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The polaronic effect on the low-lying energy levels of an electron bound to a hydrogenic impurity in a
three-dimensional3D) anisotropic harmonic potential subjected to a uniform magnetic field is investigated by
introducing a trial wave function constructed as a direct product form of an electronic part and a part of
coherent phonons. Binding energies of impurity magnetopolarons corresponding to each level are analyzed in
terms of the effects of both quantum confinement and magnetic field. Furthermore, a detailed discussion of the
effects due to the electron—LO-phonon interaction and the effects of both magnetic field and quantum con-
finements on cyclotron masses asssociated with the transitions between ground and first-excited states of the
bound electron is also given in this paper. Our results show that the polaron effect arising from the electron—
LO-phonon interaction and confining effects together with the effect of magnetic field have a great influence on
the impurity binding energies and on cyclotron masses associated with transitions between the relevant states.
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[. INTRODUCTION found in Ref. 4. The first theoretical investigation connected
with the calculation of binding energy of the ground state of
In recent years, there has been a remarkable interest hydrogenic donor as a function of QW size .ha}s been
shown by both experimental and theoretical physicists in thavorked out by Bastartwithin the framework of variational
study of low-dimensional nanostructures, not only from theapproach. Later, some authors modifiés work and then
point of view of fundamental physics but also from their €xtended their studies to cyllndrldarecyanglglaﬁ and finite
potential use in designing electronic and optoelectronicylindricaf QWW's, and also to sphericd™*QD’s by ap-
devices'? Such low-dimensional systems, depending Onplym'g vqr|at|onal procedure within the effective mass ap-
their ways of confining electrons, can be classified into thre®'oXimation. The problem of an electron bound to a hydro-
types: quasi-two-dimensional quantum welBW's), quasi- genic impurity interacting Wlth a L_O_-phonon field, cglled the
one-dimensional quantum wires or quantum-well wiresMmpPurity polaron, was studied initially by Feebi and

(QWW’s) and quasi-zero-dimensional quantum d@@®’s). Tomak®in QW structures within the adiabatic approach, and

; ) e later by Degani and Higito'* within the random phase ap-
Due to the fact that reduction of dimensionality of the .SyStemproximation. The effects of electron-phonon coupling on im-
to two, one, or zero dimensions, by a spatial confining po-

. ; . " purity binding energies have also been considered in purely
tential that restricts the motions of electrons to a plane, Ilne2D polar semiconductot and parabolic QW17 within

or point, leads to a strong si_ze quantization (_)f energy _Ievel§he framework of Feynman-Haken path integral theory, and
of an electron, whereby optical and electronic properties ofy, infinite QW's#1%and QW's with finite potential barrié}
electrons are modified in these types of low-dimensionayithin the framework of variational approaches based on the
quantum structures Compared with those of the bulk. Furtherone_ or two_parameter tria' wave function method_ Many
more, it is well known that the polaron effects arising from confinement models containing various electron-phonon in-
the electron-phonon interaction are enhanced by confiningeractions within different approximation schemes have been
the electron motion to two, one, or zero space dimensionstudied in QWW’s2! and in sphericad? parabolic?®?* and
and thus strongly influence the above-noted physical propeeylindrical QD’s?>? The main result of these works are that
ties of electrons in these systems as well. Consequentlyhe impurity binding energy increases from its bulk value as
studying the fundamental role of the effects due to electronthe dimension is reduced, and it is enhanced by the presence
phonon interactions as well as of the effects connected witlof the electron-phonon interaction. All the theoretical works
reducing the dimensionality of the system on electronic levteferred to here have been performed in the absence of a
els of an electron has become one of the main subjects of theagnetic field and were generally related to the calculation
current theoretical as well as experimental works in this fieldof ground-state binding energy of impurity polaron. There
(see Ref. 3 and references thejein also exist a few studies concerned with the analysis of
In these works, much attention has been paid to the studgxcited-state energies of impurity polaron subjected to a
of the properties of impurities, and particularly impurity- magnetic field in these low-dimensional structures, in par-
phonon interaction effects in low-dimensional structuresticular, in QD systems.
since the presence of an impurity influences the above- In the presence of an external magnetic field that leads to
mentioned properties of electrons as well. There has beenaquantization of electron energy spectrum into Landau lev-
number of theoretical investigations dealing with this prob-els, at most, two excited states of impurity magnetopolaron
lem in the literature. A review of the results of early work have been studied in finte?® and infinité¢® QW's, in para-
without quantum confinement effects in this problem can bebolic QWW's2%3! and in 2D parabolic QD¥3* Very re-
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cently, the low-lying spectrum of a two-electron QD with a field along thez direction. The Frhlich Hamiltonian of the
confining parabolic potential in the presence of an on-centesystem is given by

Coulomb impurity is studied by Leet al® within the exact

numerical diagonalization scheme. From the results of these H= HE+E ﬁwobébq+2 (quqeiq-r+ He), (1)
investigations, it has been concluded that binding energy of q q

impurity magnetopolaron depends sensitively on the Madyhere

netic field strength, as well as on the confinement length.

