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Two-dimensional random-bond Ising model, free fermions, and the network model

F. Merz and J. T. Chalker
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 4 June 2001; published 15 January 2002!

We develop a recently proposed mapping of the two-dimensional Ising model with random exchange
~RBIM! via the transfer matrix, to a network model for a disordered system of noninteracting fermions. The
RBIM transforms in this way to a localization problem belonging to one of a set of nonstandard symmetry
classes, known as class D; the transition between paramagnet and ferromagnet is equivalent to a delocalization
transition between an insulator and a quantum Hall conductor. We establish the mapping as an exact and
efficient tool for numerical analysis: using it, the computational effort required to study a system of widthM
is proportional toM3, and not exponential inM as with conventional algorithms. We show how the approach
may be used to calculate for the RBIM the free energy, typical correlation lengths in quasi-one dimension for
both the spin and the disorder operators, and the even powers of spin-spin correlation functions and their
disorder averages. We examine in detail the square-lattice, nearest-neighbor6J RBIM, in which bonds are
independently antiferromagnetic with probabilityp, and ferromagnetic with probability 12p. Studying tem-
peraturesT>0.4J, we obtain precise coordinates in thep2T plane for points on the phase boundary between
ferromagnet and paramagnet, and for the multicritical~Nishimori! point. We demonstrate scaling flow towards
the pure Ising fixed point at smallp, and determine critical exponents at the multicritical point.

DOI: 10.1103/PhysRevB.65.054425 PACS number~s!: 75.10.Nr, 73.20.Fz, 75.40.Mg
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I. INTRODUCTION

The two-dimensional Ising model1,2 has been a basic pro
totype in the theory of phase transitions for over half a c
tury. A central factor in its importance has been its equi
lence to a system of noninteracting fermions, as set ou
Schultz, Mattis, and Lieb3 in their well-known reformulation
of Onsager’s solution. The two-dimensional Ising model h
naturally also been a test bed for studies of the effect
quenched disorder on phase transitions, and the equival
between the spin system and free fermions continues to
in the presence of randomness in exchange interaction
this paper we build on recent work by Cho and Fisher4,5 and
by Gruzberg, Read, and Ludwig6,7 to establish the correspon
dence in a form suitable for numerical analysis, and use
study the square-lattice, random-bond Ising model~RBIM!.

The consequences for the two-dimensional Ising mode
weak randomness in exchange interactions are rather
understood, following analytical calculations based on
Fermionic formulation by Dotsenko and Dotsenko8 and
others:9–11 weak disorder is marginally irrelevant in th
renormalization group sense, and the thermally driven tr
sition from the paramagnet to the ferromagnet survives w
only logarithmic modifications to the critical behavior of th
pure system. By contrast, strong disorder has more dram
effects. A convenient choice is to consider exchange inte
tions with fixed magnitude which are independently fer
magnetic or antiferromagnetic, with probabilities 12p and
p, respectively. In this case, it is known from a variety
approaches12–29 that the Curie temperature is depressed w
increasingp, reaching zero at a critical disorder strengthpc .
Moreover, while the scaling flow at the transition is co
trolled for small p by the critical fixed point of the pure
system, at largerp it is determined by a disorder-dominate
multicritical point, known as the Nishimori point.14–16

Most numerical studies of the RBIM have used eith
0163-1829/2002/65~5!/054425~18!/$20.00 65 0544
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Monte Carlo simulations19,20 or transfer-matrix calculations
in a spin basis.21–27 Fermionic formulations of the Ising
model nevertheless have two great potential advantages:
can avoid the statistical sampling errors of Monte Ca
simulations; and also, if implemented using the transfer m
trix, they can avoid the exponential growth in transfer-mat
dimension with system width that occurs if this matrix
written in a spin basis. Pioneering steps in the first of th
directions have been taken by Blackman30 and
collaborators,31 and others,32–34 using the solution of the
two-dimensional Ising model via a Pfaffian2 to express
statistical-mechanical quantities in terms of spectral prop
ties of the associated matrix. Their work makes a link b
tween the RBIM and localization problems, since the mat
allied to the Pfaffian is essentially a tight-binding Ham
tonian on the lattice of the underlying Ising model, with ra
dom hopping arising from random exchange. An alternat
route from the RBIM to a localization problem has be
proposed by Cho and Fisher:4,5 starting from two copies of
the transfer matrix for an Ising model, each expressed
terms of Majorana fermions and combined to form Dir
fermions, they arrive at a version of the network model sim
lar to that introduced as a description for the integer quan
Hall plateau transition,35 though with a distinct symmetry.

Viewed as a localization problem, the paramagnetic a
ferromagnetic phases of the RBIM translate to two insulat
phases with Hall conductance differing by one quantum u
while the Curie transition maps to a version of the quant
Hall plateau transition. This transition, and indeed the in
lating phases, belong to a nonstandard symmetry class
localization, classified in work by Altland and Zirnbauer36

and known as class D. The match between behavior expe
in the RBIM and that anticipated for two-dimensional loca
ization problems in class D has been the subject of rec
discussion.6,7,37–41A particular difficulty has been to recon
cile the fact that, generically, a third, metallic phase is p
©2002 The American Physical Society25-1



u-
te
a
r-

is
s

r
e

ap

rk
a
a
a
d
de
nt
y-
nd
vi
m
o
el
to

re
to

rro
i

et
rk
on
on
of

we
t

p-
ht
c
t

th
m
im

I
n
e
n
b

th
e

et
ow
fe
o

e-
hi

the
nd
ys-

,

are

er

en-
ne

F. MERZ AND J. T. CHALKER PHYSICAL REVIEW B65 054425
sible in the localization problem, in addition to the two ins
lating phases, while the RBIM in two dimensions is expec
to display only two phases. The resolution which h
emerged6,41 is that symmetry alone is not sufficient to dete
mine the phases that appear, and that in the specific d
dered conductor equivalent to the RBIM no metallic pha
arises.

The work we describe here builds on Cho and Fishe
ideas, which must be extended in several ways to provid
precise and practical treatment of the RBIM. First, the
proach described in Ref. 4 proceeds from the RBIM via
continuum limit, which is rediscretized to obtain a netwo
model. In order to find an explicit relationship between p
rameters in the two systems, it is necessary instead to c
out the mapping directly on a lattice model. Doing so,
described by Cho in her thesis5 and by Gruzberg, Read, an
Ludwig in Refs. 6 and 7, one arrives at a network mo
different in detail to that studied in Ref. 4, and with differe
behavior.41 Second, a proper treatment of the RBIM in c
lindrical geometry requires an appropriate choice of bou
ary conditions in the network model, which has not pre
ously been considered. Third, to calculate thermodyna
quantities, typical correlation lengths, spin, and disorder c
relation functions for the RBIM using the network mod
formulation, it is necessary to map from fermions back
spins, as outlined in Refs. 6 and 7 and as we describe he
feature of interest which emerges from our analysis is a
pological distinction between the paramagnetic and fe
magnetic phases as represented in terms of fermions, sim
to that discussed recently for other systems from symm
class D.6,42 Finally, an important technical aspect of the wo
we present here is that numerical transfer-matrix calculati
for localization problems in the symmetry class we are c
cerned with require for numerical stability a modification
the standard algorithm, as discussed in Ref. 41.

As a numerical approach to the RBIM, the method
describe has two main limitations. One arises because
Dirac fermions of the network model are built from two co
ies of an Ising model. As a result, it turns out to be straig
forward to calculate even powers of spin-correlation fun
tions, and their disorder averages, but not practical
calculate odd powers. The other stems from the fact
Boltzmann factors which enter the network model beco
large at low temperatures, making the zero-temperature l
inaccessible.

The remainder of the paper is organized as follows:
Secs. II A and II B we outline the Jordan-Wigner Fermio
ization of the spin transfer matrix and the mapping to a n
work model. In Sec. II C we discuss boundary conditio
across the system in network model language and the su
quent rules for constructing the spin transfer matrix from
fermion transfer matrix. In Sec. III and the Appendix w
review the numerical algorithm that we employ in the n
work model transfer-matrix calculations and set out h
statistical-mechanical quantities are obtained from the
mion description. In Sec. IV we present numerical results
the 6J RBIM. The system sizes we study~transverse width
M58 – 256 spins! are significantly larger than what was pr
viously possible. We focus on critical behavior at the Nis
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mori point, for which we determine the coordinatepc
50.109360.0002. We calculate the critical exponentsn and
nT , describing the divergence of the correlation length as
Nishimori point is approached along the Nishimori line a
the phase boundary, respectively. Using large s
tem sizes we findn51.5060.03, in disagreement with
previous estimates,18,27 and, with wider confidence limits
nT54.060.5.

