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Phase transitions in the antiferromagneticXY model with a kagomélattice

S. E. Korshunov
L.D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117940, Russia

~Received 15 June 2001; published 9 January 2002!

The ground state of the antiferromagneticXY model with akagome´ lattice is known to be characterized by
a well developed accidental degeneracy. As a consequence the phase transition in this system consists in
unbinding of pairs of fractional vortices. Addition of the next-to-nearest neighbor~NNN! interaction leads to
stabilization of the long-range order in chirality~or staggered chirality!. We show that the phase transition,
related with destruction of this long-range order, can happen as a separate phase transition below the tempera-
ture of the fractional vortex pairs unbinding only if the NNN coupling is extremely weak, and find how the
temperature of this transition depends on coupling constants. We also demonstrate that the antiferromagnetic
ordering of chiralities and, accordingly, the presence of the second phase transition are induced by the free
energy of spin wave fluctuations even in absence of the NNN coupling.

DOI: 10.1103/PhysRevB.65.054416 PACS number~s!: 75.10.Hk, 64.60.Cn, 74.80.2g
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I. INTRODUCTION

The antiferromagneticXY model can be defined by th
Hamiltonian

H5J1(
NN

cos~w i2w j !, ~1!

whereJ1.0 is the coupling constant,w i describes the ori-
entation of the classical planar spinsi5(coswi , sinwi), be-
longing to the sitei of some regular lattice, and the summ
tion is performed over the pairs of nearest neighbors~NN! on
this lattice. The ground state of such model on akagome´
lattice~Fig. 1! is known to have a huge accidental~that is not
related to the symmetry of the Hamiltonian! degeneracy.1

For J1.0 the minimum of the energy of each triangul
plaquette is achieved when the three spins belonging t
form the angles62p/3 with each other. In addition to th
possibility of a simultaneous rotation of all three spins su
arrangement is also characterized by the two-fold disc
degeneracy. When on going clockwise around the plaqu
the spins rotate clockwise~anticlockwise!, the plaquette can
be ascribed the positive~negative! chirality s561. In the
ground state of the antiferromagneticXY model with trian-
gular lattice the plaquettes with positive and negative chir
ties regularly alternate with each other.2

In any ground state on akagome´ lattice the variablesw i
analogously acquire only three values which differ from ea
other by 2p/3. However, the requirements for the arrang
ment of chiralities are less rigid than on triangular lattice a
accordingly the ground state in addition to the continuo
U(1) degeneracy~related with an arbitrary simultaneous r
tation of all spins! is characterized by a well developed di
crete degeneracy~of the same type as in the 3-state antife
romagnetic Potts model! leading to a finite residual entrop
per site.1,3

The accidental degeneracy persists if the interaction fu
tion in Eq.~1! differs from the pure cosine~remaining even!,
but is removed by the presence of interactions with m
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distant neighbors. In particular, for the ferromagnetic s
(J2,0) of the next-to-nearest neighbors~NNN! interaction
the minimum of

H25J1(
NN

cos~w i2w j !1J2 (
NNN

cos~w i2w j ! ~2!

is achieved in one of the so-calledA33A3 states4 with a
regular alternation of positive and negative chiralities. A
example of such state is shown in Fig. 2~a!. Here and further
on we use the letters A, B and C to denote three values ow i
which differ from each other by62p/3 ~for definiteness let
us assumewB5wA12p/3, wC5wA14p/3). This state has
the same structure as the ground state of a planar antife
magnet with triangular lattice~or, to put it more accurately
can be obtained by the natural truncation of it!. On the other
hand the NNN interaction of the opposite sign (J2.0) fa-
vors the ferromagnetic arrangements of chiralities, which
achieved in the so-calledq50 states,4 see Fig. 2~b!.

For both signs of the NNN interaction the degeneracy
the ground state is reduced toU(1)3Z2.5 This suggests the
possibility of the two phase transitions, one of which is a
sociated with unbinding of vortex pairs@the Berezinskii–
Kosterlitz–Thouless~BKT! transition6–9# and the other with
proliferation of the Ising type domain walls. The number
the systems with the same degeneracy of the ground s
includes, in particular, the antiferromagneticXY model with
triangular lattice2,10 and the fully frustratedXY model with
square lattice.11,12

FIG. 1. A kagome´ lattice ~shown by filled circles! can be con-
structed by the regular elimination of one quarter of sites from
triangular lattice. It consists of triangular and hexagonal plaquet
©2002 The American Physical Society16-1
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S. E. KORSHUNOV PHYSICAL REVIEW B 65 054416
For the case of weak NNN interaction (uJ2u!J1) the en-
ergy of a domain wall~per unit length! is proportional touJ2u
and the logarithmic interaction of vortices toJ1. If domain
walls and vortices were completely independent one wo
then expect the phase transition related with breaking of
discrete symmetry group to take place at lower tempera
than the BKT transition.

In the present work we analyze the mutual influence
tween different classes of topological excitations in the a
ferromagneticXY model with akagome´ lattice and weak
NNN interaction and demonstrate that the phase transi
related with the domain walls proliferation~i! can happen as
a separate phase transition only for extremely weak N
interaction,~ii ! is not of the Ising type and~iii ! the tempera-
ture of this transition isnot proportional to the strength of th
NNN interaction as one could naively expect. We also sh
that at very low temperatures the free energy of spin wa
leads to stabilization of the antiferromagnetic ordering
chiralities even in absence of the NNN interaction.

