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Fractionalized phase in anXY—-Z, gauge model
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We study a model with fractional quantum numbers using Monte Carlo techniques. The model is composed
of bosons interacting thoughz, gauge field. We find that the system has three phases: a phase in which the
bosons are confined, a fractionalized phase in which the bosons are deconfined, and a phase in which the
bosons are condensed. The deconfined phase has a “topological” order due to the degeneracy in the ground
state of the gauge field. We discuss an experimental test proposed by Senthil and Fisher that uses the topo-
logical order to determine the existence of a deconfined, fractionalized phase.
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I. INTRODUCTION This action has aXY angular variablep; corresponding to

A theoretical framework for constructing model many- the eigenvalue of the operatgf; and aZ, gauge fieldy;
body systems that can exhibit phases with fractionalized==1 corresponding to the eigenvalue of the operatfr.
quantum numbers has been proposed by Senthil and RisheHere,(ij) indicates all nearest neighbor sites on the 3D lat-
Here, we report results obtained from a numerical simulatiortice. This action has rotational symmetry as well as a local
of one such model and examine a recently proposed experZ,-gauge symmetry in whichp; at a site transforms tep;
mental test for detecting the fractionalized ph%}%e. + and all of theo;; gauge fields linked to théth site
~ The quantum many-body model that we will study con-change sign. As discussed in Ref. 1, this model is expected to
sists of “chargons” coupled to a fluctuatiri€y gauge field in  have the type of phase diagram illustrated in Fig. 2. Both the
two spatial dimensions. It was obtained by Senthil and Fishegayge fieldo;; and theXY field ¢; are disordered in region
by considering the special case ®fvave pairing with an | \when J andK are small. In the 2D quantum version, this
even r_wumber of electrons per unit cell, and integrating Oqurresponds to the fluctuating? gauge field confining the
the spinon degrees of freedom. This model has the advanta%% ! . 2
: : . : . argons so that there are no figeexcitations, only 6/
of being straightforward to simulate, while allowing a test of itai | ion 111 thexY rotati v is b
some of the underlying ideas associated with the fractiona/EXctations. in region i, rotation symmetry IS bro-

ized phases. The Hamiltonian for the 2D quantum lattice ha&€MN: @s well as th&, gauge symmetry. This is just the usual
the form XY phase with a finite helicity modulus. Here, chargon pairs

(bﬂ‘)2 condense to form a superfluid.

Region Il corresponds to a “fractionalizedtinconfined
phase. We find that thé field is disordered, as in region I,
but theZ, gauge field is ordered, or equivalently in the quan-
tum version, the visons are gappedrhis allows the char-
gon pairs to “fractionate,” and individuabiT chargon excita-

. tions are present in the quantum version. As one enters the
where the chargon creation operatorbs=e'% andn; is  superconducting phase, region lI, it is thf field that con-
conjugate tog; so that[ ¢;,n;]=i5; . The gauge field op- denses.

erator on the link between nearest-neighbor sitasd] is

aizj , andl'IDcrizj is the product of gauge operators around a
plaquette. The surij) is over nearest neighbor sites on the
2D spatial lattice. A “vison” excitation consists of a
plaquette for whicfHDaiZj is equal to— 1. Visons are always
joined in pairs by a string of plaquettes with two links flipped
relative to the rest of the links in the vicinity. A schematic
example of this is shown in Fig.(d). Here and in the text,
we have taken the flipped links to ham-fj =—1 for defi-
niteness.

For the purpose of carrying out simulations, we work with
the 3D (two space and one Euclidean timeassical action
associated with the Hamiltonian of E(.),

H= —J(Z> of(bb;+H.c)
ij

+AIN?—KY,
[m]

Il

—h> of, (1)
(i)

(a) A Pair of Visons (b) Vison Loop

FIG. 1. Schematic representation of the 2D quantum system.
Solid lines denoter;; =1, dotted lines denote;;=—1. All visons
on the lattice are labele¢ 1.