Up to now, there have been also several experimental 1 e
inv_est?gation%6 reporting that, in interpreting the cyclotron HE:ﬂ(p"_ A
emission and absorption spectra, polaronic effects play an .
important role, particularly in such low-dimensional systemss the electronic part, and
The detailed theoretical calculations on the corrections to the
cyclotron mass induced by the electron-phonon interaction V2= (ho )2( 3)
for magnetopolaron and impurity magnetopolaron confined q 0 qf+q§
to low-dimensional structures have been previously carried ) ) )
out in the literature, for example, in purely two-dimensionalS, the electron-phonon interaction amplitude. In Eg),

(2D) systems and heterostructures by using the memorfq (Bg) is the creationannihilatio) operator of an optical
function approacH and in QW’s by using random phase Phonon with a wave vectay=(q, ,q,) and an energyi w,
approximatior® and perturbative method8.Recent discus- andp andr=(r ,z) denote the electron momentum and
sions have focused on the study of the cyclotron mass dposition operators, respectively. andr, are the electron-
magnetopolaron in parabolic QI*$ and impurity magneto- Phonon coupling constant and polaron radius, respectively.
polaron in 2D parabolic QD8 by using different approxi- By choosing the symmetrical Coulomb gaugé
mation schemes. The main observation and outcome of theseB(—Y,x,0)/2 for the vector potential, Eq2) can then be
investigations are that polaronic effects are of great imporwritten as a sum of Hamiltonians for an isotropic 2D har-
tance in determining the spectral properties of these lowmonic oscillator in the lateral plane with mags and the
dimensional materials. frequencyw®= (w/2)?+ »? plus a term of {/2)L,, and a

The purpose of the present paper is to study the deperk:D oscillator along the axis with massu and frequency
dence of low-lying energy levels of impurity magnetopo- w|, in the absence of an impurity. In our variational scheme,
laron subjected to a 3D parabolic potential on both magnetigve choose the electronic part of the trial wave function as a
field and spatial confinement length. To achieve this, we redirect product of the basis of these two oscillators in the
strict ourselves to the case of bulk LO phonons and introduceresence of impurities, since the impurity magnetopolaron
a trial wave function taken to be the direct product of anwe consider is subjected to not only the magnetic confine-
electronic part and a part of coherent phonons. We are alsment in the lateral plane but also to a 3D anisotropic spatial
concerned with the study of the effects due to the electron-€onfinement in all directions. Consequently, the variational
LO-phonon interaction, quantum confinement, and magnetistate vector for the Hamiltonian in EQl) is composed of
field on the cyclotron masses associated to the transitiondirect products of electronic and phonon contributions
between the ground and first-excited states of an electron
bound to a hydrogenic impurity in a 3D parabolic potential. (W mn=In,Fm&D(f)[0)ph, (4)

We have found an analytical expression for the impurity, hare In,¥m,)=|n,Tm)®|l) represent the basis of an
magnetopolaron energy that allows us to perform a systeMysiectron in a 3D anisotropic harmonic potential subjected to

atical analysis of the effects of both magnetic field and spaz nitorm magnetic field in thedirection, and its coordinate
tial confinement on the binding energies of impurity magne-,

: ) representation is given by
topolaron in QD’'s, QWW'’s, and QW'’s. We establish a
unified treatment that allows us to make comparisons be- (rln,=m,1) = =m(r D h(2)
tween the results of binding energies of impurity magneto- '

