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Phase structure and universality in two-dimensional disordered quantum antiferromagnets
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Two-dimensional disordered quantum antiferromagnets are studied by means of a continuum description in
which disorder is introduced by a random distribution of couplifsgsn stiffnessesin the ordered phase of the
nonlinear sigma model. Quenched soli{skyrmion correlation functions are evaluated and used, along with
guenched magnetization, to characterize the phase structure of the system. When magnetic dilution is expo-
nentially suppressed, the introduction of disorder only modifies the subleading terms in the large distance
behavior of the soliton correlation functions, yielding the same skyrmion energy as in the pure case. The
system is in a “hard” disordered N phase similar to the ordered antiferromagnetic phase occurring in the
pure case. Conversely, when magnetic dilution is not exponentially suppressed, the large distance behavior of
the correlation functions is drastically changed. The system exists in a new phase in which the energy of
guantum skyrmions is equal to zero in spite of the existence of a nonvanishing antiferromagnetic order
parameter. This “soft” disordered N¢phase is characterized by universality classes, which are determined by
the behavior of the distribution of random couplings in the small coupling region. The possible relation of this
phase to spin glasses is briefly discussed.
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[. INTRODUCTION tinuum limit of the sublattice spin operator, name{y),
along with a dualdisordej parameter given byu).® One of
The continuum description of two-dimensional quantumthe phases of the pure system is ordered, hagirg: 0 and
antiferromagnets has been the object of intense investigati()@,,>:o_ In this phanMM” has an exponential large dis-
for a long period of timé:~* The interest in this kind of tance decay implying the existence of a nonzero creation
description has been enhanced mostly because of its succegsrergy for the skyrmion$The other phase is a paramagnetic
ful applications in the case of layered antiferromagnets suclyantum disordered one, presentifgy=0 and(u)#0. In
as high-temperature superconducting 'cuprates. For thesgig phase, the fact that the skyrmion sta = |0) are
comp_ounds, the undop_ed pa_rent mat_enals can b? Very Weiot orthogonal to the vacuum means that there is actually no
described by the two-dimensional antiferromagnetic He'sengenuine skyrmion excitation in the system. A third possibil-

berg model on a square lattiEén the continuum "”T“t' th|s_ ita/, which is not realized in the pure NLSM at zero tempera-
can be mapped into the ordered phase of the nonlinear sigm

model(NLSM),* whose single coupling constang, the spin ture, Ivv?uldfbe ?. phase in ?hldm}:o W'Th thg skyrmltoln
stiffness, is directly related to the Heisenberg antiferromagpf)rre ation function presenting a power-aw decay at 1arge
netic couplingd. distances. In this case, the system would have zero energy

Site-diluted disordered antiferromagnets have been stuct<yrmions in its excitation spectrum atd) =0, the absence
ied previously in the framework of the NLSM, leading Of order being closely related to the vanishing of the soliton
to very interesting resulsThe aim of this work is to inves- €nergy. The possibility of botlu)#0 and(s)#0, on the
tigate the consequences of disorder in the quantum Heise@ther hand, is forbidden by a duality relation existing be-
berg antiferromagnet by considering a continuous randorfiveen the spin and soliton operators, which has been rigor-
distribution of spin stiffnesp, in the NLSM. The effects of ously demonstrated in one spatial dimen8iand, for physi-
disorder are particularly interesting and, in fact, lead tocal reasons, should also be valid in higher dimensions.
unexpected results in the case of skyrmion correlation func- One can ask whether some different phases may occur

tions. Quantum skyrmion statésk) are characterized by When disorder is introduced in the system. Starting from the
the property ordered phase of the pure NLSM, which corresponds to the

Heisenberg antiferromagnet, we investigate this possibility
Qlsky=|sk), by studying quenched averages in the presence of random
couplings. When magnetic dilution is not exponentially sup-
where Q is the topological charge operator. These excitedpressed, we conclude that the system exists in a new phase,
states are created out of the ground state by an opegator where ({(©))=0 and {{o))#0 (the quenched averages
whose correlation functions and properties have been exter¢---)) are defined in Sec. i} but in which the skyrmion
sively studied in Ref. 6, for the case of the NLSM. The correlation function presents a power-law decay at large dis-
skyrmion energy, in particular, can be inferred from the largetances that implies the existence of zero energy skyrmions.
distance behavior of the skyrmion correlation functionThis phase, which never occurs in the pure system, is a
(uu'. “soft” disordered Nesl phase, possessing an order parameter
The pure NLSM at zero temperature is known to exist in{{o))#0, in spite of the fact that the skyrmion energy van-
two phase$.These can be characterized by an order paramishes. The power-law decay of correlation functions in this
eter, which is the ground-state expectation value of the conphase shows some characteristics of criticality. Universality
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classes, which are determined by the behavior of the distriwhere we rescaled the fields and introduced the constraint
bution of random couplings @t—0, also can be clearly iden- through the Lagrange multiplier field. We use the notation
tified in this new phase, which bears some resemblance to @,=(d/J7,V). Integrating onar, we get the effective parti-
spin-glass phase. This is discussed in Sec. VI. tion function