II. TRANSFER MATRIX

A. Ising model transfer matrix

We consider the nearest-neighbor Ising model on a squ
lattice in two dimensions. The partition functionZ for a such
a system on a strip of lengthL and widthM can be written1

in terms of a product of transfer matrices. Introducing integ
coordinatesn and i, as illustrated in Fig. 1, one has

Z5ATr@ T̂1T̂2•••T̂n•••T̂L#, ~1!

with T̂n5V̂n3Ĥn and

Ĥn5expS 2(
i 51

M

@kn,i* s i
z# D ,

V̂n5expS (
i 51

M

@kn,is i
xs i 11

x # D , ~2!

where thes ’s are Pauli matrices and

kn,i5bJv~n,i !,

kn,i* 52
1

2
ln@ tanhbJh~n,i !#,

A5 )
n51

L

)
i 51

M

A2@sinh 2kn,i* #21/2. ~3!

FIG. 1. For the square lattice Ising model we adopt the conv
tion that a pair (n,i ) labels one spin with two associated bonds, o
horizontal~to the right! and one vertical~downwards!.
5-2
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TWO-DIMENSIONAL RANDOM-BOND ISING MODEL, . . . PHYSICAL REVIEW B 65 054425
Here, kn,i is the reduced coupling strength at inverse te
peratureb between thei th and (i 11)th spin in the vertical
direction of Fig. 1 on thenth slice, andkn,i* is the Kramers-
Wannier dual value of the corresponding bond strength in
horizontal direction. For the rest of the paper the labelsv and
h on the bond strengths are redundant, since all horizo
bond strengths~and only those! appear as dual values, iden
tified with an asterisk. We takesM11

x [s1
x in Eq. ~2! so that

boundary conditions across the strip are controlled by the
of interactions strengthskn,M . For convenience we intro
duce the notationT̂(k,l )[)n5k

l T̂n , and for brevity we useT̂

to denote eitherT̂(k,l ) or T̂n .
Following Schultz, Mattis, and Lieb3 the operatorsĤn and

V̂n can be written, using the Jordan-Wigner-transformati
as functions of Fermionic operators. Introducing the ferm
annihilation and creation operatorsCi andCi

† , the spin op-
erators become

s i
x5expS ip(

j 51

i 21

Cj
†Cj D ~Ci

†1Ci !,

s i
z52Ci

†Ci21. ~4!

After Jordan-Wigner transformation,Ĥn and V̂n read

Ĥn5expS 22(
i 51

M

kn,i* FCi
†Ci2

1

2G D ,

V̂n5expS (
i 51

M21

kn,i@Ci
†2Ci #@Ci 11

† 1Ci 11#

2kn,MeipNC@CM
† 2CM#@C1

†1C1# D , ~5!

with NC5( i 51
M Ci

†Ci , the number operator. A familiar fea
ture of the transfer matrix in Fermionic language is tha
does not conserveNC , sinceV̂n includes terms which creat
and annihilate fermions in pairs. Such a structure is remi
cent of Bogoliubov–de Gennes Hamiltonians arising in
mean-field description of superconductors. It has the con
quence that, to diagonalize the transfer matrix for a tran
tionally invariant Ising model, one uses Fourier transform
tion followed by Bogoliubov transformation. For the RBIM
without translational invariance, the transformation that
agonalizes the transfer matrix is disorder dependent, and
must follow a different route to make progress.

In place of diagonalization, the objective for the RBIM
to write the transfer matrix in terms of Dirac fermions who
number is conserved under its action. The necessary step
well-established43,10and have been set out in the present c
text by Cho and Fisher,4 Cho,5 and Gruzberg, Read, an
Ludwig.7 First, because of the form of Eq.~5!, it is natural to
decompose the complex~Dirac! fermions into real and
imaginary parts, introducing real~Majorana! fermions jC
andhC . Suppressing the site index one can write
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1

A2
@jC2 ihC#, C†5

1

A2
@jC1 ihC#, ~6!

where jC and hC anticommute and satisfyjC
† 5jC , hC

†

5hC and $jCi ,jC j%5$hCi ,hC j%5d i j . Next, in order to re-
turn to Dirac fermions, one introduces a second, ident
copy of the Ising model. We represent the second copy us
the Dirac fermionsD and D†, in analogy to theC and C†,
and employ the Majorana decompositionD5@jD

2 ihD#/A2 andD†5@jD1 ihD#/A2. This provides different
ways to recombine the Majorana fermions. Of the vario
alternatives, consider in particular the Dirac fermionsf
5@jC1 i jD#/A2 and g5@hD2 ihC#/A2, which we choose
to yield real coefficients later on. Again suppressing the s
index, this transformation may be summarized by

C5
1

2
@ f 1 f †1g2g†#,

D5
i

2
@ f †2 f 2g2g†#, ~7!

and its inverse

f 5
1

2
@C1C†1 iD 1 iD †#,

g5
1

2
@C2C†1 iD 2 iD †#. ~8!

As an aside, we note that the Jordan-Wigner transforma
applied to two copies of the Ising model does not by its
generate the correct commutation relations between pair
spin operatorssx taken one from each copy. To ensure the
commutation relations one should in addition introdu
Klein factors. Since the Klein factors ultimately have no e
fect on the equations we present, we omit them through
this paper.

For the doubled system, we are concerned with
transfer-matrix products~suppressing the slice index! ĤCĤD

andV̂CV̂D . The value of the transformation Eq.~7! is that it
reduces these products to the simple forms

ĤCĤD5expS 22(
i 51

M

kn,i* @gi
†f i1 f i

†gi # D ,

V̂CV̂D5expS 2 (
i 51

M21

kn,i@gi
†f i 111 f i 11

† gi #1BD , ~9!

where the boundary termB is

B52kn,M@~eipNC1eipND!@gM
† f 11 f 1

†gM#

1~eipNC2eipND!@gM
† f 1

†1 f 1gM##. ~10!

This process of doubling the degrees of freedom and rew
ing them locally as fermions, in order to remove terms wh
are not particle conserving, may be viewed as a local Bo
liubov transformation.
5-3
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F. MERZ AND J. T. CHALKER PHYSICAL REVIEW B65 054425
The boundary termB contains the two boundary operato

B 65eipNC6eipND. ~11!

These operators commute with the transfer matrix as a c
sequence of Z2 symmetry: for a single system, sayC, one
can identify two invariant subspaces, distinguished by
behavior of vectors within the subspace under the opera
R̂C which reverses the orientation of a complete row
spins.1 Specifically,

R̂C5)
i

s iC
z ,

R̂Cs jC
x R̂C52s jC

x ~12!

for all j, andR̂C
2 51. Introducing the corresponding operat

R̂D for theD system and assuming the total number of sp
across the strip to be even, one finds that the boundary
erators are simplyB 65R̂C6R̂D . Since bothR̂C and R̂D
commute with the transfer matrix, four invariant subspa
arise naturally from@R̂C561# ^ @R̂D561#. Using obvious
notation,T̂CT̂D may then be presented schematically in t
block-diagonal form

T̂CT̂D5S 11 0 0 0

0 21 0 0

0 0 12 0

0 0 0 22

D . ~13!

Thus the Fock space associated with theC and D fermions
can be divided into four subspaces according to the parit
NC andND . In two of them, for whichB 250, the number
of f andg fermions is conserved under the action ofT̂.

B. Network model interpretation

The conservation of the Dirac fermionsf andg under the
action of the transfer-matrix operator makes it possible to
from a second-quantized description to a first-quanti
form. Moreover, just as the second-quantized form has SO~2!
symmetry,7 one finds that the first-quantized form may
interpreted as the transfer matrix for a scattering proble
because it fulfills the requirements arising from unitarity
the scattering matrix. Specifically, the first-quantized fo
represents a network model, in which noninteractingf andg
fermions propagate on directed links of a lattice. The ferm
ons scatter at nodes, where two incoming links and two o
going links meet. In this way, the nodes of the netwo
model take the place of bonds in the Ising model. A cor
spondence of this type was set out by Cho and Fisher4 and
subsequently refined by Cho,5 who pointed out that the net
work model studied numerically in Ref. 4 is equivalent to
Ising model in which some exchange couplings are ima
nary, while the RBIM itself is represented by a different n
work model. In this subsection we review these ideas.

The identification of the first-quantized form ofT̂ makes
use of a general equivalence between first- and sec
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quantized versions of linear transformations. Consider i
Hilbert space of dimensionN a linear transformation of
single-particle wave functions, represented in a certain b
by an N3N matrix with elements (expG)ij . Introducing in
the same basis fermion creation and annihilation operat
a i

† anda i , the second-quantized representation of this tra
formation is exp@ai

†Gijaj#. To apply this equivalence to th

transfer matrixT̂, let theN[2M fermion annihilation opera-
tors be @a1 , . . . ,a2M#5@ f 1 , . . . ,f M ,g1 , . . . ,gM#. In the
B 250 subspaces, the transfer matrix of the RBIM has
canonical form

T̂CT̂D5exp@a i
†Gi j a j #, ~14!

and can be represented equivalently by the 2M32M matrix
T, with elementsTi j 5(expG)ij , as a transformation o
single-particle states. Thus the action of the operatorT̂ on a
Slater determinant is replicated by the action of the matriT
on the orbitals entering the determinant. In the following w
use notation for the matrixT corresponding to that intro
duced for the operatorT̂: Tn denotes the transfer matrix fo
thenth slice of the system,T(k,l ) indicates a product, andT
is shorthand for either.

