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Ground- and first-excited state energies of impurity magnetopolaron in an anisotropic
quantum dot

B. S. Kandemir and A. C¸ etin
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The polaronic effect on the low-lying energy levels of an electron bound to a hydrogenic impurity in a
three-dimensional~3D! anisotropic harmonic potential subjected to a uniform magnetic field is investigated by
introducing a trial wave function constructed as a direct product form of an electronic part and a part of
coherent phonons. Binding energies of impurity magnetopolarons corresponding to each level are analyzed in
terms of the effects of both quantum confinement and magnetic field. Furthermore, a detailed discussion of the
effects due to the electron–LO-phonon interaction and the effects of both magnetic field and quantum con-
finements on cyclotron masses asssociated with the transitions between ground and first-excited states of the
bound electron is also given in this paper. Our results show that the polaron effect arising from the electron–
LO-phonon interaction and confining effects together with the effect of magnetic field have a great influence on
the impurity binding energies and on cyclotron masses associated with transitions between the relevant states.
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I. INTRODUCTION

In recent years, there has been a remarkable inte
shown by both experimental and theoretical physicists in
study of low-dimensional nanostructures, not only from t
point of view of fundamental physics but also from the
potential use in designing electronic and optoelectro
devices.1,2 Such low-dimensional systems, depending
their ways of confining electrons, can be classified into th
types; quasi-two-dimensional quantum wells~QW’s!, quasi-
one-dimensional quantum wires or quantum-well wir
~QWW’s! and quasi-zero-dimensional quantum dots~QD’s!.
Due to the fact that reduction of dimensionality of the syst
to two, one, or zero dimensions, by a spatial confining
tential that restricts the motions of electrons to a plane, l
or point, leads to a strong size quantization of energy lev
of an electron, whereby optical and electronic properties
electrons are modified in these types of low-dimensio
quantum structures compared with those of the bulk. Furt
more, it is well known that the polaron effects arising fro
the electron-phonon interaction are enhanced by confin
the electron motion to two, one, or zero space dimensio
and thus strongly influence the above-noted physical pro
ties of electrons in these systems as well. Conseque
studying the fundamental role of the effects due to electr
phonon interactions as well as of the effects connected w
reducing the dimensionality of the system on electronic l
els of an electron has become one of the main subjects o
current theoretical as well as experimental works in this fi
~see Ref. 3 and references therein!.

In these works, much attention has been paid to the st
of the properties of impurities, and particularly impurit
phonon interaction effects in low-dimensional structur
since the presence of an impurity influences the abo
mentioned properties of electrons as well. There has be
number of theoretical investigations dealing with this pro
lem in the literature. A review of the results of early wo
without quantum confinement effects in this problem can
0163-1829/2002/65~5!/054303~11!/$20.00 65 0543
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found in Ref. 4. The first theoretical investigation connec
with the calculation of binding energy of the ground state
a hydrogenic donor as a function of QW size has be
worked out by Bastard5 within the framework of variational
approach. Later, some authors modified6 his work and then
extended their studies to cylindrical,7 rectangular,8 and finite
cylindrical9 QWW’s, and also to spherical10–12 QD’s by ap-
plying variational procedure within the effective mass a
proximation. The problem of an electron bound to a hyd
genic impurity interacting with a LO-phonon field, called th
impurity polaron, was studied initially by Erc¸elebi and
Tomak13 in QW structures within the adiabatic approach, a
later by Degani and Hipo´lito14 within the random phase ap
proximation. The effects of electron-phonon coupling on i
purity binding energies have also been considered in pu
2D polar semiconductors15 and parabolic QW’s16,17 within
the framework of Feynman-Haken path integral theory, a
in infinite QW’s,18,19and QW’s with finite potential barrier20

within the framework of variational approaches based on
one- or two-parameter trial wave function method. Ma
confinement models containing various electron-phonon
teractions within different approximation schemes have b
studied in QWW’s,21 and in spherical,22 parabolic,23,24 and
cylindrical QD’s.25,26The main result of these works are th
the impurity binding energy increases from its bulk value
the dimension is reduced, and it is enhanced by the pres
of the electron-phonon interaction. All the theoretical wor
referred to here have been performed in the absence
magnetic field and were generally related to the calculat
of ground-state binding energy of impurity polaron. The
also exist a few studies concerned with the analysis
excited-state energies of impurity polaron subjected to
magnetic field in these low-dimensional structures, in p
ticular, in QD systems.

