fractionalized phase in anXY–Z2 gauge model
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We study a model with fractional quantum numbers using Monte Carlo techniques. The model is composed
of bosons interacting though aZ2 gauge field. We find that the system has three phases: a phase in which the
bosons are confined, a fractionalized phase in which the bosons are deconfined, and a phase in which the
bosons are condensed. The deconfined phase has a ‘‘topological’’ order due to the degeneracy in the ground
state of the gauge field. We discuss an experimental test proposed by Senthil and Fisher that uses the topo-
logical order to determine the existence of a deconfined, fractionalized phase.
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I. INTRODUCTION

A theoretical framework for constructing model man
body systems that can exhibit phases with fractionali
quantum numbers has been proposed by Senthil and Fis1

Here, we report results obtained from a numerical simulat
of one such model and examine a recently proposed exp
mental test for detecting the fractionalized phase.2,3

The quantum many-body model that we will study co
sists of ‘‘chargons’’ coupled to a fluctuatingZ2 gauge field in
two spatial dimensions. It was obtained by Senthil and Fis
by considering the special case ofs-wave pairing with an
even number of electrons per unit cell, and integrating
the spinon degrees of freedom. This model has the advan
of being straightforward to simulate, while allowing a test
some of the underlying ideas associated with the fractio
ized phases. The Hamiltonian for the 2D quantum lattice
the form

H52J(̂
i j &

s i j
z ~bi

†bj1H.c.!

1ASni
22K(

h
F)

h
s i j

z G2h(̂
i j &

s i j
x , ~1!

where the chargon creation operator isbi
†5ei f̂ i and ni is

conjugate tof̂ i so that@f̂ i ,nj #5 id i j . The gauge field op-
erator on the link between nearest-neighbor sitesi and j is
s i j

z , and )hs i j
z is the product of gauge operators around

plaquette. The sum̂i j & is over nearest neighbor sites on t
2D spatial lattice. A ‘‘vison’’ excitation consists of a
plaquette for which)hs i j

z is equal to21. Visons are always
joined in pairs by a string of plaquettes with two links flippe
relative to the rest of the links in the vicinity. A schemat
example of this is shown in Fig. 1~a!. Here and in the text
we have taken the flipped links to haves i j

z 521 for defi-
niteness.

For the purpose of carrying out simulations, we work w
the 3D ~two space and one Euclidean time! classical action
associated with the Hamiltonian of Eq.~1!,

S52J(̂
i j &

s i j cos~f i2f j !2K(
h

F)
h

s i j G . ~2!
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This action has anXY angular variablef i corresponding to

the eigenvalue of the operatorf̂ i and aZ2 gauge fields i j

561 corresponding to the eigenvalue of the operators i j
z .

Here,^ i j & indicates all nearest neighbor sites on the 3D l
tice. This action has rotational symmetry as well as a lo
Z2-gauge symmetry in whichf i at a site transforms tof i

1p and all of thes i j gauge fields linked to thei th site
change sign. As discussed in Ref. 1, this model is expecte
have the type of phase diagram illustrated in Fig. 2. Both
gauge fields i j and theXY field f i are disordered in region
I when J and K are small. In the 2D quantum version, th
corresponds to the fluctuatings i j

z gauge field confining the
chargons so that there are no freebi

† excitations, only (bi
†)2

excitations. In region III, theXY rotation symmetry is bro-
ken, as well as theZ2 gauge symmetry. This is just the usu
XY phase with a finite helicity modulus. Here, chargon pa
(bi

†)2 condense to form a superfluid.
Region II corresponds to a ‘‘fractionalized’’~unconfined!

phase. We find that thef field is disordered, as in region I
but theZ2 gauge field is ordered, or equivalently in the qua
tum version, the visons are gapped.11 This allows the char-
gon pairs to ‘‘fractionate,’’ and individualbi

† chargon excita-
tions are present in the quantum version. As one enters
superconducting phase, region III, it is thebi

† field that con-
denses.