When the distribution function of random couplings is
such that magnetic dilution is exponentially suppressed, on _ 3
the other hand, the system is shown to exist in a phase with Z_J Dch)\exp[ _J d*x
((m))=0 and({o))#0 presenting, at the same time, an ex-
ponential decay of the skyrmion correlation function, analo- _ .
gously to what happens in the orderedeNghase of the pure i~ 0+ )\]} ' 23
Zﬁtregr;]'ig r;ﬁi SS kgr:g!gn S)rif;t?ﬂgnssmsgginp; sbs:r:]s asv%rng? ZtﬁéPhe constant saddle-point equations derived from the above
skyrmion and spin-correlation functions at large distances i§xpression are
modified by the introduction of disorgler in this phase, which (\)o)=0,
might be called a “hard” disordered ¢ phase.

The paper is organized as follows. In Sec. Il, we review
some properties of the quantum NLSM relevant for the <U>2:p0_f
present work as well as the continuum limit of two-
dimensional quantum antiferromagnets in the pure case. In

Sec. lll, we consider disorder in the NLSM, manifested in awherem2/2=i()\). At zero temperature, the system presents

random distribution of couplings in the Wephase. The WO phases:an ordered Nel phase, for whict(\)=0 and.
probability distribution functions for these couplings are alsol?)# 0, and a(paramagneticquantum disordered phase, in
introduced. In Sec. IV, we study the quenched averages o¥hich (A)#0 and(o)=0. We explore below the physical
skyrmion correlation functions in the case where magneti®OPerties of the basic excitations of the system and corre-
dilution is exponentially suppressed. In Sec. V, we considerPonding correlation functions in each of these two phases.
the same averages in situations in which magnetic dilution is AN important feature of the NLSM is the existence of

not suppressed. We also show the occurrence of a new phadgPological excitations, called skyrmions. Classically, they
presenting some characteristics of criticality, in which the&r® solutions of the field equations carrying the topologically

system belongs to universality classes determined by the b&onserved charde

havior of the distribution function aps— 0. Discussion of 1

the results, conclusions, and future perspectives are pre- Q:_f d?xe'l €2Pn2g.nPo-ne. (2.5
sented in Sec. VI. 8m e

1 2., 2
E(ﬁ"a) +iN[ o= po]

d3k 1
(2m)% K2+m?’

(2.9

At quantum level, the skyrmion statgsk) are eigenstates of

Il. THE QUANTUM NONLINEAR SIGMA MODEL the Q operator with an eigenvalue equal to one and are cre-
AND THE PURE HEISENBERG ANTIFERROMAGNET ated by an operatoy. satisfying the commutation rule
) _ [Q,u]= . The correlation functions of this operator have
A. The quantum nonlinear sigma model been studied in detail in the ordered phase of the NLSM,

Let us start by reviewing the properties of the two- taking into account full quantum effectdogether with o),
dimensional(2D) O(3)-symmetric quantum NLSM. Subse- the ground-state expectation value of the soliton creation op-
quently, we shall recall how it is mapped in the 2D Heisen-€rator u is a convenient tool for the characterization of the
berg antiferromagnet. The NLSM is defined by the actionphases of the system, which we are going to exploit.
(d3x=drd?x)

B. The quantum disordered phase
We start with the quantum disordered phase, whare

#0. Evaluating the integral in Eq2.4) using the largek
cutoff A and taking(o)=0, it is easy to see that

S= f d3x% , 2.1)

= ()P (V)2
C

where the fieldn is subject to the constraim?=1. p, is a
coupling parameter and, a characteristic velocity. Hence- m_ i
forth, unless otherwise specified, we shall make1 and 4w 242
c=1. Writing the nonlinear sigma field as=(o,#), the
zero-temperature partition function can be expressed as

z:f Dchﬂ-D)\exp{—J d3x

+i)\[g-2+|17|2_p0]H' (2.2 Seff[o']:f dzxg[(5lu0')2+m20'2]. (2.7

— po>0. (2.6)