In the presence of an external magnetic field that lead
a quantization of electron energy spectrum into Landau l
els, at most, two excited states of impurity magnetopola
have been studied in finite27,28 and infinite29 QW’s, in para-
bolic QWW’s,30,31 and in 2D parabolic QDs.32–34 Very re-
©2002 The American Physical Society03-1
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cently, the low-lying spectrum of a two-electron QD with
confining parabolic potential in the presence of an on-ce
Coulomb impurity is studied by Leeet al.35 within the exact
numerical diagonalization scheme. From the results of th
investigations, it has been concluded that binding energ
impurity magnetopolaron depends sensitively on the m
netic field strength, as well as on the confinement length

Up to now, there have been also several experime
investigations36 reporting that, in interpreting the cyclotro
emission and absorption spectra, polaronic effects play
important role, particularly in such low-dimensional system
The detailed theoretical calculations on the corrections to
cyclotron mass induced by the electron-phonon interac
for magnetopolaron and impurity magnetopolaron confin
to low-dimensional structures have been previously car
out in the literature, for example, in purely two-dimension
~2D! systems and heterostructures by using the mem
function approach37 and in QW’s by using random phas
approximation38 and perturbative methods.39 Recent discus-
sions have focused on the study of the cyclotron mass
magnetopolaron in parabolic QD’s,40 and impurity magneto-
polaron in 2D parabolic QD’s,41 by using different approxi-
mation schemes. The main observation and outcome of t
investigations are that polaronic effects are of great imp
tance in determining the spectral properties of these l
dimensional materials.

The purpose of the present paper is to study the dep
dence of low-lying energy levels of impurity magnetop
laron subjected to a 3D parabolic potential on both magn
field and spatial confinement length. To achieve this, we
strict ourselves to the case of bulk LO phonons and introd
a trial wave function taken to be the direct product of
electronic part and a part of coherent phonons. We are
concerned with the study of the effects due to the electro
LO-phonon interaction, quantum confinement, and magn
field on the cyclotron masses associated to the transit
between the ground and first-excited states of an elec
bound to a hydrogenic impurity in a 3D parabolic potenti
We have found an analytical expression for the impur
magnetopolaron energy that allows us to perform a syst
atical analysis of the effects of both magnetic field and s
tial confinement on the binding energies of impurity magn
topolaron in QD’s, QWW’s, and QW’s. We establish
unified treatment that allows us to make comparisons
tween the results of binding energies of impurity magne
polarons in these three systems. The paper is organize
follows. In the next section, we construct a trial wave fun
tion as a direct product of the electronic and phonon pa
and then obtain the energy levels of impurity magneto
laron in terms of certain variational parameters. In Sec.
we present the results and discussions, together with a
clusion.

II. THEORY

We consider an electron bound to a Coulomb impur
that is interacting with bulk LO phonons and subjected t
3D anisotropic harmonic potential and a uniform magne
05430
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field along thez direction. The Fro¨hlich Hamiltonian of the
system is given by

H5HE1(
q

\v0bq
†bq1(

q
~Vqbqe

iq•r1H.c.!, ~1!

where

HE5
1

2m S p1
e

c
AD 2

2
e2

e0ur u
1

1

2
mv'

2 r'
2 1

1

2
mv i

2z2 ~2!

is the electronic part, and

uVqu25~\v0!2S 4pa

V D r 0

q'
2 1qz

2
~3!

is the electron-phonon interaction amplitude. In Eq.~1!,
bq

† (bq) is the creation~annihilation! operator of an optical
phonon with a wave vectorq5(q' ,qz) and an energy\v0,
and p and r[(r' ,z) denote the electron momentum an
position operators, respectively.a and r 0 are the electron-
phonon coupling constant and polaron radius, respectiv
By choosing the symmetrical Coulomb gaugeA
5B(2y,x,0)/2 for the vector potential, Eq.~2! can then be
written as a sum of Hamiltonians for an isotropic 2D ha
monic oscillator in the lateral plane with massm and the
frequencyv25(vc/2)21v'

2 plus a term of (vc/2)Lz , and a
1D oscillator along thez axis with massm and frequency
v i , in the absence of an impurity. In our variational schem
we choose the electronic part of the trial wave function a
direct product of the basis of these two oscillators in t
presence of impurities, since the impurity magnetopola
we consider is subjected to not only the magnetic confi
ment in the lateral plane but also to a 3D anisotropic spa
confinement in all directions. Consequently, the variatio
state vector for the Hamiltonian in Eq.~1! is composed of
direct products of electronic and phonon contributions

uCn,m,l&5un,7m,l & ^ D~ f !u0&ph, ~4!

where un,7m,l &5un,7m& ^ u l & represent the basis of a
electron in a 3D anisotropic harmonic potential subjected
a uniform magnetic field in thez direction, and its coordinate
representation is given by

^r un,7m,l &5cn,7m~r'!c l~z!

5Nn,7m,l~g,h!e2g2r'
2 /2~x7 iy !mLn

m~g2r'
2 !