FIG. 1. Schematic representation of the 2D quantum syst
Solid lines denotes i j 51, dotted lines denotes i j 521. All visons
on the lattice are labeled21.
©2002 The American Physical Society08-1
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The fractionalized phase, region II, is characterized b
‘‘topological’’ order. That is, on a manifold with a nontrivia
topology, the ground state of the 2D quantum system ha
degeneracy that depends upon the topology. With perio
boundary conditions the 2D quantum system has the to
ogy of a torus. A nontrivial topological excitation occurs if
string of plaquettes with two flipped links associated with
vison pair cuts through the torus, as illustrated schematic
in Fig. 1~b!. In order to minimize the energy, thef field has
a discontinuity ofp (mod 2p) across the flipped links de
noted by the dashed lines of Fig. 1~b!. Because thef field
does not have long-range order in region II, this disturba
dies out within a correlation length, and its energy does
grow with the lattice size. When a vison loop threads the
torus used in our simulations, this topological configurat
is trapped because the free energy barrier the system mu
over to reach the no-vison state grows as the lattice sizeL,
which goes to infinity in the bulk limit. As proposed by Sen
hil and Fisher, the existence of this topological order can
probed by driving this system into the superfluid state
where thef field does have long-range order. In this ca
when a trapped vison is present in region II and the syste
driven from region II to region III~by, for example, increas
ing J), thep phase shift inf associated with the vison wil
induce a circulating current of bosons.2 Thus, by going into
the superconducting phase III one can look for trapped
sons by measuring the boson current. If they exist,
trapped visons tell us that we have come from a ‘‘fraction
ized’’ phase.

Abelian gauge theories have been studied extensively
high-energy physicists since the earliest days of lattice ga
theory.4 The work most closely related to our own is th
study of the Abelian Higgs model with aZ2 gauge field
coupled to an Ising matter field,5–7 and aU(1) gauge field
coupled to anXY-matter field.6,8,9 Here we study aZ2 gauge
field coupled to anXY field. More recently, an action simila
to that of Eq.~2!, but with anO(3) matter field, was used b
Lammert, Rokhsar, and Toner to study a classical model
nematics.10

The existence of three distinct phases in the model
study is consistent with conclusions drawn from the study
more general Abelian Higgs models, in which the Higgs fie

FIG. 2. Phase diagram showing confined phase~I!, deconfined
phase~II !, and boson condensed phase~III !.
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is not in the fundamental representation of the gauge gro6

In particular, as pointed out by Senthil and Fisher,1 each of
the phases discussed here has an analogue in theO(3) model
of nematics.10 By contrast, theZ2 gauge theory coupled to a
Ising matter field has only a confined and a deconfined ph
with the Higgs and confined phases being analytica
connected,6,7 as is expected in general for Abelian Higg
theories in which the matter field is in the fundamental re
resentation of the gauge group.6

In Sec. II, we will discuss Monte Carlo results for th
Polyakov loop ~the product of s i j wrapped periodically
around the lattice! and the helicity modulus that give us nu
merical results for the phase diagram. Then in Sec. III,
will discuss visons and the Senthil–Fisher test for fractio
alization. Section IV contains our conclusions.

II. PHASE DIAGRAM

Using the 3D Euclidean action, we measure the Polya
loop and the helicity modulus to find the transitions in bo
the gauge field and the bosonic field. On our lattices
Polyakov loop provides a useful probe of the gauge field
we will discuss. The helicity modulus measures the stiffn
of the bosonic field to rotating the spins. It can indicate t
phase of the boson field, since in ourXY spin formulation
the superconducting state is characterized by a finite s
stiffness.