The results can be of interest in relation with possi
presence of weak easy-plane anisotropy in Heisenb
kagome´ antiferromagnets,13 which is indirectly confirmed by
recent investigations of susceptibility14 in
(H3O)Fe3(SO4)2(OH)6. The other class of physical system
which allows for experimental realization of the consider
model, consists of Josephson junction arrays15 and two-
dimensional superconducting wire networks16 in perpendicu-
lar magnetic field. In such systems the role ofw i is played by
the phase of the superconducting order parameter,
equivalence with the antiferromagneticXY model is
achieved when the magnitude of the magnetic field co
sponds to half-integer number of superconducting fl
quanta per each triangular plaquette. A superconducting
ray, which can be described by the same model in absenc
the external magnetic field, can be constructed with the h
of so-calledp-junctions.17

II. ZERO TEMPERATURE: THE EQUIVALENT SOLID-
ON-SOLID MODEL

It has been already mentioned in the Introduction that
set of the ground states of the Hamiltonian~1! is equivalent
~up to a simultaneous rotation of all spins! to that of the
3-state antiferromagnetic Potts model.1,3 Any triangular
plaquette of akagome´ lattice has to contain some permut

FIG. 2. The structure of the ground states selected in presen
interactions with further neighbors. The letters A, B and C cor
spond to the three values ofw i , which differ from each other by
62p/3. ~a! A A33A3 state;~b! a q50 state.
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tion of the three values ofw i (wA , wB andwC), which can be
identified with the three states (a51,2,3) of the antiferro-
magnetic Potts model.

The degeneracy of such set of ground states can be
cussed in terms of the zero-energy domain walls. If one c
siders aA33A3 ground state@Fig. 2~a!#, it turns out possible
to construct the state with the same energy by permuta
~for example! of the form wB⇔wC inside any closed loop
formed by the sites withw i5wA , etc. Such closed loop@a
simplest example of which is shown in Fig. 3~a!# can be
considered as the zero-energy domain wall separating
differentA33A3 states with the opposite signs of stagger
chirality. Any domain wall with zero energy is formed b
elementary links which have to join each other at the ang
of 62p/3 @Fig. 3~b!#. Each link separates two triangula
plaquettes with the same chirality, that is with the oppos
signs of staggered chirality. The states with infinite~un-
closed! domain walls are also possible.

There exists18 the exact mapping of the set of the groun
states of the 3-state antiferromagnetic Potts model onto
states of the solid-on-solid~SOS! model in which the
‘‘height’’ variablesu(r ) are defined on the sitesr situated at
the centers of hexagonal plaquettes of akagome´ lattice.
These cites are shown in Fig. 1 by empty circles. They fo
the triangular lattice we shall denoteT. Each site of the
kagome´ lattice can be associated with some bondrr 8 of T
and each variablew i5wA ,wB ,wC with the Potts variable
a(rr 8)[a(r 8r ) defined on this bond.

Since each triangular plaquette of akagome´ lattice should
always contain three different variableswA , wB and wC,
one can associate them with three basic vectorsaa
(a11a21a350, see Fig. 4! of some auxiliary triangular lat-

of
-

FIG. 3. Two examples of a domain wall separating differe
A33A3 states.
6-2
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PHASE TRANSITIONS IN THE ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B65 054416
tice, which we shall denoteTa (a5uaau being its lattice con-
stant!. The height variablesu(r ), which acquire the values
uPTa , can be then introduced following the rule

u~r 8!5H u~r !1aa(rr 8) for r 85r1ea

u~r !2aa(rr 8) for r 85r2ea ,
~3!

whereea are the three basic vectors ofT (e11e21e350), as
soon as the value ofu(r0) is chosen for an arbitrary siter0.18

This defines the correspondence between the states o
antiferromagnetic Potts model and of the ‘‘vector’’ SO
model, in which the height variablesu(r )PTa have to satisfy
the constraint

uu~r !2u~r 8!u5a ~4!

on all pairs of neighboring sites ofT. By using the known
properties of the exact solution19 of the 3-state antiferromag
netic Potts model with external field coupled to stagge
chirality Huse and Rutenberg1 have demonstrated~and also
have confirmed this conclusion by numerical calculatio!
that such vector SOS model, in the partition function
which all allowed configurations of heights are counted w
the same weight, is situated exactly at the point of the rou
ening transition, where~for ur12r2u@1)

^@u~r1!2u~r2!#2&'
3a2

p2
lnuu~r1!2u~r2!u. ~5!

Therefore any additional perturbation suppressing the fl
tuations will lead to transition of the system into the fl
phase, in which the fluctuations ofu are convergent.

According to constraint~4! the variablesu(r ) on neigh-
boring sites have to be different from each other, so that e
the most flat state is formed by the regular alternation
three different values ofu. The transition into the flat phas
can be more transparently discussed in terms of the varia

n~R![
u~r !1u~r 8!1u~r 9!