While knowledge of the single-particle form ofT is
enough by itself for efficient numerical calculations, physic
interpretation within this framework of the RBIM as a loca
ization problem depends on the fact thatT is a pseudo-
orthogonal matrix. In consequence, it can be viewed as
transfer matrix for a scattering problem in which flux is co
served. In order to see that this is indeed the case, cons
the basic building blocks of the transfer matrix for one c
umn of sites in the doubled Ising model. The two facto
ĤDĤC andV̂DV̂C , appearing in Eq.~2! each consist of prod-
ucts ofM commuting operators. Every such operator rep
sents a single bond of the Ising model and involves only o
pair of f and g fermions. Schematically, a horizontal bon
gives rise to exp(22k* @g†f1f†g#), which is replaced in a
first-quantized treatment by the 232 matrix h[
exp(22k*sx), while a vertical bond yields exp(2k@g†f
1f†g#), which is replaced byv[exp(2ksx). To arrive at a
scattering problem, thef fermions are regarded~arbitrarily!
as right movers, and theg fermions as left movers. Then th
matricesh andv are transfer matrices for nodes of the ne
work model. They relate flux amplitudes,Lin and Lout , to
the amplitudesRin andRout , appearing either side of a nod
as illustrated in Fig. 2.

In algebraic terms, we have for horizontal bonds t
equation

FIG. 2. Scattering nodes for:~a! horizontal and~b! vertical
bonds.
5-4
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S Rout

Rin
D 5S cosh 2k* 2sinh 2k*

2sinh 2k* cosh 2k* D S Lin

Lout
D ~15!

and for vertical bonds the equation

S Rin

Rout
D 5S cosh 2k sinh 2k

sinh 2k cosh 2k D S Lout

Lin
D . ~16!

Flux conservation follows from the relationsszh†sz5h21

andszv†sz5v21.
The network model as a whole is illustrated in Fig. 3.

has the same structure as the U~1! network model, intro-
duced to describe localization in the context of the inte
quantum Hall effect.35 Directed links form plaquettes, eac
with a definite sense of circulation, which is alternate
clockwise and anticlockwise on successive squares. Diso
appears in the U~1! network model in the form of quenche
random phases associated with links. By contrast, for
RBIM randomness enters only through the scattering par
eters, 2k and 2k* , associated with nodes. An antiferroma
netic vertical bond leads to a negative node parameter,k. An
antiferromagnetic horizontal bond, however, gives rise t
complexk* , since from Eq.~3!

~2uku!* 5uku* 1 ip/2, ~17!

generating an overall minus sign forh. The sign is accompa
nied by a minus sign as a factor in the coefficientA 2, de-
fined in Eq.~3!.

The form of this disorder determines the symmetry cl
to which this network model belongs in the classificati
introduced by Altland and Zirnbauer.36 Specifically, Hamil-
toniansH belonging to class D have, in a suitable basis,
property thatH* 52H, so thatH is pure imaginary. Adapt-
ing this defining relation to a network model, one suppo
that propagation on the network is generated by a tim
evolution operator for unit time step, exp(iH). For class D,

FIG. 3. The network model. Flux propagates on links in t
direction indicated by arrows. The transfer matrix relates flux a
plitudes carried by links on the right to those on the left. Nod
arising from single rows of vertical bonds and horizontal bonds
the Ising model are indicated byV and H, respectively. Two par-
ticular nodes are labeled byh andv. Four sites of the Ising mode
are also shown with exchange interactions as dotted lines.
05442
r

er

e
-

a

s

e

s
-

this evolution operator is real, so that scattering phase fac
may take only the values61, as is indeed the case for th
RBIM. In detail, a single antiferromagnetic bond~either
horizontal or vertical! introduces phases ofp for propagation
around both the anticlockwise plaquettes that meet at
corresponding node, compared to the phases in the pu
ferromagnetic model. Other choices of randomness belo
ing to the same symmetry class are of course possible.
and Fisher4 investigated a model in which the transfer mat
ces at all nodes are of the type given in Eq.~16!, with ran-
domness in the sign ofk, while other authors6,41 have stud-
ied a model in which scattering phase factors of61 are
associated independently with links rather than nodes. S
ingly, each of these different choices leads to very differ
localization properties in the network model.6,41

Combining the 232 transfer matrices,h or v, for each
node, one arrives at the 2M32M transfer matrixT for the
system as a whole. Flux conservation guarantees thatT may
be factorized as

T5S WL 0

0 VL
TD S cosh~eL ! sinh~eL !

sinh~eL ! cosh~eL !
D S WR

T 0

0 VR
D ,

~18!

where components in the basis are ordered so that the am
tudes for propagation in one direction constitute the firstM
entries of the vectors on whichT acts, and those for propa
gation in the opposite direction make up the remainingM
entries. Here, theM3M matrices,WL , WR , VL , andVR are
for a general localization problem unitary matrices, and
the Ising model orthogonal matrices, since in that case ev
element of the transfer matrix is real. TheM3M matrix e is
real, positive and diagonal. It is convenient to rewrite E
~18! in the form

T5
1

2 S WL 2WL

VL
T VL

T D S eeL 0

0 e2eLD S WR
T VR

2WR
T VR

D , ~19!

where the diagonal elements of exp(6eL) are the singular
values ofT. For a random system of lengthL, the exponents
eL areO(L), with sample-to-sample fluctuations which a
O(L1/2). From Oseledec’s theorem, the averagee
tends to a limit, diag(e1 ,e2 , . . . ,eM), for large L, where
e1<e2<•••eM are the Lyapunov exponents characterizi
the network model.

It is useful also to express Eq.~19! in second-quantized
notation. Writing the left and right orthogonal matrices
terms of the Hermitian 2M32M matricesAL and AR , de-
fined by

exp@2 iAL#[
1

A2
S WL 2WL

VL
T VL

T D ,

exp@ iAR#[
1

A2
S WR

T VR

2WR
T VR

D , ~20!

the transfer matrix for the doubled Ising model takes
form ~within the subspaces withB 250!

-
s
n

5-5
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T̂CT̂D5exp@2 ia i
†ALi j a j #3exp†a i

†a i@sz
^ eL# i i ‡

3exp@ ia i
†ARi ja j #. ~21!

C. Lyapunov exponent spectrum

In this subsection we discuss some aspects of the map
between the RBIM and the network model, which we ha
not considered before. These stem from the fact that, un
the Jordan-Wigner transformation, different boundary con
tions arise inT̂ according to the parity of the fermion num
bersNC andND @see Eq.~10!#. Full information on sectors o
both parities is contained in the results of network mo
calculations for the subspaces denoted11 and 22 in Eq.
~13!. To make use of this information it is necessary estab
how the Lyapunov exponents of the spin transfer matrix
related to those of the network model. A crucial step is to
able to identify the parity of left and right vectors ofT̂ when
these are written in terms of thef andg fermions. We show
here how this may be done.

As a starting point, consider the polar decomposition
the transfer matrix for the doubled Ising model, which tak
the form

T̂CT̂D5 (
i , j 51

2M

uLiC& ^ uL jD&e(l i1l j )L^RjD u ^ ^RiCu. ~22!

Here,$uLiC& ^ uL jD&% and $^RjD u ^ ^RiCu% are two complete,
orthonormal sets of many-particles states for theC and D
fermions, which in general are not bi-orthogonal. The fact
el i L are the singular values of the transfer matrix for a sin
copy of the spin system, and the limiting values ofl i for
large L are the Lyapunov exponents characterizing the s
system. For economy, we use the same symbol to de
both the disorder-dependentl i at finite L and its limiting
value asL→`. Since we are concerned with the largest fe
singular values, we adopt the orderingl1>l2>•••>l2M.

Comparing Eq.~21! with Eq. ~22!, one sees that the va
ues taken by exp(ai

†ai@s
z
^eL#ii) for a i

†a i50 or 1 generate
the possible values ofe(l i1l j )L. In particular, ignoring for the
moment questions connected with parity, the largest of
Lyapunov exponents for the doubled Ising model is obtain
by setting a i

†a i51 for 1< i<M and a i
†a i50 for M11

< i<2M . The associated right vector is

uC&[uR1C& ^ uR1D&5)
i 51

M
1

A2
@Wi j

T f j
†1Vi j gj

†#uvac&,

~23!

where uvac& is the vacuum forf and g fermions, and for
simplicity we have omitted the subscriptR on W andV. The
stateuC& satisfies for alli the equations

@Wi j
T f j

†1Vi j gj
†#uC&50 ~24!

and

@Wi j
T f j2Vi j gj #uC&50. ~25!
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Let P5 1
2 @WT2V# and Q5 1

2 @WT1V#. Taking the differ-
ence between Eq.~24! and Eq.~25! yields g i

†uC&50 for all
i, where the fermion creation operatorsg i

† are defined by

g i
†5Pi j Cj1Qi j Cj

† . ~26!