. (2
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is not in the fundamental representation of the gauge gfoup.
In particular, as pointed out by Senthil and Fisheach of
the phases discussed here has an analogue @(Bemodel
of nematics'® By contrast, th&, gauge theory coupled to an
Ising matter field has only a confined and a deconfined phase
with the Higgs and confined phases being analytically
connected,’ as is expected in general for Abelian Higgs
theories in which the matter field is in the fundamental rep-
I resentation of the gauge grofip.
In Sec. Il, we will discuss Monte Carlo results for the
1I Polyakov loop (the product ofoy; wrapped periodically
| | - around the latticeand the helicity modulus that give us nu-
0.5 1.0 merical results for the phase diagram. Then in Sec. Ill, we
K will discuss visons and the Senthil-Fisher test for fraction-
alization. Section IV contains our conclusions.

1.5 1

111

FIG. 2. Phase diagram showing confined phédgedeconfined

hase(ll), and boson condensed pha#é).
phaselll) phate) Il. PHASE DIAGRAM

The fractionalized phase, region I, is characterized by a
“topological” order. That is, on a manifold with a nontrivial . . " .
topology, the ground state of the 2D quantum system has 1:?op and thg helicity modulus to_ fln_d the transmons_m both
degeneracy that depends upon the topology. With periodi e gauge field an_d the bosonic field. On our Iatt|c_es the
boundary conditions the 2D quantum system has the topof-lyakov loop provides a useful probe of the gauge field, as
ogy of a torus. A nontrivial topological excitation occurs if a W& Will discuss. The helicity modulus measures the stifiness
string of plaquettes with two flipped links associated with a0f the bosonic field to_ rotatl_ng th_e spins. It_ can |nd|ce_1te the
vison pair cuts through the torus, as illustrated schematicallnase of the boson field, since in odiY spin formulation
in Fig. 1(b). In order to minimize the energy, thé field has hg superconducting state is characterized by a finite spin
a discontinuity ofm (mod 2m) across the flipped links de- Stffness. _ _
noted by the dashed lines of Fig(bl Because thep field . It is well known that forJ=0 the action of Eq(2)_ gives
does not have long-range order in region ll, this disturbancé'S® to a second—order pha;e transition on an infinite Fhree—
dies out within a correlation length, and its energy does nofiimensional latticé.The confinedstrong couplingphase is

grow with the lattice size. When a vison loop threads the 3Dcr?aréalcter|?ed by arkea Iawllbehar:nor Okf) the Wilson IIOODSB and
torus used in our simulations, this topological configurationth€ deconfinedweak coupling phase by perimeter law be-
vior. However, on a finite lattice there is a crossover, rather

is trapped because the free energy barrier the system must s ” )
PP oy y an abona fidephase transition. For the relatively small

over to reach the no-vison state grows as the lattice &ize, latti hich ; imulati
which goes to infinity in the bulk limit. As proposed by Sent- 'atfices on which we perform our simulations, measurement

hil and Fisher, the existence of this topological order can b&f the Polyakov loop provides a convenient way to locate the

probed by driving this system into the superfluid state I11,Cr0SSOVer. A Polyakov loop is the product of a line «f
where theg field does have long-range order. In this case WraPped periodically around the lattice,
when a trapped vison is present in region Il and the system is PL=0ii0 T 3)

driven from region Il to region lli(by, for example, increas- m

ing J), the w phase shift ing assoma%ed with the vison will - yhere all the links are pointing in the direction. For strong
induce a circulating current of bosohdhus, by going into  ¢oypling it vanishes order by order in perturbation theory,
the superconducting phase IIl one can look for trapped Viyng in our simulations we find that it fluctuates about zero, as

sons by measuring the boson current. If they“ exist, thes seen in Fig. 3. At weak coupling an expansion about the
fcrapped visons tell us that we have come from a “fractional-gi5te in which all ther;; have the same sign gives, to leading
ized” phase. order?

Abelian gauge theories have been studied extensively by
high-energy physicists since the earliest days of lattice gauge p=g2te ® (4)
theory? The work most closely related to our own is the '
study of the Abelian Higgs model with @, gauge field whereL is the number of lattice points in the temporal di-
coupled to an Ising matter fieRf” and aU(1) gauge field rection. A reference state in which the Polyakov loop has the
coupled to arX Y-matter field®®°Here we study &, gauge  same magnitude, but opposite sign, can be obtained by the
field coupled to arXY field. More recently, an action similar addition of a vison through the torus that flips all the links in
to that of Eq.(2), but with anO(3) matter field, was used by the temporal direction between two adjacent time slices. By
Lammert, Rokhsar, and Toner to study a classical model fotrackingP in our simulations, we observe the system tunnel-
nematics™ ing between these two degenerate states, as is seen in Fig. 4.

