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Phase transitions in the antiferromagneticXY model with a kagomelattice
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The ground state of the antiferromagneti¥ model with akagomelattice is known to be characterized by
a well developed accidental degeneracy. As a consequence the phase transition in this system consists in
unbinding of pairs of fractional vortices. Addition of the next-to-nearest neigtiBhiN) interaction leads to
stabilization of the long-range order in chiralitgr staggered chiralily We show that the phase transition,
related with destruction of this long-range order, can happen as a separate phase transition below the tempera-
ture of the fractional vortex pairs unbinding only if the NNN coupling is extremely weak, and find how the
temperature of this transition depends on coupling constants. We also demonstrate that the antiferromagnetic
ordering of chiralities and, accordingly, the presence of the second phase transition are induced by the free
energy of spin wave fluctuations even in absence of the NNN coupling.
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[. INTRODUCTION distant neighbors. In particular, for the ferromagnetic sign
(J,<0) of the next-to-nearest neighbdfdNN) interaction
The antiferromagnetiXY model can be defined by the the minimum of
Hamiltonian

Ho=J,2, cosgi—¢)+J,>, cosei—¢) (2)
NN NNN

H=3:2, cod¢i—¢)), @ _
NN is achieved in one of the so-calle@@x \/3 state$ with a

regular alternation of positive and negative chiralities. An

example of such state is shown in FigaR Here and further

on we use the letters A, B and C to denote three values of

which differ from each other by 27/3 (for definiteness let

us assumepg= @p+2/3, oc=pa+4m/3). This state has

the same structure as the ground state of a planar antiferro-

magnet with triangular latticéor, to put it more accurately,

can be obtained by the natural truncation ¢f @n the other

whereJ;>0 is the coupling constanty; describes the ori-
entation of the classical planar spir= (cose;, sing;), be-
longing to the sité of some regular lattice, and the summa-
tion is performed over the pairs of nearest neighlghiis) on
this lattice. The ground state of such model orkagome
lattice (Fig. 1) is known to have a huge accidentdiat is not

related to the symmetry of the Hamiltonjalegeneracy. hand the NNN interaction of the opposite sigh%0) fa-

For J,>0 the minimum of the energy of each triangular . >IN .
plaquette is achieved when the three spins belonging to yors the ferromagnetic arrangements of chiralities, which is

form the angles+2#/3 with each other. In addition to the acfgg:%%tlr? ;?en:oc;fc?rzlgthB?Nsitﬁiistei’gnTﬁé gbg eneracy of
possibility of a simultaneous rotation of all three spins suc 9 9 Y

arrangement is also characterized by the two-fold discret he ground state is reduced ti{1)x Z,.> This suggests the

degeneracy. When on going clockwise around the plaquettBOSSibi“ty of the two phase transitions, one of which is as-

the spins rotate clockwis@nticlockwise, the plaquette can somateq with unbinding of vortg):]?_;)all{ahe Berezmsku—
be ascribed the positivénegative chirality o==+1. In the Kosterlitz—Thoules$BKT) transitiorf~°] and the other with

ground state of the antiferromagnedier model with trian- proliferation of the Ising type domain walls. The number of

. . i . . _.the systems with the same degeneracy of the ground state
gular lattice the plaquettes with positive and negative chirali- . ) : :
ties regularly alternate with each otfer. includes, in particular, the antiferromagneXd model with

In any ground state on kagonielattice the variabless, triangular latticd° and the fully frustratedXY model with

i~d1,12
analogously acquire only three values which differ from eactduare lattice:

other by 27/3. However, the requirements for the arrange-
ment of chiralities are less rigid than on triangular lattice and
accordingly the ground state in addition to the continuous
U(1) degeneracyrelated with an arbitrary simultaneous ro-
tation of all spin$ is characterized by a well developed dis-
crete degeneracfof the same type as in the 3-state antifer-
romagnetic Potts modeleading to a finite residual entropy
per site!3
The accidental degeneracy persists if the interaction func- FIG. 1. A kagomelattice (shown by filled circlescan be con-

tion in Eq. (1) differs from the pure cosin@emaining eve)y  structed by the regular elimination of one quarter of sites from a
but is removed by the presence of interactions with moreariangular lattice. It consists of triangular and hexagonal plaquettes.
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For the case of weak NNN interactiofUg|<J;) the en-  tion of the three values af; (¢a, ¢g andec), which can be
ergy of a domain wallper unit lengthis proportional tdJ,|  jdentified with the three statesrE 1,2,3) of the antiferro-
and the logarithmic interaction of vortices fq. If domain magnetic Potts model.
walls and vortices were completely mdep(_endent one would The degeneracy of such set of ground states can be dis-
then expect the phase transition related with breaking of thgyssed in terms of the zero-energy domain walls. If one con-
discrete symmetry group to take place at lower temperaturgjgers a,/3x \/3 ground statéFig. 2(a)], it turns out possible
than the BKT transition. _ to construct the state with the same energy by permutation

In the present work we analyze the mutual influence begs,, exampl@ of the form g ¢c inside any closed loop
tween different classes of topological excitations in the antitomeq by the sites withp; = @5, etc. Such closed loofa