3
~6!

describing the average height at each of the plaquettesT.
The variablesn(R) are defined at the sitesR of the honey-
comb latticeH, which is dual toT, and acquire the value
n(R)PHa , whereHa is the honeycomb lattice which is dua
to Ta ~Fig. 4!. In terms of the original spin variables the fl
states@in which all variablesn(R) are equal to each other#

FIG. 4. The triangular latticeTa and its three basic vectorsaa .
The sites of the dual latticeHa are shown by the numbers from 1 t
6. The same numbers correspond to physically equivalent stat
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correspond toA33A3 states, and zero-energy steps, t
presence of which leads to their roughening, to the ze
energy domain walls separating differentA33A3 states.

The large scale properties of the vector SOS model in
duced above~and of its further generalizations! can be ana-
lyzed with the help of the multi-component sine-Gord
model with the same symmetry. The~dimensionless! Hamil-
tonian of such sine-Gordon model can be chosen in the f

HSG5E d2RH KQ2

2
@¹n~R!#21y (

a51

3

cos@Qan~R!#J .

~7!

The first term in Eq.~7! describes the effective stiffness~of
entropic origin! which can be associated with the fluctuatio
of n(R), whereas the second term favors the values ofn(R)
which belong toHa . HereQa are the three basic vectors o
the triangular lattice reciprocal toTa , so

Qa
25

16p2

3a2
; Q11Q21Q350.

Analogous Hamiltonian~with the opposite sign of the sec
ond term! and equivalent vector Coulomb gas have be
investigated by Nelson in relation with dislocation mediat
melting in two-dimensional crystals.20 Alternatively the
Hamiltonian of the form~7! can be interpreted as a simpl
fied model for pinning of a two-dimensional crystal by
periodic substrate~cf. with Ref. 21!. Note, however, that in
contrast to real two-dimensional crystals, the accurate
scription of which requires to distinguish between compr
sion and shear moduli, in our system the displacemenn
takes place in some auxiliary space~and not in the real
space! and, therefore, only one elastic modulus can be int
duced.

The renormalization group equations of Ref. 20, desc
ing the evolution ofK and y with the change of the length
scaleL, in our notation can be rewritten as

dK

dl
5

3p

8
y2, ~8a!

dy

dl
5S 22

1

4pK D y2py2, ~8b!

wherel 5 ln L. The corresponding flow diagram is schema
cally shown in Fig. 5, whereKc[1/(8p). It suggests that the
roughening transition takes place when the renormali
value of the effective stiffnessK is equal toKc . The vector
SOS model described above~which is known to be at the
point of its roughening transition1! can therefore be assoc
ated with some point belonging to the left separatrix.

III. PHASE TRANSITION „S… ASSOCIATED WITH VORTEX
PAIRS UNBINDING

At finite temperature T other types of fluctuations~requir-
ing finite energy! become possible, in particular formation o
vortex pairs. Vortices are pointlike topological excitatio
~the local minima of the Hamiltonian!, the existence of.
6-3
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S. E. KORSHUNOV PHYSICAL REVIEW B 65 054416
which is related with the multivaluedness of the fieldw. On
going around each vortexw experiences a continuous twi
which adds to62p. At low temperatures all vortices ar
bound in neutral pairs by their logarithmic interaction.7

With increase in temperature this interaction becom
renormalized due to mutual influence of different vort
pairs and becomes screened at the temperatureTBKT of the
BKT transition,7–9 which leads to dissociation of vortex pai
and exponential decay of correlations of exp(iw) ~in contrast
to algebraic decay6 at T,TBKT). The value of the helicity
modulusG, describing the effective stiffness of spin syste
with respect to infinitely small twist, at the temperature
vortex pairs dissociation is known to satisfy the univer
relation:22

TBKT5
p

2
G~TBKT!. ~9!

Huse and Rutenberg1 have argued that since atT50 the
antiferromagneticXY model with kagome´ lattice is charac-
terized by the long range order in exp(i3w) rather than in
exp(iw), the phase transition in this system should consis
unbinding of pairs of fractional vortices with topologic
charges61/3 and not of the ordinary~integer! vortices. The
strength of the logarithmic interaction of fractional vortic
is decreased by the factor of 9 in comparison with that
integer vortices,13 therefore relation~9! should be replaced
by

TFV5
p

18
G~TFV!, ~10!

whereTFV is the temperature of the phase transition, ass
ated with unbinding of pairs of fractional vortices.

The value of G in any ground state of the antifero
magnetic XY model with kagome´ lattice is equal to
G05(A3/4)J1. Substitution ofG0 into Eq. ~10! @instead of
G(TFV)# allows to obtain forTFV the estimate~from above!
of the form

TFV'
pA3

72
J1'0.075J1 , ~11!

which turns out to be in reasonable agreement with the
sults of numerical simulations by Rzchowski,23 who by using

FIG. 5. The schematic flow diagram for Eqs.~8!. The system
with only NN interaction andT50 can be associated with som
point ~shown by black dot! on the left separatrix. Dashed arro
shows how the flow is changed atT.0 when the contribution from
z has to be taken into account.
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two different criteria has foundTFV/J1'0.070 andTFV/J1
'0.076. In Ref. 24 the same estimate forTFV has been ob-
tained in a less straightforward way with the help of t
duality transformation.25,26

The fractional vortices cannot exist by themselves~in ab-
sence of domain walls!. A fractional vortex appears at ever
point where elementary links forming a domain wall me
each other at a wrong angle (p/3 or p instead of 2p/3). The
same happens in the antiferromagneticXY model with trian-
gular lattice,10 the ground state of which also hasA33A3
structure. Figure 6~a! shows an example of a domain wa
containing one such special point. It separates the dom
wall into two segments, one of which is formed by the sit
with w i5wC and the other by the sites withw i5wB .