@Of course, similar expressions for theD system may be
obtained from the sum of Eq.~24! and Eq.~25!.# In this way
we find that the right vector associated with the largest p
sible singular value of the spin transfer matrix is

uR1C&5)
i 51

M

g i
†u0&, ~27!

whereu0& is the vacuum for theg fermions. More generally,
we can obtain all the right vectors as follows. First, in t
factor exp(ai

†ai@s
z
^eL#ii) from Eq. ~21!, for each i in the

range 1< i<M either: ~i! set a i
†a i51 anda i 1M

† a i 1M50;
or ~ii ! set a i

†a i50 and a i 1M
† a i 1M51. The corresponding

right vectoruR& satisfies for~i! g i
†uR&50 and for~ii ! g i uR&

50. The associated Lyapunov exponents for the~undoubled!
Ising model are

l j5(
i 51

M

e i S g i
†g i2

1

2D , ~28!

whereg i
†g i51 or 0 for ~i! and ~ii !, respectively.

As a further step in the discussion, it is necessary to d
tinguish between the two sectors with even and odd pa
for the fermion numbersNC and ND . Except in strip
geometry@kn,M50 in Eq. ~10!#, different boundary condi-
tions are imposed on the network model for each sector,
so each sector has its own set of Lyapunov exponentse and
matricesW and V. We indicate quantities calculated usin
boundary conditions appropriate for even and odd parity s
tors with plus and minus signs, respectively:e6, W6, and
V6. Introducing the number operator forg fermions, Ng

5( i 51
M g i

†g i , it is straightforward to see that, in general, e
ther exp(ipNc)5exp(ipNg) or exp(ipNc)52exp(ipNg), but
to determine which of these holds in a particular instan
requires explicit~numerical! calculation. To this end, we
consider~restricting ourselves for simplicity to evenM ) the
scalar product ofuC& @see Eq.~23!#, for which we know that
eipNguC&51uC&, with a reference stateuref&, chosen in or-
der that exp(ipNc)uref&51uref&. The result^refuC&Þ0 will
indicateeipNc5eipNg, while ~barring accidental orthogonal
ity! the result̂ refuC&50 implies exp(ipNc)52exp(ipNg). A
suitable choice foruref& is the state

uref&5)
i

M

~ f i
†1gi

†!uvac&, ~29!

which satisfiesNCuref&5NDuref&5M uref& and hence also
exp(ipNc)uref&51uref&. The scalar product is

^refuC&522M /2det~WT1V!522M /2det~W!det~11WV!.
~30!

The only factor on the right side of this expression whi
may be zero is det(11WV). It turns out thatx[det(WV),
5-6
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which takes the valuesx561, is a convenient indicator
barring accidental degeneracies in the spectrum ofWV,
det(11WV)50 if and only if x521.

The proof of this statement is as follows. One has

det~11WV!5)
i

~11r i !, ~31!

wherer i are the eigenvalues of the O(M ) matrix WV. These
occur as complex conjugate pairs,r i and r i* , and possibly
also as real pairs, 1 and21, of which there will be at mos
one in the absence of degeneracy. If thereis one such real
pair, x521 and det(11WV)50; if there is none,x511
and det(11WV)Þ0.

We now apply these results to obtain expressions for
Lyapunov exponents of the Ising model transfer matrix
terms of those of the network model. For simplicity of pr
sentation we make use of a property which appears to h
generally and is certainly true for the model studied in S
IV, the 6J RBIM with p<0.5. In this system,x1511
always, and half of the Lyapunov exponentsl i are obtained
from Eq. ~28! by settinge[e1 and takingNg even. The
remaining exponents result from settinge[e2, accompanied
by evenNg if x2511, and by oddNg if x2521. Since
we are concerned in the following only withx2, we write it
below simply asx.

Using the expression for the exponents, Eq.~28!, we find
the following rules for the casex51:

l15
1

2 (
i 51

M

e i
1 ,

l25
1

2 (
i 51

M

e i
22e1

2 ,

l35
1

2 (
i 51

M

e i
22e2

2 ,

l45
1

2 (
i 51

M

e i
12e1

12e2
1 . ~32!

For the casex521, we have instead

l15
1

2 (
i 51

M

e i
1 ,

l25
1

2 (
i 51

M

e i
2 ,

l35
1

2 (
i 51

M

e i
22e1

22e2
2 ,

l45
1

2 (
i 51

M

e i
12e1

12e2
1 , ~33!

where the order ofl3 andl4 has to be decided numerically
05442
e

ld
. It is interesting to note a consequence that follows fro
the importance ofx, and which is probably characteristic o
localization problems in class D. It arises ifx can change
sign as a continuous parameter, such as temperature in
Ising model, is varied. Since the two subspaces ofWV
PO(M ) in which x511 andx521, respectively, are dis
connected, a change in the sign ofx is accompanied by the
vanishing ofe1

2 . This process is a form of level crossing,
illustrated in Fig. 4. In the RBIM it occurs for largeM at the
Curie point, as discussed in Sec. IV.

This distinction between phases with either sign forx is
the analog for the RBIM in cylindrical geometry of a topo
logical classification introduced for two-dimensional syste
from class D in Ref. 39 and for one-dimensional, sing
channel systems in Ref. 42. In particular, such on
dimensional systems may have two phases: in one pha
long sample supports a zero-energy state at each of its e
and in the other it does not. Turning to the network model
largeL, we note that the combinationsVL

TWL
T andWRVR are

the reflection matrices from either end of the system.
closed sample may be constructed in an obvious way,
joining outgoing links to ingoing links in pairs at each end
the system. For a network model, a stationary state has
status of a zero-energy state, and stationary states will e
at the ends of the closed sample if the reflection matrices
the corresponding open system have 1 as an eigenva
From the discussion following Eq.~31!, one sees that this is
the case ifx521 but not if x511.

III. CALCULATIONAL METHODS

A. Numerical procedure

Numerical methods suitable for studying random transf
matrix products in general are well established and
scribed, for example, in Refs. 44–46. It has been recogn
recently,41 however, that these methods may develop an
stability to rounding errors and must be modified when a
plied to systems in symmetry class D. Specifically, the mo
fications are required if the smallest positive Lyapun
exponent approaches zero on a scale set by the spacin

FIG. 4. A sign change ofx as a function of a parameterx is
accompanied by the smallest Lyapunov exponent reaching z
This may be regarded as a form of level crossing, as illustrated
5-7
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tween other exponents, which happens in the RBIM at
Curie point, as described in Secs. II C and IV. We summa
the established algorithm and review the modification
quired in this subsection.

First, we define some notation. Consider a network mo
of width 2M links and lengthL, with a transfer matrix of the
form given in Eq.~18!. Let xk(n), for k51,2, . . . ,2M andn
fixed, be orthonormal column vectors, each of 2M compo-
nents, written in the same basis as this transfer matrix. Th
vectors are generated by a sequence of operations des
to ensure thatxk(L) converges for largeL to thekth column
of the matrix

1

A2
S WL 2WL

VL
T VL

T D ~34!

appearing in the polar decomposition, Eq.~18!.
The conventional choice44–46 for these operations is a

follows. Pickxk(0) arbitrarily. Withn50, let

yk5T~L2n2s,L2n! xk~n!, ~35!

and perform Gram-Schmidt orthonormalization, following

zk5yk2 (
i 51

k21

~@xi~n1s!#T
•yk!xi~n1s! ~36!

and

xk~n1s!5zk/uzku. ~37!

The process is repeated withn5s,2s•••L2s. The
Lyapunov exponents are then the mean growth rates

ek5 K 1

s
lnuzM112ku L [2 K 1

s
lnuzM1ku L ~38!

for k51•••M , where the average is over successive
thonormalization steps. The intervals is taken for computa-
tional efficiency to be as large as is possible without rou
ing errors significantly affecting the orthogonalization.

The rate of approach with increasingL of the vectors
xi(L) to the columns of Eq.~34! is determined by the spac
ing between successive Lyapunov exponents. So also ar
deviations at largeL of these vectors from the columns o
Eq. ~34!. Such deviations are induced by numerical noise a
generate errors in the calculated values of Lyapunov ex
nents. For systems in symmetry class D, the value of
smallest positive Lyapunov exponent,e1, may approach
zero. If it does, the vectorsxM(L) andxM11(L) are unusu-
ally susceptible to rounding errors, as is the value ofe1 de-
termined from Eq.~38!. We demonstrate in the Appendix th
the error decreases with decreasing noise amplitude,s, only
as u ln(s)u21. Because of this, a modification must be fou
that stabilizes the algorithm.

Following Ref. 41, we adapt the Gram-Schmidt orthon
malization to enforce the 232 block structure evident in Eq
~34!. Denoting thej th component ofxk(n) by xj

k(n), and
similarly for yk andzk, we replace Eq.~36! for 1<k<M by
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zj
k5yj

k2 (
i 51

k21 S (
l 51

M

xl
i~n1s!yl

kD xj
i ~n1s! ~39!

if 1< j <M , and by

zj
k5yj

k2 (
i 51

k21 S (
l 5M11

2M

xl
i~n1s!yl

kD xj
i ~n1s! ~40!

if M11< j <2M . Similarly, we replace Eq.~37! by

xj
k~n1s!5zj

kY F(
i 51

M

uzi
ku2G1/2

, ~41!

if 1< j <M , and by

xj
k~n1s!5zj

kY F (
i 5M11

2M

uzi
ku2G1/2

, ~42!

if M11< j <2M . Lyapunov exponents are determined
before from Eq.~38!, and now remain stable to roundin
errors even ife1→0.