3e2h2z2/2Hl~hz!, ~5!

whereh andg are variational parameters. In Eq.~5!, Nn,7m,l

is the normalization constant, and the functionsLn
m and Hl

are associated Laguerre polynomials and Hermite polyno
als, respectively. In Eq.~4!, D( f ) is the well-known Lee-
Low-Pines transformation, by which coherent boson sta
are generated through the application on the zero-pho
stateu0&ph and is given by

D~ f !5expF(
q

~bq
† f q2bq f q* !G , ~6!
3-2
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GROUND- AND FIRST-EXCITED STATE ENERGIES OF . . . PHYSICAL REVIEW B 65 054303
where f q is the variational function. With this choice of tria
wave function, the expectation value of the impurity magn
topolaron Hamiltonian given by Eq.~1! can then be written
in the formEn,7m,l5En,7m,l

E 1En,7m,l
I , where the first term

En,7m,l
E ~g,h!5S \2

2m
g21

1

2
mv2

1

g2D ~2n1m11!7m
\vc

2

1S \2

2m
h21

1

2
mv i

2 1

h2D S l 1
1

2D
2

e2

2p2e0
E d3k

k2
rn,7m~k' ,g!r l~kz ,h! ~7!

is the electronic part, in which

1

ur u
5

1

2p2E d3k

k2
eik•r

is used, and the last term

En,7m,l
I 5(

q
@\v0u f qu21Vqf qrn,7m~q' ,g!r l~qz ,h!

1Vq* f q* rn,7m* ~q' ,g!r l* ~qz ,h!# ~8!

is the part including the electron-phonon interaction te
with the matrix elementsrn7m(q' ,g) andr l(qz ,h), whose
full description and various values for different sets of qua
tum numbers (n,7m,l ) can be found in Ref. 3. Minimiza
tion of En,7m,l with respect tof q* yields

f q52
Vq*

\v0
rn,7m* ~q' ,g!r l* ~qz ,h!. ~9!

After insertingf q back into Eq.~8!, converting the sum ove
k into an integral onk and then changing the integral var
ablesq' /A2g5x and qz /A2h5y, and similarlyk' /A2g
5x andkz /A2h5y in Eq. ~7!, the impurity magnetopolaron
energy becomes

Ēn,7m,l~ ḡ,h̄ !5S 1

2ḡ2
1

1

2
v̄2ḡ2D ~2n1m11!7m

v̄c

2

1S 1

2h̄2
1

1

2
v̄ i

2h̄2D S l 1
1

2D
2

2

p
Gn,7m,l~a,b;V̄!

h̄

ḡ2
. ~10!

By introducing new dimensionless parameters (\/mv0)1/2g

51/ḡ and (\/mv0)1/2h51/h̄, energy and other paramete
are made dimensionless and expressed in terms of the
phonon frequencyv0. Accordingly the dimensionless con
finement frequenciesv̄'(i) are directly related to the dimen

sionless confinement lengthsu'(z)5 l'(z) /r 05A2/v̄'(i). In
Eq. ~10!, the function Gn,7m,l(a,b;V̄2)5bIn,7m,l

(1) (V̄2)
05430
-

-

O-

1aIn,7m,l
(2) (V̄2), which contains the electron-phonon co

pling strength, and the binding energy parameterb
5e2/e0\v0r 0 is defined through the relevant integrals

In,7m,l
(1) ~V̄2!5E

0

`

xdxrn,7m~x2/2!E
0

`

dy
e2y2/2

V̄2x21y2
Ll~y2!

~11!

andIn,7m,l
(2) (V̄2) whose definition is given by Eq.~24! of Ref.

3. These integrals can be calculated according to value
V̄25h̄2/ḡ2 in three different cases, for various values
quantum numbers (n,7m,l ). It should be pointed out thatV̄
plays an important role in the determination of the featu
of low-dimensional systems. In order to see this, it is su
cient to consider Eq.~10! in the absence of impurity and
electron-phonon interactions, that is, whena50 andb50.
First, one minimizes the resultant energy with respect toḡ

and h̄, and then obtainsḡ451/v̄2 and h̄451/v̄ i
2 . Finally,

substituting these results back into the related energy yie

Ēn,7m,l
(0) 5v̄~2n1m11!1v̄ iS l 1

1

2D7m
v̄c

2
, ~12!

which defines the well-known Fock-Darwin energy levels2 in
a confining potential and a magnetic field. Thus, the c
V̄251 (v̄5v̄ i) defines a QD that represents a 3D confin
ment, that is, quasi-zero-dimensional motion, embedded
three-dimensional material, whereasV̄2.1 (v̄.v̄ i) and
V̄2,1 (v̄,v̄ i) correspond to a QWW and QW that are
2D confinement~quasi-one-dimensional motion! and a 1D
confinement~quasi-two-dimensional motion!, respectively,
where all confinements are embedded in a 3D material.

