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Phase structure and universality in two-dimensional disordered quantum antiferromagnets

E. C. Marino
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Cx. P. 68528, Rio de Janeiro RJ 21945-970, Brazil

~Received 29 June 2001; published 10 January 2002!

Two-dimensional disordered quantum antiferromagnets are studied by means of a continuum description in
which disorder is introduced by a random distribution of couplings~spin stiffnesses! in the ordered phase of the
nonlinear sigma model. Quenched soliton~skyrmion! correlation functions are evaluated and used, along with
quenched magnetization, to characterize the phase structure of the system. When magnetic dilution is expo-
nentially suppressed, the introduction of disorder only modifies the subleading terms in the large distance
behavior of the soliton correlation functions, yielding the same skyrmion energy as in the pure case. The
system is in a ‘‘hard’’ disordered Ne´el phase similar to the ordered antiferromagnetic phase occurring in the
pure case. Conversely, when magnetic dilution is not exponentially suppressed, the large distance behavior of
the correlation functions is drastically changed. The system exists in a new phase in which the energy of
quantum skyrmions is equal to zero in spite of the existence of a nonvanishing antiferromagnetic order
parameter. This ‘‘soft’’ disordered Ne´el phase is characterized by universality classes, which are determined by
the behavior of the distribution of random couplings in the small coupling region. The possible relation of this
phase to spin glasses is briefly discussed.

DOI: 10.1103/PhysRevB.65.054418 PACS number~s!: 75.10.Jm, 75.10.Nr, 75.70.-i
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I. INTRODUCTION

The continuum description of two-dimensional quantu
antiferromagnets has been the object of intense investiga
for a long period of time.1–4 The interest in this kind of
description has been enhanced mostly because of its suc
ful applications in the case of layered antiferromagnets s
as high-temperature superconducting cuprates. For t
compounds, the undoped parent materials can be very
described by the two-dimensional antiferromagnetic Heis
berg model on a square lattice.5 In the continuum limit, this
can be mapped into the ordered phase of the nonlinear s
model~NLSM!,1 whose single coupling constantrs , the spin
stiffness, is directly related to the Heisenberg antiferrom
netic couplingJ.

Site-diluted disordered antiferromagnets have been s
ied previously in the framework of the NLSM, leadin
to very interesting results.4 The aim of this work is to inves-
tigate the consequences of disorder in the quantum Hei
berg antiferromagnet by considering a continuous rand
distribution of spin stiffnessrs in the NLSM. The effects of
disorder are particularly interesting and, in fact, lead
unexpected results in the case of skyrmion correlation fu
tions. Quantum skyrmion statesusk& are characterized by
the property

Qusk&5usk&,

where Q is the topological charge operator. These exci
states are created out of the ground state by an operatm
whose correlation functions and properties have been ex
sively studied in Ref. 6, for the case of the NLSM. Th
skyrmion energy, in particular, can be inferred from the la
distance behavior of the skyrmion correlation functi
^mm†&.

The pure NLSM at zero temperature is known to exist
two phases.2 These can be characterized by an order par
eter, which is the ground-state expectation value of the c
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tinuum limit of the sublattice spin operator, namely,^s&,
along with a dual~disorder! parameter given bŷm&.6 One of
the phases of the pure system is ordered, having^s&Þ0 and
^m&50. In this phasê mm†& has an exponential large dis
tance decay implying the existence of a nonzero crea
energy for the skyrmions.6 The other phase is a paramagne
quantum disordered one, presenting^s&50 and^m&Þ0. In
this phase, the fact that the skyrmion statesusk&5mu0& are
not orthogonal to the vacuum means that there is actually
genuine skyrmion excitation in the system. A third possib
ity, which is not realized in the pure NLSM at zero temper
ture, would be a phase in whicĥm&50 with the skyrmion
correlation function presenting a power-law decay at la
distances. In this case, the system would have zero en
skyrmions in its excitation spectrum and^s&50, the absence
of order being closely related to the vanishing of the solit
energy. The possibility of botĥm&Þ0 and^s&Þ0, on the
other hand, is forbidden by a duality relation existing b
tween the spin and soliton operators, which has been ri
ously demonstrated in one spatial dimension8 and, for physi-
cal reasons, should also be valid in higher dimensions.