It is well known that forJ50 the action of Eq.~2! gives
rise to a second-order phase transition on an infinite th
dimensional lattice.4 The confined~strong coupling! phase is
characterized by area law behavior of the Wilson loops, a
the deconfined~weak coupling! phase by perimeter law be
havior. However, on a finite lattice there is a crossover, rat
than abona fidephase transition. For the relatively sma
lattices on which we perform our simulations, measurem
of the Polyakov loop provides a convenient way to locate
crossover. A Polyakov loop is the product of a line ofs i j
wrapped periodically around the lattice,

Pm̂5s i j s j l •••smnsni , ~3!

where all the links are pointing in them̂ direction. For strong
coupling it vanishes order by order in perturbation theo
and in our simulations we find that it fluctuates about zero
is seen in Fig. 3. At weak coupling an expansion about
state in which all thes i j have the same sign gives, to leadin
order,4

P5e22Le28K
, ~4!

whereL is the number of lattice points in the temporal d
rection. A reference state in which the Polyakov loop has
same magnitude, but opposite sign, can be obtained by
addition of a vison through the torus that flips all the links
the temporal direction between two adjacent time slices.
trackingP in our simulations, we observe the system tunn
ing between these two degenerate states, as is seen in F
On our finite latticeP averages to zero because of cance
tions between states in which it takes on positive and ne
tive values, but above the transition the tunneling occ
8-2
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FRACTIONALIZED PHASE IN AN XY–Z2 GAUGE MODEL PHYSICAL REVIEW B 65 054508
much less frequently than our period of observation so
we obtain a nonzero average. It follows from Eq.~4! that for
L→` the jump inP goes to zero. However, in our simula
tions, L58, and the crossover is in the neighborhood ofK
50.7. For these values the magnitude of the Polyakov l
at the crossover is approximately 0.94. We then measured
Polyakov loop along lines of constantJ and K. Figure 5
shows the expectation value of Polyakov loops along line
constantK. These Monte Carlo measurements were ta
using a local Metropolis updating scheme on a lattice with3

sites. We took 150 measurements for each point with e
measurement separated by 35 Monte Carlo updates o
lattice. After the measurements at a point are done,J is-
increased and the system is allowed to equilibrate for
Monte Carlo updates. In this case, each run is started
the system completely ordered so that no vison loops
frozen into the system. Figure 6 shows the expectation va
of Polyakov loops along lines of constantJ. The measure-
ments were taken in the same way withK increased during
the run instead ofJ. Additionally, 500 Monte Carlo step

FIG. 3. The average of the Polyakov loop across the lattice
function of Monte Carlo time for J50, K50.69. This is done on an
83 lattice using local Metropolis updating.

FIG. 4. The average of the Polyakov loop across the lattice
function of Monte Carlo time for J50, K50.73. This is done on an
83 lattice using local Metropolis updating.
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were used in between measurements to equilibrate. For
figure each run is started from a completely disordered st
When the system enters the deconfined phase~II ! from the
confined phase~I! it has the opportunity to trap a vison. A
trapped vison changes the expectation value of the Polya
loop from 1 to21 and accounts for the run withJ50.3.

The standard form of the helicity modulus for theXY
model is not invariant under theZ2 gauge transformation. I
can be made gauge invariant by inserting factors of
gauge field. This gives a helicity modulus of the form

Ym̂ /J5
1

N K (̂
i j &

s i j cos~f i2f j !~ ê i j •m̂ !2L
2

J

N K S (̂
i j &

s i j sin~f i2f j !ê i j •m̂ D 2L , ~5!

a

a

FIG. 5. Expectation value of the Polyakov loop on an 83 lattice
along lines of constantK. We took 150 measurements at each po
with each measurement separated by 35 Monte Carlo steps.
system is allowed to equilibrate for 200 Monte Carlo updates
tween points.

FIG. 6. Expectation value of the Polyakov loop on an 83 lattice
along lines of constantJ. We took 150 measurements at each po
with each measurement separated by 35 Monte Carlo steps.
system is allowed to equilibrate for 500 Monte Carlo updates
tween points. A vison is trapped in the run whereJ50.4.
8-3
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wherem̂ points along the bonds in thex̂, ŷ, or ẑ directions
andê i j is a unit vector pointing from thei th lattice site to the
j th lattice site. Since the helicity modulus measures the s
ness of the spins, it is 0 where the bosons are disordered
finite where the bosons have long-range order.12 The helicity
modulus measured along lines of constantK is shown in Fig.
7. These measurements were taken in the same way a
measurements of the Polyakov loop: 150 measuremen
each point separated by 35 Monte Carlo steps between m
surements and 200 Monte Carlo measurements betw
points. The transition is rounded due to finite size effects