The quantity of interest for cyclotron resonance expe
ments is the cyclotron mass, defined as

m̄n7ml* 5v̄c /@Ēn,7m,l~v̄c ,v̄ !2Ē0,0,0~v̄c ,v̄ !#, ~13!

which is renormalized in terms of the electron band mass
Eq. ~13!, only (0,0,0)→(n,7m,l ) transitions allowed by the
selection rules are taken into account, although one can
sider the cycylotron masses arising from the other allow
transitions between the excited states. Another impor
quantity we calculate is the polaronic contribution to the i
purity binding energies by defining the variation energy a

DEn,7m,l5Ēn,7m,l~a,b;v̄ !2Ēn,7m,l~0,b;v̄ !, ~14!

which is simply the difference between the energies in
presence and absence of LO phonons for three types of
finements, the QD’s, QWW’s, and QW’s, respectively.

III. RESULTS AND DISCUSSION

We now consider Eq.~10! in order to obtain the ground
and first-excited-state energies of impurity magnetopolar
in three different cases ofV̄, each of which corresponds to
physical case on certain conditions as pointed out in the
ceding section. First, one needs to evaluate integ
3-3
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In,7m,l
(1) (V̄2) and In,7m,l

(2) (V̄2), respectively. The integra

In,7m,l
(2) (V̄2) was explicitly evaluated in detail according

the values ofV̄ in three different cases, for different sets
quantum numbers in Ref. 3. The remaining integ
In,7m,l

(1) (V̄2) can also be evaluated by using the same te
niques described in Ref. 3, for the same sets of quan
numbers (n,7m,l ) we choose, so one obtains

I000
(1)~V̄2!5Ap

2

1

V̄2
F 0~V̄2!,

I0710
(1) ~V̄2!5Ap

2

1

V̄2 FF 0~V̄2!2
1

V̄2
F 1~V̄2!G , ~15!

I001
(1)~V̄2!5Ap

2

1

V̄2
@F 0~V̄2!1F 1~V̄2!2V̄2#,

with

F 0~V̄2!55
V̄

AV̄221
ln~V̄1AV̄221!, V̄2.1

1, V̄251

V̄

A12V̄2
arctan

A12V̄2

V̄
, V̄2,1

~16!

and

F 1~V̄2!

5

¦

1

2

V̄3

V̄221
F V̄2

1

2

1

AV̄221
ln

V̄1AV̄221

V̄2AV̄221
G ,

V̄2.1

1/3,

V̄251

1

2

V̄3

12V̄2 F 1

A12V̄2
arctan

A12V̄2

V̄
2V̄G ,

V̄2,1.

~17!

Thus, inserting Eq.~15!, together with Eqs.~16! and~17! and
the values ofIn,7m,l

(2) (V̄2) corresponding to the same sets
quantum numbers, into Eq.~10! provides an explicit expres
sion for the impurity magnetopolaron energy in a 3D ani
tropic confining potential, so one can finally perform t
minimization of Ēn,7m,l(ḡ,h̄) with respect toḡ and h̄,
which requires a numerical treatment.
05430
l
-

m

-

A. V̄2Äh̄2Õḡ2Ä1

This is the case that corresponds to takingv̄5v̄ i in Eq.
~10!, since h̄5ḡ. Therefore, this condition defines a bo
type confinement and represents a QD embedded in a t
dimensional material, so one obtains the result

Ēn,7m,l~ ḡ !5S 1

2ḡ2
1

1

2
v̄2ḡ2D S 2n1m1 l 1

3

2D7m
v̄c

2

2
2

p
Gn,7m,l~a,b;1!

1

ḡ
, ~18!

which has to be minimized with respect toḡ. Before treating
the ground- and first-excited-state energies of impurity m
netopolaron in QD, we first discuss the situation witha50
andb50. In this case, it can be easily seen that the variat
with respect to ḡ gives ḡ251/v̄, which yields Ēn,7m,l

(0)

5@2n1m1 l 1(3/2)#v̄7m(v̄c/2), as found in Eq.~12!; for
the zero magnetic field case,v̄' becomes equal tov̄ i , so
that Ēn,7m,l

(0) reduces to the Ēn,l
(0)5(2n11)v̄'1@ l

1(1/2)#v̄' , which is the well-known energy eigenvalues
a 3D isotropic oscillator. In the presence of a magnetic fie
and further restricting ourselves to the case ofv̄'50, we
come to the resultĒn,7m,l

(0) 5@n1(m7m)/21(1/2)#v̄c1@ l

1(1/2)#(v̄c/2), which is the energy eigenvalue of an ele
tron moving in a homogenous magnetic field and 1D pa
bolic potential.