Note that the largé\ behavior of Eq(2.6), as usual, may be
compensated by the bare couplipg, yielding a finite pa-
1 rameterm. Using the saddle-point solutiof\)=m?/2, it
5[(0M0)2+|07,Lﬂ|2] becomes clear that, up to a constant, the effectivfield
action is given by
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The spin-correlation function, in this phase, therefore, isThis is identical to the classical action, but with renormal-
given by (notice that we are working with imaginary time ized, physical quantities, replacing the bare ones. For this
T=it) reason, this phase is known as “renormalized classitaVé
see, in particular, that the physical coupling constant in this
+edw
(o(x 71700 | 50|

d’%k  elkxeler phase is the spin stiffnegs .

(27)2 w?+|k|2+m? ReplacingSfor Sg in Eq.(2.3), in;erting the s_addle-point
value (\g)=0, and shifting theoy field around its vacuum
o~ mVIxZ+ 72 expectation value(og)=ps, namely, defining =0y
(28  —\ps we get

a 4[| x|?+ 2y

The exponential decay reveals the presence of a correlation B 2 1

length é&=m~*. The large distance behavigwo)qp—0 Seﬁ[”]_f d XE(‘?

confirms that<a)QD 0 in this phase. Conversely, no quan-

tum soliton excitations are expected to be present in thidhis is the well-known Goldstone boson action and the cor-

W72 (2.15

phase and therefore we must hgye # 0, implying that the

quantum skyrmion statesk) is not orthogonal to the ground

state. As we shall see this will be confirmed below.

C. The ordered phase

We now turn to the ordered phase. In this case, we have

m=0. Evaluating the integral in Eq2.4), again using the

responding correlation functions are

(n(X, 1) 7(0,00) =(0r(X,7) Tr(0,0)) oai— ( TR) 2at

1

_47T[|X|2+ 72]1/2.

(2.19

We now see thatoroRr)ea— (0R) 2 0, at large distances,

largek cutoff A, we get thus confirming the fact thalog) ., 0 in this phase.

In the ordered antiferromagnetic phase, we have the oc-
currence of classical skyrmion excitations, posses<ihg
=1. These are given By

(0)or= >0. (2.9

A
Po—ﬁ

Once more, the larga behavior in Eq(2.9) can be absorbed
in a redefinition of the bare coupling,. Introducing the
renormalized(finite) coupling pg, the spin stiffness, as

ng(X) = pg Sinf(r)r,cod(r)] (2.17

with

A
ps=po= > —5=0,

o2 (2.10

f(r)=2arcta|%r,
we see that/o)2,=ps, which is nonzero in the ordered
phase. At the quantum critical poipt=0, the system enters
the disordered phase, wharet 0. The sublattice magnetiza-
tion M is given byM =(a). In the ordered phase, we have
M o= \/ps While in the quantum disordered phase, of course

wherel is an arbitrary scale andis the radial distance in
two-dimensional space. The energy of this classical skyr-
mion excitation in the ordered phase, described by the renor-
malized classical actiof2.14) and measured with respect to

M g4=0.

Let us consider now the complete renormalization of the

theory in the ordered phase. From Eg.10, we can write

po=2Zps; Z=|1+

szps) . (2,11

Introducing the renormalized fieldsy, Ag, and actionSg
through

S+46S, (212

n:Z_llan; )\:Z)\R, SR

where

8S= —i(Z*l—l)f d®XZ\R, (2.13

it is easy to see that the renormalized action is given by

=fd3x[%S|ﬁ#nR|2+i)\R[|nR|2—l]]. (2.19

the ordered antiferromagnetic background; is4mpg. This
must be compared with the full quantum result obtained from
a quantized skyrmion field theory. The two-point quantum
skyrmion correlation function has been evaluated in the or-
dered phase of the quantum NLSRef. 6 and the result is

<M(Xa T)MT(O:O)>oaf: eXp{ - 277Ps[|x|2+ 7'2] 1/2}-
(2.18

From this we can infer that the actual energy of the full
quantum skyrmions in the ordered antiferromagnetic phase is
2mpg, that is, half of the classical value. From Eg.18),

we also see thatuu')..—0, at large distances, implying
that{w)=0 in this phase. This means that the quantum skyr-
mion statd sk) is orthogonal to the vacuum and the quantum
skyrmions are genuine excitations. Fay— 0, on the other
hand, when we approach the quantum critical point leading
to the disordered phase, we see from E318 that (u)