. . 4 . I 1 "
ferrom_agnenc_XY model with akagomelattice and Weak__ simplest example of which is shown in Fig(a§l can be
NNN interaction and demonstrate that the phase transitiopynsidered as the zero-energy domain wall separating two

related with the domain y\{alls proliferatidi can happen as different y3x /3 states with the opposite signs of staggered
a separate phase transition only for extremely weak NNNyiajity Any domain wall with zero energy is formed by

interaction,(ii) is not of the Ising type andii) the tempera- g0 entary links which have to join each other at the angles
ture of this transition isiot proportional to the strength of the of =2m/3 [Fig. 3b)]. Each link separates two triangular

NNN interaction as one could naively expect. We also show,, . ettes with the same chirality, that is with the opposite

ltha(tjattver)t/ lg.\l’y tet.mper?ttjr:es thtgffree energ%/. of sgm_wavef igns of staggered chirality. The states with infinitan-
eads to stabilization of the antiferromagnetic ordering of ose4 domain walls are also possible.

chiralities even in absence of the NNN interaction. There exist® the exact mapping of the set of the ground

The results can be of interest in_ relation _With p_OSSiblestates of the 3-state antiferromagnetic Potts model onto the
presence .Of weak eas?,y-plgne. qms_otropy |n.He|senbergtateS of the solid-on-solidSOS model in which the
kagomeantlferromagneté, which is indirectly qorﬁwmed_ by “height” variables u(r) are defined on the sitessituated at
recent investigations of susceptibifiy  in

: the centers of hexagonal plaquettes okagomelattice.
(T]:?Or? Fﬁ”(so“f)Z(OH)G' The otrer cll_ass_ of pk;y?]lcal Sys_tgmsaThese cites are shown in Fig. 1 by empty circles. They form
w 'g Ia ows (t)r e>;p§r|merf1]ta rea |za;t_|on 0 }tae C(;)ntSI €reline triangular lattice we shall denoté Each site of the
:jr?rc:]ei’sigr?glslsiSe?congziﬁnzoxiréuggtxn?qar pggen dvi\::cl)j- kagomelattice can be associated with some band of 7
lar magnetic field. In such systems the rolegfss played by and each variablep; = ¢, ¢, ¢c With the Potts variable

the phase of the superconducting order parameter anécvi(rr )=a(r'r) defined on this bond,
equivalence with the antiferromagnetiky model is Since each triangular plaquette okagomeattice should

. : o always contain three different variables,, ¢g and ¢,
achieved when the magnitude of the magnetic field correy o “can associate them with three basic vectars

sponds to half—lntgger number of superconductlng. flux$a1+az+a3:0, see Fig. of some auxiliary triangular lat-
guanta per each triangular plaquette. A superconducting ar-

ray, which can be described by the same model in absence of
the external magnetic field, can be constructed withthehelp A B CABCABCABCABC
of so-calledm-junctions*’ A C BgwA,C B A
ABCABCACBABCABC
C B A{B C}A C

Il. ZERO TEMPERATURE: THE EQUIVALENT SOLID- ABCABCACBABCABC
ON-SOLID MODEL A C B .O.“A...O. C B A
It has been already mentioned in the Introduction that the ABCABCABCABCABC
set of the ground states of the Hamiltonid is equivalent Cc B A C B A C
(up to a simultaneous rotation of all spin® that of the ABCABCABCABCABC
3-state antiferromagnetic Potts modél.Any triangular (a)
plaquette of ekagomelattice has to contain some permuta-
&
ABCABC ABABAB ABCABCABCABCABA
B A CB C C C C A C B A C BA{C
ABCABC BABABA ABCABCABCABCABA
C B A C C C C B A Cpg=B A C.Z'
ABCABC ABABAB ABCABCABACBCABA
B A CB C C C C “, A C B’ C A %WB«'C
ABCABC BABABA CBCABACBACBACBA
@ o) AMWBWC A B C A
CBACBACBACBACBA
FIG. 2. The structure of the ground states selected in presence of (b)
interactions with further neighbors. The letters A, B and C corre-
spond to the three values gf , which differ from each other by FIG. 3. Two examples of a domain wall separating different
+2m/3. (a) A 3% /3 statej(b) agq=0 state. J3x /3 states.
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tice, which we shall denot&, (a=|a,| being its lattice con- correspond toy3x /3 states, and zero-energy steps, the
stan}. The height variablesi(r), which acquire the values presence of which leads to their roughening, to the zero-

ue7,, can be then introduced following the rule energy domain walls separating differey®x /3 states.
The large scale properties of the vector SOS model intro-
. ur)tageny for r'=rte, duced abovéand of its further generalizationsan be ana-
u(r’)= U(r)—aumn for r'=r—e,, ®) lyzed with the help of the multi-component sine-Gordon

) model with the same symmetry. Ti@imensionlessHamil-
wheree, are the three basic vectors{e, + &, +€=0), S tonian of such sine-Gordon model can be chosen in the form
soon as the value af(r,) is chosen for an arbitrary sitg.'®

This defines the correspondence between the states of the 5 KQ? 5 3
antiferromagnetic Potts model and of the “vector” SOS Hsszf d°R) ——[Vn(R)] +YZ1 cod Q.n(R)] ;.
model, in which the height variablegr) e 7, have to satisfy “ R

the constraint
The first term in Eq(7) describes the effective stiffnegsf

lu(r)—u(r")|=a (4)  entropic origin which can be associated with the fluctuations
of n(R), whereas the second term favors the values(&)
which belong toH,. HereQ,, are the three basic vectors of
&he triangular lattice reciprocal t6,, so

on all pairs of neighboring sites & By using the known
properties of the exact solutibhof the 3-state antiferromag-
netic Potts model with external field coupled to staggere
chirality Huse and Rutenbetdhave demonstrate@nd also 1642

have confirmed this conclusion by numerical calculation Qi: . Q;+Q,+Q3=0.