Finally, in the presence of an impurity and the electro
phonon interaction, one can minimize Eq.~18! with respect
to ḡ with appropriate choices for the values ofa, b, and the
confinement parameteru'5uz5u•. In Fig. 1~a!, we plot the
ground- and first-excited-state energies of impurity magne
polarons in QD’s as a function of dimensionless cyclotr
frequencyv̄c , for some values ofa andb, at fixed confine-
ment length, i.e.,u•52, which corresponds to the casel •
52r 0. It is obvious from the results presented in Fig. 1~a!
that the magnetic field lifts the degeneracy of levels w
positive and negative values ofm, when no impurity and
electron-phonon interaction are present~dashed curves!,
since the magnetic field dependence of the relevant Fo
Darwin energy levels is given by Eq.~12!, that is, Ē000

(0)

53v̄/2, Ē0710
(0) 5(5v̄7v̄c)/2, andĒ001

(0)55v̄/2, and they be-

come Ē000
(0)53v̄ •/2, Ē0710

(0) 5Ē001
(0)55v̄ •/2 in the absence o

magnetic field, i.e.,v̄c50. One also notices, by comparin
the thin solid curves (a50,b51) and dashed ones in Fig
1~a!, that the presence of impurity shifts the energy spectr
to lower energies. Additionally, switching the electro
phonon interaction on~thick solid curves! yields each level
to further shift down to much deeper values. In order
understand better the influence of electron-phonon inte
tion on impurity electronic levels, we have also plotted t
binding energies of impurity magnetopolaron in a QD as
function of magnetic field in Fig. 1~b!, at a fixed confinemen
length of the QD. It can be seen that, by comparing solid a
3-4
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dashed curves, switching the electron-phonon interaction
results in very large binding energies, and they increase w
increasing magnetic field. Figure 2~a! displays the variation
of binding energies of the impurity magnetopolaron with t
confinement length of the QD for the same values of
parameters used in Fig. 1~b!, but at fixed magnetic field, i.e.
v̄c51. We observe from the figure that the binding energ
of impurity magnetopolaron increases with decreasing c
finement length of the QD, which is consistent with the u
certainty principle, i.e., more localization of the particle r
sults in an increase of its momentum and consequent
greater energy. To observe the combined effects of both
tial and magnetic confinements together with the binding

FIG. 1. ~a! Cyclotron frequency dependence of impurity ma

netopolaron energy levelsĒn,7m,l in a QD with u•52. The dashed
(b50) and thin lines (b51) represent the unperturbed energy le
els (a50), and they are denoted by the labelsn7ml and (n
7ml), respectively. The thick lines represents the perturbed en
levels, denoted by@n7ml#, with b51, ata53. ~b! Binding ener-
gies of impurity magnetopolaron as a function of cyclotron f
quency atu•52 andb51. The dashed and solid lines again rep
sent the unperturbed (a50) and perturbed (a53) levels.
05430
n
th

e
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rameterb on ground-state binding energy of impurity ma
netopolaron in the QD, we also give a plot displaying t
behavior of ground-state binding energy of impurity magn
topolaron as a function of the confinement length of the Q
with the same parameters of Fig. 1~a!, but at two different
values of magnetic field, i.e.,v̄c50 and 1 @Fig. 2~b!#. We
can see from the figure that, by comparing the dashed cu
with solid ones, the effect of magnetic field on the bindi
energy of impurity magnetopolaron begins to dominate w
increasing values of electron-phonon coupling strength
binding parameter.

Before presenting the numerical results on the cyclot
mass by means of the results obtained above, we shall gi

gy

-
-

FIG. 2. ~a! Binding energies of the impurity magnetopolaron
a function of confinement lengthu•, at fixed cyclotron frequency

i.e., v̄c51, and atb51. Again, the dashed and solid curves rep
sent the unperturbed (a50) and perturbed (a53) cases, respec
tively. ~b! Ground-state binding energy of impurity magnetopolar
as a function of confinement lengthu• in the absence and the pre
ence of magnetic field; fora50 andb51 ~A!, for a51 andb
51 ~B!, for a50 andb53 ~C!, and fora53 andb53 ~D!.
3-5
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simple analysis of Eq.~18! by discussing its asymptotic ex
pressions to provide better insight into the dependencie
Ēn,7m,l on a and v̄, from which cyclotron masses of a
impurity magnetopolaron subjected to a 3D parabolic c
finement potential can be obtained analytically. To do th
we minimize Eq.~18! with respect toḡ, and find a fourth-
order equation inḡ,

v̄2S 2n1m1 l 1
3

2D ḡ412Gn,7m,l~a,b;1!ḡ

2S 2n1m1 l 1
3

2D50,

whose asymptotic analysis can be made in some ce
cases. First, one can consider the case of strong confine
and small values ofa andb, i.e., v̄@a,b, and then obtains
ḡ251/v̄. In this case, the excited-state energies are obta
as

Ēn,7m,l5S 2n1m1 l 1
3

2D v̄7m
v̄c

2

2
2

p
Av̄Gn,7m,l~a,b;1!. ~19!

