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Two-dimensional random-bond Ising model, free fermions, and the network model
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We develop a recently proposed mapping of the two-dimensional Ising model with random exchange
(RBIM) via the transfer matrix, to a network model for a disordered system of noninteracting fermions. The
RBIM transforms in this way to a localization problem belonging to one of a set of nonstandard symmetry
classes, known as class D; the transition between paramagnet and ferromagnet is equivalent to a delocalization
transition between an insulator and a quantum Hall conductor. We establish the mapping as an exact and
efficient tool for numerical analysis: using it, the computational effort required to study a system of\vidth
is proportional toM 3, and not exponential iM as with conventional algorithms. We show how the approach
may be used to calculate for the RBIM the free energy, typical correlation lengths in quasi-one dimension for
both the spin and the disorder operators, and the even powers of spin-spin correlation functions and their
disorder averages. We examine in detail the square-lattice, nearest-neighti®BIM, in which bonds are
independently antiferromagnetic with probabiljty and ferromagnetic with probability-1p. Studying tem-
peraturest =0.4], we obtain precise coordinates in the- T plane for points on the phase boundary between
ferromagnet and paramagnet, and for the multicritibashimori) point. We demonstrate scaling flow towards
the pure Ising fixed point at smah, and determine critical exponents at the multicritical point.
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. INTRODUCTION Monte Carlo simulation's:?° or transfer-matrix calculations
in a spin basi¢}~?’ Fermionic formulations of the Ising
The two-dimensional Ising model has been a basic pro- model nevertheless have two great potential advantages: they
totype in the theory of phase transitions for over half a cencan avoid the statistical sampling errors of Monte Carlo
tury. A central factor in its importance has been its equiva-simulations; and also, if implemented using the transfer ma-
lence to a system of noninteracting fermions, as set out byix, they can avoid the exponential growth in transfer-matrix
Schultz, Mattis, and Liebin their well-known reformulation  dimension with system width that occurs if this matrix is
of Onsager’s solution. The two-dimensional Ising model haswritten in a spin basis. Pioneering steps in the first of these
naturally also been a test bed for studies of the effect oflirections have been taken by Blackman and
quenched disorder on phase transitions, and the equivalencellaborators® and others?~34 using the solution of the
between the spin system and free fermions continues to holgvo-dimensional Ising model via a Pfafffarto express
in the presence of randomness in exchange interactions. Btatistical-mechanical quantities in terms of spectral proper-
this paper we build on recent work by Cho and Fi$R@nd ties of the associated matrix. Their work makes a link be-
by Gruzberg, Read, and Ludwigto establish the correspon- tween the RBIM and localization problems, since the matrix
dence in a form suitable for numerical analysis, and use it tallied to the Pfaffian is essentially a tight-binding Hamil-
study the square-lattice, random-bond Ising ma&sIM). tonian on the lattice of the underlying Ising model, with ran-
The consequences for the two-dimensional Ising model oflom hopping arising from random exchange. An alternative
weak randomness in exchange interactions are rather walbute from the RBIM to a localization problem has been
understood, following analytical calculations based on theproposed by Cho and Fish&?:starting from two copies of
Fermionic formulation by Dotsenko and Dotseflkand the transfer matrix for an Ising model, each expressed in
others® ! weak disorder is marginally irrelevant in the terms of Majorana fermions and combined to form Dirac
renormalization group sense, and the thermally driven tranfermions, they arrive at a version of the network model simi-
sition from the paramagnet to the ferromagnet survives withar to that introduced as a description for the integer quantum
only logarithmic modifications to the critical behavior of the Hall plateau transitioR> though with a distinct symmetry.
pure system. By contrast, strong disorder has more dramatic Viewed as a localization problem, the paramagnetic and
effects. A convenient choice is to consider exchange interaderromagnetic phases of the RBIM translate to two insulating
tions with fixed magnitude which are independently ferro-phases with Hall conductance differing by one quantum unit,
magnetic or antiferromagnetic, with probabilities-p and  while the Curie transition maps to a version of the quantum
p, respectively. In this case, it is known from a variety of Hall plateau transition. This transition, and indeed the insu-
approaché€-*that the Curie temperature is depressed withiating phases, belong to a nonstandard symmetry class for
increasingp, reaching zero at a critical disorder strength localization, classified in work by Altland and Zirnbatfer
Moreover, while the scaling flow at the transition is con- and known as class D. The match between behavior expected
trolled for smallp by the critical fixed point of the pure inthe RBIM and that anticipated for two-dimensional local-
system, at largep it is determined by a disorder-dominated ization problems in class D has been the subject of recent
multicritical point, known as the Nishimori poift° discussiorf:"3"=*!A particular difficulty has been to recon-
Most numerical studies of the RBIM have used eithercile the fact that, generically, a third, metallic phase is pos-
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sible in the localization problem, in addition to the two insu- L |
lating phases, while the RBIM in two dimensions is expected [——
to display only two phases. The resolution which has --
emergef*is that symmetry alone is not sufficient to deter- J(ni-1)
mine the phases that appear, and that in the specific disor- v
dered conductor equivalent to the RBIM no metallic phase
arises. Jni) | J(ns1,i)
The work we describe here builds on Cho and Fisher’s J i)
ideas, which must be extended in several ways to provide a v
precise and practical treatment of the RBIM. First, the ap- i+1 -
proach described in Ref. 4 proceeds from the RBIM via a
continuum limit, which is rediscretized to obtain a network J(n,i+1)
model. In order to find an explicit relationship between pa-
rameters in the two systems, it is necessary instead to carry | i+2 --
out the mapping directly on a lattice model. Doing so, as —
described by Cho in her the3iand by Gruzberg, Read, and
Ludwig in Refs. 6 and 7, one arrives at a network model FIG. 1. For the square lattice Ising model we adopt the conven-
different in detail to that studied in Ref. 4, and with different tion that a pair ,i) labels one spin with two associated bonds, one
behavio*! Second, a proper treatment of the RBIM in cy- horizontal(to the righy and one vertical{downwards.
lindrical geometry requires an appropriate choice of bound-
ary conditions in the network model, which has not previ-mori point, for which we determine the coordinafg
ously been considered. Third, to calculate thermodynamic=0.1093-0.0002. We calculate the critical exponemntand
quantities, typical correlation lengths, spin, and disorder corvt, describing the divergence of the correlation length as the
relation functions for the RBIM using the network model Nishimori point is approached along the Nishimori line and
formulation, it is necessary to map from fermions back tothe phase boundary, respectively. Using large sys-
spins, as outlined in Refs. 6 and 7 and as we describe here.tam sizes we findv=1.50+0.03, in disagreement with
feature of interest which emerges from our analysis is a toprevious estimate$,?’ and, with wider confidence limits,
pological distinction between the paramagnetic and ferrovt=4.0=0.5.
magnetic phases as represented in terms of fermions, similar

n n+1 n+2

to that discussed recently for other systems from symmetry Il. TRANSFER MATRIX
class D**2Finally, an important technical aspect of the work _ _
we present here is that numerical transfer-matrix calculations A. Ising model transfer matrix

for localization problems in the symmetry class we are con- We consider the nearest-neighbor Ising model on a square
cerned with require for numerical stability a modification of |attice in two dimensions. The partition functi@for a such
the standard algorithm, as discussed in Ref. 41. a system on a strip of length and widthM can be writteh

As a numerical approach to the RBIM, the method wejn terms of a product of transfer matrices. Introducing integer
describe has two main limitations. One arises because thépordinatesn andi, as illustrated in Fig. 1, one has
Dirac fermions of the network model are built from two cop-
ies of an Ising model. As a result, it turns out to be straight- Z=ATT, T, - T, - T, (1)
forward to calculate even powers of spin-correlation func-
tions, and their disorder averages, but not practical tayith T,=V,xH, and
calculate odd powers. The other stems from the fact that

Boltzmann factors which enter the network model become ~ M
large at low temperatures, making the zero-temperature limit anex;{ —E [K:’iO'iz]) ,
inaccessible. =1
The remainder of the paper is organized as follows: In M
Secs. Il A and Il B we outline the Jordan-Wigner Fermion- N X X
ization of the spin transfer matrix and the mapping to a net- Vn=ex;{ 21 [#n,i0 Ui+1])’ @
work model. In Sec. Il C we discuss boundary conditions
across the system in network model language and the subsehere thes’s are Pauli matrices and
qguent rules for constructing the spin transfer matrix from the
fermion transfer matrix. In Sec. Il and the Appendix we Kni=pBJ,(n,i),
review the numerical algorithm that we employ in the net-
work model transfer-matrix calculations and set out how . 1 )
statistical-mechanical quantities are obtained from the fer- Kni=— §|n[tanhﬁ3h(nyl)],
mion description. In Sec. IV we present humerical results on
the =J RBIM. The system sizes we studiransverse width
M =8-256 spingare significantly larger than what was pre- A= H \/E[sinh ZK:'i]—l/z_ 3)

viously possible. We focus on critical behavior at the Nishi- n=1i=1
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Here, x,; is the reduced coupling strength at inverse tem- 1 1
perature between theth and (+1)th spin in the vertical C=—=[éc—incl, C'=—x[é+incl, (6)
direction of Fig. 1 on thenth slice, andxp; ; is the Kramers- V2 V2