that such vector SOS model, in the partition function of 3a?

which all allowed configurations of heights are counted with o ) S

the same weight, is situated exactly at the point of the rough- Analogous Hamiltoniaitwith the opposite sign of the sec-

ening transition, wheréfor |r,—r,|>1) pnd tgrnj and equivale.nt vect.or Cpulor_nb gas have .been
investigated by Nelson in relation with dislocation mediated
332 melting in two-dimensional crystaf8. Alternatively the
([u(ry) —u(ry) 1?3~ —2In|u(r1)—u(r2)|. (5  Hamiltonian of the form(7) can be interpreted as a simpli-
a

fied model for pinning of a two-dimensional crystal by a

Therefore any additional perturbation suppressing the flucPeriodic substratéct. with Ref. 21. Note, however, that in
tuations will lead to transition of the system into the flat CONtrast to real two-dimensional crystals, the accurate de-
phase, in which the fluctuations afare convergent. s_cr|pt|on of which requires to distinguish betw_een compres-

According to constraint4) the variablesu(r) on neigh-  SIon and shear moduli, in our system the displacenment
boring sites have to be different from each other, so that evef@kes place in some auxiliary spa¢end not in the real
the most flat state is formed by the regular alternation ofPac¢and, therefore, only one elastic modulus can be intro-
three different values afi. The transition into the flat phase duced-

can be more transparently discussed in terms of the variables 11€ renormalization group equations of Ref. 20, describ-
ing the evolution ofK andy with the change of the length

u(r)+u(r’)+u(r”) scaleL, in our notation can be rewritten as
n(R)= 3 (6)
dK 37, 8
describing the average height at each of the plaquett&s of dl ?y ' (83

The variablemn(R) are defined at the sitd® of the honey-
comb lattice’, which is dual to7, and acquire the values dy
n(R) e H,, whereH, is the honeycomb lattice which is dual dar
to 7, (Fig. 4). In terms of the original spin variables the flat
stateg[in which all variablesn(R) are equal to each othler

2 ! 2 8b
T ARy ™Y (8b)

wherel =InL. The corresponding flow diagram is schemati-
cally shown in Fig. 5, wher& ,=1/(8). It suggests that the
roughening transition takes place when the renormalized
4/ \6/.\2/\4 value of the effective stiffnesi is equal toK.. The vector
SOS model described abovehich is known to be at the
point of its roughening transitidh can therefore be associ-
ated with some point belonging to the left separatrix.

[ll. PHASE TRANSITION (S) ASSOCIATED WITH VORTEX
PAIRS UNBINDING

At finite temperature T other types of fluctuatiomequir-
FIG. 4. The triangular latticd, and its three basic vectoss, . ing finite energy become possible, in particular formation of

The sites of the dual lattick, are shown by the numbers from 1 to vortex pairs. Vortices are pointlike topological excitations

6. The same numbers correspond to physically equivalent states.(the local minima of the Hamiltonian the existence of
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which is related with the multivaluedness of the figldOn  two different criteria has foundr,/J;~0.070 andTg,/J;
going around each vortex experiences a continuous twist ~0.076. In Ref. 24 the same estimate Tk, has been ob-
which adds to+2m. At low temperatures all vortices are tained in a less straightforward way with the help of the
bound in neutral pairs by their logarithmic interaction. duality transformatior§®2®
With increase in temperature this interaction becomes The fractional vortices cannot exist by themseliesab-
renormalized due to mutual influence of different vortexsence of domain wallsA fractional vortex appears at every
pairs and becomes screened at the temperatgge of the  point where elementary links forming a domain wall meet
BKT transition/~® which leads to dissociation of vortex pairs each other at a wrong angler3 or 7 instead of 27/3). The
and exponential decay of correlations of ex)((in contrast  same happens in the antiferromagnéti¢ model with trian-
to algebraic decdyat T<Tgys). The value of the helicity ~gular latticel® the ground state of which also ha8Xx 3
modulusI’, describing the effective stiffness of spin systemstructure. Figure @ shows an example of a domain wall
with respect to infinitely small twist, at the temperature of containing one such special point. It separates the domain
vortex pairs dissociation is known to satisfy the universalwall into two segments, one of which is formed by the sites
relation?? with ¢;=¢¢ and the other by the sites with = ¢ .
When crossing the first segment the state to the right of
TBKTZZF(TBKT)- 9) the wall should be obtained from the state to the left by the
2 permutation of A and B, whereas for the second segment the
state to the right should be obtained by the permutation of A
Huse and Rutenbetdiave argued that since &=0 the  and C. This introduces the discrepancy of/3 which can be
antiferromagneticX'Y model with kagomelattice is charac- |ocalized on a semi-infinite line terminating at the special
terized by the long range order in expf) rather than in  point (for example on the line X-Y-Z In order to locally
exp(¢), the phase transition in this system should consist iminimize the energy X, Y and Z should be replaced by A, B
unbinding of pairs of fractional vortices with topological and C, respectively, when going from above, and by B, C
chargest+ 1/3 and not of the ordinarfintege) vortices. The  and A when going from below. The misfit of#3 has to be
strength of the logarithmic interaction of fractional vortices compensated by a continuous twist@fwhich is equivalent
is decreased by the factor of 9 in comparison with that ofto the fractional vortex with the topological chargel/3.