#0, confirming therefore our anticipation for the ground-
state expectation value of the skyrmion operator in the dis-
ordered phase.
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D. Connection with the Heisenberg antiferromagnet - V2<0'> + 2m2(r)<g> =0,

Two-dimensional antiferromagnets on a square lattice can
be described by thé(3)-symmetric Heisenberg Hamil-

) d’k 1
tonian, given by (o) =Po(r)—J

(27)2 K>+ m?(r)

p(r). (2.24

We see that nowo)= (o) (r) and consequentlyn(r) #0, in
H=2 J;S'S;, (219  spite of the fact thata)+#0. The spin-correlation function
() becomes damped now, with a damping faatwr). This is

where the sum runs only over nearest-neighbor sites anl agreement with previous investigations of spin waves in
Jij>0. The “pure” case is characterized by the fact that theSimilar situations: . . .
coupling constants;; are determined and fixed. In the ho- The SO.I'ton corre'latlo.n fl,!nct|on can be eva]uated in a
mogeneous case, all the coupling constants are equal and gddI%-po[nt approx_lmanon In thg th_eory described .by Eq.
haveJ;;=J>0. At zero temperature, this system is known to 2.22.> This has a simple expression in terms(of), which

exist only in an ordered Mg phase. The quantum fluctua- will be very convenient for obtaining quenched averages in

tions are not capable of destroying the long-range antiferrot-he disordered version of the model, namely,
(w(x,7)u"(0,0)=exp{—2m(a)? |x|*+ 1%

magnetic order for any value of the coupling constant.
It has been shown that in the continuum limit, the above

guantum Hamiltonian, in the homogeneous case, is mapped =exp{—27p(r)[|x|?+ 2],

into the ordered phasef the quantum NLSM;? the nonlin-

ear sigma fielch(x,t) being the continuum limit of the sub- (229

lattice spin operator. The spin stiffngss, which, as we saw, |n the rest of this work, we consider the situation in which

controls all the physical properties of the system in the orintrinsic disorder is introduced in the system and investigate
dered phase, is related to the Heisenberg antiferromagnetig effects on the soliton correlation function.

couplingJ as®
lIl. THE CONTINUUM LIMIT OF DISORDERED
ps=15Z,, (2.20 ANTIFERROMAGNETS

. . . A. The disordered system
whereSis the spin quantum number a_is a constant

accounting for quantum corrections to the classical con-,. Let us descrlbe the presence of 'dlsorder in the two-
tinuum limit. ForS=1%, we havé® dimensional Heisenberg quantum antiferromagnet, by con-

sidering a random distribution of couplindg in Eq. (2.19
analogously to the Edwards-Anderson madeHere, how-
ever, we will keep only antiferromagnetic couplings>0.
This will allow us to easily obtain a continuum field-theory
In the nonhomogeneous case, where the coupling conrersion for the disordered model, in the same way as in the
stantsJ;; are different for each link, we can derive the con- pure case. The disorder is introduced in the continuum ver-
tinuum limit by following the same procedure as in Ref. 1, sion by taking a random distributid®[ p(r)] for the slowly
provided that the configuration of coupling constafitsin  varying spin stiffnesg(r) appearing in Eq(2.22. We re-
Eqg.(2.19 is slowly varying(this is going to be made precise quire thatP[p(r)]=0 for p(r)<0. This will ensure that, in
in what follows. In this case, we obtain in the continuum spite of the presence of disorder, we are always in the or-
limit, a nonlinear sigma model with the spin stiffneps  dered phase of the NLSM, for which the mapping to the
replaced by a slowly varying configuratigi(r) that is re-  Heisenberg antiferromagnet exists. We also impose the con-
lated toJ;; in the same way that; is related taJ, namely, dition that the variance of this distribution is always much
smaller thanpg, in order to ensure that the(r) configura-
1 tions are slowly varying.
S= j d3x[§ |a#n|2+i)\[|n|2—po(r)]}. (2.22 We are only going to consider the quenched case and take
quantum averages at zero temperature using a fixed configu-
ration for p(r). Subsequently we shall evaluate the average
over thep(r) configurations using th@[ p(r)] distribution
function. The relevant average for an operaforin the
quenched random system will be therefore

ps=0.18J. (2.21)