One can ask whether some different phases may o
when disorder is introduced in the system. Starting from
ordered phase of the pure NLSM, which corresponds to
Heisenberg antiferromagnet, we investigate this possib
by studying quenched averages in the presence of ran
couplings. When magnetic dilution is not exponentially su
pressed, we conclude that the system exists in a new ph
where ^^m&&50 and ^^s&&Þ0 ~the quenched average
^^¯&& are defined in Sec. III!, but in which the skyrmion
correlation function presents a power-law decay at large
tances that implies the existence of zero energy skyrmio
This phase, which never occurs in the pure system, i
‘‘soft’’ disordered Néel phase, possessing an order parame
^^s&&Þ0, in spite of the fact that the skyrmion energy va
ishes. The power-law decay of correlation functions in t
phase shows some characteristics of criticality. Universa
©2002 The American Physical Society18-1
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classes, which are determined by the behavior of the di
bution of random couplings atr→0, also can be clearly iden
tified in this new phase, which bears some resemblance
spin-glass phase. This is discussed in Sec. VI.

When the distribution function of random couplings
such that magnetic dilution is exponentially suppressed,
the other hand, the system is shown to exist in a phase
^^m&&50 and^^s&&Þ0 presenting, at the same time, an e
ponential decay of the skyrmion correlation function, ana
gously to what happens in the ordered Ne´el phase of the pure
system. The skyrmion excitation always possess a non
energy in this phase. Only the subleading behavior of
skyrmion and spin-correlation functions at large distance
modified by the introduction of disorder in this phase, whi
might be called a ‘‘hard’’ disordered Ne´el phase.

The paper is organized as follows. In Sec. II, we revi
some properties of the quantum NLSM relevant for t
present work as well as the continuum limit of tw
dimensional quantum antiferromagnets in the pure case
Sec. III, we consider disorder in the NLSM, manifested in
random distribution of couplings in the Ne´el phase. The
probability distribution functions for these couplings are a
introduced. In Sec. IV, we study the quenched average
skyrmion correlation functions in the case where magn
dilution is exponentially suppressed. In Sec. V, we consi
the same averages in situations in which magnetic dilutio
not suppressed. We also show the occurrence of a new p
presenting some characteristics of criticality, in which t
system belongs to universality classes determined by the
havior of the distribution function atrs→0. Discussion of
the results, conclusions, and future perspectives are
sented in Sec. VI.

II. THE QUANTUM NONLINEAR SIGMA MODEL
AND THE PURE HEISENBERG ANTIFERROMAGNET

A. The quantum nonlinear sigma model

Let us start by reviewing the properties of the tw
dimensional~2D! O(3)-symmetric quantum NLSM. Subse
quently, we shall recall how it is mapped in the 2D Heise
berg antiferromagnet. The NLSM is defined by the act
(d3x5dtd2x)

S5E d3x
r0

2
F 1

c2
~]tn!21~¹n!2G , ~2.1!

where the fieldn is subject to the constraintn251. r0 is a
coupling parameter andc, a characteristic velocity. Hence
forth, unless otherwise specified, we shall make\51 and
c51. Writing the nonlinear sigma field asn5(s,p), the
zero-temperature partition function can be expressed as

Z5E DsDpDlexpH 2E d3xF1

2
@~]ms!21u]mpu2#

1 il@s21upu22r0#G J , ~2.2!
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where we rescaled the fields and introduced the constr
through the Lagrange multiplier fieldl. We use the notation
]m[(]/]t,¹). Integrating onp, we get the effective parti-
tion function

Z5E DsDlexpH 2E d3xF1

2
~]ms!21 il@s22r0#G

1tr ln@2h1 il#J . ~2.3!

The constant saddle-point equations derived from the ab
expression are

^l&^s&50,

^s&25r02E d3k

~2p!3

1

k21m2
, ~2.4!

wherem2/25 i ^l&. At zero temperature, the system prese
two phases:2 an ordered Ne´el phase, for whicĥ l&50 and
^s&Þ0, and a~paramagnetic! quantum disordered phase,
which ^l&Þ0 and ^s&50. We explore below the physica
properties of the basic excitations of the system and co
sponding correlation functions in each of these two phas

An important feature of the NLSM is the existence
topological excitations, called skyrmions. Classically, th
are solutions of the field equations carrying the topologica
conserved charge9

Q5
1

8pE d2xe i j eabcna] in
b] jn

c. ~2.5!

At quantum level, the skyrmion statesusk& are eigenstates o
the Q operator with an eigenvalue equal to one and are c
ated by an operatorm satisfying the commutation rule
@Q,m#5m. The correlation functions of this operator hav
been studied in detail in the ordered phase of the NLS
taking into account full quantum effects.6 Together witĥ s&,
the ground-state expectation value of the soliton creation
eratorm is a convenient tool for the characterization of t
phases of the system, which we are going to exploit.