When crossing the first segment the state to the righ
the wall should be obtained from the state to the left by
permutation of A and B, whereas for the second segment
state to the right should be obtained by the permutation o
and C. This introduces the discrepancy of 2p/3 which can be
localized on a semi-infinite line terminating at the spec
point ~for example on the line X-Y-Z!. In order to locally
minimize the energy X, Y and Z should be replaced by A,
and C, respectively, when going from above, and by B,
and A when going from below. The misfit of 2p/3 has to be
compensated by a continuous twist ofw, which is equivalent
to the fractional vortex with the topological charge21/3.

In terms of the vector SOS model each fractional vor
corresponds to the point on going around which the hei
variablen changes byDn with uDnu5a. That means that a
each fractional vortex a step with the heightDn ~or, to put it
more precisely, a set of steps with the total heightDn) ter-

FIG. 6. ~a! An example of a fractional vortex.~b! An example of
a dislocation formed by a neutral pair of fractional vortices.
6-4
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PHASE TRANSITIONS IN THE ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B65 054416
minates or begins. Accordingly the fluctuations of the S
model provide the additional contribution to the interacti
of the fractional vortices related with the difference in e
tropy between the configurations with different positions
step termination points. At the point of roughening transiti
of the SOS model, as well as in the rough phase, this a
tional interaction~which can be expressed in terms of t
correlation function of the dualXY model27! is also logarith-
mic. Its presence shiftsTFV upwards and diminishes the mu
tual influence between fractional and integer vortices. I
known28 that such mechanism in principle can lead to a
pearance of the separate phase transition, associated wit
binding of pairs of integer vortices, at temperatures ab
TFV .

On the other hand at finite temperatures the equivale
with the SOS model is no longer exact. One has to remem
that the whole multitude of what we describe as flat state
the vector SOS model in terms of the original spin variab
corresponds~for given wA! to only six differentA33A3
states, which can be obtained from the state shown in
2~a! by all possible permutations of A, B and C. In Fig. 4 th
sites ofHa , which correspond to equivalent states in ter
of w i , are designated by the same numbers. In the z
temperature partition function of the vector SOS model
properties of the zero-energy domain walls separating s
states~in particular, two closed loops formed by such wa
cannot cross each other but can be situated inside each
or touch each other! allow to count them as different states
the SOS model.18,29At finite temperature it becomes possib
for a set of steps separating two physically equivalent st
to terminate at the point where all these steps me
together.30 The energyED of such defect is finite and propor
tional to J1 : ED5cDJ1, wherecD is of the order of one.

In terms of the multi-component sine-Gordon model~7!
such defects correspond to dislocations of the fieldn, the
~elementary! Burgers vectors of whichba (a51,2,3) are
given, as can be seen from Fig. 4, by

b15a32a2 , b25a12a3 , b35a22a1 . ~12!

An example of a dislocation is schematically shown in F
6~b!. It is formed by a neutral pair of fractional vortices th
are sitting on two domain walls which cannot be transform
into a single domain wall. The letter X denotes the site
which w i'(wA1wB)/2. In the vicinity of this site the values
of w i slightly deviate from those implied by the letters A,
and C. Successive application of the rule~3! along the pe-
rimeter of any closed loop surrounding point X sums up
Dn5a22a1.

The renormalization of the dislocation fugaci
z5exp(2cDJ1 /T) with the change of the length scale can
described21 by

dz

dl
5lzz12pz2, ~13!

where

lz522
KQ2b2

4p
[224pK. ~14!
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In the vicinity of the roughening transition (K'Kc) the ex-
ponentlz , describing the renormalization ofz, is close to
lz

053/2, which corresponds to the fast growth ofz. Compari-
son oflz with ly5221/(4pK) shows thaty andz are never
simultaneously irrelevant. In that respect the situation
quite analogous to what is encountered when considering
conventional~ferromagnetic! XY model with weak but rel-
evant~low-order! anisotropy.25,31

The presence of dislocations~or, to put it more accurately
of dislocation pairs! leads also to appearance in the righ
hand side of Eq.~8a! of the additional~negative! term pro-
portional toz2. The presence of this term shifts the flow~see
Fig. 5! from the separatrix to the area which corresponds
the rough phase of the SOS model.

On the other hand the unrestricted growth ofz under the
renormalization means that the system will contain the fin
concentration of free dislocations, which transforms t
rough phase of the SOS model into the disordered phas
the six-state model. The decay of correlations in this ph
can be characterized by a finite correlation radiusjz , which
can be found as the length-scale at whichzR ~the renormal-
ized value ofz) becomes of the order of one.jz defines the
scale at which the additional~entropic! interaction of the
fractional vortices induced by the fluctuation of the doma
walls is screened. The finiteness ofjz closes even the hypo
thetical possibility for dissociation of pairs of integer vort
ces to take place as a separate phase transition atT.TFV .