integer vortices;’ therefore relatior{9) should be replaced  |n terms of the vector SOS model each fractional vortex
by corresponds to the point on going around which the height
variablen changes byAn with |An|=a. That means that at
o ) . ) .
Tey=—=T(Tey), 10 each fractional vortex a step with the heigtn (or, to put it
rv=1g! (Trv) (10 more precisely, a set of steps with the total heigi) ter-
whereTry is the temperature of the phase transition, associ- .
ated with unbinding of pairs of fractional vortices. ABCBACBACBACBAC
The value ofI' in any ground state of the antifero- A%Cee A B C A B
magnetic XY model with kagome lattice is equal to ABCA B..C BACBACBAC
I'o=(\/3/4)J;. Substitution ofl'y into Eq. (10) [instead of C B A '-...C.}._X_Y_ 7
I'(Tgry)] allows to obtain forTr, the estimatgfrom above ABCABCABACBACBA
of the form w, A C ..-"B"".C A BC
3 CBCABACBACBACBA
LTS ABe C A B C A
Try J;~0.075),, (11)
72 CBACBACBACBACBA
which turns out to be in reasonable agreement with the re- @)

sults of numerical simulations by Rzchow$Riwho by using

Y AB..C;BACBACBACBA...B

A .-.Cooo..A B C ...-aAooo. C
ABCABCBACBABCARB
C B A%Ce-X#C C
ABCABCABACABCAB
A CpmBC{B A C
CBCABACBACABCARB
A ..oooBooo'. C A B .'oooCooo.. B

FIG. 5. The schematic flow diagram for Eq8). The system CBACBACBACBA C...A B
with only NN interaction andlT =0 can be associated with some (b)
point (shown by black dgton the left separatrix. Dashed arrow
shows how the flow is changed &t-0 when the contribution from FIG. 6. () An example of a fractional vortexb) An example of
z has to be taken into account. a dislocation formed by a neutral pair of fractional vortices.
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minates or begins. Accordingly the fluctuations of the SOSn the vicinity of the roughening transitiorK(=K,) the ex-
model provide the additional contribution to the interactionponent),, describing the renormalization af is close to

of the fractional vortices related with the difference in en-\2=3/2, which corresponds to the fast growthzo€ompari-
tropy between the configurations with different positions ofson ofx, with \y=2—1/(4wK) shows thay andz are never
step termination points. At the point of roughening transitionsimultaneously irrelevant. In that respect the situation is
of the SOS model, as well as in the rough phase, this addiuite analogous to what is encountered when considering the
tional interaction(which can be expressed in terms of the conventional(ferromagnetit XY model with weak but rel-
correlation function of the dualY modef?) is also logarith-  evant(low-orden anisotropy?>=3!

mic. Its presence shiftsg, upwards and diminishes the mu-  The presence of dislocatiofar, to put it more accurately,
tual influence between fractional and integer vortices. It isof dislocation pairs leads also to appearance in the right-
knowrf® that such mechanism in principle can lead to ap-hand side of Eq(8a of the additional(negative term pro-
pearance of the separate phase transition, associated with yrtional toz?. The presence of this term shifts the fl¢see
binding of pairs of integer vortices, at temperatures aboverig. 5) from the separatrix to the area which corresponds to
Tey. the rough phase of the SOS model.

On the other hand at finite temperatures the equivalence On the other hand the unrestricted growthzafnder the
with the SOS model is no longer exact. One has to remembeenormalization means that the system will contain the finite
that the whole multitude of what we describe as flat states ofoncentration of free dislocations, which transforms the
the vector SOS model in terms of the original spin variablesough phase of the SOS model into the disordered phase of
corresponds(for given ¢,) to only six different3X 3  the six-state model. The decay of correlations in this phase
states, which can be obtained from the state shown in Figcan be characterized by a finite correlation radjuswhich
2(a) by all possible permutations of A, B and C. In Fig. 4 the can be found as the length-scale at whigh(the renormal-
sites of’H,, which correspond to equivalent states in termsized value ofz) becomes of the order of oné&, defines the
of ¢;, are designated by the same numbers. In the zerascale at which the additiondentropig interaction of the
temperature partition function of the vector SOS model thefractional vortices induced by the fluctuation of the domain
properties of the zero-energy domain walls separating suclalls is screened. The finiteness&fcloses even the hypo-
states(in particular, two closed loops formed by such walls thetical possibility for dissociation of pairs of integer vorti-
cannot cross each other but can be situated inside each othgfs to take place as a separate phase transition-at-,, .
or touch each othg¢allow to count them as different states of
the SOS model®2°At finite temperature it becomes possible IV. THE CASE OF THE FERROMAGNETIC NNN
for a set of steps separating two physically equivalent states ' INTERACTION
to terminate at the point where all these steps merge
together’® The energyE, of such defect is finite and propor- Inclusion into consideration of the interaction with more
tional toJ,: Ep=cpJ,, wherecy is of the order of one. distant neighbors leads to removal of the accidental degen-