2 2

e

1
_ T 22 T~ 29
eo|r|+2Merl+2MwHZ (2

4o
V

)

polarons in these three systems. The paper is organized as =Np zm(7, n)efysz’z(xiiy)anm( y?r?)
follows. In the next section, we construct a trial wave func- )5
tion as a direct product of the electronic and phonon parts, X e 17H (n2), (5)

and then obtain the energy levels of impurity magnetopowheren andy are variational parameters. In E8), Ny + |

laron in terms of certain variational parameters. In Sec. Ill,. h lizati tant, and the functiad® and H
we present the results and discussions, together with a cofy (N€ normaiization constant, and the functidrys and A, .
clusion. are associated Laguerre polynomials and Hermite polynomi-

als, respectively. In Eq4), D(f) is the well-known Lee-
Low-Pines transformation, by which coherent boson states
are generated through the application on the zero-phonon
Il. THEORY state|0),, and is given by

We consider an electron bound to a Coulomb impurity,
that is interacting with bulk LO phonons and subjected to a — T

. -ting with P Subj . D(f)=exg > (b} fe—bg f3)|, 6)

3D anisotropic harmonic potential and a uniform magnetic
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wheref is the variational function. With this choice of trial +a|(2) (92) which contains the electron-phonon cou-

wave function, the expectation value of the impurity magne-p“ng strength and the binding energy parameier
topolaron Hamiltonian given by Eq1) can then be written  —e2/¢ 7 wor, is defined through the relevant integrals
in the formE,, 5 =EE +rn|+En +m, » Where the first term

7y2/2
2 1 i 15 <92>=f xdXpp = m 2/2>f dyT (y?)
n+m|(7 n)= 2.7 +2,Mw —|(2n+m+1)Fm 5 QX+y
2p ¥ (12)
2 , 1,1 1 andlﬁf)ImJ(ﬁz) whose definition is given by E¢24) of Ref.
+ 2u 7 topo ? I+3 3. These integrals can be calculated according to values of
02%= 5%y in three different cases, for various values of
e? [ d% " ‘ ; quantum numbersn, = m,1). It should be pointed out th&}
- 27l Fpn»im( Ly)eikz,m) () plays an important role in the determination of the features
of low-dimensional systems. In order to see this, it is suffi-
is the electronic part, in which cient to consider Eq(10) in the absence of impurity and
, electron-phonon interactions, that is, wher 0 and3=0.
1 1 ﬂeik.r First, one minimizes the resultant energy with respecy to
Irl 2#2) K2 and 7, and then obtaing/*=1/w? and %"= 1/w{ . Finally,

is used. and the last term substituting these results back into the related energy yields

o "
+m?, (12

I1
"2

=0) .
EIn,Im,Izg [ﬁw0|fq|2+vqfqpn,$m(%_ »Y)p1(dz,7m) En,:m,l w(2n+m+ 1)+w”

ViR * 8 which defines the well-known Fock-Darwin energy ledeéts
+Vafapnzm(dL,v)pf (Az, )] ® 4 confining potential and a magnetic field. Thus, the case

is the part including the electron-phonon interaction termQ?=1 (o= w||) defines a QD that represents a 3D confine-
with the matrix elementp,~n(q, ,¥) andp,(q,,7), whose ment, that is, quasi-zero-dimensional motion, embedded in a
full description and various values for different sets of quanthree-dimensional material, where&s?> 1 (“’>‘”H) and

tum numbers i, +m,l) can be found in Ref. 3. Minimiza- 24 (w<w‘) correspond to a QWW and QW that are a
tion of E, = with respect tofg yields 2D confinement(quasi-one-dimensional motiprand a 1D
confinement(quasi-two-dimensional motion respectively,
9 where all confinements are embedded in a 3D material.
The quantity of interest for cyclotron resonance experi-
ments is the cyclotron mass, defined as

*

fq=— ﬁ_a(j()p:,Im(qL Y)er(dz, 7).

After insertingf, back into Eq.(8), converting the sum over

k into an integral ork and then changing the integral vari- w.ITE. E 13

ablesq, /\2y=x and q,/\25=y, and similarlyk, /2y nemi=wol[Enzmi(we, @) ~Egodwe,0)), (13

=X ande/\/Enzy in Eq. (7), the impurity magnetopolaron Which is renormalized in terms of the electron band mass. In

energy becomes Eqg.(13), only (0,0,0)—(n,+=m,l) transitions allowed by the
selection rules are taken into account, although one can con-

m

_ _ 1 we sider the cycylotron masses arising from the other allowed
Ensmi(v.m)=| =+ 50%*|(2n+m+1)Fm—" transitions between the excited states. Another important
242 2 2 . : . i .
Y quantity we calculate is the polaronic contribution to the im-
1 1 1 purity binding energies by defining the variation energy as
(Tz + E;Hz 772> | + E _ _ . _
277 AEn,Im,I:En,Im,I(‘IuB;w)_En,Im,I(OuB;w)y (14)

_ which is simply the difference between the energies in the
O =mi(a,Bi)=. (100 presence and absence of LO phonons for three types of con-
Y finements, the QD’s, QWW'’s, and QW'’s, respectively.