Wannier dual value of the corresponding bond strength in thg,nere & and 7c anticommute and satisf)gf::gc, 772:
horizontal direction. For the rest of the papgrthe Iabakqd = nc and{éc; . écb={nci, ncj}= & - Next, in order to re-

h on the bond strengths are redundant, since all horizontg|,.n"to Dirac fermions, one introduces a second, identical
bond strength¢and only thospappear as dual values, iden- ¢,ny of the Ising model. We represent the second copy using
tified with an asterisk. We takey , ;=07 in Eq.(2) so that  the Dirac fermionsD and D', in analogy to theC and C',
boundary conditions across the strip are controlled by the sgjnq employ the Majorana decompositioD=[¢&g

of interactions_ sAtrengthknlvM .AFor convenien(_:e we inEro- —inp]l/\2 andDT=[&p+i7p]/ V2. This provides different
duce the notatiof (k,1)=II,_,T,, and for brevity we us&  ways to recombine the Majorana fermions. Of the various
to denote eithef (k,|) or T,. alternatives, consider in particular the Dirac fermiohs

Following Schultz, Mattis, and Lidtthe operatorél and ~ =[écTiép]/\2 andg=[ np—incl/y2, which we choose

V., can be written, using the Jordan-Wigner-transformationto yield real coefficients later on. Again suppressing the site

as functions of Fermionic operators. Introducing the fermionindex’ this transformation may be summarized by

annihilation and creation operato@ and CiT, the spin op- 1
erators become C= §[f+ fT+g—g'],

i-1
(rix=exp( i7Y, CjTC]-
i=1

(cl+cy, Dzlz[fT—f—g—gT], 7

) + and its inverse
0'|:2C| Cl_l (4)

1
A~ ~ _ T . . -’-
After Jordan-Wigner transformatiofy,, andV, read f=5[C+C +ID+IDT],

M
I:|n=exp< -2 Kk
=

1 1 _
CiTCi_ED’ g=§[C—CT+|D—|DT]. (8

As an aside, we note that the Jordan-Wigner transformation
. M-1 applied to two copies of the Ising model does not by itself
Vn:eXF'( > knilCI=CiICl, 1+ Cisd] generate the correct commutation relations between pairs of
=1 spin operatorg™ taken one from each copy. To ensure these
commutation relations one should in addition introduce
, (5 Klein factors. Since the Klein factors ultimately have no ef-
fect on the equations we present, we omit them throughout
] M + - this paper.
with Nc=2=, C{C;, the number operator. A familiar fea-  por the doubled system, we are concerned with the
ture of the transfer matrix in Fermionic language is that 'ttransfer—matrix productéuppressing the slice ind)eb?lcﬂD

and anniiat formons in pars. Suh a situeture 1 reminis2d YcVo . The value of the transformation E7) s that
. ' e S reduces these products to the simple forms

cent of Bogoliubov—de Gennes Hamiltonians arising in the

mean-field description of superconductors. It has the conse- M

guence that, to diagonalize the transfer matrix for a transla- |3|C|3|D:exp( _22 K* i[gi’ffi+fi’fgi]),

tionally invariant Ising model, one uses Fourier transforma- =1

tion followed by Bogoliubov transformation. For the RBIM

— knm€ ™[ Cly—CyI[C]+C4]

without translational invariance, the transformation that di- A " t +
agonalizes the transfer matrix is disorder dependent, and one ~ VcVp=€xXp 2 21 wnilGifieatfiagl+B), (9
must follow a different route to make progress.

In place of diagonalization, the objective for the RBIM is Where the boundary terf is
to write the transfer matrix in terms of Dirac fermions whose PN PN + t
number is conserved under its action. The necessary steps are B=—kyml(e™c+e™0)gyfi+figu]
well-establishetf!°and have been set out in the present con- +(e ”NC—e‘”ND)[gTMfIvL f19u]]. (10)

text by Cho and Fishér,Cho? and Gruzberg, Read, and
Ludwig.” First, because of the form of E¢p), it is natural to  This process of doubling the degrees of freedom and rewrit-
decompose the completDirac) fermions into real and ing them locally as fermions, in order to remove terms which
imaginary parts, introducing redMajorana fermions & are not particle conserving, may be viewed as a local Bogo-
and n¢ . Suppressing the site index one can write liubov transformation.
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The boundary ternB contains the two boundary operators a) b)
L, Rows Lour R,
B* =g ™c+g™Np, (11)
These operators commute with the transfer matrix as a con- Ly, R L, R,

sequence of Zsymmetry: for a single system, s&; one
can identify two invariant subspaces, distinguished by the FIG. 2. Scattering nodes fora) horizontal and(b) vertical
behavior of vectors within the subspace under the operatiohonds.
ﬁec which reverses the orientation of a complete row of
spins® Specifically, quantized versions of linear transformations. Consider in a
Hilbert space of dimensiomN a linear transformation of
ﬁc:H ol single-particle wave f_unctions, represented in a ce_rtain basis
[ by anNXN matrix with elements (ex@);; . Introducing in
the same basis fermion creation and annihilation operators,
@CU}‘CQC: — g?c (12 a;r andg; , the second-quantized representation of this trans-
. formation is expaiTGijaj]. To apply this equivalence to the
for all j, andR&=1. Introducing the corresponding operator yansfer matrixT, let theN=2M fermion annihilation opera-
Ry, for the D system and assuming the total number of spingors be[ay, ... aau]=[f1s - . fy G1s - - Gu]. In the
across the strip to be even, one finds that the boundary op3~ =0 subspaces, the transfer matrix of the RBIM has the
erators are simply3*=R.*Rp. Since bothRc and R,  canonical form
commute with the transfer matrix, four invariant subspaces
arise naturally fronf Rc= +1]®[Rp= +1]. Using obvious
notation, TcTp may then be presented schematically in the
block-diagonal form

'AI'C'AI'DIEX[{aiTGijaJ-], (14)

and can be represented equivalently by th&>22M matrix

++ 0 0 0 T, with elementsT;;=(expG);, as a transformation of
. o —+ O 0 single-particle states. Thus the action of the operditon a
TcTp= 0 o +- 0 |’ (13)  Slater determinant is replicated by the action of the mafrix
on the orbitals entering the determinant. In the following we
0 0 0 —- use notation for the matri¥ corresponding to that intro-

Thus the Fock space associated with @andD fermions ~ duced for the operatof: T, denotes the transfer matrix for
can be divided into four subspaces according to the parity ofhe nth slice of the systeml[(k,) indicates a product, art
Nc andNp . In two of them, for whichB3 ~=0, the number is shorthand for either.

of f andg fermions is conserved under the actionTof While kr_wowledge Qf. the smglt_a—partlcle fqrm of IS
enough by itself for efficient numerical calculations, physical

) ) interpretation within this framework of the RBIM as a local-
B. Network model interpretation ization problem depends on the fact tHhtis a pseudo-
The conservation of the Dirac fermiohsndg under the  orthogonal matrix. In consequence, it can be viewed as the
action of the transfer-matrix operator makes it possible to gdransfer matrix for a scattering problem in which flux is con-
from a second-quantized description to a first-quantizegerved. In order to see that this is indeed the case, consider
form. Moreover, just as the second-quantized form ha@50 the basic building blocks of the transfer matrix for one col-
symmetry! one finds that the first-quantized form may beumn of sites in the doubled Ising model. The two factors,
interpreted as the transfer matrix for a scattering problemgi H. andVpV¢, appearing in Eq(2) each consist of prod-
because it fulfills the requirements arising from unitarity of ucts of M commuting operators. Every such operator repre-
the scattering matrix. Specifically, the first-quantized formsents a single bond of the Ising model and involves only one
represents a network model, in which noninteracfiagdg  pair of f and g fermions. Schematically, a horizontal bond
fermions propagate on directed links of a lattice. The fermi-gives rise to expt2«*[g'f+f'g]), which is replaced in a
ons scatter at nodes, where two incoming links and two outfirst-quantized treatment by the X2 matrix h=
going links meet. In this way, the nodes of the networkexp(—2«*¢*), while a vertical bond yields expiPg'f
model take the place of bonds in the Ising model. A corre-+£'g]), which is replaced by =exp(2«c™). To arrive at a
spondence of this type was set out by Cho and Ffsaed  scattering problem, thefermions are regardethrbitrarily)
subsequently refined by Cflawho pointed out that the net-  as right movers, and thgfermions as left movers. Then the
work model studied numerically in Ref. 4 is equivalent to anmatricesh andv are transfer matrices for nodes of the net-
Ising model in which some exchange couplings are imagiwork model. They relate flux amplitudek;, and Loy, to
nary, while the RBIM itself is represented by a different net'the amp"tudegm and Rout’ appearing either side of a node
work model. In this subsection we review these ideas. as illustrated in Fig. 2.
The identification of the first-quantized form &f makes In algebraic terms, we have for horizontal bonds the
use of a general equivalence between first- and seconequation
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H \' this evolution operator is real, so that scattering phase factors
may take only the values 1, as is indeed the case for the
RBIM. In detail, a single antiferromagnetic bon@ither
horizontal or verticalintroduces phases af for propagation
around both the anticlockwise plaquettes that meet at the
corresponding node, compared to the phases in the purely
ferromagnetic model. Other choices of randomness belong-
ing to the same symmetry class are of course possible. Cho
and Fishetinvestigated a model in which the transfer matri-
ces at all nodes are of the type given in Ebg), with ran-
domness in the sign of, while other authof&* have stud-

ied a model in which scattering phase factorszol are
associated independently with links rather than nodes. Strik-
ingly, each of these different choices leads to very different
localization properties in the network modét:

FIG. 3. The network model. Flux propagates on links in the Comblnlng_the X2 transfer matricesh or U, for each
direction indicated by arrows. The transfer matrix relates flux amode, one arrives at theM2x 2M transfer matrixT for the
plitudes carried by links on the right to those on the left. NodesSystem as a whole. Flux conservation guaranteesTtimaay
arising from single rows of vertical bonds and horizontal bonds inPée factorized as
the Ising model are indicated By and H, respectively. Two par-
ticular nodes are labeled Byandv. Four sites of the Ising model Wy 0 cosheL) sinh(el) WE 0
are also shown with exchange interactions as dotted lines. = 0 VI sineL) coshel) 0 Vg’

Rout cosh2*  —sinh2«*\ [ L;, 18
( ) =( . . . ) ( ) (15  where components in the basis are ordered so that the ampli-
Rin —sinh cosh Lout tudes for propagation in one direction constitute the filst
and for vertical bonds the equation entries of the vectors on which acts, and those for propa-
gation in the opposite direction make up the remainitig
Rin cosh2¢  sinh 2« Loy entries. Here, th&! X M matricesW, , Wg, V, , andV are
Rout “|sinh2c cosh 2 Li, (18 for a general localization problem unitary matrices, and for

the Ising model orthogonal matrices, since in that case every
Flux conservation follows from the relations’h’o?=h""  glement of the transfer matrix is real. TNEX M matrix € is
ando?v'o?=v 1. real, positive and diagonal. It is convenient to rewrite Eq.
The network model as a whole is illustrated in Fig. 3. It (18) in the form
has the same structure as théllUnetwork model, intro-
duced to describe localization in the context of the integer 1(WL —WL)(ef'- 0 )( Wg Vg

5 . .
m H ; m —
quantu all effect® Directed links form plaquettes, each I VI V[ 0 e WE Ve

. . (9

with a definite sense of circulation, which is alternately
clockwise and anticlockwise on successive squares. Disordgfnere the diagonal elements of exp{) are the singular

appears in the (1) network model in the form of quenched 51 es ofT. For a random system of length the exponents

random phases associated with links. By contrast, for the are O(L), with sample-to-sample fluctuations which are
RBIM randomness enters only through the scattering paranb(l_uz)_ From Oseledec’s theorem, the average
eters, & and 2«*, associated with nodes. An antiferromag- tands to a limit diagé, €y, . . . €y) fo’r large L, where

netic vertical bond leads to a negative node parametéin . . < ... ¢ are the Lyapunov exponents characterizing
antiferromagnetic horizontal bond, however, gives rise t0 §1a network model.

complexx*, since from Eq(3) It is useful also to express E(L9) in second-quantized
17) notation. Writing the left and right orthogonal matrices in
terms of the Hermitian 1 X 2M matricesA; and A, de-

generating an overall minus sign for The sign is accompa- fined by
nied by a minus sign as a factor in the coefficieht, de-
fined in Eq.(3). 1 /W, —W,

The form of this disorder determines the symmetry class exd —iA_]= T( NV )
to which this network model belongs in the classification AR L
introduced by Altland and Zirnbaudt.Specifically, Hamil- .
toniansH belonging to class D have, in a suitable basis, the 1 Wr o Vg
property thatd* = —H, so thatH is pure imaginary. Adapt- exfiAr]= E ~WL Ve/
ing this defining relation to a network model, one supposes
that propagation on the network is generated by a timethe transfer matrix for the doubled Ising model takes the
evolution operator for unit time step, exd]. For class D, form (within the subspaces witB ~=0)

(—|xh*=|k|*+iml2,

(20)
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Ttp=—exd —ialAja )X exda o[ 0@ €L ];] Let P=3[W'—V] and Q=3[W'+V]. Takmg the differ-
ence between Ed24) and Eq.(25) yields y; |\If> 0 for all

Xexfdi aiTARijaj]. (21 i, where the fermion creation operatoyé are defined by

7 =Py Ci+Q;Cl. (26)

C. Lyapunov exponent spectrum

In this subsection we discuss some aspects of the mappn{%f course, similar expressions for tti2 system may be
tained from the sum of Eq24) and Eq.(25).] In this way

between the RBIM and the network model, which we have®
not considered before. These stem from the fact that, und&¥e find that the right vector associated with the largest pos-
the Jordan-Wigner transformation, different boundary condiSible singular value of the spin transfer matrix is

tions arise inT according to the parity of the fermion num-
bersN: andNp [see Eq(10)]. Full information on sectors of IR c)= H y?lO), (27
both parities is contained in the results of network model i=1
calculations for the subspaces denote¢t and —— in Eq.
(13). To make use of this information it is necessary establis
how the Lyapunov exponents of the spin transfer matrix ar
related to those of the network model. A crucial step is to be
able to identify the parity of left and right vectors Bfwhen
these are written in terms of tHeand g fermions. We show
here how this may be done.

As a starting point, consider the polar decomposition of
the transfer matrix for the doubled Ising model, which takes

the form M 1
_ t
M M—Zlei(m yi—i), (29

:rc:rD:iJZ:1 ILic)®| LjD>e(}\i+}\j)L<RjD| @(Ric|. (22

where|0) is the vacuum for they fermions. More generally,
r?/ve can obtain all the right vectors as follows. First, in the
Ractor eXp@Tal[o‘Z@eL]”) from Eq (21), for eachi in the
range 1$|<M either: (i) seta a;=1 anda|+Ma,+M 0;
or (ii) seta a;=0 and a,+Ma|+M 1. The corresponding
right vector|R) satisfies for(i) y/|R)=0 and for(ii) y|R)

=0. The associated Lyapunov exponents for(tihedoubledl
Ising model are

whereyfryi=1 or 0 for (i) and (ii), respectively.

As a further step in the discussion, it is necessary to dis-
Here,{|Lic)®|L;p)} and{(R;p|®(Ric|} are two complete, tinguish between the two sectors with even and odd parity
orthonormal sets of many-particles states for @@ndD  for the fermion numbersN: and Np. Except in strip
ferm|ons which in general are not bi-orthogonal. The factorggeometry[ «, yw=0 in Eq. (10)], different boundary condi-
eMit are the singular values of the transfer matrix for a singletions are imposed on the network model for each sector, and
copy of the spin system, and the limiting values\gffor ~ so each sector has its own set of Lyapunov exponeaisd
large L are the Lyapunov exponents characterizing the spirmatricesW and V. We indicate quantities calculated using
system. For economy, we use the same symbol to denotsoundary conditions appropriate for even and odd parity sec-
both the disorder-dependent at finite L and its limiting  tors with plus and minus signs, respectivedy:, W=, and
value ad— . Since we are concerned with the largest fewV=. Introducmg the number operator for fermions, N,
singular values, we adopt the orderiRg=\,= - - - =A\,m. —EM 1y, it is straightforward to see that, in general ei-

Comparing Eq(21) with Eq. (22), one sees that the val- ther exp(mNy)=exp(mN,) or exp(TrNc)——expdrrNy) but
ues taken by exp{a[0?®eL];) for afa;=0 or 1 generate to determine which of these holds in a particular instance
the possible values @i ™). In particular, ignoring for the requires explicit(numerical calculation. To this end, we
moment questions connected with parity, the largest of theonsider(restricting ourselves for simplicity to eveM) the
Lyapunov exponents for the doubled Ismg model is obtainedcalar product of¥) [see Eq(23)], for which we know that
by settinga] ;=1 for 1<i<M and o] @;=0 for M+1 &™) W)= +|W¥), with a reference statieef), chosen in or-
<i=<2M. The associated right vector is der that exp@N,)|refy= +|ref). The result{ref ¥)+0 will

indicatee' ™e= '™y, while (barring accidental orthogonal-
1 ity) the resul(refi\¥)=0 implies exp(mN.)=—exp{mN,). A
|\If>E|R1C>®|R1D>=iHl ﬁ[ Wit +Vigl]lvag, suitable choice fofref) is the state

(23

where |vag is the vacuum forf and g fermions, and for

simplicity we have omitted the subscrigton W andV. The ] o
state| ) satisfies for ali the equations which satisfiesN¢|refy=Np|refy=M|ref) and hence also
expimNy)|refy = +|ref). The scalar product is

M

|refy= H (f1+gh|vag, (29

Tt T
re =27 e +V)=2" e ef(1+ .
[WIJfJ+VIjg ]|\II> 0 (24) 1 2 M/2d (WT V) 2 M/Zd (W)d (1 WV)
and (30)
The only factor on the right side of this expression which
[Wiifj—Vig;]|¥)=0. (29 may be zero is det(WV). It turns out thaty=det(WV),
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which takes the valuey==*1, is a convenient indicator:
barring accidental degeneracies in the spectrum\oy,
det(1+WV)=0 if and only if y=—1.