B. Self-averaging quantities

We wish to calculate for the Ising model the free-ener
spin-correlation functions, and correlations of disorder o
erators. In the presence of bond randomness these all ex
sample-to-sample fluctuations, but the free-energy den
and typical decay lengths appearing in correlations functi
are self-averaging. In this subsection we describe how s
self-averaging quantities can be obtained from the Lyapu
exponent spectrum of the network model. The calculation
correlation functions themselves is discussed in Sec. III C

We start from the polar decomposition of the transfer m
trix for an ~undoubled! Ising model of widthM and lengthL,
which @in analogy to Eq.~22!# is

T̂5(
l

2M

uLl&e
l l L^Rl u. ~43!

Defining the reduced free energy per site as

F52 lim
L→`

ln~Z!/LM ~44!

and using Eqs.~1!, ~32!, and ~33!, we have by standard ar
guments

F52 lim
L→`

F 1

LM
lnuA u1

1

2M (
i 51

M

e i
1G . ~45!

Turning our attention to typical decay lengths, we no
first that, viewing the network model as a localization pro
lem, its smallest positive Lyapunov exponent defines a loc
ization lengthj throughj[e1

21. In a localized phasej has a
finite limit, the bulk localization length, asM→`, while at a
mobility edge one expects thatj diverges withM and that a
universal scaling amplitudea is defined by the limiting value
of Me1 for M→`. An unusual feature of localization prob
lems in symmetry class D is that one may havea50; from
5-8
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the discussion of Sec. II C and results presented in Sec
this occurs in the RBIM in the sector with odd parity.

For the Ising model, the typical correlation lengthjss

appearing in the spin-spin correlation function may be
tracted as follows. This correlator, for two spins with~in the
notation of Fig. 1! the same coordinates in the vertical dire
tion and separationn in the horizontal direction, is

^s i
x~0!s i

x~n!&5
Tr@s i

xT̂~1,n!s i
xT̂~n11,L !#

Tr@ T̂~1,L !#
. ~46!

Recalling thats i
x has nonzero matrix elements only betwe

states with opposite parity, and takingL→`, jss is defined
and expressed in terms of the Lyapunov exponents for
spin transfer matrix by

jss
2152 lim

n→`

1

n
ln~^s i

x~0!s i
x~n!&!5l12l2 . ~47!

When writingjss in terms of the network model Lyapuno
exponents, it is useful to introduce a length scalej1D which
characterizes the sensitivity of the network model to chan
in boundary conditions, and is defined by

j1D
215

1

2 (
i

@e i
12e i

2#. ~48!

We expect insensitivity to boundary conditions except at
critical point, and anticipate thatj1D

21;exp(2M/j) for large
M. In regions of the RBIM phase diagram for whichx51
~corresponding, as we argue, to the paramagnet!, we have
from Eq. ~32!

jss
215e1

21j1D
21 , ~49!

so that asymptotically the localization lengthj and spin-
correlation lengthjss are equal. By contrast, in regions o
the phase diagram for whichx521 ~corresponding to the
ferromagnet! we havejss5j1D . This large length scale her
characterizes the decay of spin correlations in a quasi-o
dimensional sample within the ordered phase of the tw
dimensional system. Such decay is governed by rare dom
wall excitations that cross the width of the sample. Beca
jss is large whenx521, it is useful also to examine th
inverse length scale governing corrections to Eq.~47!, which
is l12l3. For x521

l12l35e1
21e2

21j1D
21 , ~50!

so that, asM→`, e1
21e2

2 gives the typical decay rate of th
connected part of the spin-correlation function in the orde
phase.

In a similar way, one can obtainjmm , the typical correla-
tion length for the disorder operatorsm r of Kadanoff and
Ceva.47 These operators are defined at pointsr which lie at
the centers of plaquettes in the Ising model. The two-po
correlation function^m0m r& is defined by considering a
modified system in which exchange interactions crossed
path on the dual lattice between 0 andr have their sign
changed. Then
05442
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^m0m r&5
Z8

Z
~51!

is the ratio of the partition functionZ8 for the modified sys-
tem to that of the original system, and

jmm
2152 lim

r→`

1

r
ln~^m0m r&!. ~52!

Because the different boundary conditions imposed on
network model in sectors of even and odd parity constit
an ~infinite! line of such modified bonds,jmm may be ex-
pressed in terms ofe1 and e2. Moreover, in the ferromag-
netic phase (x521), jmm is the reduced interfacial tensio
between domains of opposite magnetization. To make
explicit, let Fp and Fa be reduced free energies per sit
calculated from the definition Eq.~45! for systems in cylin-
drical geometry with, respectively, periodic (sM11

x [s1
x) and

antiperiodic (sM11
x [2s1

x) boundary conditions on spin
imposed around the cylinder. Then

jmm
215M ~Fp2Fa!. ~53!

In this phase, we find using the ideas of Sec. II C that

jmm
215e1

21j1D
21 , ~54!

while in the paramagnetic phase (x511) we obtainjmm
5j1D , so the decay length diverges withM. As one might
expect, the behavior ofjmm in each phase is similar to that o
jss in the dual phase.

C. Correlation functions

Calculation of the full form of correlation functions i
more involved than that of the typical decay lengths since
course, the results cannot be expressed solely in term
Lyapunov exponents. Nevertheless, it turns out that e
powers of correlation functions may be determin
straightforwardly.6 In the most important example of the se
ond power, one requires the product of two equivalent c
relation functions, evaluated for each of the two copies of
Ising model that are combined in the network model. In t
case of the square of the two-point correlation function
disorder operators, Eq.~51!, this means that the same mod
fication of bonds is introduced in both copies of the Isi
model, so that (Z8)2 is determined from a network mode
with a specific set of modified nodes. In the case of
square of the spin-spin correlation function, one can tak
similar route by expressing this in terms of a disorder c
relator in a dual system. Alternatively, one can write t
product of two copies of a spin operator in terms off andg
fermions, as we describe below. By either route, one arri
ultimately at the same result: the square of the spin-spin
relation function is given by the ratio of the square of
partition function calculated from a modified network mod
to the same quantity calculated from an unmodified mod
By contrast, odd powers of correlation functions, includi
the first power, appear to be much harder to evaluate, lea
the sign of the correlation function undetermined: we su
marize the difficulties that arise at the end of this subsect
5-9
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F. MERZ AND J. T. CHALKER PHYSICAL REVIEW B65 054425
To obtain the squared spin-spin correlation function f
lowing Eq. ~46!, we must evaluate products involving th
transfer matrix for the doubled Ising model and also fact
of the forms jC

x s jD
x . From Eqs.~4! and ~7! we have

s jC
x s jD

x 5 i ~21! jexpS ip(
i 51

j 21

@ f i
†gi1gi

†f i #1 ip f j
†f j D .

~55!

In the spirit of Sec. II B we translate this into first-quantiz
form. Each operator exp(ip@fi

†gi1gi
†fi#) is represented by a

232 matrix, exp(ipsx)521. As a result, on one slice of th
network model phase factors of21 are associated with eac
of the right and left going links having coordinatei in the
range 1< i< j 21. In addition, the operator exp(ipf j

†f j) is
represented by a similar phase factor associated with thej th
right going link. These phase factors are illustrated schem
cally in Fig. 5~a!, using as an example the combinatio
s1C

x s1D
x s4C

x s4D
x , which arises in the calculation o

^s i
x(n)s j

x(m)&2 on settingn5m, i 51, and j 54. Such link
phases can equally be attributed to nodes representing v
cal bonds of the Ising model, as indicated in Fig. 5~b!.
Viewed in this way, the insertion of spin operators into t
transfer-matrix product is represented by a change in n
parameterskn,i→kn,i1 ip/2 for 1< i< j 21. In turn, this is
equivalent to a change in sign for the corresponding d
bond strengths, as it should be since the spin-correla
function can be evaluated as a disorder correlator in the
model.

Implementing this approach in numerical calculations,
determine the singular values of the transfer matrix for mo
fied and unmodified network models of lengthL, of course
using the same realization of disorder for both. From th
we calculate the largest singular value of the transfer ma
for the doubled spin system, which we denote by exp(2l18L)
in the modified case, and by exp(2l1L) in the unmodified
case, following the notation of Sec. II C. For largeL

^s i
x~n!s j

x~m!&25exp~2@l182l1#L !. ~56!

FIG. 5. Schematic representation of the effect of modifying
system by inserting spin operators in one slice:~a! link phases as-
sociated with a pair of spin operators;~b! equivalent node phases
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In practice, the combination@l182l1#L approaches a finite
limiting value rather quickly with increasingL. Conve-
niently, it is not necessary to evaluate the scalar product
the form u^L1uR1&u2 which appear in the numerator and d
nominator of Eq.~46!, because for largeL these are the sam
in the modified and unmodified systems, and therefore c
cel.