In terms of the multi-component sine-Gordon mo@@  eracy and stabilizes the states with either ferromagnetic or
such defects correspond to dislocations of the figldhe  antiferromagnetic ordering of chiralities of triangular
(elementary Burgers vectors of whictb, («=1,2,3) are plaquettes.

given, as can be seen from Fig. 4, by In the case of the ferromagnetic NNN interaction
(J,<0) the energy is minimal in one of th¢3x 3 states
bi=ag—a,, b,=a;—a3, bz=a,—a. (12  with uniform staggered chiralitjFig. 2(a)]. Figure 3 shows

An example of a dislocation is schematically shown in Fig.MWO €xamples of a domain wall separating two_different
6(b). It is formed by a neutral pair of fractional vortices that V3% |3 states with opposite signs of staggered chirality. In
are sitting on two domain walls which cannot be transformedhe case of only NN interaction such domain wabnsisting
into a single domain wall. The letter X denotes the site orPf €lémentary links making angles ofr23 with each other
which ¢;~ (@a+ @g)/2. In the vicinity of this site the values SIMPIY costs no energy. The presence of a weak ferrromag-
of ¢; slightly deviate from those implied by the letters A, B netic NNN mteragtlon makes the energy of such domain wall
and C. Successive application of the r@ along the pe- (Per elementary linkEpy, equal to—3J,>0. Here and fur-
rimeter of any closed loop surrounding point X sums up tother on we are interested only in the cadg <J;, when the
An=a,—a,. values of the variableg; remain close to _those shqun in Fig.
The renormalization of the dislocation fugacity 3 not only away from the wall, but also in the vicinity of the

z=exp(—cpJ; /T) with the change of the length scale can beWa!: ,
described by Note that such wall can fluctuatmake turns, form kinks,

etc,) without having to pay the energy proportionalltpand,
dz 5 therefore, naively one could expect that the temperature of
g ~Nzt2mz, (13 the phase transition, related with proliferation of such walls
and leading to destruction of the long-range order in stag-
where gered chirality, should be determined entirely &by Such
-~ conclusion, implicitly based on the comparison of the energy
KQ"b —o 4K (14) of an infinite domain wall with the negative entropic contri-
B - bution to its free energythe Peierls argumetf), does not
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take into account that the presence of an infinite domain waltiated with the proliferation of domain wallcan be ob-

leads also to suppression of the entr@pgcause it decreases tained from the relatiozg(&) ~ 1, which is equivalent to

the possibilities for formation of closed domain wall lopps

and in some cases does not work. In(1/z)~\%In &. (18)
In Sec. Il we have discussed the properties of the vector ‘

SOS model to which the antiferromagnel¢r-model with

kagomdattice is equivalent af =0. In the partition function

of this model all allowed configurations of heights are

counted with the same weight. In the case of the analogous

model with a finite positive energy of a stéwhich corre-

sponds toJ,<0) the same partition function is reproduced and

in the limit of T—ew., For any small but finite ratio _

—J,/T>0 the SOS model is shifted from the point of v

roughening transition into the orderdtlat) phase. On the In fw(_) ' (20

other hand we also know that at finite temperatures the pos-

sibility of dislocation creation tends to shift the same systemyhich leads to

into the disordered phase. One has to consider the competi-

In our problem

In(1/z)=cpJ, /T (19

tion of these two effects. .
In the vicinity of K=K, the renormalization equatior(8) Epw\1+» 3/85/8
can be rewritten as Tow~ 3, J1o6| 3797, (21)
d_X: 2 (159 Away from the critical region the behavior @f can be de-
dl ' scribed with the help of the self-consistent harmonic

approximatiort which gives v=v,=1. That means that
with increase of J,|/J; the dependencél) is replaced by
Towx| 3| Y472,

Note that the analysis which has led to E21) has been
based on the assumption that all fractional vortices are bound
in pairs, and, accordingly, is valid only farpw<Tg,. On

X=2< 1o ﬁ) vo t 1 (16  the other hand the pairs of fractional vortices cannot disso-
K/’ ciate at temperatures lower thdp,,, because fol <Tpy
the fractional vortices in addition to their logarithmic inter-
The solution of Eqgs(15) for arbitrary « allows one to find  action are bound also by domain wallgith a finite free
that the critical behavior of the correlation radigsin the  energy per unit lengthwhich connect them with each other.
vicinity of the transition is givef? by Therefore the two available possibilities afgy<Tgy
and a single phase transition, whereas the scenario with
e\’ Tpw>Tgy is impossible. Analogous conclusions have been
In§ o (R) ' 17 earlier achieved in relation with hypothetical unbinding of
fractional vortices in planar antiferromagnet with triangular
whereAK is the deviation from the phase transition. In our latticel° It is hardly surprising that the same conclusions are
problem for Epw<<T the ratio AK/K. is proportional to valid for the system, the ground state of which is practically
Epw/T. identical to that of the antiferromagneficY model with tri-

The case ofx=0 corresponds to Kosterlitz renormaliza- angular lattice, the only difference being that one quarter of
tion group equatiorisfor the standard BKT transition, which sites is absent.
give v=1/2. The case ofr=+1/\/6 has been considered by ~ The proliferation of the low energy domain wallsf the
Nelson?’ who has foundv=2/5. The solution of the same YPE Shown in Fig. @)] leads to intermixing of six different

. . — states[which can be obtained from the state shown in Fig.
equations fora=—1/\/6 givesv=3/5.