Thus, the renormalized cyclotron mass associated with
transitions between the ground and excited states are fo
to be in the form

m̄n7ml* 5v̄cH ~2n1m1 l !v̄7m
v̄c

2
2

2

p
Av̄@Gn,7m,l~a,b;1!

2G0,0,0~a,b;1!#J 21

, ~20!

which holds approximately for v̄@a,b. The other
asymptotic expression for the excited-state energies ca
obtained in the case of large values ofa and b and small
confinements, i.e.,v̄!a,b. In this limit, the variational pa-
rameter minimizing the energy is found asḡ5p(2n1m
1 l 1 3

2 )/2Gn,7m,l(a,b;1), so that by substituting this roo
back into Eq.~18!, the excited-state energies of an impur
magnetopolaron in a QD become

Ēn,7m,l52
2

p2

Gn,7m,l
2 ~a,b;1!

S 2n1m1 l 1
3

2D 7m
v̄c

2

1
1

8
v̄2S 2n1m1 l 1

3

2D 3 p2

Gn,7m,l
2 ~a,b;1!

,

~21!

from which, by substituting this back into the definition
the renormalized cyclotron mass given by Eq.~13!, one can
obtain an explicit analytical expression for the releva
renormalized cyclotron masses, depending onv̄, a, andb.
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Figures 3~a! and 3~b! show the variation of the renormalize
cyclotron masses associated with the first three transit
(0,0,0)→(n,7m,l ) of impurity magnetopolaron in a QD
with both dimensionless cyclotron frequencyv̄c for the fixed
value of dimensionless confinement lengthu•5A2/v̄ • @Fig.
3~a!#, and dimensionless confinement length for the re
nance value of cyclotron frequency, i.e.,v̄c51 @Fig. 3~b!#,
respectively. For comparison, cyclotron masses for th
transitions in the absence and the presence of an elect
LO-phonon interaction are represented by dashed and s
curves and are abbreviated as (n,7m,l ) and @n,7m,l #, re-
spectively. Both the dotted and solid curves are forb51.
One notices, by comparing the solid and dotted curves
Fig. 3~a!, that for the transition (0,0,0)→(0,21,0) the influ-
ence of the electron-phonon interaction on the related cy
tron mass becomes more enhanced with increasing mag

FIG. 3. The renormalized cyclotron massm̄n,7m,l* of the impu-
rity magnetopolaron in a QD as a function of~a! dimensionless
cyclotron frequency atu•52 and ~b! dimensionless confinemen

length atv̄c51, for b51. The dashed and solid lines represent t
transitions (0,0,0)→(n,7,m,l ) with a50 and the transitions
@0,0,0#→@n,7,m,l # with a53, for b51, respectively.
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field, compared to those of other transitions, and that
cyclotron mass of the transition (0,0,0)→(0,1,0) tends to
the bare band mass. As can be seen from Fig. 3~b!, increasing
the degree of confinement yields a decrease in relevant
clotron masses.

In the framework of this approach, one can also anal
the polaronic contribution to the energy levels of the imp
rity magnetopolaron in the case of strong confinement
using Eq.~14!, and finds its approximate expression as

DEn,7m,l52
2

p
Av̄@Gn,7m,l~a,b;1!2Gn,7m,l~0,b;1!#,

which is independent ofb. To see this, one can easily calc
late the polaronic correction to the ground-state energy

find DE0,0,052aAv̄/p. In the contrary case, i.e., in th
case of large values ofa andb and small confinements, on
uses Eq.~21! for the definition of variation energy, and the
obtains the polaronic correction to the ground-state energ
DE0,0,052(a12A2b)/3p, by neglecting the contribution
from the last term in Eq.~21! which is proportional tov̄2.

B. V̄2Äh̄2Õḡ2Ì1

This condition,h̄2.ḡ2, allows us to keep the confinin
potential only in the lateral plane and to takev̄ i50, so that
electrons are free to move along thez axis. Therefore, this
case defines a 2D confinement, quasi-one-dimensional
tion, and represents a QWW embedded in a 3D mate
Therefore, one needs to minimize

Ēn,7m,l~ ḡ,h̄ !5S 1

2ḡ2
1

1

2
v̄2ḡ2D ~2n1m11!7m

v̄c

2

1S 1

2h̄2
1

1

2
v̄ i

2h̄2D S l 1
1

2D
2

2

p
Gn,7m,l~a,b;V̄2.1!

h̄

ḡ2
~22!

with respect to bothh̄ and ḡ, with an appropriate choice o
the parametersa andb and the confinement parameteru' .
In Fig. 4~a!, we plot the ground- and first-excited-state en
gies of an impurity magnetopolaron in QWW as a functi
of magnetic field, i.e.,v̄c , whose behavior is, at a firs
glance, similar to that obtained in a QD. But, it is appare
from the comparison of Figs. 4~a! and 1~a! that (001) is not
split in the absence of both the impurity and electron-phon
interaction, since, from Eq.~12!, magnetic field dependen
cies of those energy levels are now given asĒ000

(0)5Ē001
(0)5v̄

andĒ0710
(0) 52v̄7(v̄c/2). Additionally, two points should be

noted, by comparing the thin solid curves with dashed on
and dashed curves with thick solid ones; the first is t
(000) and (001) levels have no longer the same energie
the presence of an impurity, i.e., they are split~thin solid
curves! and further shifted down to lower energy values. T
05430
e

y-

e
-
y

d

as

o-
l.