As mentioned above, calculation of the unsquared sp
spin correlation function presents greater practical proble
A route is clear in principle: one can use the discussion
Sec. II C to construct the transfer matrix for the undoub
Ising model, via its polar decomposition, in terms of Sla
determinants of theg fermions; and one can also expre
spin operators in this Ising model in terms of the creation a
annihilation operators for these fermions. Difficulties th
arise from the fact that the matricesWL andWR appearing in
Eq. ~19! are unrelated in the presence of disorder, as also
VL andVR . In consequence, one has to deal with two sets
g fermions:gL andgR . Put briefly, we find@as in Eq.~4.7!
of Schultz, Mattis, and Lieb3# that ^s i

x(n)s j
x(n)& can be

written as an expectation value of a product of 2u i 2 j u fer-
mion operators, which can be evaluated using Wick’s th
rem. However, in the disordered system it is not possible
reduce this expectation value to a single determinant@as in
Eq. ~4.13! of Ref. 3#. Without such a reduction, the compu
tational effort required to determinês i

x(n)s j
x(n)& seems

prohibitive for largeu i 2 j u.

IV. NUMERICAL RESULTS FOR THE ÁJ RBIM

A. Introduction

In this section we present results obtained using the m
ping from the Ising model to the network model as a way
studying the6J RBIM. Previous work of this type has bee
described by Cho,5 but without the advantages of the nume
cal algorithm or the detailed relation between the netw
model and statistical mechanical quantities that we have
cussed in Sec. III. The6J RBIM, defined on a square lat
tice, has nearest-neighbor exchange couplingsJi j drawn in-
dependently from the probability distribution

P~Ji j !5~12p!d~Ji j 2J!1pd~Ji j 1J!, ~57!

with 0<p<1 andJ positive; we setJ51 in the following.
The phase diagram of the model, as a function of te

perature T and the concentrationp of antiferromagnetic
bonds, is shown in Fig. 6, with renormalization-group~RG!
scaling flow superimposed.12–29The pure system (p50) has
a transition between ferromagnetic and paramagnetic ph
at a Curie temperatureT052@ ln(11A2)#21. As antiferro-
magnetic bonds are introduced the Curie temperature is
pressed, and the ferromagnetic phase is destroyed altog
above a threshold concentrationpc . A curve in thep2T
plane known as the Nishimori line14–17~NL! plays an impor-
tant role in the discussion of scaling flow. It is defined for t
6J RBIM by the equation exp(2bJ)5(12p)/p. On this line
the RBIM has an additional gauge symmetry, beca
of which the internal energy is analytic and ensemb
averaged spin-spin correlations obey the equali

e

5-10
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@^s i
x(n)s j

x(m)&2k21#5@^s i
x(n)s j

x(m)&2k# for integerk. The
NL cuts the phase boundary separating the ferromagnet f
the paramagnet at a pointC, the Nishimori point, with coor-
dinatespc ,TN . This point is particularly interesting as a
example of a disorder-dominated multicritial point. One
the two scaling flow axes in its vicinity lies along the NL
while the other coincides with the phase boundary,16 as indi-
cated in Fig. 6. Scaling flow on the critical manifold forp
,pc runs from the Nishimori point towards the critical fixe
point of the pure system, at which disorder is margina
irrelevant. The phase boundary on the other side of
Nishimori point is believed to be vertical15–17 in the T2p
plane, and on it the scaling flow runs from the Nishimo
point towards a zero-temperature critical point. Finally, t
phase diagram forp.1/2 can be obtained from that show
for p,1/2 by reflection in the linep51/2, using a gauge
transformation which mapsp to 12p and the ferromagneti
cally ordered phase to an antiferromagnet.

Despite the considerable effort which has been investe
studies of the RBIM, some aspects of its behavior are not
well characterized. In the following, we present a hig
accuracy determination of the position of the phase bound
and of critical properties at the Nishimori point.

B. Method

We use the numerical method described in Sec. III A
calculate the Lyapunov exponents of the network model
sociated with the RBIM, studying two copies of the syste
for each disorder realization, with boundary conditions a
propriate for Fermion numbers of each parity. In the spirit
Sec. III B we use the smallest positive exponent calcula
for the network model with periodic boundary conditions
define a characteristic inverse length scale, and analyze
finite-size scaling behavior ofM /j5Me1

2 as a function of
system widthM. In addition, we determine the interfacia

FIG. 6. Phase diagram of the6J RBIM with superimposed RG
scaling flow.
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21 and study its size dependence. We also calcu

the disorder-averaged square of the spin-spin correla
function, @^s i

x(n)s j
x(n)&2#, for spins lying in the same slice

of the system, using the approach described in Sec. III C
For most of the results presented, we study system wid

in the range fromM58 to M5256 spins, and system
lengths ofL553105 spins. Realization-dependent fluctu
tions in self-averaging quantities decrease asL21/2 and in
some cases increase withM. As an example, usingL55
3105 the value ofe1

2 at the Nishimori point is obtained with
an accuracy of 1% forM516 and 2% forM564. Some
calculations require higher precision. In particular, the hig
resolution studies of the interfacial tension close to the Nis
mori point, presented in Sec. IV D, and of scaling on t
phase boundary, presented in Sec. IV E, use syst
of length up to L523108, restricting accessible width
to M<32.

C. Location of phase boundary

In this subsection we describe the determination of
form of the boundary between the ferromagnetic and pa
magnetic phases. We also discuss the nature of finite-
effects in different parts of the phase diagram. For this p
pose the quantityx, introduced in Sec. II C, is very usefu
and we substantiate our claim that~in the thermodynamic
limit ! the sign ofx indicates which phase the Ising mod
is in.

Our results for the position of the phase boundary
shown in Fig. 7 and in Table I. Points on this phase bound
are found from a finite-size scaling analysis of the variat
of M /j along lines that intersect it; the slopes of these lin
in the p2T plane are chosen to avoid crossing the bound
at small angles. Representative data, calculated on the
T50.6814.67p, are shown in Fig. 8; they have two featur
that can be used to identify the boundary. First, the curve
M /j for two successive values ofM have an intersection
point, and with increasingM these intersection points ap
proach the boundary from the small-p side. Second, for each
M, there is a value ofp at whichj diverges, or equivalently

FIG. 7. The location of the phase boundary determined fr
numerical calculations. Data obtained on the lineT50.6814.67p
are presented in Fig. 8.
5-11
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e1
250. With increasingM, these points approach the boun

ary from the large-p side. We obtain consistent results usi
the two methods.

A test of these calculations follows from the fact that t
tangent to the ferromagnetic-paramagnetic boundary at
pure critical point is known exactly48 to be dTp /dpup50

527.2821... . From a linear approximation atp50.005 we
find dTp /dpup50527.3260.06, in good agreement wit
this. Our values forTp are also compatible with those give
in Ref. 26.

It is evident from the data shown in Fig. 8, and the
equivalent for other values ofp and T, that e1

250 along a
line in the phase diagram which approaches the phase bo
ary for largeM, but is displaced from it into the paramag
netic phase for finiteM. From the discussion given in Se
II C, we expectx to change sign on this same line, being f
large M positive in the paramagnetic phase and negative
the ferromagnetic phase. The data shown in Fig. 9 dem
strate that this is so; Fig. 9 also shows that the finite-size s
in the position of the phase boundary is very large in
portion of the phase diagram lying below the NL. It see
possible that these finite-size effects may provide an alte
tive explanation of data which have been interpreted23,24 as
evidence for a random antiphase state13 lying in this region
of the phase diagram; and it seems likely that they are
sponsible for nonmonotonic temperature dependence
Lyapunov exponents for the RBIM, reported atp.pc in
Ref. 26.

FIG. 8. Values of 2M /j calculated crossing the phase bounda
along the lineT50.6814.67p.

TABLE I. Location of the phase boundary.

p Tp p Tp

0.005 2.232560.0003 0.090360.0002 1.458
0.02 2.12060.001 0.095160.0005 1.379
0.05 1.87560.001 0.100060.0005 1.294
0.06 1.78360.002 0.103560.0011 1.224
0.07 1.68860.002 0.105560.0011 1.173
0.08 1.58060.002 0.108060.0021 1.095
0.0852 1.52360.002 0.109060.0021 1.019
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D. Nishimori line

In this subsection we examine critical behavior near
multicritical point C as it is approached along the Nishimo
line. The facts15,16 thatC is known to lie on the NL, and tha
the NL coincides with one of the scaling flow axes atC, both
greatly help the analysis. We obtain consistent, hig
accuracy estimates of the coordinatepc and the exponentn
using three separate analyses of the finite-size scalingj
and also from a study of the interfacial tension.

An overview of the variation ofM /j along the NL is
given in Fig. 10. We apply finite-size scaling ideas to the d
in the following different ways. Two of them are similar t
the methods used in Sec. IV C to locate the phase bound
first, curves ofM /j for two successive values ofM cross,
and we focus on these crossing points for increasingM; sec-
ond, for eachM there is a point on the NL at whichM /j
50, and we study the position of these points as a funct
of M. Third, we can collapse data for differentM and from
the whole critical region onto a single curve.