The proof of this statement is as follows. One has

de(1+WVv)=]] (1+p)), (31)
|

wherep; are the eigenvalues of the M) matrix WV. These
occur as complex conjugate paigs, and p*, and possibly
also as real pairs, 1 andl, of which there will be at most
one in the absence of degeneracy. If thesrene such real
pair, xy=—1 and det(k*+WV)=0; if there is noneyx=+1
and det(®WV) #0.

PHYSICAL REVIEW B 65 054425

€

We now apply these results to obtain expressions for the g 4. A sign change of as a function of a parametaris
Lyapunov exponents of the Ising model transfer matrix iNgccompanied by the smallest Lyapunov exponent reaching zero.

terms of those of the network model. For simplicity of pre- This may be regarded as a form of level crossing, as illustrated.
sentation we make use of a property which appears to hold

generally and is certainly true for the model studied in Sec.

IV, the =J RBIM with p<0.5. In this systemy™=+1
always, and half of the Lyapunov exponeitsare obtained
from Eq. (28) by settinge=¢" and takingN, even. The
remaining exponents result from settiag e ~, accompanied
by evenN, if x~=+1, and by odd\,, if y~=—1. Since
we are concerned in the following only wiji™, we write it
below simply asy.

Using the expression for the exponents, E28), we find
the following rules for the casg=1:

M
2 +_ +__+
2, € — € —€;.

(32

M
E ei+ - EI— — e; , (33

where the order ok; and\, has to be decided numerically.

It is interesting to note a consequence that follows from
the importance ofy, and which is probably characteristic of
localization problems in class D. It arisesfcan change
sign as a continuous parameter, such as temperature in the
Ising model, is varied. Since the two subspacesWY
e O(M) in which y=+1 and y=—1, respectively, are dis-
connected, a change in the signyfs accompanied by the
vanishing ofe; . This process is a form of level crossing, as
illustrated in Fig. 4. In the RBIM it occurs for largd at the
Curie point, as discussed in Sec. IV.

This distinction between phases with either sign fois
the analog for the RBIM in cylindrical geometry of a topo-
logical classification introduced for two-dimensional systems
from class D in Ref. 39 and for one-dimensional, single-
channel systems in Ref. 42. In particular, such one-
dimensional systems may have two phases: in one phase a
long sample supports a zero-energy state at each of its ends,
and in the other it does not. Turning to the network model for
largeL, we note that the combination§ W] andWgVy are
the reflection matrices from either end of the system. A
closed sample may be constructed in an obvious way, by
joining outgoing links to ingoing links in pairs at each end of
the system. For a network model, a stationary state has the
status of a zero-energy state, and stationary states will exist
at the ends of the closed sample if the reflection matrices for
the corresponding open system have 1 as an eigenvalue.
From the discussion following E¢31), one sees that this is
the case ify=—1 but not if y=+1.

Ill. CALCULATIONAL METHODS

A. Numerical procedure

Numerical methods suitable for studying random transfer-
matrix products in general are well established and de-
scribed, for example, in Refs. 44—46. It has been recognized
recently*! however, that these methods may develop an in-
stability to rounding errors and must be modified when ap-
plied to systems in symmetry class D. Specifically, the modi-
fications are required if the smallest positive Lyapunov
exponent approaches zero on a scale set by the spacing be-
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tween other exponents, which happens in the RBIM at the k-1/M _
Curie point, as described in Secs. Il C and IV. We summarize Z=yk-> (E xi(n+s)yf|xj(n+s) (39
the established algorithm and review the modification re- =1 1l=1
quired in this subsection. if 1<j<M, and by
First, we define some notation. Consider a network model
of width 2M links and length_, with a transfer matrix of the k=l / 2m ,
form given in Eq.(18). Let x¥(n), fork=1,2,...,M andn Z}(=y}(—i21 (I %ﬂ xi(n+s)y|xj(n+s)  (40)

fixed, be orthonormal column vectors, each &fl Zompo-
nents, written in the same basis as this transfer matrix. Thege M + 1<j<2M. Similarly, we replace Eq37) by
vectors are generated by a sequence of operations designed

to ensure thax*(L) converges for largé to thekth column M 2
of the matrix X{(n+s)=2z 21 1Z?| . (41)
1 (W, —W, if 1<j<M, and by
=T T (34)
NAREEA 2M 12
o " xK(n+s) =2 DINREAR (42)
appearing in the polar decomposition, E#8). i=M+1

The conventional choié&*® for these operations is as

follows. PickxK(0) arbitrarily. Withn=0. let if M+1<j<2M. Lyapunov exponents are determined as

before from Eq.(38), and now remain stable to rounding
yk:T(L—n—S,L_n) Xk(n), (35) errors even |f61—>0.

and perform Gram-Schmidt orthonormalization, following B. Self-averaging quantities

We wish to calculate for the Ising model the free-energy,
spin-correlation functions, and correlations of disorder op-
erators. In the presence of bond randomness these all exhibit
sample-to-sample fluctuations, but the free-energy density
and and typical decay lengths appearing in correlations functions

" ok are self-averaging. In this subsection we describe how such

x(n+s)=2|2. (37)  self-averaging quantities can be obtained from the Lyapunov

exponent spectrum of the network model. The calculation of
correlation functions themselves is discussed in Sec. Il C.

We start from the polar decomposition of the transfer ma-
trix for an (undoubled Ising model of widthM and length_,

k—1
zk=yk—i§l([xi<n+s>]T-yk>x‘(n+s> (36)

The process is repeated witm=s,2s---L—s. The
Lyapunov exponents are then the mean growth rates

ek=<lln|zM+1‘k|> E—<£In|z""+k|> (3 Which[in analogy to Eq(22)] is
S S »
for k=1---M, where the average is over successive or- -‘r:Z ILyeMYR|. (43)

thonormalization steps. The intervais taken for computa-
Flonal efﬁme_ncy_to be as Iarge as is possible V\_/lthc_)ut round'Defining the reduced free energy per site as
ing errors significantly affecting the orthogonalization.

~ The rate of approach with increasiig of the vectors F=— limIn(Z)/LM (44)
x'(L) to the columns of Eq(34) is determined by the spac- Lo
ing between successive Lyapunov exponents. So also are the .
deviations at large of these vectors from the columns of &nd using Eqs(l), (32), and(33), we have by standard ar-

Eq.(34). Such deviations are induced by numerical noise an@uments

generate errors in the calculated values of Lyapunov expo- M

nents. For systems in symmetry class D, the value of the F=— lim i|n|«4|+i 2 el (45)
smallest positive Lyapunov exponern¢;, may approach Lol LM 2M =

zero. If it does, the vectorgV(L) andxM**(L) are unusu-

ally susceptible to rounding errors, as is the valueptle- Turning our attention to typical decay lengths, we note

termined from Eq(38). We demonstrate in the Appendix that first that, viewing the network model as a localization prob-
the error decreases with decreasing noise amplitedenly  lem, its smallest positive Lyapunov exponent defines a local-
as|In(o)| % Because of this, a modification must be foundization length¢ throughé=e; . In a localized phasé has a
that stabilizes the algorithm. finite limit, the bulk localization length, agl — o, while at a
Following Ref. 41, we adapt the Gram-Schmidt orthonor-mobility edge one expects thétdiverges withM and that a
malization to enforce the>22 block structure evident in Eq. universal scaling amplitudais defined by the limiting value
(34). Denoting thejth component ofk*(n) by x}‘(n), and  of Me; for M—oo. An unusual feature of localization prob-
similarly for y* andz*, we replace Eq(36) for 1<k<M by lems in symmetry class D is that one may hae0; from
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the discussion of Sec. Il C and results presented in Sec. 1V, Z’
this occurs in the RBIM in the sector with odd parity. (mopr)=— (51)
For the Ising model, the typical correlation lenggh,,
appearing in the spin-spin correlation function may be exds the ratio of the partition functiod’ for the modified sys-
tracted as follows. This correlator, for two spins with the  tem to that of the original system, and
notation of Fig. 1 the same coordinates in the vertical direc- 1
tion and separation in the horizontal direction, is f;:i: _ ”mF'n((MoMr»- (52)
~ ~ r—o
T oXT(1LN) o T(n+1.L)]
(a1(0)of(n))=— '