This is equivalent to modifying the constraint froaf|n|?
—1]to &[|n|?—f(r)], with po(r)=pof(r). Integrating over
T, we get

1 1 %
s-| dsx[§<aﬁo>2+ix[(rz—po<r>]}+trln[—D+ix]- (Ap=7T1 | doOPLoO Ao, 3

(2.23
where A=(Il,-1) is a normalization factor corresponding,
Now translation invariance is lost and the saddle-point equain the lattice, to a product over all linksj() and(A), is the
tions become zero-temperature quantum average.
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B. Distribution functions v+1
Let us introduce now the distribution functions we are 2
going to use, in order to describe the disorder. We shall con- P=Ps+—\/§F( 2 A (3.9
sider basically two functions containing a Gaussian distribu- v
tion centered around the pure spin stiffnegs The first one  in the case where dilution is not suppressed and
is (henceforth we omit the argumentn p) .
v+
Il —— .
(1 2120 =t B 1 2 (37
N—(p—ps)V‘le‘(”“’s) 8% p>ps, e T(v/2) A '
1
P.lpl={ 1 in the presence of exponential suppression of dilution
1 _(PS_P)V_le_(p_PS)2/252, 0=<p<ps, (5<A).
N; The second distribution function we are going to use is
\ 07 p<01 1
(32) _pV* le*(p*PS)Z/Z(rZ, p= 0’
: . Palpl=) N; (3.9
where v>0. In this expression, we assume that bAts pg 0 <0
L] p 1

and 6<<pg, thereby guaranteeing that the randproonfigu-

rations are slowly varying. We also assume that where v>0. We assumer<pg, again to ensure that the
configurations are slowly varying. This condition can be ex-
perimentally satisfied, in the case of the high-temperature

hc A>1, (3-3  cuprates, with a choice af=10"3 eV. Observe also that,

using the same experimental values of the previous para-

whereL is the maximum dimension of the system andhe ~ 9raph, this value obr satisfies the condition

spin-wave velocity, its characteristic velocity. Two regimes

of disorder described by E¢3.2) can be distinguished and L o> Ps =1 (3.9
will produce a completely different behavior of the correla- hc o ' '
tion functions, as we shall see. A first one is obtained by
choosing a symmetric Gaussian, wigkA. A second one is Which is similar to Eq(3.3). _ _
with the choices<A and The normalization factor in Eq3.9) is now given by
L Ny=o'T(1)D_,| — &) e rEHo’ (3.10
(h_c) 5<1. (3.9 o

where D_,(x) is a parabolic cylinder function. For the

In the second case, there is a severe exponential suppressip p] distribution function, the average spin stiffness is
of values of the spin stiffness aroupg= 0, that is, magnetic

dilution is exponentially suppressed in a very strong way. In o o2
the first case, dilution is not so much suppressed and, as we p=pst(v—1)—. (3.11
shall see, the system has the same qualitative behavior as a Ps
diluted one.

Experimental values for the parameters of the above dis- IV. DISORDER WITH EXPONENTIALLY SUPPRESSED
tribution, in the case of high-temperature superconducting DILUTION

cuprates in the ordered antiferromagnetic phase, which are

typical examples of two-dimensional Heisenberg antiferro—netl.r; t(;uls t?r]Ct.'sr;’ Wgng?]?zl|?e;the rzlgiztéonn I?hzvzlggrrgs&
magnets, arep,=10* eV, ic=1 eV A. For a sample of Ic diiution 1S exp 1afly supp ! :

dimensionL =1 mm. we choosé ~10-3 eV which satis- system. As explained above, this corresponds to the choice of
fies EqQ.(3.3). For §, \;ve haves=A in the casé with dilution. Pilp] as the distribution function, with the parametérand
In the case without dilution, the choicd=10"° eV will  © Salisfying Eqs(3.3) and(3.4), respectively. We are going