B. The quantum disordered phase

We start with the quantum disordered phase, wherem
Þ0. Evaluating the integral in Eq.~2.4! using the largek
cutoff L and taking^s&50, it is easy to see that

m

4p
5

L

2p2
2r0.0. ~2.6!

Note that the largeL behavior of Eq.~2.6!, as usual, may be
compensated by the bare couplingr0 , yielding a finite pa-
rameterm. Using the saddle-point solutioni ^l&5m2/2, it
becomes clear that, up to a constant, the effectives-field
action is given by

Seff@s#5E d2x
1

2
@~]ms!21m2s2#. ~2.7!
8-2
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The spin-correlation function, in this phase, therefore,
given by ~notice that we are working with imaginary tim
t5 i t )

^s~x,t!s~0,0!&qd5E
2`

1`dv

dpE d2k

~2p!2

eik•xeivt

v21uku21m2

5
e2mAuxu21t2

4p@ uxu21t2#1/2
. ~2.8!

The exponential decay reveals the presence of a correla
length j5m21. The large distance behavior^ss&QD→0
confirms that̂ s&QD50 in this phase. Conversely, no qua
tum soliton excitations are expected to be present in
phase and therefore we must have^m&Þ0, implying that the
quantum skyrmion stateusk& is not orthogonal to the groun
state. As we shall see this will be confirmed below.

C. The ordered phase

We now turn to the ordered phase. In this case, we h
m50. Evaluating the integral in Eq.~2.4!, again using the
largek cutoff L, we get

^s&ord
2 5Fr02

L

2p2G.0. ~2.9!

Once more, the largeL behavior in Eq.~2.9! can be absorbed
in a redefinition of the bare couplingr0 . Introducing the
renormalized~finite! couplingrs , the spin stiffness, as

rs5r02
L

2p2
>0, ~2.10!

we see that̂ s&ord
2 5rs , which is nonzero in the ordere

phase. At the quantum critical pointrs50, the system enter
the disordered phase, wheremÞ0. The sublattice magnetiza
tion M is given byM5^s&. In the ordered phase, we hav
Mord5Ars while in the quantum disordered phase, of cour
Mqd50.

Let us consider now the complete renormalization of
theory in the ordered phase. From Eq.~2.10!, we can write

r05Zrs ; Z5S 11
L

2p2rs
D . ~2.11!

Introducing the renormalized fieldsnR , lR , and actionSR
through

n5Z21/2nR ; l5ZlR ; SR5S1dS, ~2.12!

where

dS52 i ~Z2121!E d3xZlR , ~2.13!

it is easy to see that the renormalized action is given by

SR5E d3xH rs

2
u]mnRu21 ilR@ unRu221#J . ~2.14!
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This is identical to the classical action, but with renorm
ized, physical quantities, replacing the bare ones. For
reason, this phase is known as ‘‘renormalized classical.’’2 We
see, in particular, that the physical coupling constant in t
phase is the spin stiffnessrs .

ReplacingS for SR in Eq. ~2.3!, inserting the saddle-poin
value ^lR&50, and shifting thesR field around its vacuum
expectation value^sR&5Ars, namely, defining h[sR

2Ars, we get

Seff@h#5E d3x
1

2
~]mh!2. ~2.15!

This is the well-known Goldstone boson action and the c
responding correlation functions are

^h~x,t!h~0,0!&5^sR~x,t!sR~0,0!&oaf2^sR&oaf
2

5
1

4p@ uxu21t2#1/2
. ~2.16!

We now see that̂sRsR&oaf→^sR&oaf
2 Þ0, at large distances

thus confirming the fact that̂sR&oafÞ0 in this phase.
In the ordered antiferromagnetic phase, we have the

currence of classical skyrmion excitations, possessingQ
51. These are given by9

nS~x!5rs@sinf ~r ! r̂ ,cosf ~r !# ~2.17!

with

f ~r !52arctan
l

r
,

where l is an arbitrary scale andr is the radial distance in
two-dimensional space. The energy of this classical sk
mion excitation in the ordered phase, described by the re
malized classical action~2.14! and measured with respect t
the ordered antiferromagnetic background, isE54prs . This
must be compared with the full quantum result obtained fr
a quantized skyrmion field theory. The two-point quantu
skyrmion correlation function has been evaluated in the
dered phase of the quantum NLSM~Ref. 6! and the result is

^m~x,t!m†~0,0!&oaf5exp$22prs@ uxu21t2#1/2%.
~2.18!