By introducing new dimensionless parameteli$ywo) >y

=1/y and (i/ pwo)¥?n=1/7, energy and other parameters ll. RESULTS AND DISCUSSION
are made dimensionless and expressed in terms of the LO-
phonon frequencyw,. Accordingly the dimensionless con-

finement frequenciegl(u) are directly related to the dimen

We now consider Eq(10) in order to obtain the ground-

and first-excited-state energies of impurity magnetopolarons
in three different cases @2, each of which corresponds to a

sionless confinement lengths ;) =1, ;) /ro= 2/%(\| physical case on certain conditions as pointed out in the pre-
Eq. (10, the function G, = (a,B; 0?)= ,8|§]1)+m',((22) ceding section. First, one needs to evaluate integrals
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[(1)

n,=m,l

(2)

n,=m,l

(Q?) and | (Q3?), respectively. The integral
1) (Q?) was explicitly evaluated in detail according to

PHYSICAL REVIEW B 65 054303
A Q2=n¥y*=1

This is the case that corresponds to taking w| in Eq.

the values of} in three different cases, for different sets of (10), since 7= . Therefore, this condition defines a box
quantum numbers in Ref. 3. The remaining integraltype confinement and represents a QD embedded in a three

[(1)

n,+m,l

((_)2) can also be evaluated by using the same techdimensional material, so one obtains the result

niques described in Ref. 3, for the same sets of quantum

numbers (,+m,l) we choose, so one obtains
_ 1 _
W 02)= | = 70,2
1664 ©22) = \[252]: (02,

—, \/; 1
o 10({2%)= 592

1

1) — ]—'O((_lz)—E}'l((_lz)l, (15)

IVORE \@%[;ﬂ(ﬁzwﬁ(ﬁz)—ﬁz],

with

2|

———In(Q+VQ2%-1),

0%-1

0%>1

>

P

0%=1 (16)

Q 1-02
—arctar———,

0%<1

\

17

1 03 1

E 1—(_22 ,l1_52

02<1.

arctan

Thus, inserting Eq(15), together with Eqs(16) and(17) and

the values of 2L (Q?) corresponding to the same sets of
guantum numbers, into E¢L0) provides an explicit expres-

E. )= 1 10— 3\ _ o
En,im,l( )= TZ+§w Y 2n+m+|+§ +m7
2 1
__gn,im,l(avﬂ;l):, (18
. Y

which has to be minimized with respect 4o Before treating
the ground- and first-excited-state energies of impurity mag-
netopolaron in QD, we first discuss the situation with 0
andB=0. In this case, it can be easily seen that the variation

with respect toy gives y?=1/w, which yields EQ) |
=[2n+m+1+(3/2)]o T m(w/2), as found in Eq(12); for
the zero magnetic field case, becomes equal tey, so
that E© reduces to the E)=(2n+1)w, +II

n,=m,l
+(1/2)]w, , which is the well-known energy eigenvalues of

a 3D isotropic oscillator. In the presence of ar_nagnetic field,
and further restricting ourselves to the casewgf=0, we
come to the resulEP)L  =[n+(mTm)/2+(1/2)]w.+[!

n,+m,l —
+(1/2)](w/2), which is the energy eigenvalue of an elec-
tron moving in a homogenous magnetic field and 1D para-
bolic potential.
Finally, in the presence of an impurity and the electron-
phonon interaction, one can minimize E@8) with respect

to y with appropriate choices for the values®f 8, and the
confinement parameter, =u,=u.. In Fig. 1(a), we plot the
ground- and first-excited-state energies of impurity magneto-
polarons in QD’s as a function of dimensionless cyclotron

frequencyw,, for some values ofr and B, at fixed confine-
ment length, i.e.u.=2, which corresponds to the cake
=2ry. It is obvious from the results presented in Figa)l
that the magnetic field lifts the degeneracy of levels with
positive and negative values of, when no impurity and
electron-phonon interaction are preseglashed curves
since the magnetic field dependence of the relevant Fock-

Darwin energy levels is given by Ed12), that is, Eg%{,
=3w/2, EQ = (50F w)/2, andEY)=