= (46) Because the different boundary conditions imposed on the
TrT(1,L)] network model in sectors of even and odd parity constitute
an (infinite) line of such modified bonds5,, may be ex-
pressed in terms of " and e . Moreover, in the ferromag-
etic phase x=—1), §,, is the reduced interfacial tension
etween domains of opposite magnetization. To make this
explicit, let F, and F, be reduced free energies per site,
. 1 calculated from the definition E¢45) for systems in cylin-
oo = — lim ﬁ'n(<0ix(0)0ix(n)>)=)\1_7\z- (47)  drical geometry with, respectively, periodia?, , ;= o) and
nee antiperiodic @), ,=—07) boundary conditions on spins
When writing £,,,, in terms of the network model Lyapunov imposed around the cylinder. Then

Recalling thato] has nonzero matrix elements only between
states with opposite parity, and takihg-<, &, is defined
and expressed in terms of the Lyapunov exponents for th
spin transfer matrix by

exponents, it is useful to introduce a length scglg which 1
characterizes the sensitivity of the network model to changes un=M(Fp—Fa). (53
in boundary conditions, and is defined by In this phase, we find using the ideas of Sec. Il C that
1 - e 8, 54
§1Dl:§Ei (6 —€ 1. (48) Cun= €1+ €10 (54

while in the paramagnetic phasg £ +1) we obtain¢,,

We expect insensitivity to boundary conditions except at the= 10, SO the decay length diverges with. As one might
critical point, and anticipate thgt[,31~exp(—M/§) for large expept, the behavior &, , in each phase is similar to that of
M. In regions of the RBIM phase diagram for whigh=1 &0 in the dual phase.

(corresponding, as we argue, to the paramagned have
from Eq. (32 C. Correlation functions

S1 - 1 Calculation of the full form of correlation functions is
Sor = €1 T &1, (49) more involved than that of the typical decay lengths since, of

so that asymptotically the localization lengthand spin-  Course, the results cannot be expres_sed solely in terms of
correlation lengthé,, are equal. By contrast, in regions of Lyapunov exponent;. Neverthgless, it turns out that even
the phase diagram for whick=—1 (corresponding to the POWers of correlation funptlons may be determined
ferromagnetwe haveé,,= &5 This large length scale here straightforwardly’ In the most important example (_)f the sec-
characterizes the decay of spin correlations in a quasi-on@nd power, one requires the product of two equivalent cor-
dimensional sample within the ordered phase of the tWO_re.Iatlon functions, evaluate_d for.each of the two copies of the
dimensional system. Such decay is governed by rare domaifing model that are combined in the network model. In the
wall excitations that cross the width of the sample. Becaus&2S€ of the square of the two-point correlation function of
¢, is large wheny=—1, it is useful also to examine the disorder operators, E¢S1), this means that the same modi-
inverse length scale governing corrections to @g), which fication of bonds, |§ !ntroduce(_j in both copies of the Ising
is Ay — g For y=—1 m_odel, o) thqtl )< is dete_rmmed from a network model
with a specific set of modified nodes. In the case of the
AN~ N3=e€; +e, + &2, (500  square of the spin-spin correlation function, one can take a
similar route by expressing this in terms of a disorder cor-
sothat, adl —», €; + €, gives the typical decay rate of the relator in a dual system. Alternatively, one can write the
connected part of the spin-correlation function in the orderegroduct of two copies of a spin operator in termsf afindg
phase. fermions, as we describe below. By either route, one arrives
In a similar way, one can obtai), , , the typical correla- ultimately at the same result: the square of the spin-spin cor-
tion length for the disorder operatogs, of Kadanoff and relation function is given by the ratio of the square of a
Ceva?’ These operators are defined at pointshich lie at  partition function calculated from a modified network model
the centers of plaquettes in the Ising model. The two-pointo the same quantity calculated from an unmodified model.
correlation function{uou,) is defined by considering a By contrast, odd powers of correlation functions, including
modified system in which exchange interactions crossed by the first power, appear to be much harder to evaluate, leaving
path on the dual lattice between 0 anchave their sign the sign of the correlation function undetermined: we sum-
changed. Then marize the difficulties that arise at the end of this subsection.
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In practice, the combinatiop\; —\;]L approaches a finite
limiting value rather quickly with increasind.. Conve-
‘ ‘ niently, it is not necessary to evaluate the scalar products of

the form|(L4|R,)|? which appear in the numerator and de-
nominator of Eq(46), because for large these are the same
in the modified and unmodified systems, and therefore can-

cel.

As mentioned above, calculation of the unsquared spin-
spin correlation function presents greater practical problems.
A route is clear in principle: one can use the discussion of

Sec. Il C to construct the transfer matrix for the undoubled
Ising model, via its polar decomposition, in terms of Slater
determinants of they fermions; and one can also express
spin operators in this Ising model in terms of the creation and
(a) (b) annihilation operators for these fermions. Difficulties then
arise from the fact that the matricé§ andWpg appearing in
Eq. (19 are unrelated in the presence of disorder, as also are
V, andVg. In consequence, one has to deal with two sets of
v fermions: y, and yg. Put briefly, we findas in Eq.(4.7)

To obtain the squared spin-spin correlation function fol-0f Schultz, Mattis, and Lielj that (o7(n)o7(n)) can be
lowing Eq. (46), we must evaluate products involving the Written as an expectation value of a product ¢f-2j| fer-

transfer matrix for the doubled Ising model and also factordMion operators, which can be evaluated using Wick's theo-
of the form U}(CO-}(D . From Eqgs.(4) and (7) we have rem. However, in the disordered system it is not possible to

reduce this expectation value to a single determifastin

FIG. 5. Schematic representation of the effect of modifying the
system by inserting spin operators in one sli@:link phases as-
sociated with a pair of spin operatof$) equivalent node phases.

i-1 Eq. (4.13 of Ref. 3. Without such a reduction, the compu-
O'JXCO'}(D=i(—1)jeX;{i7TE [flgi+gfil+imf/f;]. tational effort required to determingo(n)aj(n)) seems
=1 (55 prohibitive for largeli—j]|.

In the spirit of Sec. Il B we translate this into first-quantized IV. NUMERICAL RESULTS FOR THE =*J RBIM
form. Each operator exp((f/g+gf;]) is represented by a
2X 2 matrix, exp{ma*)=—1. As a result, on one slice of the
network model phase factors efl are associated with each ~In this section we present results obtained using the map-
of the right and left going links having coordinaitén the  Ping from the Ising model to the network model as a way of
range ki<j—1. In addition, the operator expf[f,) is ~ Studying the=J RBIM. Previous work of this type has been
represented by a similar phase factor associated witftthe described by Ch8put without the advantages of the numeri-

right going link. These phase factors are illustrated schemat@l @lgorithm or the detailed relation between the network
cally in Fig. 5a), using as an example the combination Model and statistical mechanical quantities that we have dis-

which arises in the calculation of cussed in Sec. lll. ThecJ RBIM, defined on a square lat-
tice, has nearest-neighbor exchange couplihgsirawn in-
g_ependently from the probability distribution

A. Introduction

01cO1pT4cTup -
(a¥(n)af(m))? on settingn=m, i=1, andj=4. Such link
phases can equally be attributed to nodes representing ver
cal bonds of the Ising model, as indicated in Figh)5 N o B
Viewed in this way, the insertion of spin operators into the P(Ji)=(1=p)8(J;; =) +po(J; +J), (57)
transfer-matrix product is represented by a change in nodgith 0<p<1 andJ positive; we setl=1 in the following.
parametersc, — «p i tim/2 for 1si<j—1. In turn, this is The phase diagram of the model, as a function of tem-
equivalent to a change in sign for the corresponding duaperature T and the concentratiop of antiferromagnetic
bond Strengths, as it should be since the Sp|n-C0rre|atIOBondS, is shown in F|g 6, with renorma"za‘[ion-grdm)
function can be evaluated as a disorder correlator in the duglaling flow superimposed:-?°The pure systemg=0) has
model. . . . . ) a transition between ferromagnetic and paramagnetic phases
Implementing this approach in numerical calculations, wezt 5 Curie temperatur@,=2[In(1++2)] 1. As antiferro-
determine the singular values of the transfer matrix for modiynagnetic bonds are introduced the Curie temperature is de-
fied and unmodified network models of lendthof course  pressed, and the ferromagnetic phase is destroyed altogether
using the same realization of disorder for both. From thesgove a threshold concentratiq. A curve in thep—T
we calculate the largest singular value of the transfer matrigy|ane known as the Nishimori lif& 7 (NL) plays an impor-
for the doubled spin system, which we denote by exp  tant role in the discussion of scaling flow. It is defined for the
in the modified case, and by expg2) in the unmodified  + 3 RBIM by the equation exp(@J)=(1—p)/p. On this line

case, following the notation of Sec. Il C. For large the RBIM has an additional gauge symmetry, because
. . 5 , of which the internal energy is analytic and ensemble-
(ai(n)oj(m)) =exp2[A;—Nq]L). (56)  averaged spin-spin correlations obey the equalities
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FIG. 7. The location of the phase boundary determined from
numerical calculations. Data obtained on the [ihe 0.68+4.67p
are presented in Fig. 8.