From this we can infer that the actual energy of the f
quantum skyrmions in the ordered antiferromagnetic phas
2prs , that is, half of the classical value. From Eq.~2.18!,
we also see that̂mm†&oaf→0, at large distances, implying
that^m&50 in this phase. This means that the quantum sk
mion stateusk& is orthogonal to the vacuum and the quantu
skyrmions are genuine excitations. Forrs→0, on the other
hand, when we approach the quantum critical point lead
to the disordered phase, we see from Eq.~2.18! that ^m&
Þ0, confirming therefore our anticipation for the groun
state expectation value of the skyrmion operator in the d
ordered phase.
8-3
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D. Connection with the Heisenberg antiferromagnet

Two-dimensional antiferromagnets on a square lattice
be described by theO(3)-symmetric Heisenberg Hamil
tonian, given by

H5(̂
i j &

Ji j Si•Sj , ~2.19!

where the sum runs only over nearest-neighbor sites
Ji j .0. The ‘‘pure’’ case is characterized by the fact that t
coupling constantsJi j are determined and fixed. In the ho
mogeneous case, all the coupling constants are equal an
haveJi j [J.0. At zero temperature, this system is known
exist only in an ordered Ne´el phase. The quantum fluctua
tions are not capable of destroying the long-range antife
magnetic order for any value of the coupling constant.7

It has been shown that in the continuum limit, the abo
quantum Hamiltonian, in the homogeneous case, is map
into theordered phaseof the quantum NLSM,1,2 the nonlin-
ear sigma fieldn(x,t) being the continuum limit of the sub
lattice spin operator. The spin stiffnessrs , which, as we saw,
controls all the physical properties of the system in the
dered phase, is related to the Heisenberg antiferromagn
couplingJ as2,5

rs5JS2Zrs
, ~2.20!

whereS is the spin quantum number andZrs
is a constant

accounting for quantum corrections to the classical c
tinuum limit. For S5 1

2 , we have2,5

rs.0.18J. ~2.21!

In the nonhomogeneous case, where the coupling c
stantsJi j are different for each link, we can derive the co
tinuum limit by following the same procedure as in Ref.
provided that the configuration of coupling constantsJi j in
Eq. ~2.19! is slowly varying~this is going to be made precis
in what follows!. In this case, we obtain in the continuu
limit, a nonlinear sigma model with the spin stiffnessrs
replaced by a slowly varying configurationr(r ) that is re-
lated toJi j in the same way thatrs is related toJ, namely,

S5E d3xH 1

2
u]mnu21 il@ unu22r0~r !#J . ~2.22!

This is equivalent to modifying the constraint fromd@ unu2
21# to d@ unu22 f (r )#, with r0(r )[r0f (r ). Integrating over
p, we get

S5E d3xH 1

2
~]ms!21 il@s22r0~r !#J 1tr ln@2h1 il#.

~2.23!

Now translation invariance is lost and the saddle-point eq
tions become
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2¹2^s&12m2~r !^s&50,

^s&25r0~r !2E d3k

~2p!3

1

k21m2~r !
[r~r !. ~2.24!

We see that noŵs&5^s& (r ) and consequentlym(r )Þ0, in
spite of the fact that̂ s&Þ0. The spin-correlation function
becomes damped now, with a damping factorm(r ). This is
in agreement with previous investigations of spin waves
similar situations.4,10

The soliton correlation function can be evaluated in
saddle-point approximation in the theory described by E
~2.22!.6 This has a simple expression in terms of^s&, which
will be very convenient for obtaining quenched averages
the disordered version of the model, namely,

^m~x,t!m†~0,0!&5exp$22p^s&2@ uxu21t2#1/2%

5exp$22pr~r !@ uxu21t2#1/2%.

~2.25!

In the rest of this work, we consider the situation in whi
intrinsic disorder is introduced in the system and investig
its effects on the soliton correlation function.

III. THE CONTINUUM LIMIT OF DISORDERED
ANTIFERROMAGNETS

A. The disordered system

Let us describe the presence of disorder in the tw
dimensional Heisenberg quantum antiferromagnet, by c
sidering a random distribution of couplingsJi j in Eq. ~2.19!
analogously to the Edwards-Anderson model.11 Here, how-
ever, we will keep only antiferromagnetic couplingsJi j .0.
This will allow us to easily obtain a continuum field-theo
version for the disordered model, in the same way as in
pure case. The disorder is introduced in the continuum v
sion by taking a random distributionP@r(r )# for the slowly
varying spin stiffnessr(r ) appearing in Eq.~2.22!. We re-
quire thatP@r(r )#50 for r(r ),0. This will ensure that, in
spite of the presence of disorder, we are always in the
dered phase of the NLSM, for which the mapping to t
Heisenberg antiferromagnet exists. We also impose the c
dition that the variance of this distribution is always mu
smaller thanrs , in order to ensure that ther(r ) configura-
tions are slowly varying.