-

t

n

s,
t
in

second point concerns the presence of the electron-pho
interaction, in which each level is further shifted down~thick
solid curves!.

In Figs. 4~b! and 4~c!, cyclotron masses for the transition
(0,0,0)→(n,7m,l ) of the impurity magnetopolaron calcu
lated from Eq.~10! are plotted as a function of both dimen
sionless cyclotron frequency@Eq. 4~b!# and dimensionless
confinement length@Fig. 4~c!#, for the same values of the
parameters used in Fig. 1. Again, the solid and dashed cu
correspond to the presence and the absence of the elec
phonon interaction, respectively. The behavior of cyclotr
masses for the relevant transitions under the variation of b
magnetic field and confinement length of the QWW is d
ferent from those found in the QD even in the absence
electron–LO-phonon coupling. Although their behavior
nearly the same at higher magnetic fields, they show q
different behavior at low magnetic fields, particularly, arou
v̄c51. In particular, the cyclotron mass for the transitio
(0,0,0)→(0,0,1) behaves rather differently even in the a
sence of the electron–LO-phonon interaction as seen f
Fig. 4~b!

C. V̄2Äh̄2Õḡ2Ë1

The characteristic condition of this case ish̄2,ḡ2. Here,
it is possible to takev̄'50, that is, a confining potentia
along thez axis keeps the electrons moving in the late
plane freely. Therefore, this case defines a quasi-t
dimensional motion with 1D confinement and represent
QW embedded in a 3D material. Hence, one can easily
the ground- and first excited-state energies of the impu
magnetopolaron energy by using Eq.~22!, provided that one
now inserts integralsIn,7m,l

(1) (V̄2,1) andIn,7m,l
(2) (V̄2,1) in

the related equation and then performs the minimization w
respect to bothh̄ andḡ. In Fig. 5~a!, we plot the ground- and
first-excited-state energies of impurity magnetopolaron i
QW as a function of magnetic fieldv̄c . The behavior of
energy spectra of impurity magnetopolaron in a QW un
the variation of magnetic field is quite different from those
the QD and QWW, since now the magnetic field depende
of the Fock-Darwin energy levels are given in the for
Ē000

(0)5(v̄c1v̄ i)/2, Ē0710
(0) 5(2v̄c7v̄c1v̄ i)/2 and Ē001

(0)

5(v̄c13v̄ i)/2, and they are linear inv̄c , in the absence of
the electron-phonon interaction and impurity. The prese
of an impurity yields a splitting of (0 – 10) and (000) lev
els, and energy levels shift down. The presence of
electron-phonon interaction makes each level shift furt
down as well.

Figures 5~b! and 5~c! show the relevant cyclotron masse
of the first three transitions as a function of both dimensio
less cyclotron frequency@Fig. 5~b!# and dimensionless con
finement length@Fig. 5~c!#, respectively, with the same pa
rameters used in Figs. 3 and 4. The characteristic feature
the cyclotron mass for the transitions (0,0,0)→(n,7m,l ) in
the QW are quite different from those found in both the Q
and QWW. In particular, their variation with the confineme
length at fixed magnetic field is noticeable, as seen from F
5~c!.
3-7
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FIG. 4. ~a! Cyclotron frequency dependence of impurity ma

netopolaron energy levels,Ēn,7m,l , in a QWW with u'52. Same
parameters are used for each case as in Fig. 1~a!. The renormalized

cyclotron massm̄n,7m,l* of the impurity magnetopolaron in a QWW
as a function of~b! dimensionless cyclotron frequency atu'52 and

~c! dimensionless confinement length atv̄c51, for b51. The
dashed and solid lines represent the transitions (0,0,0→
(n,7,m,l ) with a50 and the transitions@0,0,0#→@n,7,m,l #
with a53, for b51, respectively.
05430
FIG. 5. ~a! Cyclotron frequency dependence of impurity ma

netopolaron energy levelsĒn,7m,l in a QW with ui52. The same
parameters are used for each case as in Fig. 1~a!. The renormalized

cyclotron massm̄n,7m,l* of the impurity magnetopolaron in a QW a
a function of ~b! dimensionless cyclotron frequency atuz52 and