The existence of three distinct phases in the model wén our finite latticeP averages to zero because of cancella-
study is consistent with conclusions drawn from the study ofions between states in which it takes on positive and nega-
more general Abelian Higgs models, in which the Higgs fieldtive values, but above the transition the tunneling occurs

Using the 3D Euclidean action, we measure the Polyakov
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FIG. 3. The average of the Polyakov loop across the lattice as a FIG. 5. Expectation value of the Polyakov loop on ahl&tice
function of Monte Carlo time for3 0, K=0.69. This is done on an along lines of constari. We took 150 measurements at each point
8° lattice using local Metropolis updating. with each measurement separated by 35 Monte Carlo steps. The

system is allowed to equilibrate for 200 Monte Carlo updates be-
much less frequently than our period of observation so thatween points.
we obtain a nonzero average. It follows from E4). that for
L—oo the jump inP goes to zero. However, in our simula- Were used in between measurements to equilibrate. For this
tions, L=8, and the crossover is in the neighborhoodkof figure each run is started from a completely disordered state.
=0.7. For these values the magnitude of the Polyakov loopyVhen the system enters the deconfined pH#gefrom the
at the crossover is approximately 0.94. We then measured tf@nfined phasél) it has the opportunity to trap a vison. A
Polyakov loop along lines of constadtand K. Figure 5  trapped vison changes the expectation value of the Polyakov
shows the expectation value of Polyakov loops along lines ofoop from 1 to—1 and accounts for the run with=0.3.
constantK. These Monte Carlo measurements were taken The standard form of the helicity modulus for tbeY
using a local Metropolis updating scheme on a lattice with 8 model is not invariant under th&, gauge transformation. It
sites. We took 150 measurements for each point with eachan be made gauge invariant by inserting factors of the
measurement separated by 35 Monte Carlo updates of tHEuge field. This gives a helicity modulus of the form
lattice. After the measurements at a point are dahés-
increased and the system is allowed to equilibrate for 200 Y-
Monte Carlo updates. In this case, each run is started with "
the system completely ordered so that no vison loops get
frozen into the system. Figure 6 shows the expectation value
of Polyakov loops along lines of constaht The measure-
ments were taken in the same way withincreased during
the run instead ofl. Additionally, 500 Monte Carlo steps 1 ®
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13= N<<.2,> Tij 003¢i_¢j)(€ij'ﬂ)2>

J ] . \2
N<(<|21> aij S|n(¢i¢j)€ij'//~> > 5

[ J ©
o ° [ ] ® O] B =]
081 o ® m 8
A ; o 06¢ ® ® 1
A i :
+£ . - £ A 04 F ] 4
Rl et i, o °
t+ F ¥ Ak 9
05 1 0.2 1 i
- +'H'+ﬁt* Hy 4t * i 3 s o
A S 54 R A s > TV
g = A S T 2 CRNEmEM L LR LY 1
S e it £ thy + "% S
= 2 ay + ¥ * 5 02+t .. q
= T a3t Ty s * o P2
g 90 E E i 5 J=0 ——
2 5 DE A 2 o M 04 L i
= . FLoe - i o J=03 e
<} e el T s J=04 s -
o k3 + 7 ++$— + + 17 $+ 4 -06 ’ b
o o +£ A o ] : j = 8'&735 E
o F * + FANES =0. [R— —
st Boowhn TR IR . '
o +  F =2. b et
¢r‘i . {**L”**jfwf; % A . L . DKW oW ow oy o
Vel ity 0 0.2 0.4 0.6 0.8 1 12
B T it K