. L o to evaluate the quenched skyrmion correlation functions,
satisfy Eq.(3.4). In both cases, the conditiof, §<ps is starting from the ordered antiferromagnetic phase of the pure

satisfied. ;
In the distribution functior(3.2), the normalization factor system. In 1:[hls case, the zero-temperature pure quan_tum av-
is given by erages(,u,_u )O_af, given by Eq.(_2.18), depend exponenually _
on the spin stiffness. For the disordered NLSM introduced in
Sec. I B, in the regime where the spin stiffnegér) is
—ow2)-1p| Y\ avo sv slowly varying, the soliton correlation function is given by
Ny=2 F(Z)[A +or @9 Eqg. (2.25. Hence, when evaluating the quenched averages
(3.1), we shall have a zero-temperature quantum average
The average spin stiffness is whosep(r) dependence is of the form exp ap(r)}, where
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a=2mX, with xE[|x|2+72]1/2, The relevant integral for dominant power-law decay is modified by the introduction of

the evaluation of Eq(3.1) is, therefore an additional exponent.
A=A+ A,, (4-1) V. DISORDER WITHOUT EXPONENTIAL SUPPRESSION
where OF DILUTION

In this section, we are going to consider the situation in
which magnetic dilution is not exponentially suppressed by
the random distribution of couplings. As we saw in Sec. I,

AlzNifpsdP(Ps— p)" Lo~ arg(pmps)?i20®
0
! this can happen either when we use the distribuBgfp] in

1 (aps L 22252 the symmetric case whefi=A or when we useP,[p]. In
N Vfo dx(aps—x)"~ le X (X apg™(2a%%) what follows, we study the two cases separately.
1x
(4.2 A. Distribution function P4[p]
and In this case, the relevant integral for the evaluation of Eq.
(3.1 is
1(= v=1—apa—(p—p )2/2A2
A2:_ dp(p_ps) e e S B:Bl+A21 (51)
Nl Ps
_ whereA; is given by Eq.(4.3 and
S —1a-Xa—x%/(2a2A2
= dxx’~le~Xe x/(2a°a%) 4.3
vJo
- B=— f " dp(ps—p)*~lem e v
We shall be interested in the behavior of quenched averages N,Jo
of correlation functions, given by E¢3.1), at large distances .
(X—o). In this case, we havea—o and we can, therefore, _¢© sz“"dexy—lexe—xz/z(a%z) (5.2
use conditio_n$3.4) and(3.3), respectively, in Eqg4.3) and Nya’Jo ' :
(4.2) to obtain
In the large distance regime, when—«, we can use Eg.
a—w @ 4Ps [apg 5 (3.3 to obtairt?
A — f dx(aps—x)" 1= e s
NlaV apg—ad 1V e—an pyeiap
a—x S [ apg S
(4.4 B, — Vf dxx'~lex="2 Fi(v;1+v;aps),
and Nya” /o vINg
(5.3
amwe Ws e o D(v)e s where ;F;(v; 1+ v;apg) is a confluent hypergeometric func-
A, — dxx’~ e = (4.5 ) . ) ) ) .
Nya’ Jo N, a” tion. Using the large distance asymptotic behavior of this

function, we get?
[we could also have obtained the result in E45) by ex-

actly evaluating the last integral in E¢4.3) and subse-

v—1
quently taking the limita—0, see Eqgs(5.7) and(5.8)]. We B, — Ps ) (5.9
conclude from Egs(4.4) and (4.5 that Ny
amr @ [ T(v)  8]ameT(v) e~ s Combining Eqs(5.4) with (4.6), we see that
— +— — , (4.9
N1 a’ 1% Nl a’ a—e 1 p;/—l e Ws|q—w p;—l
, o B—- — +T'(v) . (5.5
where we used Eq3.4) in the second limit, in order to get N.| « a N,

the dominant behavior for large. _ _ _ _ .

From Eqs.(2.18 and(4.6) we can immediately obtain the From this result, we can immediately infer the large distance
expression for the long-distance behavior of the skyrmiorPeh?ViOV of the skyrmion quenched correlation function. This
quenched averages in the absence of magnetic dilutionS given by

namely,
+ X— o0 p;il 1
n Xo= T(w) [er2mes (e’ oar — -~ (7) (5.6
- 4. 1
<<:U’:U’ )) oat (27)"N, X 4.7

Now the large distance behavior of the correlation function is
Observe that the presence of disorder, in the case where dirastically changed. The previously dominating exponential
lution is exponentially suppressed, does not modify thedecay is completely washed out and we have, instead, a
dominant exponential large distance behavior. Only the subpower-law decay. As we shall argue in the next subsection,
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the exponent of the power law is universally determined byis never presented by, p], leading to an exponential decay
the behavior of the distribution function at-0. of the quenched correlators.