tensiong;lf and study its size dependence. We also calculate
the disorder-averaged square of the spin-spin correlation
function,[(a?(n)o}‘(n))z], for spins lying in the same slice

of the system, using the approach described in Sec. Il C.
[(af‘(n)o}‘(m))z"* l]=[<<r§‘(n)cr}‘(m))2k] for integerk. The For most of the results presented, we study system widths
NL cuts the phase boundary separating the ferromagnet fromd the range fromM=8 to M=256 spins, and system
the paramagnet at a poil} the Nishimori point, with coor- lengths ofL=5X 10° spins. Realization-dependent fluctua-
dinatesp,,Ty. This point is particularly interesting as an tions in self-averaging quantities decreaselas’? and in
example of a disorder-dominated multicritial point. One ofSome cases increase wilM. As an example, using =5

the two scaling flow axes in its vicinity lies along the NL, X 10 the value ofe; at the Nishimori point is obtained with
while the other coincides with the phase bounddms indi-  an accuracy of 1% foM =16 and 2% forM =64. Some
cated in Fig. 6. Scaling flow on the critical manifold fpr  calculations require higher precision. In particular, the high-
<p. runs from the Nishimori point towards the critical fixed resolution studies of the interfacial tension close to the Nishi-
point of the pure system, at which disorder is marginallymori point, presented in Sec. IV D, and of scaling on the
irrelevant. The phase boundary on the other side of th@hase boundary, presented in Sec. IVE, use systems
Nishimori point is believed to be verticar'’in the T—p  of length up toL=2x1C®, restricting accessible widths
plane, and on it the scaling flow runs from the Nishimorito M <32.

point towards a zero-temperature critical point. Finally, the

phase diagram fop>1/2 can be obtained from that shown

FIG. 6. Phase diagram of theJ RBIM with superimposed RG
scaling flow.

for p<1/2 by reflection in the lingp=1/2, using a gauge C. Location of phase boundary
transformation which maps to 1—p and the ferromagneti- In this subsection we describe the determination of the
cally ordered phase to an antiferromagnet. form of the boundary between the ferromagnetic and para-

Despite the considerable effort which has been invested ihagnetic phases. We also discuss the nature of finite-size
studies of the RBIM, some aspects of its behavior are not yeéffects in different parts of the phase diagram. For this pur-
well characterized. In the following, we present a high-pose the quantity, introduced in Sec. Il C, is very useful
accuracy determination of the position of the phase boundaryind we substantiate our claim th@h the thermodynamic
and of critical properties at the Nishimori point. limit) the sign of y indicates which phase the Ising model
is in.

Our results for the position of the phase boundary are
shown in Fig. 7 and in Table I. Points on this phase boundary

We use the numerical method described in Sec. Il A toare found from a finite-size scaling analysis of the variation
calculate the Lyapunov exponents of the network model asef M/¢ along lines that intersect it; the slopes of these lines
sociated with the RBIM, studying two copies of the systemin thep—T plane are chosen to avoid crossing the boundary
for each disorder realization, with boundary conditions ap-at small angles. Representative data, calculated on the line
propriate for Fermion numbers of each parity. In the spirit of T=0.68+ 4.67, are shown in Fig. 8; they have two features
Sec. Il B we use the smallest positive exponent calculatethat can be used to identify the boundary. First, the curves of
for the network model with periodic boundary conditions to M/¢ for two successive values &l have an intersection
define a characteristic inverse length scale, and analyze thgint, and with increasind/l these intersection points ap-
finite-size scaling behavior dfl/§=Me; as a function of proach the boundary from the smallside. Second, for each
system widthM. In addition, we determine the interfacial M, there is a value op at which ¢ diverges, or equivalently

B. Method
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TABLE I. Location of the phase boundary. L OLOLOLDLOLDLD
OO00O0000o00000nog
aln(ala|=lals|sla|=|=la{=als

p To p To
2HREHASRASHEAAE

0.005 2.2325:0.0003 0.0903 0.0002 1.458 HOH0505d05EEEED
OO0OOoOooo0o0ooooog

0.02 2.126-0.001 0.095% 0.0005 1.379 T SHSdliEEEcadnes
0.05 1.875-0.001 0.1006: 0.0005 1.294 Co80B33499E0EEE:
0.06 1.7830.002 0.10350.0011 1.224 sC000 Eﬁﬁgi
0.07 1.688-0.002 0.1055 0.0011 1.173 elslele S erefaletetole
0.08 1,586 0.002 0.1086 0.0021 1.095 FHHEEaaaEE
0.0852 1.5230.002 0.1096 0.0021 1.019 CHHEEIStElsEic
[ =} B § N Aminiul 0]

e
pry
[3,]

e; =0. With increasingV, these points approach the bound-

ary from the largep side. We obtain consistent results using
the two methods.

A test of these calculations follows from the fact that the
tangent to the ferromagnetic-paramagnetic boundary at the D. Nishimori line
pure critical point is known exacf§ to be dTp/dp|p:O
=—7.2821... . From a linear approximationgat 0.005 we
find dTp/dp|p:0=—7.32t0.06, in good agreement with

Fhis. Our values foil, are also compatible with those given the NL coincides with one of the scaling flow axeCaboth

N Ref. 26'. N _greatly help the analysis. We obtain consistent, high-
lt. is evident from the data shown in Flg' 8, and thelraccuracy estimates of the coordingteand the exponeni

equivalent for other values gi andT, thate; =0 along @ ,qing three separate analyses of the finite-size scaling of

line in the phase diagram which approaches the phase boungrq 31s0 from a study of the interfacial tension.

ary for largeM, but is displaced from it into the paramag-  an overview of the variation oM/¢ along the NL is

netic phase for finitM. From the discussion given in Sec. gien in Fig. 10. We apply finite-size scaling ideas to the data

Il C, we expecty to change sign on this same line, being for i, the following different ways. Two of them are similar to

large M positive in the paramagnetic phase and negative ifhe methods used in Sec. IV C to locate the phase boundary:

the ferromagnetic phase. The data shown in Fig. 9 demons; curves ofM/¢ for two successive values off cross,

strate that this is so; Fig. 9 also shows that the finite-size shift 4 \ve focus on these crossing points for increadingec-

in the position of the phase boundary is very large in theond, for eachM there is a point on the NL at whichl/é

portion of the phase diagram lying below the NL. It SEEMS_ ¢ and we study the position of these points as a function

possible that these finite-size effects may provide an alterngss p1 Third. we can collapse data for differet and from
tive explanation of data which have been interprétédas .o whole critical region onto a single curve.

evidence for a random antiphase staging in this region Turning to the first of these, we concentrate on the top left
of the.phase diagram; and It seems likely that they are rexg Fig. 10, where data sets intersect roughly at one point.
sponsible for nonmonotonic temperature depende_nce Behavior in this region is shown on a larger scale in Fig. 11.
Lyapunov exponents for the RBIM, reported B&pc N From an extrapolation of the intersection points to lakge

FIG. 9. The sign ofy for a system of widtiM = 16 as a function
of position in theT—p plane. Open squares indicate= +1 and
filled squaresy= —1. The NL and phase boundary are also shown.

In this subsection we examine critical behavior near the
multicritical point C as it is approached along the Nishimori
line. The facts>'®thatC is known to lie on the NL, and that

Ref. 26. we find p,=0.1093t 0.0002. We also obtain a limiting value
3.0 T T T 5.0 T
—eo M= o—eo M=8
o—o M=16
40 | - aM=32 |
2.0 4
E.P %P 30
o Yool
1.0 |
10 |
0.0 . . 0.0 -
0.102 0.107 0.112 0.117 0.10 0.12 0.14
P P

FIG. 8. Values of M/¢ calculated crossing the phase boundary  FIG. 10. Variation of M/¢ along the NL, with position param-
along the lineT=0.68+4.67. etrized byp.
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FIG. 11. Variation of M/¢ along the NL, close to the Nishimori FIG. 13. Inpy—pc) as a function of Iny), for different esti-
point. mates ofp.. The straightest line is obtained with,=0.1093 and
has inverse slope-1.49.

at the intersection point dit/¢=1.58+0.01 asM—. The such comparisons we find=1.50+0.10, confirming the

value of v may be found from the scaling with of the result derived from Fig. 13, but not improving on it in

gradients of curves at the intersection points; a similar analyéccuracy.

sis can also be made for the interfacial tension and we Finally, as a way to check the conclusions we have
present both together, towards the end of this subsection. rg4ched from finite-size scaling bf/¢, and in order to make