5w/2, and they be-
come EQ=3w./2, E{2,,=E{¥=5w./2 in the absence of

magnetic field, i.e.w.=0. One also notices, by comparing
the thin solid curves ¢=0,8=1) and dashed ones in Fig.
1(a), that the presence of impurity shifts the energy spectrum
to lower energies. Additionally, switching the electron-
phonon interaction offthick solid curveg yields each level

to further shift down to much deeper values. In order to
understand better the influence of electron-phonon interac-

sion for the impurity magnetopolaron energy in a 3D anisojon on impurity electronic levels, we have also plotted the
tropic confining potential, so one can finally perform the hinding energies of impurity magnetopolaron in a QD as a

minimization of En,;m,,(;, n) with respect toy and 7,
which requires a numerical treatment.

function of magnetic field in Fig.(b), at a fixed confinement
length of the QD. It can be seen that, by comparing solid and
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FIG. 1. (a) Cyclotron frequency dependence of impurity mag- b)

netopolaron energy levels, -, in a QD withu.=2. The dashed FIG. 2. (a) Binding energies of the impurity magnetopolaron as
(B=0) and thin lines B=1) represent the unperturbed energy lev- a function of confinement length., at fixed cyclotron frequency,
els («=0), and they are denoted by the labelsml and "  ie. w,=1, and atB=1. Again, the dashed and solid curves repre-

+ml), respectively. The thick lines represents the perturbed energygent the unperturbedu=0) and perturbed¢=3) cases, respec-
levels, denoted bjn+ml], with B=1, ata=3. (b) Binding ener- tively. (b) Ground-state binding energy of impurity magnetopolaron
gies of impurity magnetopolaron as a function of cyclotron fre- as a function of confinement length in the absence and the pres-
guency at,=2 andg=1. The dashed and solid lines again repre- ence of magnetic field; for=0 and=1 (A), for a=1 andg
sent the unperturbedy=0) and perturbedd¢=3) levels. =1 (B), for =0 andB=3 (C), and fora=3 andB=3 (D).

dashed curves, switching the electron-phonon interaction orameter on ground-state binding energy of impurity mag-
results in very large binding energies, and they increase withetopolaron in the QD, we also give a plot displaying the
increasing magnetic field. Figurda& displays the variation behavior of ground-state binding energy of impurity magne-
of binding energies of the impurity magnetopolaron with thetopolaron as a function of the confinement length of the QD,
confinement length of the QD for the same values of thewith the same parameters of Figial, but at two different
p_arameters used in Flg(lﬂ), but at fixed magnetic fleld, i.e., values of magnetic field, i_e;C:O and 1[F|g Z(b)] We
w:=1. We observe from the figure that the binding energiesan see from the figure that, by comparing the dashed curves
of impurity magnetopolaron increases with decreasing conwith solid ones, the effect of magnetic field on the binding
finement length of the QD, which is consistent with the un-energy of impurity magnetopolaron begins to dominate with
certainty principle, i.e., more localization of the particle re-increasing values of electron-phonon coupling strength and
sults in an increase of its momentum and consequently hinding parameter.

greater energy. To observe the combined effects of both spa- Before presenting the numerical results on the cyclotron
tial and magnetic confinements together with the binding pamass by means of the results obtained above, we shall give a
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simple analysis of Eq(18) by discussing its asymptotic ex-
pressions to provide better insight into the dependencies of
En +m On a and o, from which cyclotron masses of an

impurity magnetopolaron subjected to a 3D parabolic con-
finement potential can be obtained analytically. To do this,

we minimize Eq.(_18) with respect to;, and find a fourth-

order equation iny,

whose asymptotic analysis can be made in some certair
cases. First, one can consider the case of strong confinemer
(a)

and small values of and g, i.e.,5>a,,8, and then obtains
y?=1lw. In this case, the excited-state energies are obtainec

as

3\ _
2n+m+i+ 3 Y +2G, smi(a,Bi1)y

w2

3
2n+m+|+§)=0,

2 I+~ |oF o
n+m+ +§ w+m?

2 =
~ VoG, (@ Bid).

En,im,I:

Thus, the renormalized cyclotron mass associated with the
transitions between the ground and excited states are founc

to be in the form

(2n+ m+|);Im 5

- -
hFml— Wc

1
_go,o,o(ayﬂ;l)]] .