Turning to the first of these, we concentrate on the top
of Fig. 10, where data sets intersect roughly at one po
Behavior in this region is shown on a larger scale in Fig.
From an extrapolation of the intersection points to largeM
we findpc50.109360.0002. We also obtain a limiting valu

FIG. 9. The sign ofx for a system of widthM516 as a function
of position in theT2p plane. Open squares indicatex511 and
filled squaresx521. The NL and phase boundary are also show

FIG. 10. Variation of 2M /j along the NL, with position param-
etrized byp.
5-12
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at the intersection point ofM /j51.5860.01 asM→`. The
value of n may be found from the scaling withM of the
gradients of curves at the intersection points; a similar an
sis can also be made for the interfacial tension and
present both together, towards the end of this subsection

Taking a second approach to the data, the pointspM on
the NL at whichM /j50 are determined for 8<M<256 as
shown in Fig. 12, where we take advantage of the fact t
for fixed M, the combinationxM /j varies smoothly through
zero as a function of position along the NL. One expects
finite-size shift pM2pc to vary with M as (pM2pc)
}M 21/n, and we show the dependence ofpM2pc on M in
Fig. 13, using a double logarithmic scale for various choi
of pc . With the correct choice forpc , these data should fal
onto a straight line of inverse slope2n. By this method we
find pc50.1093 andn51.4960.05.

A third treatment of the data forM /j is provided by at-
tempting to collapse all points from the critical region of Fi
10 onto a single curve, plottingM /j as a function of (p
2pc)M1/n. In principle, bothpc andn may be taken as fit-
ting parameters, but we find thatpc is more accurately de
termined using the methods described earlier. We there
setpc50.1093 and vary only the value ofn. We find the best
collapse, shown in Fig. 14, takingn51.50. Visibly worse
collapse results from usingn51.40, as shown in Fig. 15; by

FIG. 11. Variation of 2M /j along the NL, close to the Nishimor
point.

FIG. 12. Variation of the combination 2xM /j along the NL.
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such comparisons we findn51.5060.10, confirming the
result derived from Fig. 13, but not improving on it i
accuracy.

Finally, as a way to check the conclusions we ha
reached from finite-size scaling ofM /j, and in order to make
a direct comparison with recent work by Honecker, Pic
and Pujol27 we present a study of the interfacial tensionjmm

21 ,
defined in Eq.~52!. High-precision data, calculated usingL
523108 for 8<M<24 on the NL very close to the Nishi
mori point, are shown in Fig. 16; statistical errors are sma
than symbol sizes. As withM /j, one expects, in the critica
region and at sufficiently largeM, to collapse data forM /jmm
onto a single curve by plotting it as a function of the scali
variable (p2pc)M1/n. Such a collapse is illustrated in Fig
17, usingpc50.1093 andn51.50. Deviations from collapse
are evident at smaller values ofM, appearing as vertical off-
sets of the corresponding lines in Fig. 17. Corrections
scaling of this type are expected, and arise from scaling v
ables which are irrelevant in the RG sense at the crit
point: in general, we have

M2D f 5a1b~p2pc!M
1/n1cM2x1 . . . , ~58!

wherex is the exponent associated with the leading irrelev
scaling variable,a is a universal scaling amplitude, andb and

FIG. 13. ln(pM2pc) as a function of ln(M), for different esti-
mates ofpc . The straightest line is obtained withpc50.1093 and
has inverse slope21.49.

FIG. 14. Data collapse along the NL, usingn51.50 andpc

50.1093.
5-13
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c are constants. Such corrections occur at the pure I
transition,34 and have also been studied in the U~1! network
model.49 In view of the way that they enter Eq.~58!, it is
appropriate to concentrate on theM dependence of the gra
dients of lines in Fig. 16 when determiningn. These gradi-
ents are shown as a functionM using a double logarithmic
scale in Fig. 18, from which we derive our most prec
estimate ofn, n51.5060.03.

The scaling ofM /j close to the critical point can be ana
lyzed in just the same way, yielding the same result forn.
This scaling collapse is depicted in Fig. 19.

We conclude our analysis of critical behavior on t
Nishimori line with the resultspc50.109360.0002 and
n51.5060.03. Our value forpc is consistent with the resul
pc50.109460.0002, obtained by Honecker, Picco, a
Pujol,27 who carried out a detailed study of the interfac
tension and correlation functions, using the Ising mo
transfer matrix in a spin basis, which restricted syst
widths toM<12. Our value forpc is also in agreement with
some earlier, less precise values, includingpc50.111
60.002, in Ref. 23 andpc50.109560.0005 in Ref. 26, both
found using a transfer-matrix approach with up to 14 spins
is also marginally in agreement withpc50.104 from Ref. 29
obtained as the critical disorder strength aroundT50. It is in
marginal disagreement with the result from ser
expansions,18 pc50.11460.003. More strikingly, however

FIG. 15. Data collapse along the NL, usingn51.40 andp
50.1093.

FIG. 16. Variation ofM /jmm on the NL close to the Nishimor
point.
05442
g

l
l

It

s

our value forn is in disagreement with previous estimate
which lie close18 to the percolation value,n54/3, including
most recentlyn51.3360.03 in Ref. 27. We believe that th
larger system sizes accessible in our work, and the allowa
we have made for irrelevant scaling variables at the criti
point, together account for the discrepancy, and that the
shown in Figs. 15 and 18 exclude this smaller value ofn.

E. Scaling along the phase boundary

The phase boundary separating the ferromagnet from
paramagnet coincides16 with the second relevant scaling ax
at the Nishimori point, in addition to that defined by the N
On the boundary, we expect scaling flow fromC towards the
pure critical point forp,pc , and fromC towards the zero-
temperature critical point forT,TN . We analyze such flow
in this subsection.

Qualitative evidence in support of these established id
is presented in Fig. 20, which shows the variation ofM /j
with position, parametrized byT, on the phase boundary, an
with M. For p,pc , the coordinates of points on the pha
boundary are taken from Table I, while forT,TN we assume
the phase boundary to be vertical in thep2T plane and set
p5pc , using our estimate for the value ofpc . At tempera-
turesT.TN.0.9533,M /j decreases with increasingM, ap-

FIG. 17. Scaling ofM /jmm as a function of (p2pc)M1/n, using
n51.50 andpc50.1093.

FIG. 18. Scaling of the gradientS of lines in Fig. 16 as a func-
tion of M. The best-fit inverse slope isn51.50 ~solid line!. Lines
corresponding ton51.33, 1.45, and 1.55 are also shown.
5-14
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TWO-DIMENSIONAL RANDOM-BOND ISING MODEL, . . . PHYSICAL REVIEW B 65 054425
proaching zero which is the value taken by this scaling a
plitude in the pure Ising model atT5T0.2.269; fluctuations
visible in Fig. 20 for data at temperaturesT*1.5 arise from
errors in determining the position of the phase boundary
the Nishimori point itself, curves ofM /j for different M
cross, with a limiting value forM→`, as already determine
in our study of behavior on the NL. ForT,TN , values of
M /j increase both with decreasingT and with increasingM,
as expected if flow is towards lower temperatures.

Scaling flow along the phase boundary close to the Nis
mori point is characterized by a critical exponentnT , which
in principle can be determined using an approach simila
that taken forn. In practice, there are extra difficulties. Firs
in contrast to the NL, the form of the phase boundary is
known exactly; we choose the simpler regime,T,TN , and
set p to our estimate forpc , as above. Second, it happe
that nT.n, so that flow away from the multicritical point i
faster in the direction of the NL than along the phase bou
ary. Because of this, the range forT over which useful data
can be collected is limited on both sides. The distance,TN
2T, from the Nishimori point should not be too large,
data will lie outside the critical region. It should not be to
small either, because close toC errors in our value forpc
will be dominant. Having limited the range forT2TN in this
way, the variation inM /j is also restricted. It is therefor

FIG. 19. Scaling ofM /j on the NL close the the Nishimor
point, usingn51.50 andpc50.1093.

FIG. 20. Variation ofM /j with position, parametrized byT, on
the phase boundary.
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particularly important that statistical errors are small, and
we study samples of lengthL523108 with 8<M<32. The
scaled data are presented in Fig. 21: as with the anal
presented in Figs. 17 and 19, and as expected from Eq.~58!,
the value ofnT is determined mainly from the gradients o
curves for eachM. We conclude thatnT54.060.5. While
this confidence margin is wide, it is encouraging that
extrapolating the data in Fig. 21 toT5TN we obtain at the
Nishimori point M /j51.5860.01 for M→`, in perfect
agreement with the value found independently from data c
lapse on the NL. The resultnT54.0 is also in agreemen
with the estimate for the ratioa/nT obtained in Ref. 26 from
finite size scaling of the specific heat. The exponentsa and
nT are related by the hyperscaling relationdnT522a and
the valuea/nT521.5 in Ref. 26 gives exactlynT54.0.