0 100 200 300 400 500 600 700 800 900 1000

Monte Carlo Time FIG. 6. Expectation value of the Polyakov loop on ahl&tice

along lines of constant. We took 150 measurements at each point
FIG. 4. The average of the Polyakov loop across the lattice as with each measurement separated by 35 Monte Carlo steps. The
function of Monte Carlo time for3 0, K=0.73. This is done on an system is allowed to equilibrate for 500 Monte Carlo updates be-
8% lattice using local Metropolis updating. tween points. A vison is trapped in the run whére0.4.
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1 world systems this is typically not possible. It is therefore

necessary to be able to determine the topological order with-
out observing the gauge field directly. However, as discussed
by Senthil and Fisher, the boson field can be used to probe
the topology on the lattice in the condensed phase, in which
it has long-range order. Antiperiodic boundary conditions
generated by a vison threading the torus cause the bosons to
gradually twist by+ 7 from one side of the vison string to
the other. This gives rise to a nonzero gauge invariant cur-

0.8
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0.4

0.2

Helicity Modulus

om rent,
K=0 —t—
o2 E= 0.25  sw-ideeen
-0. =05 ek ] )
K=070 -8 = 2 o sin(gi— i) ) ®)
-0.4 I I | |
0 05 1 1.5 2 2.5 _ . _ _
J which can be measured. Hegeis a spatial unit vector per-

pendicular to the vison string. In this way, measuring the
: . gauge-invariant current can determine the topological order
al_ong lines of constark. We took 150 measurements at each POINt it the |attice. Thus, when a single vison string threads the
with each measurement separated by 35 Monte Carlo steps. ThE\ ¢ e expect a boson current to flow corresponding to the
system is allowed to equilibrate for 200 Monte Carlo updates be-Tr change in the phase produced by the vison
tween points. In the ordered phase, the fluctuations in the boson phase

lead to a renormalization af,

FIG. 7. Expectation value of the helicity modulus on&&tice

where 1. points along the bonds in the v, or z directions
ande; is a unit vector pointing from thigh lattice site to the =30+, CO b~ i) (7
jth lattice site. Since the helicity modulus measures the stiff—A
ness of the spins, it is O where the bosons are disordered any

f'ﬁ?(')t; \lfvger;ee:;e :)eodsglnosnhﬁ.‘?}i?g?éﬁgggﬂﬁ?enh.il'lcz'.ty J;/J goes to 1. In a real physical measurement, the quantity
v u gl X wn In Fig. ntering the circulation or flux is the renormalized coupling

7. These measurements were taken in the same way as tﬁe so that a measurement bf givesJ, . For a finiteL®

P

measurements of the Polyakov loop: 150 measurements %[ttice we expect that when a vison is trapped and the system

each point separated by 35 Monte Carlo steps between MER switched into the condensed boson phase Il by increasing
surements and 200 Monte Carlo measurements betwe%p one will find

points. The transition is rounded due to finite size effects.
The results found by looking at the expectation value of -

the helicity modulus and the Polyakov loop were used to /3 ==L sin( f)’ 8

construct the phase diagram shown in Fig. 2. The transitions

were taken to be when the observable is statistically nonzerQynich goes to+ 7 asL goes to infinity.

The nature of the transition between the deconfined phase The |attice is initially prepared & =1 andJ=1 in the

and the confined phase and between the deconfined phasgndensed phase with a single vison string threading the
and the condensed phase are understood from studying t&,s and a gradual twist of the bosonsyln a real-world

Ising mo_d_el and the XY model, and the boundary betweergystem, this would be achieved by threadinghai2e mag-
the confining phase and the condensed phase has been stygsic flux quantum through the sampl&Jf the system is
ied by Senthil and Fishé?. This is a transition at which both then moved to the fractionalized phase by decreadifig
the gauge field and the boson field order. This phase transg o5 the hoson current disappears, but the vison remains
tion occurs down t& =0 where there is no plaquette term in yanned so that the boson current returns with the same mag-
the action, |mply|ng that it is the ordering of the bosons that,i,de if the system is moved back to the condensed phase.
forces the gauge field to order. We have done this numerically on ar? &ttice using our
Euclidean action, with the results shown in Fig. 8. Here we
ll. VISONS have plotted ; /J and we see that this ratio is nonzero in the
condensed phase, signifying the presence of a vison that re-
As discussed in the Introduction, the fractionalized phasenains trapped in the fractionalized phase. Ror1 andJ