IV. THE CASE OF THE FERROMAGNETIC NNN
INTERACTION

Inclusion into consideration of the interaction with mo
distant neighbors leads to removal of the accidental deg
eracy and stabilizes the states with either ferromagnetic
antiferromagnetic ordering of chiralities of triangula
plaquettes.

In the case of the ferromagnetic NNN interactio
(J2,0) the energy is minimal in one of theA33A3 states
with uniform staggered chirality@Fig. 2~a!#. Figure 3 shows
two examples of a domain wall separating two differe
A33A3 states with opposite signs of staggered chirality.
the case of only NN interaction such domain wall~consisting
of elementary links making angles of 2p/3 with each other!
simply costs no energy. The presence of a weak ferrrom
netic NNN interaction makes the energy of such domain w
~per elementary link! EDW equal to23J2.0. Here and fur-
ther on we are interested only in the caseuJ2u!J1, when the
values of the variablesw i remain close to those shown in Fig
3 not only away from the wall, but also in the vicinity of th
wall.

Note that such wall can fluctuate~make turns, form kinks,
etc.! without having to pay the energy proportional toJ1 and,
therefore, naively one could expect that the temperature
the phase transition, related with proliferation of such wa
and leading to destruction of the long-range order in st
gered chirality, should be determined entirely byJ2. Such
conclusion, implicitly based on the comparison of the ene
of an infinite domain wall with the negative entropic cont
bution to its free energy~the Peierls argument32!, does not
6-5
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S. E. KORSHUNOV PHYSICAL REVIEW B 65 054416
take into account that the presence of an infinite domain w
leads also to suppression of the entropy~because it decrease
the possibilities for formation of closed domain wall loop!
and in some cases does not work.

In Sec. II we have discussed the properties of the ve
SOS model to which the antiferromagneticXY-model with
kagome´ lattice is equivalent atT50. In the partition function
of this model all allowed configurations of heights a
counted with the same weight. In the case of the analog
model with a finite positive energy of a step~which corre-
sponds toJ2,0) the same partition function is reproduce
in the limit of T→`. For any small but finite ratio
2J2 /T.0 the SOS model is shifted from the point
roughening transition into the ordered~flat! phase. On the
other hand we also know that at finite temperatures the p
sibility of dislocation creation tends to shift the same syst
into the disordered phase. One has to consider the com
tion of these two effects.

In the vicinity of K5Kc the renormalization equations~8!
can be rewritten as

dX

dl
5Y2, ~15a!

dY

dl
5XY1aY2, ~15b!

where

X52S 12
Kc

K D , Y5
1

pa
, a52

1

A6
. ~16!

The solution of Eqs.~15! for arbitrarya allows one to find
that the critical behavior of the correlation radiusj in the
vicinity of the transition is given33 by

ln j } S Kc

DK D n̄

, ~17!

whereDK is the deviation from the phase transition. In o
problem for EDW!T the ratio DK/Kc is proportional to
EDW /T.

The case ofa50 corresponds to Kosterlitz renormaliz
tion group equations9 for the standard BKT transition, which
give n̄51/2. The case ofa511/A6 has been considered b
Nelson,20 who has foundn̄52/5. The solution of the sam
equations fora521/A6 givesn̄53/5.

If the fugacity of dislocationsz is so small that even whe
growing under renormalization it remains much smaller th
one up toL;j @where the renormalization following Eqs
~15! stops anyway and fluctuations ofn are frozen#, the sys-
tem remains in the ordered~flat! phase of the SOS mode
that is in the phase with long-range order in staggered ch
ity. On the other hand ifzR ~the renormalized value ofz)
manages to become of the order of one when the renor
ized value ofy is still small, the system finds itself in th
disordered phase. The estimate for the temperatureTDW of
the phase transition separating these two regimes~and asso-
05441
ll

or

us

s-

ti-

n

l-

al-

ciated with the proliferation of domain walls! can be ob-
tained from the relationzR(j);1, which is equivalent to

ln~1/z!;lz
0 ln j. ~18!

In our problem

ln~1/z!5cD J1 /T ~19!

and

ln j;S T

EDW
D n̄

, ~20!

which leads to

TDW;S EDW

J1
D

n̄

11 n̄
J1}uJ2u3/8J1

5/8. ~21!

Away from the critical region the behavior ofj can be de-
scribed with the help of the self-consistent harmon
approximation,34 which gives n̄5 n̄051. That means tha
with increase ofuJ2u/J1 the dependence~21! is replaced by
TDW}uJ2u1/2J1

1/2.
Note that the analysis which has led to Eq.~21! has been

based on the assumption that all fractional vortices are bo
in pairs, and, accordingly, is valid only forTDW,TFV . On
the other hand the pairs of fractional vortices cannot dis
ciate at temperatures lower thanTDW , because forT,TDW
the fractional vortices in addition to their logarithmic inte
action are bound also by domain walls~with a finite free
energy per unit length! which connect them with each othe

Therefore the two available possibilities areTDW,TFV
and a single phase transition, whereas the scenario
TDW.TFV is impossible. Analogous conclusions have be
earlier achieved in relation with hypothetical unbinding
fractional vortices in planar antiferromagnet with triangu
lattice.10 It is hardly surprising that the same conclusions a
valid for the system, the ground state of which is practica
identical to that of the antiferromagneticXY model with tri-
angular lattice, the only difference being that one quarter
sites is absent.