We are only going to consider the quenched case and
quantum averages at zero temperature using a fixed con
ration for r(r ). Subsequently we shall evaluate the avera
over ther(r ) configurations using theP@r(r )# distribution
function. The relevant average for an operatorA in the
quenched random system will be therefore

^^A&q&r5
1

L)
r
E

0

`

dr~r !P@r~r !#^A&q@r~r !#, ~3.1!

whereL[() r•1) is a normalization factor correspondin
in the lattice, to a product over all links (i j ) and^A&q is the
zero-temperature quantum average.
8-4
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B. Distribution functions

Let us introduce now the distribution functions we a
going to use, in order to describe the disorder. We shall c
sider basically two functions containing a Gaussian distri
tion centered around the pure spin stiffnessrs . The first one
is ~henceforth we omit the argumentr in r)

P1@r#55
1

N1

~r2rs!
n21e2~r2rs!2/2D2

, r.rs ,

1

N1

~rs2r!n21e2~r2rs!2/2d2
, 0<r,rs ,

0, r,0,
~3.2!

wheren.0. In this expression, we assume that bothD!rs
andd!rs , thereby guaranteeing that the randomr configu-
rations are slowly varying. We also assume that

S L

\cDD@1, ~3.3!

whereL is the maximum dimension of the system andc, the
spin-wave velocity, its characteristic velocity. Two regim
of disorder described by Eq.~3.2! can be distinguished an
will produce a completely different behavior of the corre
tion functions, as we shall see. A first one is obtained
choosing a symmetric Gaussian, withd5D. A second one is
with the choiced!D and

S L

\cD d!1. ~3.4!

In the second case, there is a severe exponential suppre
of values of the spin stiffness aroundrs50, that is, magnetic
dilution is exponentially suppressed in a very strong way
the first case, dilution is not so much suppressed and, a
shall see, the system has the same qualitative behavior
diluted one.

Experimental values for the parameters of the above
tribution, in the case of high-temperature superconduc
cuprates in the ordered antiferromagnetic phase, which
typical examples of two-dimensional Heisenberg antifer
magnets, are5 rs.1021 eV, \c.1 eV Å. For a sample of
dimensionL.1 mm, we chooseD.1023 eV, which satis-
fies Eq.~3.3!. For d, we haved5D in the case with dilution.
In the case without dilution, the choiced.1029 eV will
satisfy Eq.~3.4!. In both cases, the conditionD, d!rs is
satisfied.

In the distribution function~3.2!, the normalization factor
is given by

N152~n/2!21GS n

2D @Dn1dn#. ~3.5!

The average spin stiffness is
05441
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r̄5rs1

GS n11

2 D
A2G~n/2!

D ~3.6!

in the case where dilution is not suppressed and

r̄5rs1A2

GS n11

2 D
G~n/2!

DF12S d

D D nG ~3.7!

in the presence of exponential suppression of dilut
(d!D).

The second distribution function we are going to use i

P2@r#5H 1

N2

rn21e2~r2rs!2/2s2
, r>0,

0, r,0,

~3.8!

wheren.0. We assumes!rs , again to ensure that ther
configurations are slowly varying. This condition can be e
perimentally satisfied, in the case of the high-temperat
cuprates, with a choice ofs.1023 eV. Observe also that
using the same experimental values of the previous p
graph, this value ofs satisfies the condition

S L

\cDs@S rs

s
D @1, ~3.9!

which is similar to Eq.~3.3!.
The normalization factor in Eq.~3.9! is now given by

N25snG~n!D2nS 2
rs

s
D e2rs

2/4s2
, ~3.10!

where D2n(x) is a parabolic cylinder function. For th
P2@r# distribution function, the average spin stiffness is

r̄5rs1~n21!
s2

rs

. ~3.11!