Taking a second approach to the data, the paiyfson 4 direct comparison with recent work by Honecker, Picco,
the NL at whichM/£=0 are determined for8M <256 as  anq pujot” we present a study of the interfacial tensigf |
shown in Fig. 12, where we take advantage of the fact thalyefined in Eq.(52). High-precision data, calculated usihg
for fixed M, the combinationyM/¢ varies smoothly through =% 108 for 8<M =24 on the NL very close to the Nishi-
zero as a function of position along the NL. One expects thenori point, are shown in Fig. 16; statistical errors are smaller
finite-size shift py—p. to vary with M as (py—pc)  than symbol sizes. As witM/&, one expects, in the critical
«M~ Y and we show the dependencemf—p. on M in region and at sufficiently largé, to collapse data fov/¢,,,

Fig. 13, using a double logarithmic scale for various choicesnto a single curve by plotting it as a function of the scaling
of p.. With the correct choice fop., these data should fall variable @—p)M¥”. Such a collapse is illustrated in Fig.
onto a straight line of inverse slopev. By this method we 17, usingp.=0.1093 andv=1.50. Deviations from collapse
find p,=0.1093 andv=1.49+0.05. are evident at smaller values Bf, appearing as vertical off-

A third treatment of the data fdvl/& is provided by at- sets of the corresponding lines in Fig. 17. Corrections to
tempting to collapse all points from the critical region of Fig. scaling of this type are expected, and arise from scaling vari-
10 onto a single curve, plottinyl/¢ as a function of p ab!es yvhich are irrelevant in the RG sense at the critical
—po)MY¥. In principle, bothp, and » may be taken as fit- Point: in general, we have
ting parameters, but we find that is more accurately de- or e " y
termined using the methods described earlier. We therefore MAf=a+b(p—pM~"+cM™ "+ ..., (58
setp.=0.1093 and vary only the value of We find the best
collapse, shown in Fig. 14, taking=1.50. Visibly worse
collapse results from using=1.40, as shown in Fig. 15; by

wherex is the exponent associated with the leading irrelevant
scaling variablea is a universal scaling amplitude, abénd

15.0 =
1.0 : : : ! o) o M=8
| ‘ | | * M=16
Y § ‘ ! ; o M=32
D4 jf / / 5 100 | x M64
o |idle T 1 s g
~— 4 | | '
= 00 : : S
S f 1 oM 50
!4 : . eM=16 !
: ‘ I oM=32 |
; ; | mM=64 _
Als | - om-128 | 00 . i ‘
10 L ¢ ! e M=256 -0.20 -0.10 0.00 0.10 0.20
7 0.109 0.119 0.129 0.139 (p-pc)M¥v
P FIG. 14. Data collapse along the NL, using=1.50 andp,
FIG. 12. Variation of the combinationya/¢ along the NL. =0.1093.
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16.0 \ \ \ 2.33
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06O
a5 o M=32
10.0 | NYPYEE 22
= : H
2 :
5.0 | 213 |
WA
0.0 : : 2.03 - : :
-0.20 -0.10 0.00 0.10 0.20 -0.008 -0.003 0.002 0.007
(p-pe)M (P-pem”
FIG. 15. Data collapse along the NL, using=1.40 andp FIG. 17. Scaling oM/¢,,, as a function of p—pc)M*”, using
=0.1093. »=1.50 andp,=0.1093.

c are constants. Such corrections occur at the pure Isingur value forv is in disagreement with previous estimates,
transition?* and have also been studied in thélPnetwork  which lie closé® to the percolation valuey=4/3, including
model In view of the way that they enter E@58), it is  most recentlyy=1.33+0.03 in Ref. 27. We believe that the
appropriate to concentrate on tMedependence of the gra- larger system sizes accessible in our work, and the allowance
dients of lines in Fig. 16 when determining These gradi- we have made for irrelevant scaling variables at the critical
ents are shown as a functid using a double logarithmic point, together account for the discrepancy, and that the data
scale in Fig. 18, from which we derive our most preciseshown in Figs. 15 and 18 exclude this smaller value of
estimate ofy, v=1.50+0.03.

The scaling oM/ close to the critical point can be ana-

lyzed in just the same way, yielding the same resultifor )
This scaling collapse is depicted in Fig. 19. The phase boundary separating the ferromagnet from the

We conclude our analysis of critical behavior on theParamagnet coincid&swith the second relevant scaling axis
Nishimori line with the resultsp.=0.1093+0.0002 and at the Nishimori point, in addition_to that defined by the NL.
»=1.500.03. Our value fop, is consistent with the result On the boundary, we expect scaling flow fré@rtowards the
p.=0.1094+0.0002, obtained by Honecker, Picco, andPure critical point forp<pc, and fromC towards the zero-
Pujol?” who carried out a detailed study of the interfacial temperature critical point fof <Ty . We analyze such flow

tension and correlation functions, using the Ising modefn this subsection. . _ .

widths toM <12. Our value fomp, is also in agreement with 1S presented in Fig. 20, which shows the variationMof¢
some earlier, less precise values, includipg=0.111 w!th position, parametrized by, on the pha;e boundary, and
+0.002, in Ref. 23 ang.=0.1095- 0.0005 in Ref. 26, both with M. For p<p., the coordlnates_of points on the phase
found using a transfer-matrix approach with up to 14 spins. [Poundary are taken from Table I, while for Ty we assume

is also marginally in agreement with,=0.104 from Ref. 29 the phase boundary to be vertical in the T plane and set
obtained as the critical disorder strength arolir€0. Itisin ~ P=Pc, USing our estimate for the value pf. At tempera-
marginal disagreement with the result from seriesturesT>Ty=0.9533,M/¢ decreases with increasimg, ap-

expansiong® p,=0.114+0.003. More strikingly, however,

E. Scaling along the phase boundary

5.0 | fit
———- nu=1.33
----- nu=1.45
48 | —-—-- nu=1.55
§2.22 - @
Eﬂ £ 46
212t 44
42 L . :
202 . . 2.0 25 3.0
0.1080 0.1090 0.1100 InM

[
FIG. 18. Scaling of the gradie®of lines in Fig. 16 as a func-

FIG. 16. Variation ofM/¢,,, on the NL close to the Nishimori tion of M. The best-fit inverse slope is=1.50 (solid ling). Lines
point. corresponding tar=1.33, 1.45, and 1.55 are also shown.
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FIG. 19. Scaling ofM/¢ on the NL close the the Nishimori FIG. 21. Scaling ofM/¢ on the phase boundary below the
point, usingr=1.50 andp.=0.1093. Nishimori point, usingv;=4.0 andTy=0.9533.

particularly important that statistical errors are small, and so

we study samples of length=2x 1% with 8B<M=<32. The

scaled data are presented in Fig. 21: as with the analysis
resented in Figs. 17 and 19, and as expected fron{5By.

he value ofy; is determined mainly from the gradients of

curves for eachM. We conclude that+=4.0+0.5. While

this confidence margin is wide, it is encouraging that on

extrapolating the data in Fig. 21 =Ty we obtain at the

Nishimori point M/¢=1.58+0.01 for M—x, in perfect

agreement with the value found independently from data col-

mori point is characterized by a critical exponert, which Iapse on th.e NL. The resqltT=4.0 IS alsp In agreement
in principle can be determined using an approach similar t .'t.h th? estimate for the rat'O/.’fT obtained in Ref. 26 from
that taken forv. In practice, there are extra difficulties. First, inite size scaling of the specmc_ heat. The exponentnd
in contrast to the NL, the form of the phase boundary is nof’r '€ related by the hyperscaling relatiday=2-« and
known exactly; we choose the simpler regiffes Ty, and 1€ valuea/vr=—1.5 in Ref. 26 gives exactlyr=4.0.
setp to our estimate fop., as above. Second, it happens
that v> v, so that flow away from the multicritical point is
faster in the direction of the NL than along the phase bound- In three or more dimensions, the random-bond Ising
ary. Because of this, the range férover which useful data model has a spin-glass phase at low temperature and strong
can be collected is limited on both sides. The distaffge, disorder? It is known that spin-glass order does not occur in
—T, from the Nishimori point should not be too large, or the two-dimensional RBIM, except at zero temperafﬂrlm,lt
data will lie outside the critical region. It should not be too it is of interest to examine behavior at strong disorder using
small either, because close @errors in our value forp, the methods we have developed.
will be dominant. Having limited the range fdr— Ty in this Finite-size effects in the RBIM are large at strong disorder
way, the variation inM/¢ is also restricted. It is therefore and low temperature, as remarked in connection with Fig. 9,
and as is clear from Fig. 22, which shows the variation of

proaching zero which is the value taken by this scaling am
plitude in the pure Ising model &= T,=2.269; fluctuations
visible in Fig. 20 for data at temperaturés 1.5 arise from
errors in determining the position of the phase boundary. A
the Nishimori point itself, curves oM/¢ for different M
cross, with a limiting value foM — o, as already determined
in our study of behavior on the NL. Far<T,, values of
M/ increase both with decreasifigand with increasingu,
as expected if flow is towards lower temperatures.