The proliferation of the low energy domain walls@of the
type shown in Fig. 3~b!# leads to intermixing of six different
states@which can be obtained from the state shown in F
2~a! by arbitrary permutation of A, B, and C# and therefore
should not be expected to be of the Ising type. Note that
domain walls are possible only between the states with
different signs of staggered chirality. The six-state mo
with analogous statistics of domain walls can be defined10 by
the partition function

Z5S )
R

(
tR51

6 D)
NN

W~ tR2tR8!, ~22!

where
6-6
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W~ t !5H 1 for t50 ~mod 6!

w for t51,3,5 ~mod 6!

0 for t52,4 ~mod 6!.

~23!

The last line of Eq.~23! implies that the domain wall be
tween the states with the same parity oftR is impossible.

Application of the duality transformation35 to the partition
function ~22! transforms it into analogous partition functio
with W(t) replaced by

W̃~ t !5H 113w for t50 ~mod 6!

1 for t51,2,4,5 ~mod 6!

123w for t53 ~mod 6!.

~24!

The symmetry ofW̃(t) corresponds to the so-called cub
model, the phase transition in the six-state version of wh
for W̃(1).W̃(3) is known to be of the first order.36 The
phase transition atTDW in our system~at least when it hap-
pens atTDW,TFV) therefore also can be expected to be
the first order.

Comparison of the estimate Eq.~21! with Eq. ~11! shows
that the fulfillment of the relationTDW,TFV requires
0,2J2,Jmax, where Jmax can be estimated to be of th
order of 1023J1. For 2J2.Jmax there should be only one
phase transition in the system, at which the proliferation
domain walls is accompanied by the unbinding of all typ
of vortices. A detailed description of how it happens s
remains to be constructed, but when the dissociation of p
of fractional vortices is forced by the disappearance of th
linear interaction~mediated by the domain walls which con
nect them! at temperatures, for which their logarithmic inte
action is already too weak, one can expect the value of
helicity modulus atTc to be nonuniversal:

2

p
,

G~Tc!

Tc
,

18

p
. ~25!

Note that the estimate forJmax has been found by taking th
estimate Eq.~21! on its face value, that is without the un
known numerical coefficient, and therefore should be con
ered with great caution.

V. THE CASE OF THE ANTIFERROMAGNETIC NNN
INTERACTION

For the antiferromagnetic sign (J2.0) of the NNN inter-
action the minimum of the Hamiltonian Eq.~2! is achieved
in one of the states with the ferromagnetic ordering
chiralities@Fig. 2~b!#. Such state also allows for constructio
of a domain wall, the energy of which~per elementary link!
EDW

1 is proportional to the strength of second neighbor c
pling: EDW

1 '3J2, see Fig. 7~a!. However, comparison of Fig
7~a! with Fig. 7~b! shows that~in contrast to the case con
sidered in Sec. IV! for J2.0 the form of the state on th
other side of the wall is uniquely defined by the orientati
of the wall and is different for different orientations of th
wall. The discrepancy inw that appears when crossing d
main walls of different orientations should be taken care
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by the fractional vortices which have to appear onall corners
of domain walls~the same happens in the fully-frustratedXY
model with square lattice12!. This makes impossible the con
struction of a closed domain wall the energy of which
determined entirely byJ2 and does not depend onJ1.

For J2!J1 a typical thermally excited defect~leading to
the change of the sign of chirality! has the form of a long
strip formed by two low energy domain walls@Fig. 7~c!#.
Like in Fig. 6 the letter X designates the sites wi
w'(wA1wB)/2. In the vicinity of these sites the values o
other variablesw i slightly deviate from that shown in the
figure. Analogous stripe defects are dominant at low te
peratures in the frustratedXY-model with triangular lattice
and f 51/4 or f 51/3.37

The energy of such defect is given by 2E012EDW
1 L,

whereE05c0J1 (c0'0.55) is the energy of its terminatio
point andL its length. ForJ2!T!J1 the average lengtĥL&
of such defects is given by the ratioT/(2EDW

1 )@1, whereas

FIG. 7. ~a! and ~b! two examples of a domain wall separatin
two q50 states;~c! a typical finite size defect on the background
q50 state;~d! a kink on a domain wall.
6-7
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their concentrationc is proportional tô L&exp(22E0 /T). The
relationc^L&2;1 defines the temperature

T* '
2

3

E0

ln~T* /EDW
1 !

~26!

above which such defects no longer can be considere
independent. The same temperature can serve as the~lower
bound! estimate for the temperatureTDW

1 of the phase tran-
sition associated with proliferation of the domain walls a
leading to destruction of the long-range order in chirality. F
J2 /J1→0

TDW
1 ;T* }J1 /ln~J1 /J2!. ~27!