IV. DISORDER WITH EXPONENTIALLY SUPPRESSED
DILUTION

In this section, we consider the situation in which ma
netic dilution is exponentially suppressed in the disorde
system. As explained above, this corresponds to the choic
P1@r# as the distribution function, with the parametersD and
d satisfying Eqs.~3.3! and ~3.4!, respectively. We are going
to evaluate the quenched skyrmion correlation functio
starting from the ordered antiferromagnetic phase of the p
system. In this case, the zero-temperature pure quantum
erageŝ mm†&oaf, given by Eq.~2.18!, depend exponentially
on the spin stiffness. For the disordered NLSM introduced
Sec. II B, in the regime where the spin stiffnessr(r ) is
slowly varying, the soliton correlation function is given b
Eq. ~2.25!. Hence, when evaluating the quenched avera
~3.1!, we shall have a zero-temperature quantum aver
whoser(r ) dependence is of the form exp$2ar(r )%, where
8-5
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a52pX, with X[@ uxu21t2#1/2. The relevant integral for
the evaluation of Eq.~3.1! is, therefore

A5A11A2 , ~4.1!

where

A15
1

N1
E

0

rs
dr~rs2r!n21e2are2~r2rs!2/2d2

5
1

N1anE0

ars
dx~ars2x!n21e2xe2~x2ars!2/~2a2d2!

~4.2!

and

A25
1

N1
E

rs

`

dr~r2rs!
n21e2are2~r2rs!2/2D2

5
e2ars

N1anE0

`

dxxn21e2xe2x2/~2a2D2!. ~4.3!

We shall be interested in the behavior of quenched avera
of correlation functions, given by Eq.~3.1!, at large distances
(X→`). In this case, we havea→` and we can, therefore
use conditions~3.4! and~3.3!, respectively, in Eqs.~4.3! and
~4.2! to obtain

A1 →
a→` e2ars

N1an Ears2ad

ars
dx~ars2x!n215

dn

N1n
e2ars

~4.4!

and

A2 →
a→` e2ars

N1an E0

`

dxxn21e2x5
G~n!

N1

e2ars

an
~4.5!

@we could also have obtained the result in Eq.~4.5! by ex-
actly evaluating the last integral in Eq.~4.3! and subse-
quently taking the limita→0, see Eqs.~5.7! and ~5.8!#. We
conclude from Eqs.~4.4! and ~4.5! that

A →
a→` e2ars

N1
FG~n!

an
1

dn

n
G →

a→` G~n!

N1

e2ars

an
, ~4.6!

where we used Eq.~3.4! in the second limit, in order to ge
the dominant behavior for largea.

From Eqs.~2.18! and~4.6! we can immediately obtain th
expression for the long-distance behavior of the skyrm
quenched averages in the absence of magnetic dilu
namely,

^^mm†&&oaf →
X→` G~n!

~2p!nN1
S e22prsX

Xn D . ~4.7!

Observe that the presence of disorder, in the case wher
lution is exponentially suppressed, does not modify
dominant exponential large distance behavior. Only the s
05441
es

n
n,

di-
e
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dominant power-law decay is modified by the introduction
an additional exponentn.

V. DISORDER WITHOUT EXPONENTIAL SUPPRESSION
OF DILUTION

In this section, we are going to consider the situation
which magnetic dilution is not exponentially suppressed
the random distribution of couplings. As we saw in Sec.
this can happen either when we use the distributionP1@r# in
the symmetric case whend5D or when we useP2@r#. In
what follows, we study the two cases separately.

A. Distribution function P1†r‡

In this case, the relevant integral for the evaluation of E
~3.1! is

B5B11A2 , ~5.1!

whereA2 is given by Eq.~4.3! and

B15
1

N1
E

0

rs
dr~rs2r!n21e2are2~r2rs!2/2D2

5
e2ars

N1anE0

ars
dxxn21exe2x2/2~a2D2!. ~5.2!

In the large distance regime, whena→`, we can use Eq.
~3.3! to obtain12

B1 →
a→` e2ars

N1an E0

ars
dxxn21ex5

rs
ne2ars

nN1
1F1~n;11n;ars!,

~5.3!

where1F1(n;11n;ars) is a confluent hypergeometric func
tion. Using the large distance asymptotic behavior of t
function, we get12

B1 →
a→` rs

n21

N1a
. ~5.4!

Combining Eqs.~5.4! with ~4.6!, we see that

B →
a→` 1

N1
F rs

n21

a
1G~n!

e2ars

an G →
a→` rs

n21

N1a
. ~5.5!

From this result, we can immediately infer the large distan
behavior of the skyrmion quenched correlation function. T
is given by

^^mm†&&oaf →
X→` rs

n21

2pN1

S 1
XD . ~5.6!

Now the large distance behavior of the correlation function
drastically changed. The previously dominating exponen
decay is completely washed out and we have, instea
power-law decay. As we shall argue in the next subsect
8-6
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the exponent of the power law is universally determined
the behavior of the distribution function atr→0.