F. Behavior at strong disorder

In three or more dimensions, the random-bond Is
model has a spin-glass phase at low temperature and st
disorder.50 It is known that spin-glass order does not occur
the two-dimensional RBIM, except at zero temperature,50 but
it is of interest to examine behavior at strong disorder us
the methods we have developed.

Finite-size effects in the RBIM are large at strong disord
and low temperature, as remarked in connection with Fig
and as is clear from Fig. 22, which shows the variation

FIG. 21. Scaling ofM /j on the phase boundary below th
Nishimori point, usingnT54.0 andTN50.9533.

FIG. 22. Variation ofM /j with p, crossing the phase boundar
at T50.5.
5-15
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F. MERZ AND J. T. CHALKER PHYSICAL REVIEW B65 054425
M /j with p andM at a fixed temperature,T50.5, below the
Nishimori point. Despite these finite-size effects, it
straightforward to identify the position of the phase boun
ary from Fig. 22. Moreover, the size dependence ofM /j in
the paramagnetic phase atT50.5 and higher temperatures
consistent with a finite limiting value forj as M→`, as
required from the fact that the RBIM does not have a me
lic phase.6

For a quantitative analysis of behavior in this region,
focus on the linep50.5 which, by symmetry arguments,
an exact scaling axis. Scaling flow is from the zer
temperature fixed point atp50.5 towards infinite tempera
ture, and one can collapse data on this line to extract
limiting behavior ofj for M→`. This extrapolated localiza
tion lengthjbulk is expected to be finite forT.0. Its tem-
perature dependence forT>0.4 ~obtained using 8<M<64
and L5106) is shown in Fig. 23, where we compare o
results with the behaviorjbulk}exp(2/T), suggested32,51 for
the 6J RBIM. In Fig. 24 we compare our same results w
the power-law divergence,jbulk}T2n, expected in a RBIM
with a distribution of bond strengths continuous atJ50, for
which exponent values in the rangen53.4–n54.2 have been
reported previously.22,52,53Our data in the temperature rang
accessible do not provide firm grounds to prefer one form
the temperature dependence over the other.

FIG. 23. Variation ofjbulk with T on the linep50.5: ln(jbulk) as
a function of 1/T. Dashed lines representjbulk}exp(2/T).

FIG. 24. Variation ofjbulk with T on the linep50.5: ln(jbulk)
as a function of ln(T). The dashed line representsjbulk}T2n

with n54.
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G. Spin-spin correlations

As a demonstration of the effectiveness of the method
out in Sec. III C for obtaining even powers of spin-spin co
relation functions, we have calculated@^s i

x(n)s j
x(n)&2# at all

separationsu i 2 j u of spins across the width of a long syste
with M540. Data atp50.08, obtained by averaging ove
104 disorder realizations, are shown in Fig. 25, for a hi
temperature,T51.9, lying in the paramagnetic phase, a
for a lower temperature,T51.3, lying in the ferromagnetic
phase. It is clear for this second case that the value of
square of the magnetization can be obtained from the co
lation function at separations close toM /2.

We have also used this approach to calcul
@^s i

x(n)s j
x(n)&2# and@^s i

x(n)s j
x(n)&4# on the NL at our es-

timated position for the Nishimori point. At this point, on
expects decay of the disorder-average of thekth power of the
spin-spin correlation function to be characterized by an
ponenthk . Following the analysis described in Ref. 27, a
taking M520, L large, and 104 realizations, we obtainh2
50.18360.003 andh450.25360.003, in agreement with
earlier results.27

V. SUMMARY

To summarize, we have described in detail a mapp
between the two-dimensional random-bond Ising model
a network model with the symmetries of class D localizati
problems. Building on Refs. 4–7 we have shown in partic
lar how separate boundary conditions arise in the netw
model for sectors of the Ising model transfer matrix w
even and odd parity under spin reversal, and how statisti
mechanical quantities, including the free energy per site
correlation functions, may be obtained from calculations
ing the network model. Among other things, this makes cl
the sense in which the Ising model correlation length may
equated with the network model localization length. From
computational viewpoint, calculations based on the netw
model are much more efficient than their equivalent using
Ising model transfer matrix in a spin basis. This is illustrat
by the fact that such calculations have in the past ma
been restricted to systems of widthM<14 spins, while we
present results in this paper forM<256 spins. Applying

FIG. 25. Variation of the disorder-averaged square spin-spin
relation function with distance around a system of circumfere
M540, in the paramagnetic phase (T51.9) and the ferromagnetic
phase (T51.3).
5-16
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TWO-DIMENSIONAL RANDOM-BOND ISING MODEL, . . . PHYSICAL REVIEW B 65 054425
these ideas to study the Nishimori point for the6J RBIM,
we obtain a value for the exponentn which is significantly
different from previous estimates based on much smaller
tems sizes; our value excludes the possibility of a sim
connection between behavior at this critical point and cla
cal percolation, conjectured previously.18 Beyond computa-
tional advantages, the equivalence between the RBIM
the network model has theoretical interest. It links the tr
sition between paramagnet and ferromagnet to a versio
the quantum Hall plateau transition, as our results illustr
Moreover, even in quasi-one-dimensional systems for wh
there is no sharp Curie transition, a topological distinct
emerges within the network model between two separate
calized phases.
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APPENDIX: EFFECT OF ROUNDING ERRORS
ON LYAPUNOV EXPONENTS

The numerical results presented in this paper were
tained using a modified version of the standard algorithm
studying random matrix products, as we describe Sec. II
The need for such a modification stems from the instabi
of the standard algorithm to rounding errors if the value
the smallest positive Lyapunov exponent,e1, approaches
zero. The instability is extreme and it is of interest to und
stand how it arises. In this Appendix we illustrate its orig
by examining a simple model problem.

It is sufficient to consider only products of 232 matrices,
because the instability involves only the space spanned
the vectors associated with the pair of Lyapunov expone
smallest in magnitude, denoted byxM(L) and xM11(L) in
Sec. III A. We therefore consider a product of random ma
ces, each of the form

Tn5S coshun sinhun

sinhun coshun
D ~A1!

and drawn independently from a distribution which h
^un&50 in order that the Lyapunov exponents of the mat
product are zero. To model the operation of the stand
algorithm, we consider evolution of a two-component vec
vn under an analog of Eqs.~35!–~37!:

vn115
Tnvn

uTnvnu
. ~A2!

In the absence of rounding errors,vn converges with increas
ing n to one of the eigenvectors ofTn , and so it is natural to
expandvn in this basis, writing
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vn5
1

A2
S 1

1D cosfn1
1

A2
S 1

21D sinfn . ~A3!

In this notation, Eq. ~A2! may be written tanfn11
5exp(22un)tanfn , and has fixed pointsfn5mp/2 with m
integer. We concentrate on the vicinity of one of these, c
sidering the range 0<fn!1. Then fn11'exp(22un)fn .
We take the effect of rounding errors into account by sub
tuting for this the evolution equation

fn115exp~22un!fn1hn , ~A4!

wherehn is random with^hn&50 and^hnhm&5dmns
2.

A simple treatment of the stochastic process defined
this way is sufficient for our purposes. To find approximate
the limiting distribution P(fn) at large n, we divide the
range under consideration forfn into the regimes 0<fn
,s and s,fn . In the former the noise dominates, gene
ating an approximately uniform distribution forfn . We take

P~fn!5C1 , ~A5!

whereC1 is a constant. In the latter regime we neglect t
noise and use in place offn the variableyn5 ln(fn), taking
its evolution to be

yn115yn22un . ~A6!

Since we have chosen^un&50, this generates a uniform dis
tribution for yn in the ranges<yn<Y, where the upper limit
Y; ln(p/4) represents the point at which the linearization
tan(fn) fails, and also the boundary separating the vicinit
of the fixed points of Eq.~A2! at fn50 and atfn5p/2. On
transforming back tofn we obtain within our approxima-
tions

P~f!5H C1 for 0,f,s

C2 /f for s,f,p/4,
~A7!

whereC25C1s for continuity.C1 is determined by the nor
malization condition

E
0

p/4

P~fn!dfn5
1

2
~A8!

since we may take the full range forfn to be 0,fn,p/2.
We find for s!1

C1.@2s ln~p/4s!#21. ~A9!

Now consider the effect that noise-induced departures
fn from the fixed point atfn50 have on the estimate of th
Lyapunov exponent,e. Using e5^ lnuTnvnu&, we have

e5
1

2
^ ln@exp~2un!cos2fn1exp~22un!sin2fn#&. ~A10!

Taking for simplicityun andfn small, we find

e.4^fn
2&^un

2&. ~A11!

In the absence of noise,fn50 and hencee50. With noise
present we must evaluate
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^fn
2&5E

0

p/4

P~fn!fn
2dfn . ~A12!

Using our approximate form forP(fn) we find, fors!1, ^fn
2&}u ln(s)u21 and hence

e}u ln~s!u21. ~A13!

Thus small rounding errors may be responsible for a large error in the value obtained for the Lyapunov exponen
language of this Appendix, the modified algorithm described in Sec. III A uses the known symmetry of the transfer m
fix fn50.
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