Analogous estimate can be obtained by comparison
the domain wall energy EDW

1 with its entropy
SDW

1 '2 exp(2EK /T) due to possibility of formation of kinks
@Fig. 7~d!#. The energy of a kinkEK is very close toE0. The
requirementFDW

1 [EDW
1 2TSDW

1 5032 gives

TDW
1 ;EK / ln~2TDW

1 /EDW
1 ! ~28!

which is again the estimate from below.
Like in the previous case~of the antiferromagnetic order

ing of chiralities! the proliferation of domain walls can tak
place as the independent phase transition only at temp
tures lower thanTFV . Comparison of Eq.~28! with Eq. ~11!
shows that the fulfillment of relationTDW

1 ,TFV requires
J2,Jmax

1 , whereJmax8
1 can be estimated as (102441025)J1.

Also like in the previous case, the proliferation of doma
walls is related with intermixing of six different states an
therfore can hardly be expected to demonstrate the Ising
behavior.

VI. SPIN WAVE FLUCTUATIONS

Another mechanism for removal of accidental degener
~which is traditionally refered to as ‘‘ordering due t
disorder’’38! is related with the free energy of continuou
fluctuations~spin waves!.39 Expansion of the Hamiltonian
~1! up to the second order in deviationsc i[w i2w i

(0) of the
variablesw i from their valuesw i

(0) in some ground state
gives the same answer

H (2)5
J1

4 (
NN

@211~c i2c j !
2# ~29!

for all possible ground states, which means that the dif
ence in the free energy between them can appear only in
second order in temperature.1 That is believed to be not suf
ficient for stabilization of a true long-range order related w
chiralities. This conclusion does not take into account
peculiarities of the statistical mechanics of the conside
system and has to be corrected.

With the help of the numerical calculation~see the Appen-
dix! we have found that the lowest order contribution to t
effective interaction of chiralities of neighboring triangul
plaquettes is of the antiferromagnetic sign~that is favors
A33A3 state! and corresponds to
05441
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EDW
(0) 5g

T2

J1
~30!

where g'231023. Thermal40 and quantum41 anharmonic
fluctuations in Heisenbergkagome´ antiferromagnet are
also known to favor~at least locally! a planar state with
A33A3 structure. The same can be said about the fluc
tions of the order parameter amplitude in superconduc
wire networks.42

Although EDW
(0) defined by Eq. ~30! is always much

smaller than the temperature and in the case of~for example!
Ising model would be insufficient for appearance of the lon
range order, in the considered system the situation is qu
tatively different. Substitution of Eq.~30! into Eq.~21! gives
a finite value ofTDW induced by spin wave fluctuations:

TDW
(0) ;g3/2J1 ~31!

which means that forg;1 the long-range order in staggere
chirality would survive even up toT;J1. However, substi-
tution of the numerically calculated value ofg cited above
produces an extremely low estimate:TDW

(0) ;1024J1.
Note that the ordering in staggered chirality is noticea

only at length-scales larger than the correlation radiusj.
Substitution of Eq. ~30! into Eq. ~20! shows that for
T!TDW

(0) the behavior ofj(T) is given by lnj } (J1 /gT)n̄.
That means that atT→0 there takes place a continuous r
entrant phase transition into the phase without true lo
range order in staggered chirality.

VII. CONCLUSION

This work has been devoted to investigation of the ph
transitions in the antiferomagneticXY model on akagome´
lattice with the special emphasis on accurate consideratio
mutual influence between different classes of topological
citations~fractional vortices and domain walls!. In particular,
we have shown that in the model with only NN interactio
the additional interaction of fractional vortices related w
the entropic contribution from zero-energy domain walls
finite temperatures becomes short-ranged. Therefore it
not interfere with the BKT dissociation of fractional vorte
pairs proposed in Refs. 1 and 13.

For the case of a finite NNN coupling~leading to removal
of the accidental degeneracy! we have demonstrated that th
phase transition related with proliferation of the doma
walls can happen as a separate phase transition belowTFV
only for very weak NNN interaction, and have found ho
the temperature of this transition depends onJ1 and J2.
These dependencies are essentially different for differ
signs of the NNN coupling. The same results are also ap
cable for other mechanisms of removal of the accidental
generacy, which lead to a finiteEDW . Note that our analysis
has been restricted to the caseuJ2u!J1, so we have not yet
mentioned the possibility of the domain wall proliferatio
happening above the temperature of the ordinary BKT tr
sition, associated with appearance of free integer vorti
~like it happens in the case of triangular lattice10,43,44!.

Our conclusions are compatible with the results of t
6-8
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numerical simulations of Geht and Bondarenko,5 who have
found ~for not too weak NNN interaction,uJ2u*0.1J1) that
the disordering of all degrees of freedom in the antiferrom
netic XY model withkagome´ lattice takes place at the sam
temperature, the singularities of the thermodynamic qua
ties being of the Ising type. Recently it has been shown44 ~for
the case of triangular lattice! that when the domain wall pro
liferation happens as a continuous phase transition@at
T/G(T).2TFV /G(TFV)#, the dissociation of pairs of intege
vortices has to take place atT,TDW . Since the same argu
ments are also applicable for akagome´ antiferromagnet with
J2,0, it may be of interest to check the results of Ref.
with better accuracy.