. 2~
w__ ;\/;[gn;m,l(aug;l)
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which holds approximately for w>a,3. The other

obtained in the case of large values @fand 8 and small

confinements, i.ep<a,B. In this limit, the variational pa-

rameter minimizing the energy is found as=m(2n+m

+I+§)/2gn;m'|(a,ﬁ;l), so that by substituting this root
back into Eq.(18), the excited-state energies of an impurity

magnetopolaron in a QD become
hemi(@Bl)

n,xm,l =
7T2

2n+m+|+§

3

i 2n+m+1+
gw n+-m E

_i gn,Im,I m=s

G cmi(a,Bi1)

r

(21)

FIG. 3. The renormalized cyclotron malsf\;;m', of the impu-

ity magnetopolaron in a QD as a function @) dimensionless
?clotron frequency ati.=2 and (b) dimensionless confinement
length atw.=1, for 3=1. The dashed and solid lines represent the

asymptotic expression for the excited-state energies can bC
transitions (0,0,03»(n,*,m,l) with «=0 and the transitions

[0,0,0]—[n,*,m,l] with «=3, for B=1, respectively.

Figures 3a) and 3b) show the variation of the renormalized
cyclotron masses associated with the first three transitions

(0,0,0)—(n,*m,l) of impurity magnetopolaron in a QD

with both dimensionless cyclotron frequeney for the fixed

value of dimensionless confinement length= \2/w. [Fig.

3(a)], and dimensionless confinement length for the reso-
nance value of cyclotron frequency, i.e.=1 [Fig. 3(b)],
respectively. For comparison, cyclotron masses for those
transitions in the absence and the presence of an electron—
LO-phonon interaction are represented by dashed and solid

curves and are abbreviated as ¥ m,l) and[n,¥m,l], re-
spectively. Both the dotted and solid curves are for 1.

from WhiCh, by SUbStitUting this back into the definition of One noticeS, by Comparing the solid and dotted curves in
Fig. 3(a), that for the transition (0,0,6) (0,— 1,0) the influ-

the renormalized cyclotron mass given by Etg), one can

obtain an explicit analytical expression for the relevantence of the electron-phonon interaction on the related cyclo-
tron mass becomes more enhanced with increasing magnetic

renormalized cyclotron masses, dependingagnx, and 5.

0
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field, compared to those of other transitions, and that thesecond point concerns the presence of the electron-phonon

cyclotron mass of the transition (0,0;8)0,1,0) tends to
the bare band mass. As can be seen from Rlg, 8icreasing

interaction, in which each level is further shifted doytick
solid curves.

the degree of confinement yields a decrease in relevant cy- In Figs. 4b) and 4c), cyclotron masses for the transitions

clotron masses.

(0,0,0)—(n,*m,l) of the impurity magnetopolaron calcu-

In the framework of this approach, one can also analyzdated from Eq.(10) are plotted as a function of both dimen-

the polaronic contribution to the energy levels of the impu-sionless cyclotron frequendyEq. 4b)] and dimensionless
rity magnetopolaron in the case of strong confinement byonfinement lengthiFig. 4(c)], for the same values of the
using Eq.(14), and finds its approximate expression as parameters used in Fig. 1. Again, the solid and dashed curves
correspond to the presence and the absence of the electron-
phonon interaction, respectively. The behavior of cyclotron
masses for the relevant transitions under the variation of both
magnetic field and confinement length of the QWW is dif-
ferent from those found in the QD even in the absence of

lectron—LO-phonon coupling. Although their behavior is

2 —
AEn2mi= = —VolGn = m(@,B:1) = G zmi(0,8:1)],

which is independent gB. To see this, one can easily calcu-

late the polaronic E)rrection to the ground-state energy an early the same at higher magnetic fields, they show quite
find AEoo0=—aVe/. In the contrary case, i.e., in the (different behavior at low magnetic fields, particularly, around
case of large values af andg and small confinements, one o, —1 |n particular, the cyclotron mass for the transition
uses Eq(21) for the_ deflnltlor_1 of variation energy, and then (0,0,0)—(0,0,1) behaves rather differently even in the ab-
obtains the polaronic correction to the ground-state energy asnce of the electron—LO-phonon interaction as seen from
AEO,O,o:—(a+2\/§ﬁ)/37-r, by neglecting the contribution gig. 4(p)
from the last term in Eq(21) which is proportional tav?.
o C. Q%=p¥y?<1
B. Q2=»%y*>1 o N _ L
) L — o The characteristic condition of this cases$< y*. Here,
Th|§ condltlpn,n >v*, allows us to keeBthe confining it is possible to takew, =0, that is, a confining potential
potential only in the lateral plane and to take=0, so that  along thez axis keeps the electrons moving in the lateral
electrons are free to move along thexis. Therefore, this plane freely. Therefore, this case defines a quasi-two-
case defines a 2D confinement, quasi-one-dimensional Meimensional motion with 1D confinement and represents a
tion, and represents a QWW embedded in a 3D materialgwy embedded in a 3D material. Hence, one can easily find
Therefore, one needs to minimize the ground- and first excited-state energies of the impurity
magnetopolaron energy by using Eg2), provided that one
) (Q%<1) in