B. Distribution function P,[p] VI. DISCUSSION AND CONCLUSIONS

Let us consider now the situation in which the disorder is Our continuum analysis of two-dimensional quantum an-

. e : tiferromagnets in the presence of a random distribution of
described by the distribution functioR,[ p]. The relevant .
integral for the evaluation of Ed3.1) is now? couplings at zero temperature has shown that the quenched

averages of soliton(skyrmion correlation functions are
modified with respect to the pure case. The modification is

C= i md v=1lg-apg=(p—ps)/20? particularly drastic whenever magnetic dilution is not expo-
N,Jo pp nentially suppressed in the disordered system. This effect has
quite interesting consequences in the physical properties of
Ps -t pst skyrmions. It is a well-known fact that an exponential decay
=|D_,| —— XQ——— of the soliton correlation function at large distances would
g 2 indicate that the energy of the soliton excitations is nonzero
2 9 and proportional to the coefficient of the exponent. In the
sexd =D | gaPs (57 Pure NLSM in the ordered phase, this is given By
. , . > - ) c )
4 o =2mps=2m(c)°. A nonzero soliton energy, therefore, is

) ] . . associated to an ordered ground state with+ 0. Physi-
whereD _,(x) is the parabolic cylinder function. The large cally this can be understood as a consequence of the fact that
distance behavior of E¢5.7) can be obtained by considering in an ordered ground state there is an energy cost to make the
the property” spin flips necessary for the introduction of a soliton state.

- The exponential decay ofuu') further implies through
D_,(x) — e XM, (uuhy—|(u)|? that (u)=0, which means that the soliton
states are orthogonal to the vacuum, that is to say, true exci-
v [T tatiops. A power-law decay, on the qther hand, while sti.II
D_,(—X) — —— M1, (5.9 leading to(u)=0 and therefore meaning that quantum soli-
I'(v) tons are genuine excitations, would imply that the energy
) ) ) ) ) necessary for the creation of these solitons is equal to zero.
Using this and Eq(3.9), we can immediately obtain the large | a generic puresystem at zero temperature, this would
distance behavior of the quenched skyrmion correlationtorrespond to muantumdisordered ground staté ) =0),
functions for the distribution functio®,[p]. This is given  because when the ground state is not an ordered one, there is
by no energy cost for introducing the spin flips necessary to
create a soliton state. These zero energy quantum skyrmions,
x—= D[(v) [pi " in spite of bearing minimal relation to their classical ances-
(e = — =l (5.9  tors occurring in an ordered phase, would exist as true physi-
(2m) X cal excitations in such a phase. It should be stressed, how-

We observe here that, as in the case of the distribution usegV®" that the kind of quantum disorder occurring when we

in the previous subsection, the introduction of disorder com112V€ @ power-law decay of the soliton correlation function
: rghffers from the one found in a paramagnetic phase, such as

he quantum disordered phase of the NLSM, in which we
ave (uu')—C#0, that is,(u)#0 and(c)=0. Conse-
8uently, we conclude that a power-law decay of the soliton

functions, eliminating the exponential decay. This fact can b
generally understood by observing that the large distanc
(Iargea). be'hav'lor of Eq3.9)is det(—?rmmed by the behavior correlation function would imply some different type of dis-
of the distributionP[ p] at p—0. This happens because, for oqer than the one found in a paramagnetic phase. In sum-
the distribution functions®[p] (with support in the region  ary we have the following possibilities for the phases of a

p=0) and quantum averagg®), (p) (exponentially de- pyre quantum antiferromagnet:
pending orp) considered in this work, the quenched average

(3.1) is proportional to thex Laplace trarjsform OP[p]..AS <,U,,LLT>X:>OCC¢O; (u)#0,

a consequence, the asymptotic large distance behavior of Eq.

(3.1) is universally determined by the behavior Bfp] for (o)=0—paramagnetic quantum disordered,
p—0. We see, for instance, that the values of the parameter X oo

in P,[p] determine universality classes to which the disor- (uu’y — e B (u)=0,

dered system belongs. This can be confirmed by the behavior
of the correlator(5.6). Also, by comparing Eqs(5.6) with

(5.9 we conclude that distributioR4[ p], in the symmetric o 1
case whens=A, is in the v=1 universality class oP,[p]. pr'y = —; (u)=0,
This can be also verified by observing that both distributions XY

have the same type of behavior @t-0. Conversely, in the
asymmetric case whef<A, the distribution functiorP4[ p]
is exponentially suppressed @0, a type of behavior that (6.9