Il has a topological order caused by the presence of visons-1 on an §, lattice J, /J is measured to be 0.81 so that
threading the torus. These visons are trapped, as previously

noted. Senthil and Fisher recently proposed a method for ;. J 7
detecting trapped visons by driving the system between the 358 5”’(5 =+2.48, €)
fractionalized phase Il and phase lll, in which thefield is
condensed? In our numerical experiments the presence ofin agreement with Fig. 8. Note that the boson current can be
visons can be determined by observables such as the Polyeither positive or negative reflecting the direction of the
kov loop that measure the gauge field directly, while in real-gradual twist induced by the vison.

the bare coupling increases and one goes deep into the
son condensed phase, the phase fluctuations decrease and
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FIG. 8. The 8 lattice is moved between the boson condensed  F|G. 10. Fraction of 800 measurements in which an odd number
phase K=1,J=1) and the deconfined phad¢{1,J=0.25) every  of visons were detected after a system initially prepared in the frac-
2000 Monte Carlo steps. Note thbt) is not = in the boson tionalized phase with a vison is heated at a constant raig tand
condensed phase due to fluctuations of the bosons and finite sizgen cooled back to the fractionalized phase. These results are along
effects as discussed in the text. the lineJ;=0.2. The existence of an odd number of visons is de-

fth ith inal . . termined by moving the system to the condensed phase and observ-
If the system with a single trapped vison is moved to 8ing the average bosonic current,

phase without fractionalization, the confined phase I, the vi-

son can escape. For exampleKat 0.5 andJ=1.5 we have e can determine whether a given point in the phase dia-
prepared the system in the condensed phase with a smgbe(am K=K,,J=J,), is in the fractionalized or confined
vison string threading the torus and a boson current, aghase py the following set of measurements. We start by
shown over the f|r§t 2000 sweeps in Fig. 9. Ror 0.5 and equilibrating a trapped vison at the poinK£1J=J,),
J=1.5 on an 8 lattice J; /J is measured to be 0.88, so that \yhich we know to be in the fractionalized phase for suffi-
initially 1,/3=2.69. Then the system is taken into the con-cjently smallJ;. We next decreask to K, equilibrate the
fined phase | by decreasinfjto 0.25 at constanK=0.5.  gystem, and then increadé back to 1, where we again
When, after another 2000 Monte Carlo steps, the system igyyiliprate the system. Finally we move tK£1,J=1), a
taken back into the boson condensed phase lll by increasingsint at which we know the bosons are condensed. If
Jto 1.5, the boson current is seen to vanish. This means thgk , 3.) is in the confined phase, then the trapped vison will
the vison that was initially trapped in the condensed phasggcape; however, the system may trap visons when re-
escaped whed was decreased to 0.25 witk=0.5. The  eptering the fractionalized phase. If an odd number of visons
boson current remains zero through further cyclings betweeg,¢ trapped, there will be a nonzero bosonic current in the
the phases. This measurement shows thatQ.25K=0.5)  condensed phase, while if an even number of vison are
corresponds to a point in the confined phase. _trapped, no bosonic current will flow in the condensed phase.
This type of measurement can also be used to determingyys we expect to find a current in 50% of the runs. On the
the line separating the confined and fractionalized phasegner hand, if K;,J;) is in the fractionalized phase, then the
initial vison will remain trapped, and a nonzero current will
be observed in the condensed phase. Figure 10 shows the
fraction of 800 trials in which we observed a trapped vison
for J;=0.2 and at different values &f,. The time to equili-
brate the lattice in the condensed phase was highly variable
because of false energy minima created by trapping several
visons. The system has probability 1/2 of trapping an odd
number of visons in moving from the confined phase to the

1

05

0+

Al

a5k - _ fractionalized phase, but when the system is kept in the frac-
tionalized phase the initial vison remains trapped. The tran-
2r ] sition is rounded due to visons tunneling out of the finite

25 ke i torus close to the transition.

T

3 . 1 1 1 1 ) ) ) )
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 IV. CONCLUSION

Monte Carlo Steps

In this paper we have reported on an investigation of the
FIG. 9. The § lattice is moved between the boson condensedXY model coupled to &, gauge field using Monte Carlo
phase K=0.5J=1.5) and the confined phas&£0.5)J=0.25) techniques. This model was proposed by Senthil and Fisher
every 2000 Monte Carlo steps. for the study of fractionalization. By observing the Polyakov
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