Scaling flow along the phase boundary close to the Nishi

F. Behavior at strong disorder

6.0
15.0 [
40
%" AEP 100 |
(o)} (o}
20
50
0.0 - 0.0
0.7 12 1.7 0.10
T
FIG. 20. Variation ofM/¢ with position, parametrized by, on FIG. 22. Variation ofM/¢ with p, crossing the phase boundary
the phase boundary. atT=0.5.
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FIG. 23. Variation of¢,, with T on the linep=0.5: In(&,) as FIG. 25. Variation of the disorder-averaged square spin-spin cor-
a function of 1T. Dashed lines represeét,exp(2). relation function with distance around a system of circumference

M =40, in the paramagnetic phasg=1.9) and the ferromagnetic
M/ & with p andM at a fixed temperaturd,= 0.5, below the Phase T=1.3).
Nishimori point. Despite these finite-size effects, it is G. Spin-spin correlations
straightforward to identify the position of the phase bound-

ary from Fig. 22. Moreover, the size dependencéVidt in As a demonstration of the effectiveness of the method set

; . ._outin Sec. Illl C for obtaining even powers of spin-spin cor-
the paramagnetic phase®t 0.5 and higher temperatures is relation functions, we have caIcuIatp(dri‘(n)o}((n»z] at all

consistent with a finite limiting value foé as M —x, as L : !
. separations$i — j| of spins across the width of a long system
lriczq;rl]r:sdegrom the fact that the RBIM does not have a metalwith M=40. Data atp=0.08, obtained by averaging over

o . L . . 10" disorder realizations, are shown in Fig. 25, for a high
For a quantitative analysis of behavior in this region, we g g

S . . temperatureT=1.9, lying in the paramagnetic phase, and
focus on the linep=0.5 which, by symmetry arguments, is ¢o g |ower temperatireT = 1.3, lying in the ferromagnetic

an exact scaling axis. Scaling flow is from the zero-phase. It is clear for this second case that the value of the
temperature fixed point gi=0.5 towards infinite tempera- square of the magnetization can be obtained from the corre-
ture, and one can collapse data on this line to extract theytion function at separations close /2.

limiting behavior of¢ for M — <. This extrapolated localiza- We have also used this approach to calculate
tion length &, is expected to be finite fof >0. Its tem- [<gi><(n)gj?<(n)>2] and[<gf(n)0}<(n)>4] on the NL at our es-
perature dependence fd=0.4 (obtained using &M=<64  timated position for the Nishimori point. At this point, one
and L=10) is shown in Fig. 23, where we compare our expects decay of the disorder-average ofktrepower of the
results with the behaviog,,xexp(2), suggestett> for  spin-spin correlation function to be characterized by an ex-
the =J RBIM. In Fig. 24 we compare our same results with ponentz, . Following the analysis described in Ref. 27, and
the power-law divergence, =T~ ", expected in a RBIM  taking M =20, L large, and 10 realizations, we obtainy,

with a distribution of bond strengths continuouslatO, for =0.183+0.003 and»,=0.253+0.003, in agreement with
which exponent values in the range3.4—=4.2 have been earlier result€’

reported previousl§?°>°30ur data in the temperature range

accessible do not provide firm grounds to prefer one form for V. SUMMARY

the temperature dependence over the other. . . . . .
P P To summarize, we have described in detail a mapping

5.0 ‘ ‘ between the two-dimensional random-bond Ising model and
a network model with the symmetries of class D localization
problems. Building on Refs. 4—7 we have shown in particu-
lar how separate boundary conditions arise in the network
. model for sectors of the Ising model transfer matrix with
s ] even and odd parity under spin reversal, and how statistical-
mechanical quantities, including the free energy per site and
o' ] correlation functions, may be obtained from calculations us-
. .~ ing the network model. Among other things, this makes clear
1.0} . 1 the sense in which the Ising model correlation length may be
. - equated with the network model localization length. From a
computational viewpoint, calculations based on the network
model are much more efficient than their equivalent using an
Ising model transfer matrix in a spin basis. This is illustrated
FIG. 24. Variation ofép, with T on the linep=0.5: In@&.) by the fact that such calculations have in the past mainly
as a function of In). The dashed line represents »T~”  been restricted to systems of widlh<14 spins, while we
with v=4. present results in this paper fdl <256 spins. Applying
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these ideas to study the Nishimori point for thel RBIM, 1 (1 1/ 1
we obtain a value for the exponentwhich is significantly vn=—< )cos¢n+ — )sin bn. (A3)
different from previous estimates based on much smaller sys- V21 J21-1

tems sizes; our value excludes the possibility of a simplgy, this notation, Eq.(A2) may be written tam,.;
connection between behavior at this critical point and classi— exp(—26,)tane, , and has fixed pointe,=mam/2 witp\ m
cal percolation, conjectured previousfyBeyond computa- integer. We concentrate on the vicinity of one of these, con-
tional advantages, the equivalence between the RBIM angidering the range € ¢,<1. Then é. . ~exp(26.)d,.

the network model has theoretical interest. It links the tranyye take the effect of rounding errors into account by substi-
sition between paramagnet and ferromagnet to a version %ting for this the evolution equation

the quantum Hall plateau transition, as our results illustrate.
Moreover, even in quasi-one-dimensional systems for which dni1=Xp(—20,) dn+ 71, (A4)
there is no sharp Curie transition, a topological distinction h . d ith —0 and s 2
emerges within the network model between two separate I0VNere 7n is random with( z,) =0 and( 7, 7m) = dmno®.
calized phases A simple treatment of the stochastic process defined in
' this way is sufficient for our purposes. To find approximately
the limiting distribution P(¢,) at largen, we divide the
range under consideration faf,, into the regimes & ¢,

We thank N. Read for collaboration in the early stages of~¢ and o<, . In the former the noise dominates, gener-
this work and for discussions throughout. We also thank Tating an approximately uniform distribution fef, . We take
Davis for his data from transfer-matrix calculations in the P(,)=C (A5)
spin basis, which provided a valuable comparison with our n L
results. We are grateful to I. A. Gruzberg and to M. Picco forwhereC, is a constant. In the latter regime we neglect the
helpful correspondence. This work was supported in part byoise and use in place @f, the variabley,=In(¢,), taking
EPSRC under Grant GR/J78327. its evolution to be
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APPENDIX: EFFECT OF ROUNDING ERRORS Yn+1=Yn=20n- (A6)

ON LYAPUNOV EXPONENTS Since we have chos€m,,) =0, this generates a uniform dis-
) ) ) tribution fory,, in the ranger<y,<Y, where the upper limit
The numerical results presented in this paper were oby _jn(/4) represents the point at which the linearization of

tained using a modified version of the standard algorithm fog, 4 y t4ils, and also the boundary separating the vicinities
studying random matrix products, as we describe Sec. Hll Ayt 1ha fixed points of Eq(A2) at ¢, =0 and ate,= /2. On
n n .

The need for such a modification stems from the 'nStab'“tytransforming back tap, we obtain within our approxima-
of the standard algorithm to rounding errors if the value ofy, .\«

the smallest positive Lyapunov exponemt, approaches

zero. The instability is extreme and it is of interest to under- : { C, for 0<¢<o

stand how it arises. In this Appendix we illustrate its origin P(¢)=

by examining a simple model problem. Col¢ for o<¢=ml4,
It is sufficient to consider only products oX2 matrices, whereC,=C; o for continuity.C, is determined by the nor-

because the instability involves only the space spanned bgalization condition

the vectors associated with the pair of Lyapunov exponents

smallest in magnitude, denoted bf'(L) andxM*%(L) in f”"‘P Ao —= (A8)

Sec. Il A. We therefore consider a product of random matri- 0 (¢n) ¢”_2

ces, each of the form

(A7)

since we may take the full range fa@, to be 0< ¢, </2.

(cosh@n sinhan) We find for o<1
\=

(A1)

sinh#, coshé, C,=[20In(wl4o)] L. (A9)

and drawn independently from a distribution which has Now consider the effect that noise-induced departures of
(6,)=0 in order that the Lyapunov exponents of the matrix ¢, from the fixed point ath,=0 have on the estimate of the
product are zero. To model the operation of the standartlyapunov exponents. Using e=(In|Tv,|), we have
algorithm, we consider evolution of a two-component vector
—(37): 1
Vo under an analog of Eq$35)~(37): e= 5 (IN[exP(20,) COF b+ expl — 20,)sirP by ). (ALO)
T,V
vnﬂzﬁ. (A2)  Taking for simplicity 8, and ¢, small, we find
nYn

: - =4( p2)( 62). A1l
In the absence of rounding erroxs, converges with increas- e=Hbn){(0h) (ALD)
ing n to one of the eigenvectors @f,, and so it is natural to  In the absence of noisé},=0 and hence=0. With noise
expandyv,, in this basis, writing present we must evaluate
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(6%)= J " (b 2dg (A12)
n 0 n n n-

Using our approximate form faP(¢,) we find, foro<1, <<j>ﬁ)<>c|ln(a)|*l and hence
ex|In(o)| L. (A13)

Thus small rounding errors may be responsible for a large error in the value obtained for the Lyapunov exponent. In the
language of this Appendix, the modified algorithm described in Sec. Il A uses the known symmetry of the transfer matrix to
fix ¢,=0.
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