B. Distribution function P2†r‡

Let us consider now the situation in which the disorder
described by the distribution functionP2@r#. The relevant
integral for the evaluation of Eq.~3.1! is now12

C5
1

N2
E

0

`

drrn21e2are2~r2rs!2/2s2

5FD2nS 2
rs

s
D G21

expF2
rsa

2
G

3expFs2a2

4
GD2nS sa2

rs

s
D , ~5.7!

whereD2n(x) is the parabolic cylinder function. The larg
distance behavior of Eq.~5.7! can be obtained by considerin
the property12

D2n~x! →
x→`

e2x2/4x2n,

D2n~2x! →
x→` A2p

G~n!
ex2/4xn21. ~5.8!

Using this and Eq.~3.9!, we can immediately obtain the larg
distance behavior of the quenched skyrmion correlat
functions for the distribution functionP2@r#. This is given
by

^^mm†&& →
X→` G~n!

~2p!n11/2S rs
12n

s
D S 1

XnD . ~5.9!

We observe here that, as in the case of the distribution u
in the previous subsection, the introduction of disorder co
pletely modifies the large distance behavior of the correla
functions, eliminating the exponential decay. This fact can
generally understood by observing that the large dista
~largea! behavior of Eq.~3.1! is determined by the behavio
of the distributionP@r# at r→0. This happens because, f
the distribution functionsP@r# ~with support in the region
r>0! and quantum averageŝA&q ~r! ~exponentially de-
pending onr! considered in this work, the quenched avera
~3.1! is proportional to thea Laplace transform ofP@r#. As
a consequence, the asymptotic large distance behavior o
~3.1! is universally determined by the behavior ofP@r# for
r→0. We see, for instance, that the values of the parametn
in P2@r# determine universality classes to which the dis
dered system belongs. This can be confirmed by the beha
of the correlator~5.6!. Also, by comparing Eqs.~5.6! with
~5.9! we conclude that distributionP1@r#, in the symmetric
case whend5D, is in then51 universality class ofP2@r#.
This can be also verified by observing that both distributio
have the same type of behavior atr→0. Conversely, in the
asymmetric case whend!D, the distribution functionP1@r#
is exponentially suppressed atr→0, a type of behavior tha
05441
y
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is never presented byP2@r#, leading to an exponential deca
of the quenched correlators.

VI. DISCUSSION AND CONCLUSIONS

Our continuum analysis of two-dimensional quantum a
tiferromagnets in the presence of a random distribution
couplings at zero temperature has shown that the quen
averages of soliton~skyrmion! correlation functions are
modified with respect to the pure case. The modification
particularly drastic whenever magnetic dilution is not exp
nentially suppressed in the disordered system. This effect
quite interesting consequences in the physical propertie
skyrmions. It is a well-known fact that an exponential dec
of the soliton correlation function at large distances wou
indicate that the energy of the soliton excitations is nonz
and proportional to the coefficient of the exponent. In t
pure NLSM in the ordered phase, this is given byES
52prs52p^s&2. A nonzero soliton energy, therefore,
associated to an ordered ground state with^s&Þ0. Physi-
cally this can be understood as a consequence of the fact
in an ordered ground state there is an energy cost to make
spin flips necessary for the introduction of a soliton sta
The exponential decay of̂mm†& further implies through
^mm†&→u^m&u2 that ^m&50, which means that the solito
states are orthogonal to the vacuum, that is to say, true e
tations. A power-law decay, on the other hand, while s
leading to^m&50 and therefore meaning that quantum so
tons are genuine excitations, would imply that the ene
necessary for the creation of these solitons is equal to z
In a generic puresystem at zero temperature, this wou
correspond to aquantumdisordered ground state (^s&50),
because when the ground state is not an ordered one, the
no energy cost for introducing the spin flips necessary
create a soliton state. These zero energy quantum skyrm
in spite of bearing minimal relation to their classical ance
tors occurring in an ordered phase, would exist as true ph
cal excitations in such a phase. It should be stressed, h
ever, that the kind of quantum disorder occurring when
have a power-law decay of the soliton correlation functi
differs from the one found in a paramagnetic phase, such
the quantum disordered phase of the NLSM, in which
have ^mm†&→CÞ0, that is, ^m&Þ0 and ^s&50. Conse-
quently, we conclude that a power-law decay of the soli
correlation function would imply some different type of di
order than the one found in a paramagnetic phase. In s
mary we have the following possibilities for the phases o
pure quantum antiferromagnet:

^mm†& →
X→`

CÞ0; ^m&Þ0,

^s&502paramagnetic quantum disordered,

^mm†& →
X→`

e2ESX; ^m&50,

^s&Þ02antiferromagnetic~Néel),

^mm†& →
X→` 1

Xn
; ^m&50,

^s&502nonparamagnetic quantum disordered

~6.1!
8-7
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The first two are realized in the pure NLSM~Ref. 2! at zero
temperature and only the second one is realized in the
two-dimensional Heisenberg quantum antiferromagnet w
nearest-neighbor interactions, also atT50.7

We then consider the presence of disorder. Starting fr
the ordered antiferromagnetic phase of the pure NLS
which corresponds to the Heisenberg antiferromagnet,
have studied in this work the effects of disorder introduc
through a continuum random distribution of couplings. In
cases considered here, the quenched magnetization is
zero, namely,MQ5^^s&&.Ar̄, where r̄ is given by Eqs.
~3.6!, ~3.8!, and~3.11!, respectively. The studied systems a
always in an antiferromagnetic ‘‘disordered’’ Ne´el phase
having a nonzero order parameter in spite of the fact that
couplings are random. The types of disorder considered h
ab initio cannot destroy the antiferromagnetic order of t
pure system since they only allow the presence of positiv
null couplings. There are, however, two possible types
such phases, which we call ‘‘soft’’ or ‘‘hard,’’ according t
whether magnetic dilution is exponentially suppressed
not.

When dilution is exponentially suppressed, only the s
leading term of the correlation functions at large distance
modified by disorder. The exponential decay of the pure s
tem is preserved and the skyrmion energy in the disorde
system is the same as in the pure case. The system exis
a phase corresponding to the second possibility in Eq.~6.1!,
which may be called a ‘‘hard’’ disordered Ne´el phase. Con-
versely, when dilution is not exponentially suppressed,
large distance behavior is drastically changed from an ex
nential to a power-law decay. The skyrmion energy con
quently becomes zero in the disordered system, despite
fact that the magnetization is nonvanishing and^^s&&Þ0. To
our best knowledge, this is a completely novel behavior
quantum skyrmions. Physically, we can understand it as
lows: the disorder introduced by the random distribution
couplings is sufficient to reduce to zero the energy neces
for the creation of a skyrmion configuration, even though
cannot destroy the quenched magnetization. The soliton
relation functions have a universal behavior, characterized
universality classes that are determined by the behavio
the distribution function atrs→0.

It would be interesting to find a physical realization f
this phase in which skyrmion correlators have a power-
decay at large distances and which is associated to a dil
disordered antiferromagnet. One might be tempted to ass
ate it with a spin-glass phase since spin glasses can be
tained by dilution of antiferromagnetic systems. A we
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known example in three dimensions is the substa
ZnCr22xGaxO4, obtained by diluting the pure antiferromag
net ZnCr2O4 with nonmagnetic Ga atoms.14,13The possibility
of the ‘‘soft’’ phase, obtained in the present work by dilutio
of a pure antiferromagnet being a spin glass, however
ruled out by the fact that the quenched magnetization is n
vanishing. A key ingredient for this would be the presence
frustration, which is absent in the system studied here
conversely, present in the case of ZnSr22xGaxO4. The di-
luted phase studied here is actually one that could be ad
to the list ~6.1! and is characterized by

^mm†& →
X→` 1

Xn
; ^m&50, ^s&Þ02soft disordered Ne´el.

~6.2!

In this phase, the skyrmion energy vanishes, not as a co
quence of quantum fluctuations, as in the third phase liste
Eq. ~6.1!, but rather, because of the type of disorder int
duced when magnetic dilution is not exponentially su
pressed. This, in spite of not being capable of destroying
order parameter, forces the skyrmion energy to vanish.
physical properties of the zero energy quantum solitons
curring in these kind of phases may play an important role
planar antiferromagnetic systems such as high-tempera
superconducting cuprates and shall be exploited elsewh
For this purpose, one should investigate the effects of di
der in the continuum models for doped antiferromagne
planar systems used to describe materials such as LSCO
YBCO.15

Let us stress, finally, that the kind of magnetic dilutio
considered in this work, even in the cases where it is
exponentially suppressed, is always softer than a de
function-type of dilution containing a pieceP@r#5xd(r),
which would be suitable for describing the type of dilutio
occurring in compounds such as La2Cu12xZnxO4.

4 As future
extensions of this work, we intend to consider more gene
disorder distributions including these and ferromagnetic c
plings as well. In the latter case, we can expect to desc
spin-glass phases as well. It is likely that in a spin-gla
phase the behavior of soliton correlation functions shall
similar to the one found in the soft Ne´el phase of our model
We are presently investigating this point.
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