The results found by looking at the expectation value
the helicity modulus and the Polyakov loop were used
construct the phase diagram shown in Fig. 2. The transit
were taken to be when the observable is statistically nonz
The nature of the transition between the deconfined ph
and the confined phase and between the deconfined p
and the condensed phase are understood from studying
Ising model and the XY model, and the boundary betwe
the confining phase and the condensed phase has been
ied by Senthil and Fisher.13 This is a transition at which both
the gauge field and the boson field order. This phase tra
tion occurs down toK50 where there is no plaquette term
the action, implying that it is the ordering of the bosons th
forces the gauge field to order.

III. VISONS

As discussed in the Introduction, the fractionalized ph
II has a topological order caused by the presence of vis
threading the torus. These visons are trapped, as previo
noted. Senthil and Fisher recently proposed a method
detecting trapped visons by driving the system between
fractionalized phase II and phase III, in which thef field is
condensed.2,3 In our numerical experiments the presence
visons can be determined by observables such as the P
kov loop that measure the gauge field directly, while in re

FIG. 7. Expectation value of the helicity modulus on a 83 lattice
along lines of constantK. We took 150 measurements at each po
with each measurement separated by 35 Monte Carlo steps.
system is allowed to equilibrate for 200 Monte Carlo updates
tween points.
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world systems this is typically not possible. It is therefo
necessary to be able to determine the topological order w
out observing the gauge field directly. However, as discus
by Senthil and Fisher, the boson field can be used to pr
the topology on the lattice in the condensed phase, in wh
it has long-range order. Antiperiodic boundary conditio
generated by a vison threading the torus cause the boso
gradually twist by6p from one side of the vison string to
the other. This gives rise to a nonzero gauge invariant c
rent,

I m̂5JK (
i

s i i 1m̂ sin~f i2f i 1m̂!L , ~6!

which can be measured. Herem̂ is a spatial unit vector per
pendicular to the vison string. In this way, measuring t
gauge-invariant current can determine the topological or
of the lattice. Thus, when a single vison string threads
torus we expect a boson current to flow corresponding to
p change in the phase produced by the vison.

In the ordered phase, the fluctuations in the boson ph
lead to a renormalization ofJ,

Jr5J^s i i 1m̂ cos~f i2f i 1m̂!&. ~7!

As the bare couplingJ increases and one goes deep into
boson condensed phase, the phase fluctuations decreas
Jr /J goes to 1. In a real physical measurement, the quan
entering the circulation or flux is the renormalized coupli
Jr , so that a measurement ofI m̂ gives Jrp. For a finiteL3

lattice we expect that when a vison is trapped and the sys
is switched into the condensed boson phase III by increa
J, one will find

I m̂ /Jr56L sinS p

L D , ~8!

which goes to6p asL goes to infinity.
The lattice is initially prepared atK51 andJ51 in the

condensed phase with a single vison string threading
torus and a gradual twist of the bosons byp. In a real-world
system, this would be achieved by threading anhc/2e mag-
netic flux quantum through the sample.2,3 If the system is
then moved to the fractionalized phase by decreasingJ to
0.25, the boson current disappears, but the vison rem
trapped so that the boson current returns with the same m
nitude if the system is moved back to the condensed ph
We have done this numerically on an 83 lattice using our
Euclidean action, with the results shown in Fig. 8. Here
have plottedI m̂ /J and we see that this ratio is nonzero in t
condensed phase, signifying the presence of a vison tha
mains trapped in the fractionalized phase. ForK51 andJ
51 on an 83, latticeJr /J is measured to be 0.81 so that