. ) . . 2(a) by arbitrary permutation of A, B, and]Gnd therefore
If the fugacity of dislocationg is so small that even when gpq1q ot be expected to be of the Ising type. Note that the
growing under renormalization it remains much smaller tharbomain walls are possible only between the states with the

one up toL~¢ [where the renormalization following Egs. gitferent signs of staggered chirality. The six-state model
(15) stops anyway and fluctuations fare frozer), the sys-  ith analogous statistics of domain walls can be defifiby
tem remains in the orderedlat) phase of the SOS model, the partition function

that is in the phase with long-range order in staggered chiral-

dy
g7 = XY+ aY?, (15b)

where

|
R
Il
|
|

ity. On the other hand iy (the renormalized value of) 6
manages to become of the order of one when the renormal- 7= W(to—to 29
ized value ofy is still small, the system finds itself in the 1;[ tRz:l & (tr=tr7), 22

disordered phase. The estimate for the temperalg(g of
the phase transition separating these two regifard asso- where
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1 for t=0 (mod 6 by the fractional vortices which have to appearadincorners

of domain walls(the same happens in the fully-frustradédl
model with square lattic8). This makes impossible the con-
0 for t=2,4 (mod9. struction of a closed domain wall the energy of which is
determined entirely by, and does not depend ah.

For J,<J; a typical thermally excited defec¢teading to
the change of the sign of chiralithas the form of a long
strip formed by two low energy domain wal[&ig. 7(c)].
Like in Fig. 6 the letter X designates the sites with
o~(oat @p)/2. In the vicinity of these sites the values of

W(t)={ w for t=1,3,5 (mod6 (23)

The last line of Eq.(23) implies that the domain wall be-
tween the states with the same paritytgfis impossible.

Application of the duality transformatidnto the partition
function (22) transforms it into analogous partition function
with W(t) replaced by

1+3w for t=0 (mod 6 qther variablesp; slightly deviate from thqt shown in the
_ figure. Analogous stripe defects are dominant at low tem-
W(t)=9 1 for t=1,2,45 (mod® (24) peratures in the frustratedY-model with triangular lattice
1-3w for t=3 (mod 6. andf=1/4 Ol'f_1/337

The energy of such defect is given byE@+ 2EJ,L,
The symmetry ofW(t) corresponds to the so-called cubic whereEqy=coJ; (Co~0.55) is the energy of its termination
model, the phase transition in the six-state version of whictpoint andL its length. ForJ,<T<J, the average lengtfL)
for W(1)>W(3) is known to be of the first ordéf. The  of such defects is given by the rafid(2Ep,,)>1, whereas
phase transition afp,y, in our system(at least when it hap-
pens atTpw<Tgy) therefore also can be expected to be of

the first order. ABABAB ABABAB...
Comparison of the estimate E@1) with Eq. (11) shows C C C C C ...°' A
that the fulfilment of the relationTpy<Tg, requires BABABA BABABC
0<—J3,<Jmax, WhereJ,,, can be estimated to be of the C C C C CcfA
order of 10°3J;. For —J,>J;. there should be only one ABABAB ABABCB
phase transition in the system, at which the proliferation of eecscse (essss(ocees (ooe CfA A
domain walls is accompanied by the unbinding of all types ABABAB BABCBC
of vortices. A detailed description of how it happens still C C C C .‘,“ A A
remains to be constructed, but when the dissociation of pairs BABABA ABCBCB
of fractional vortices is forced by the disappearance of their
linear interactionmediated by the domain walls which con- @) (b)

nect them at temperatures, for which their logarithmic inter-
action is already too weak, one can expect the value of the

helicity modulus afT. to be nonuniversal: ABABABABABABAB
cC € C C C C
2 I(T, 18 BABABABABABABA
;< T—C< ; (25) C C --nCno.oC.wooCnu-..C C
ABAXBABABABXAB
Note that the estimate fak,, has been found by taking the C  CeessCossseCossnsCoed
estimate Eq(21) on its face value, that is without the un- BABABABABABABA
known numerical coefficient, and therefore should be consid- C C C C ¢ ¢ cC
ered with great caution. ABABABABABABATB
C
V. THE CASE OF THE ANTIFERROMAGNETIC NNN “
INTERACTION
ABABABABABABAB
For the antiferromagnetic sigd{>0) of the NNN inter- ¢ ¢ ¢ ¢ ¢ ¢
action the minimum of the Hamiltonian E¢R) is achieved BABABABABABABA
in one of the states with the ferromagnetic ordering of wComeeComssCee, C C C C
chiralities[Fig. 2(b)]. Such state also allows for construction BABABAXBABABARB
of a domain wall, the energy of whidlper elementary link C C C %esCossse(oosos(leseeeee
Epw is proportional to the strength of second neighbor cou- ABABABABABABAB
pling: Efw~3J,, see Fig. 7a). However, comparison of Fig. C C C C C C ¢
7(a) with Fig. 7(b) shows that(in contrast to the case con- BABABABABABABA

sidered in Sec. 1Y for J,>0 the form of the state on the )
other side of the wall is uniquely defined by the orientation

of the wall and is different for different orientations of the  FIG. 7. (a) and (b) two examples of a domain wall separating
wall. The discrepancy irp that appears when crossing do- two q=0 states(c) a typical finite size defect on the background of
main walls of different orientations should be taken care ofg=0 state;(d) a kink on a domain wall.
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their concentratiore is proportional ta/L )exp(—2E,/T). The ©) T2
relationc(L)?~1 defines the temperature Epw= 3, (30
2 Eo ) where y=~2x1072. Thermaf® and quanturtt anharmonic
Ty (26) fluctuations in Heisenbergkagome antiferromagnet are