(o) # 0—antiferromagnetic(Neel),

(o)=0—nonparamagnetic quantum disordered.
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The first two are realized in the pure NLS(Ref. 2 at zero  known example in three dimensions is the substance
temperature and only the second one is realized in the pu@nCr,_,GaO,, obtained by diluting the pure antiferromag-
two-dimensional Heisenberg quantum antiferromagnet witmet ZnCsO, with nonmagnetic Ga atont§:*The possibility
nearest-neighbor interactions, alsoTat 0.’ of the “soft” phase, obtained in the present work by dilution
We then consider the presence of disorder. Starting fronof a pure antiferromagnet being a spin glass, however, is
the ordered antiferromagnetic phase of the pure NLSMruled out by the fact that the quenched magnetization is non-
which corresponds to the Heisenberg antiferromagnet, weanishing. A key ingredient for this would be the presence of
have studied in this work the effects of disorder introducedrustration, which is absent in the system studied here but,
through a continuum random distribution of couplings. In allconversely, present in the case of ZnSGaO,. The di-
cases considered here, the quenched magnetization is ndoted phase studied here is actually one that could be added
zero, namely,MQ=(<o>):\/ﬁ wherep is given by Egs. to the list(6.1) and is characterized by
(3.6), (3.8), and(3.11), respectively. The studied systems are
always in an antiferromagnetic “disordered” Ble phase P 1 )
having a nonzero order parameter in spite of the fact that the«s') — vt (u)=0, (o)#0—soft disordered Nel.
couplings are random. The types of disorder considered here, 6.2
ab initio cannot destroy the antiferromagnetic order of the '
pure system since they only allow the presence of positive oln this phase, the skyrmion energy vanishes, not as a conse-
null couplings. There are, however, two possible types ofjuence of quantum fluctuations, as in the third phase listed in
such phases, which we call “soft” or “hard,” according to Eg. (6.1), but rather, because of the type of disorder intro-
whether magnetic dilution is exponentially suppressed otluced when magnetic dilution is not exponentially sup-
not. pressed. This, in spite of not being capable of destroying the
When dilution is exponentially suppressed, only the sub-order parameter, forces the skyrmion energy to vanish. The
leading term of the correlation functions at large distances iphysical properties of the zero energy quantum solitons oc-
modified by disorder. The exponential decay of the pure syseurring in these kind of phases may play an important role in
tem is preserved and the skyrmion energy in the disordereplanar antiferromagnetic systems such as high-temperature
system is the same as in the pure case. The system existssoperconducting cuprates and shall be exploited elsewhere.
a phase corresponding to the second possibility in(Ed), For this purpose, one should investigate the effects of disor-
which may be called a “hard” disordered Bephase. Con- der in the continuum models for doped antiferromagnetic
versely, when dilution is not exponentially suppressed, theplanar systems used to describe materials such as LSCO and
large distance behavior is drastically changed from an expoyBCO.*®
nential to a power-law decay. The skyrmion energy conse- Let us stress, finally, that the kind of magnetic dilution
quently becomes zero in the disordered system, despite thnsidered in this work, even in the cases where it is not
fact that the magnetization is nonvanishing @6a))#0. To  exponentially suppressed, is always softer than a delta-
our best knowledge, this is a completely novel behavior forfunction-type of dilution containing a piece[ p]=x48(p),
quantum skyrmions. Physically, we can understand it as folwhich would be suitable for describing the type of dilution
lows: the disorder introduced by the random distribution ofoccurring in compounds such asay _,Zn,0,.* As future
couplings is sufficient to reduce to zero the energy necessagxtensions of this work, we intend to consider more general
for the creation of a skyrmion configuration, even though itdisorder distributions including these and ferromagnetic cou-
cannot destroy the quenched magnetization. The soliton coplings as well. In the latter case, we can expect to describe
relation functions have a universal behavior, characterized bgpin-glass phases as well. It is likely that in a spin-glass
universality classes that are determined by the behavior gfhase the behavior of soliton correlation functions shall be
the distribution function aps— 0. similar to the one found in the soft Mephase of our model.
It would be interesting to find a physical realization for We are presently investigating this point.
this phase in which skyrmion correlators have a power-law
decay at large distances and which is associated to a diluted ACKNOWLEDGMENTS
disordered antiferromagnet. One might be tempted to associ-
ate it with a spin-glass phase since spin glasses can be ob- This work was supported in part by CNPg, FAPERJ, and
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