I m̂

J
56

Jr

J
8 sinS p

8 D.62.48, ~9!

in agreement with Fig. 8. Note that the boson current can
either positive or negative reflecting the direction of t
gradual twist induced by the vison.
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FRACTIONALIZED PHASE IN AN XY–Z2 GAUGE MODEL PHYSICAL REVIEW B 65 054508
If the system with a single trapped vison is moved to
phase without fractionalization, the confined phase I, the
son can escape. For example, atK50.5 andJ51.5 we have
prepared the system in the condensed phase with a s
vison string threading the torus and a boson current,
shown over the first 2000 sweeps in Fig. 9. ForK50.5 and
J51.5 on an 83 lattice Jr /J is measured to be 0.88, so th
initially I m̂ /J.2.69. Then the system is taken into the co
fined phase I by decreasingJ to 0.25 at constantK50.5.
When, after another 2000 Monte Carlo steps, the system
taken back into the boson condensed phase III by increa
J to 1.5, the boson current is seen to vanish. This means
the vison that was initially trapped in the condensed ph
escaped whenJ was decreased to 0.25 withK50.5. The
boson current remains zero through further cyclings betw
the phases. This measurement shows that (J50.25,K50.5)
corresponds to a point in the confined phase.

This type of measurement can also be used to determ
the line separating the confined and fractionalized pha

FIG. 8. The 83 lattice is moved between the boson condens
phase (K51,J51) and the deconfined phase (K51,J50.25) every
2000 Monte Carlo steps. Note thatI /J is not 6p in the boson
condensed phase due to fluctuations of the bosons and finite
effects as discussed in the text.

FIG. 9. The 83 lattice is moved between the boson condens
phase (K50.5,J51.5) and the confined phase (K50.5,J50.25)
every 2000 Monte Carlo steps.
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We can determine whether a given point in the phase
gram (K5K1 ,J5J1), is in the fractionalized or confined
phase by the following set of measurements. We start
equilibrating a trapped vison at the point (K51,J5J1),
which we know to be in the fractionalized phase for suf
ciently smallJ1. We next decreaseK to K1, equilibrate the
system, and then increaseK back to 1, where we again
equilibrate the system. Finally we move to (K51,J51), a
point at which we know the bosons are condensed.
(K1 ,J1) is in the confined phase, then the trapped vison w
escape; however, the system may trap visons when
entering the fractionalized phase. If an odd number of vis
are trapped, there will be a nonzero bosonic current in
condensed phase, while if an even number of vison
trapped, no bosonic current will flow in the condensed pha
Thus we expect to find a current in 50% of the runs. On
other hand, if (K1 ,J1) is in the fractionalized phase, then th
initial vison will remain trapped, and a nonzero current w
be observed in the condensed phase. Figure 10 shows
fraction of 800 trials in which we observed a trapped vis
for J150.2 and at different values ofK1. The time to equili-
brate the lattice in the condensed phase was highly vari
because of false energy minima created by trapping sev
visons. The system has probability 1/2 of trapping an o
number of visons in moving from the confined phase to
fractionalized phase, but when the system is kept in the fr
tionalized phase the initial vison remains trapped. The tr
sition is rounded due to visons tunneling out of the fin
torus close to the transition.

IV. CONCLUSION

In this paper we have reported on an investigation of
XY model coupled to aZ2 gauge field using Monte Carlo
techniques. This model was proposed by Senthil and Fis
for the study of fractionalization. By observing the Polyak

d

ize

d

FIG. 10. Fraction of 800 measurements in which an odd num
of visons were detected after a system initially prepared in the f
tionalized phase with a vison is heated at a constant rate toK1 and
then cooled back to the fractionalized phase. These results are a
the lineJ150.2. The existence of an odd number of visons is d
termined by moving the system to the condensed phase and ob
ing the average bosonic current.
8-5
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loop and the helicity modulus, we have determined the str
ture of the phase diagram of the theory. In addition, we co
sidered an experiment proposed by Senthil and Fisher to
termine the existence of a fractionalized phase. Using ph
III, in which the bosons are condensed, to measure the e
tence of a vison, we see that the vison remains trapped in
fractionalized phase. A vison that was trapped in the ph
III region is able to escape when the system is taken into
confined phase I.
-
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