_ o 1 1 o, now inserts integralsL . (Q2<1) andl{? |
Ensmi(y,m=| =+ §w272 (2n+m+1)+m—- the related equation and then performs the minimization with
2y respect to bothy andy. In Fig. 5a), we plot the ground- and
1 1 1 first-excited-state energies of impuri_ty magnetopolaron in a
=t 552772> [+ > QW as a function of magnetic field.. The behavior of
2 energy spectra of impurity magnetopolaron in a QW under

5 the variation of magnetic field is quite different from those in
— n
- ;gn,Im,I(aﬂB;Qz>1)?

the QD and QWW, since now the magnetic field dependence
of the Fock-Darwin energy levels are given in the form

o ERb=(we+ w2, Efi=(2wF ot o))/2 and ER)
with respect to bothy and y, with an appropriate choice of =(w.+3w))/2, and they are linear im, in the absence of
the parametera and 8 and the confinement parameter. the electron-phonon interaction and impurity. The presence
In Fig. 4(a), we plot the ground- and first-excited-state ener-of an impurity yields a splitting of (0 — 10) and (000) lev-
gies of an impurity magnetopolaron in QWW as a functionels, and energy levels shift down. The presence of an
of magnetic field, i.e.,.o., whose behavior is, at a first electron-phonon interaction makes each level shift further
glance, similar to that obtained in a QD. But, it is apparentdown as well.

from the comparison of Figs.(d and Xa) that (001) is not Figures %b) and Hc) show the relevant cyclotron masses
split in the absence of both the impurity and electron-phonorof the first three transitions as a function of both dimension-
interaction, since, from Eq12), magnetic field dependen- less cyclotron frequenchFig. 5b)] and dimensionless con-
cies of those energy levels are now given finement lengt Fig. 5(c)], respectively, with the same pa-
andE(()OI)10= 2w (w./2). Additionally, two points should be rameters used in Figs. 3 and 4. The characteristic features of
noted, by comparing the thin solid curves with dashed oneghe cyclotron mass for the transitions (0,0:8jn,+m,l) in

and dashed curves with thick solid ones; the first is thathe QW are quite different from those found in both the QD
(000) and (001) levels have no longer the same energies iand QWW. In particular, their variation with the confinement
the presence of an impurity, i.e., they are sflitin solid length at fixed magnetic field is noticeable, as seen from Fig.
curves and further shifted down to lower energy values. The5(c).

(22

o= Eoor= @
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FIG. 5. (8 Cyclotron frequency dependence of impurity mag-
netopolaron energy leveB, 7y, in a QW with uj=2. The same

(c)
FIG. 4. (a) Cyclotron frequency dependence of impurity mag-
=2. Sam% parameters are used for each case as in F&. The renormalized
cyclotron massnj; - | of the impurity magnetopolaron in a QW as
a function of (b) dimensionless cyclotron frequency =2 and
(c) dimensionless confinement length at=1, for B=1. The
lines represent the transitions (0;8,0)

netopolaron energy IeveIEn;my, , in a QWW withu,
parameters are used for each case as in F&. The renormalize

cyclotron massﬁ;:;m of the impurity magnetopolaron in a QWW
as a function ofb) dimensionless cyclotron frequencywat=2 and
(c) dimensionless confinement length at=1, for B=1. The
represent the transitions (0;0,0)
with a=3, for =1, respectively.

lines

dashed and solid dashed and solid
(n,¥,m,I) with «=0 and the transitiong§0,0,0]—[n,+,m,l] (n,+,m1) with «=0 and the transition§0,0,0]—[n,+,m,1]

with a=3, for =1, respectively. 054303-8
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FIG. 6. (a) Ground-state binding energy of the impurity magne-  FIG. 7. Ground-state binding energy of the impurity magneto-
topolaron in QD, QW, and QWW structures as a function of dimen-polaron as a function of confinement length in the absence and
sionless cyclotron frequencgb) First two excited-state binding en- (b) the presence of a magnetic field.
ergies of the impurity magnetopolaron as a function of the

dimensionless cyclotron frequency in the same structures. . .
ment in the lateral plane. This feature can also be observed