T3 n(T, /B
(T /Eow) also known to favor(at least locally a planar state with

above which such defects no longer can be considered agx /3 structure. The same can be said about the fluctua-

independent. The same temperature can serve adotlier  tions of the order parameter amplitude in superconducting

bound estimate for the temperatufig),, of the phase tran- wire networks"?

sition associated with proliferation of the domain walls and ~ Although E{3), defined by Eq.(30) is always much

leading to destruction of the long-range order in chirality. Forsmaller than the temperature and in the cas@arfexample

J,13;—0 Ising model would be insufficient for appearance of the long-

N range order, in the considered system the situation is quali-

Tow™Tx*Jd1/In(J1/33). (27)  tatively different. Substitution of Eq30) into Eq.(21) gives

Analogous estimate can be obtained by comparison of finite value ofTpyy, induced by spin wave fluctuations:

the domain wall energy EJ, with its entropy

Spw=~2 exp(—Ex/T) due to possibility of formation of kinks

[Fig. 7(d)]. The energy of a kink is very close tdy. The  which means that foy~ 1 the long-range order in staggered
requirement g, = Epy,— TS5y = 0% gives chirality would survive even up td~J;. However, substi-
. P tution of the numerically calculated value ¢f cited above
Tow™~Ex/IN(2Tpw/Epw) (28 produces an extremely low estimat&2),~10"4J;.

which is again the estimate from below. Note that the ordering in staggered chirality is noticeable

Like in the previous caséof the antiferromagnetic order- Only at length-scales larger than the correlation radjus
ing of chiralities the proliferation of domain walls can take Substitution of Eq.(30) into Eq. (20) shows that for
place as the independent phase transition only at temperé’«T(Dov)\, the behavior of£(T) is given by In&o (J;/yT)".
tures lower thaTg,. Comparison of Eq(28) with Eq. (11) That means that af—0 there takes place a continuous re-
shows that the fulfillment of relatio},,<Tg, requires entrant phase transition into the phase without true long-
Jp<Jmaw Whered _ can be estimated as (18+ 10 %)J,.  range order in staggered chirality.
Also like in the previous case, the proliferation of domain

TS~ ¥4, (31

walls is related with intermixing of six different states and VII. CONCLUSION
therfore can hardly be expected to demonstrate the Ising type _ . ) L
behavior. y P g This work has been devoted to investigation of the phase

transitions in the antiferomagnetiY model on akagome
lattice with the special emphasis on accurate consideration of
mutual influence between different classes of topological ex-
Another mechanism for removal of accidental degeneracgitations(fractional vortices and domain walldn particular,
(which is traditionally refered to as “ordering due to we have shown that in the model with only NN interaction
disorder®®) is related with the free energy of continuous the additional interaction of fractional vortices related with
fluctuations (spin waves®® Expansion of the Hamiltonian the entropic contribution from zero-energy domain walls at
(1) up to the second order in deviatiofs= ¢; — ¢§0) of the finite temperatures becomes short-ranged. Therefore it can-
variables ¢; from their valuese(®) in some ground state not interfere with the BKT dissociation of fractional vortex
gives the same answer paiI’S proposed in Refs. 1 and 13
For the case of a finite NNN couplirtgading to removal
@) Jq ) of the accidental degenergoye have demonstrated that the
H =7 % [—1+(i— 7] (29 phase transition related with proliferation of the domain
walls can happen as a separate phase transition bEjQw
for all possible ground states, which means that the differonly for very weak NNN interaction, and have found how
ence in the free energy between them can appear only in thtee temperature of this transition depends bnand J,.
second order in temperatutdhat is believed to be not suf- These dependencies are essentially different for different
ficient for stabilization of a true long-range order related withsigns of the NNN coupling. The same results are also appli-
chiralities. This conclusion does not take into account thecable for other mechanisms of removal of the accidental de-
peculiarities of the statistical mechanics of the consideredieneracy, which lead to a finit€n,,. Note that our analysis
system and has to be corrected. has been restricted to the cddg|<J;, so we have not yet
With the help of the numerical calculatidsee the Appen- mentioned the possibility of the domain wall proliferation
dix) we have found that the lowest order contribution to thehappening above the temperature of the ordinary BKT tran-
effective interaction of chiralities of neighboring triangular sition, associated with appearance of free integer vortices
plaquettes is of the antiferromagnetic si¢that is favors (like it happens in the case of triangular latfit&*49.
J3X /3 state and corresponds to Our conclusions are compatible with the results of the