~c! dimensionless confinement length atv̄c51, for b51. The
dashed and solid lines represent the transitions (0,0,0→
(n,7,m,l ) with a50 and the transitions@0,0,0#→@n,7,m,l #
with a53, for b51, respectively.
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Figure 6~a! presents a comparison of the magnetic fie
dependence of the ground-state binding energy of impu
magnetopolaron in a QD with the results of those found i
QW and QWW at fixed values ofa andb andu'5uz5u•
52. It is clear from this graph that the contribution of L
phonons to the impurity ground-state binding energy
greater than those found in a QW and QWW, up to a criti
value of the magnetic field. At this value of the magne
field, the binding energy of the impurity magnetopolaron in
QW becomes larger than that in a QWW. This phenome
arises from the existence of an additional magnetic confi
ment term in the lateral plane; in other words, the QW c
becomes a 3D confinement in quasi-zero-dimensional
tion similar to a QD, whereas the QWW system still has
spatial confinement together with an extra magnetic confi

FIG. 6. ~a! Ground-state binding energy of the impurity magn
topolaron in QD, QW, and QWW structures as a function of dim
sionless cyclotron frequency.~b! First two excited-state binding en
ergies of the impurity magnetopolaron as a function of
dimensionless cyclotron frequency in the same structures.
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ment in the lateral plane. This feature can also be obser
for excited states, as seen from Fig. 6~b!.

The comparison of the ground-state binding energy of
purity magnetopolaron for three types of confinement in
absence (v̄c50) and in the presence (v̄c51) of a magnetic
field as a function of confinement length is shown in Fig
7~a! and 7~b!, respectively. An inspection of Fig. 7~a! reveals
that the ground-state binding energy of the impurity mag
topolaron is more enhanced in a more confined system in
absence of the magnetic field, and they coalesce smoo
into a bulk value when the confinement degree decrease
expected. However, the existence of a magnetic field cau
the phenomena described above, i.e., due to the additi
magnetic confinement in the lateral plane, the ground-s
binding energy of the impurity magnetopolaron in a QW
larger than that in a QWW, up to a certain value of t

-
FIG. 7. Ground-state binding energy of the impurity magne

polaron as a function of confinement length~a! in the absence and
~b! the presence of a magnetic field.
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confinement length; as the confinement length increases,
is reversed as seen from Fig. 7~b!.

To conclude the discussion, we summarize the qualita
aspects of present work. Our present investigations dem
strate that the complicated dependencies of the ground-
first-excited-state energies of impurity magnetopolaron s
jected to an anisotropic confining potential on spatial c
finement parameters and magnetic field together with
electron-phonon coupling strengtha and binding energy pa
rameter b can be examined with the use of variation
scheme given in the present paper, which allows one to s
the effect of electron-phonon interaction on energy levels
the impurity magnetopolaron, not only for a QD system b
also for QW and QWW systems. As is expected, by sett
b50, Eq.~10! can be reduced to the magnetopolaron ene
found in Ref. 3, whose authors have checked their res
with various asymptotic limits and conclude that they un
all expressions for the ground-state energy of the magn
polaron found by other authors cited therein. According
we conclude that the binding energies of the impurity m
netopolaron have more pronounced effects when both m
netic and spatial confinement take place. Additionally, in
absence of magnetic field, the analysis has shown that
most pronounced effects due to the electron–LO-phonon
teraction in the binding energies of the impurity magneto
laron have been found in the most confined structure, i.e
the QD, and then in the QWW. But, in the presence o
.

v.

y
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magnetic field, the binding energies of the impurity magn
topolaron in a quasi-2D system with a 1D confinement, i
in a QW, begin to be more enhanced aroundv̄c51 com-
pared with those found in a quasi-1D system with 2D co
finement, i.e., in a QWW. This phenomenon is due to the f
that there exists an additional term in the Hamiltonian t
leads to magnetic confinement in the lateral plane and
duces a QW system, in a sense, to become a 3D confine
in quasi-zero-dimensional motion similar to a QD, where
the QWW system is still a quasi-two dimensional confin
structure even in the presence of such a term. We have
investigated the polaronic correction, associated w
electron–LO-phonon coupling, to the cyclotron mass of
impurity magnetopolaron confined in a 3D parabolic pote
tial, and concluded that the presence of electron–LO-pho
interaction leads to important changes in the behavior of
clotron mass under the variation of magnetic field in co
fined structures. In summary, by presenting a detailed c
parative analysis of the effects of quantum confinements
magnetic field on the ground- and first-excited-state ener
of the impurity magnetopolaron in a parabolic QD, QW, a
QWW, we have shown that the binding energies of the i
purity magnetopolaron increase with increasing degree
spatial confinement and there also occurs an additional
crease in the related binding energies in the presence
magnetic field.
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