The long-range order in staggered chirality is favored a
by the spin-wave fluctuations. Our analysis suggests tha
antiferromagneticXY model with kagome´ lattice and only
NN interaction presents a unique example of a model w
out free parameter in which one of the phase transitions
be expected to happen at dimensionless temperature o
order of 1024. Therefore one can conclude that the numeri
simulations of Rzchowskii23 have demonstrated no eviden
for selection of a single ground state down toT/J1'1023

not becauseEDW}T2/J1 is not sufficient for that, but simply
because the temperature was not low enough. Compar
with Eq. ~27! shows that if the effective interaction o
chiralities, induced by the free energy of spin waves, wo
be of the opposite sign, the long-range order in chira
would persist up to much higher temperatures.

All these features are summarized in Fig. 8, which ve
schematically~not in scale! shows the structure of the phas
diagram of the considered model. The phases with ferrom
netic and antiferromagnetic ordering of chiralities are d
noted F and AF, respectively. The phase without long-ra
order in terms of chiralities, but with quasi-long-range ord
in terms of exp(i3w) is denoted S, and the completely diso

FIG. 8. Schematic phase diagram of the antiferromagneticXY
model with akagome´ lattice which follows from the results of this
work.
05441
-

ti-

o
he

-
n

the
l

on

d
y

y

g-
-
e
r

dered phase D. Dashed lines show the phase transition
the BKT type related with unbinding of pairs of fraction
~the border between S and D! or integer~in the lower part of
phase diagram! vortices. Quite remarkably, for extremel
small positiveJ2 the system has to experience with increa
in temperature four phase transitions following the pa
F – S – AF – S – D.

Experimentally the phase transitions discussed in
work can be observed in superconducting wire networks
Josephson junction arrays in the external magnetic field p
viding one-half of the superconducting flux quantumf0
5hc/2e per each triangular plaquette of akagome´ lattice. In
such systems the removal of the accidental degenerac
related with the magnetic interaction of the currents an
finite width of the wires.42 The former of these mechanism
favors the ferromagnetic ordering of chiralities, whereas
the latter the effect depends on the width of the wires.

Recent experimental investigation of the aluminum w
network with kagome´ structure16 has demonstrated fo
f5f0/2 the presence on the current–voltage curve of
regions corresponding to different mechanisms of dissi
tion, one of which~with an algebraic behavior! can be asso-
ciated with unbinding of vortex pairs and the other wi
spreading of domains with inverted chiralities.45 The authors
of Ref. 16 have interpreted this as an evidence for the p
ence of two phase transitions, although appearance of a
phase transition should be associated with a change of
havior at small rather than at finite currents. Note that
whole region of the existence of the phase S is very nar
(21023&J2 /J1&1024), so the observation of this phase
the experimental situation requires an almost exact canc
tion of contributions toJ2 related with different mechanism
~see also Ref. 42!.
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APPENDIX

The lowest order contribution to the interaction of chira
ties of neighboring triangular plaquettes induced by the s
wave free energy appears when the partition function of
Hamiltonian~1! is expanded up to the second order in

H (3)5
J1

6 (
NN

@sin~w i2w j !#~c i2c j !
3, ~A1!

and then is averaged with the help ofH (2). The fourth-order
term is the same for all the ground states and therefore o
importance.
6-9
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The parameterJp describing the effective interaction o
chiralities of neighboring triangular plaquettes (a andb):

E~sa,sb!5Jpsasb ~A2!

can be then found by calculating the average of

V52
Ha

(3)Hb
(3)

T
, ~A3!

where

Ha
(3)5

sin
2p

3

6
J1@~c12c0!31~c22c1!31~c02c2!3#

~A4!

and expression forHb
(3) can be obtained by replacing in Eq

~A4! c1 by c3 and c2 by c4. The indices from 0 to 4 are
used here to denote the five sites belonging to a pai
neighboring triangular plaquettes as shown in Fig. 9.

FIG. 9. The numbering of sites used in the expressions forHa
(3)

andHb
(3) .
u
.

05441
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With the help of the Wick’s theorem and symmetry arg
ments the average ofV can be reduced to the form

^V&5
3J1

2

4T
~G4

322G4
2G312G4G3

22G3
3!, ~A5!

where

G35g012
g13

2
, G45g012

g14

2
~A6!

and

gi j [^~w i2w j !
2& ~A7!

describes the amplitude of fluctuations ofw i2w j calculated
with the help of the harmonic Hamiltonian~29!.

The value ofgi j for the nearest neighbors (g01) can be
calculated exactly:

g015
T

J1
, ~A8!

whereas numerical calculation of the integrals over Brillou
zone definingg13 andg14 gives

g135S 3

2
1d D T

J1
, g145S 3

2
2d D T

J1
, ~A9!

whered'0.0213.
Substitution of Eqs.~A8!–~A9! into Eqs.~A5!–~A6! then

gives

Jp5
gT2

2J1
, ~A10!

where

g5
3

32
d~1112d2!'2.01•1023 ~A11!

which leads to Eq.~30!.
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