VI. SPIN WAVE FLUCTUATIONS
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numerical simulations of Geht and Bondarerikeho have dered phase D. Dashed lines show the phase transitions of
found (for not too weak NNN interactior|J,|=0.1];) that  the BKT type related with unbinding of pairs of fractional
the disordering of all degrees of freedom in the antiferromag{the border between S and br integer(in the lower part of
netic XY model with kagomelattice takes place at the same phase diagrajnvortices. Quite remarkably, for extremely
temperature, the singularities of the thermodynamic quantismall positiveJ, the system has to experience with increase
ties being of the Ising type. Recently it has been sHé\for ~ in temperature four phase transitions following the path
the case of triangular lattit¢hat when the domain wall pro- F - S — AF - S - D.
liferation happens as a continuous phase transifian Experimentally the phase transitions discussed in this
TIT'(T)>2Tgy/T'(Try) ], the dissociation of pairs of integer work can be observed in superconducting wire networks or
vortices has to take place &K Tpy . Since the same argu- Josephson junction arrays in the external magnetic field pro-
ments are also applicable folkagomeantiferromagnet with ~ viding one-half of the superconducting flux quantusg
J,<0, it may be of interest to check the results of Ref. 5=hc/2e per each triangular plaguette okagoméattice. In
with better accuracy. such systems the removal of the accidental degeneracy is
The long-range order in staggered chirality is favored alsaelated with the magnetic interaction of the currents and a
by the spin-wave fluctuations. Our analysis suggests that thiénite width of the wires*? The former of these mechanisms
antiferromagneticXY model with kagomelattice and only  favors the ferromagnetic ordering of chiralities, whereas for
NN interaction presents a unique example of a model withthe latter the effect depends on the width of the wires.
out free parameter in which one of the phase transitions can Recent experimental investigation of the aluminum wire
be expected to happen at dimensionless temperature of tietwork with kagome structuré® has demonstrated for
order of 10 %. Therefore one can conclude that the numerical$= ¢o/2 the presence on the current—voltage curve of the
simulations of RzchowsKit have demonstrated no evidence regions corresponding to different mechanisms of dissipa-
for selection of a single ground state downTb);~10 2  tion, one of which(with an algebraic behavipcan be asso-
not becaus&p,>=T2/J, is not sufficient for that, but simply ciated with unbinding of vortex pairs and the other with
because the temperature was not low enough. Comparis@preading of domains with inverted chiraliti€sThe authors
with Eq. (27) shows that if the effective interaction of of Ref. 16 have interpreted this as an evidence for the pres-
chiralities, induced by the free energy of spin waves, wouldence of two phase transitions, although appearance of a new
be of the opposite sign, the long-range order in chiralityphase transition should be associated with a change of be-
would persist up to much higher temperatures. havior at small rather than at finite currents. Note that the
All these features are summarized in Fig. 8, which verywhole region of the existence of the phase S is very narrow
schematically(not in scal¢ shows the structure of the phase (— 10 3<J,/J;=<10"%), so the observation of this phase in
diagram of the considered model. The phases with ferromaghe experimental situation requires an almost exact cancella-
netic and antiferromagnetic ordering of chiralities are de-ion of contributions tal, related with different mechanisms
noted F and AF, respectively. The phase without long-rangésee also Ref. 42
order in terms of chiralities, but with quasi-long-range order
in terms of expi@¢) is denoted S, and the completely disor- ACKNOWLEDGMENTS
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APPENDIX

The lowest order contribution to the interaction of chirali-
ties of neighboring triangular plaquettes induced by the spin
wave free energy appears when the partition function of the
Hamiltonian(1) is expanded up to the second order in

J
HO=Z > [sine—epln—vp® (A1)

FIG. 8. Schematic phase diagram of the antiferromagnedc ~ and then is averaged with the helptéf?). The fourth-order
model with akagomelattice which follows from the results of this term is the same for all the ground states and therefore of no
work. importance.
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ments the average &f can be reduced to the form
2 1
a
where
0
G3=Jo1 > Gs4=0do1 > (A6)
b and

\ / With the help of the Wick’s theorem and symmetry argu-

372
(V)= 7 (Gi-2G3G3+2G,G5-GY),  (A5)

3 4 gii={(ei—¢))?% (A7)
/ \ describes the amplitude of fluctuations @f- ¢; calculated
with the help of the harmonic Hamiltonia9).

_ _ _ _ The value ofg;; for the nearest neighborgy{;) can be
FIG. 9. The numbering of sites used in the expressions#fdt  cajculated exactly:

andH(®.
-
The parameted,, describing the effective interaction of Go1=7 > (A8)

chiralities of neighboring triangular plaquettes éndb):
whereas numerical calculation of the integrals over Brillouin

E(oa,0p)=Jp0200 (A2)  zone definingy,3 and gy, gives
can be then found by calculating the average of 3 T 3 T
HOH® 013~ §+5 3 9142(5—5)\]—1, (A9)
V=— S (A3)
T where 5~0.0213.
where Substitution of Eqs(A8)—(A9) into Egs.(A5)—(A6) then
gives
27 T2
sin—- Y
Jy=, (A10)
HE = —— 3l (1= 10>+ (Yo = Y)*+ (o= 1)) P2y
(A4)  where
and expression foHE,s) can be obtained by replacing in Eqg. 3
(A4) s, by 3 and ¢, by ¢,. The indices from 0 to 4 are Y= 35001+ 1262)~2.01:10 3 (A11)
used here to denote the five sites belonging to a pair of
neighboring triangular plaguettes as shown in Fig. 9. which leads to Eq(30).
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