Figure Ga) presents a comparison of the magnetic fieldfor excited states, as seen from Figbp .
dependence of the ground-state binding energy of impurity The comparison of the ground-state binding energy of im-
magnetopolaron in a QD with the results of those found in &Purity magnetopolaron for three types of confinement in the
QW and QWW at fixed values at and 8 andu, =u,=u. absence ¢.=0) and in the presences(=1) of a magnetic
=2. It is clear from this graph that the contribution of LO field as a function of confinement length is shown in Figs.
phonons to the impurity ground-state binding energy is7(a) and 7b), respectively. An inspection of Fig(d) reveals
greater than those found in a QW and QWW, up to a criticakhat the ground-state binding energy of the impurity magne-
value of the magnetic field. At this value of the magnetictopolaron is more enhanced in a more confined system in the
field, the binding energy of the impurity magnetopolaron in aabsence of the magnetic field, and they coalesce smoothly
QW becomes larger than that in a QWW. This phenomenointo a bulk value when the confinement degree decreases, as
arises from the existence of an additional magnetic confineexpected. However, the existence of a magnetic field causes
ment term in the lateral plane; in other words, the QW casehe phenomena described above, i.e., due to the additional
becomes a 3D confinement in quasi-zero-dimensional maomagnetic confinement in the lateral plane, the ground-state
tion similar to a QD, whereas the QWW system still has 2Dbinding energy of the impurity magnetopolaron in a QW is
spatial confinement together with an extra magnetic confinelarger than that in a QWW, up to a certain value of the

054303-9
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confinement length; as the confinement length increases, thisagnetic field, the binding energies of the impurity magne-
is reversed as seen from Figby. topolaron in a quasi-2D system with a 1D confinement, i.e.,
To conclude the discussion, we summarize the qualitativen a QW, begin to be more enhanced aroung=1 com-
aspects of present work. Our present investigations demomyared with those found in a quasi-1D system with 2D con-
strate that the complicated dependencies of the ground- affphement, i.e., in a QWW. This phenomenon is due to the fact
first-excited-state energies of impurity magnetopolaron subthat there exists an additional term in the Hamiltonian that
jected to an anisotropic confining potential on spatial cOn{eads to magnetic confinement in the lateral plane and in-
finement parameters and magnetic field together with thgy ces a Qw system, in a sense, to become a 3D confinement
electron-phonon coupling strengthand binding energy pa- i, quasi-zero-dimensional motion similar to a QD, whereas

rameter § can be examined with the use of variational y,o G\ system is still a quasi-two dimensional confined
scheme given in the present paper, which allows one to StUdﬁ/

the effect of electron-phonon interaction on eneray level tructure even in the presence of such a term. We have also
€ etlect ot electron-pnono eraction on energy 1evels Onvestiga‘ted the polaronic correction, associated with

the impurity magnetopolaron, not only for a QD system but :
; . electron—LO-phonon coupling, to the cyclotron mass of the
aﬂlioofoéq(?(vlvo;i an%\é\l\r/\e/dsu);sézl?; irﬁsrLsagﬁE?;;i?érgﬁ :ﬁglrgq purity magnetopolaron confined in a 3D parabolic poten-
! jal, and concluded that the presence of electron—LO-phonon

found in Ref. 3, whose authors have checked their result . . . )
with various asymptotic limits and conclude that they unifymteractmn leads to important changes in the behavior of cy-

all expressions for the ground-state energy of the magnetdf—'o"ron mass under the variation of magnet|c fleld. in con-
polaron found by other authors cited therein. Accordingly,fined structures. In summary, by presenting a detailed com-
we conclude that the binding energies of the impurity mag-arative analysis of the effects of quantum confinements and
netopolaron have more pronounced effects when both magnagnetic field on the ground- and first-excited-state energies
netic and spatial confinement take place. Additionally, in theof the impurity magnetopolaron in a parabolic QD, QW, and
absence of magnetic field, the analysis has shown that tHeWW, we have shown that the binding energies of the im-
most pronounced effects due to the electron—LO-phonon inpurity magnetopolaron increase with increasing degree of
teraction in the binding energies of the impurity magnetopo-spatial confinement and there also occurs an additional in-
laron have been found in the most confined structure, i.e., irease in the related binding energies in the presence of a
the QD, and then in the QWW. But, in the presence of amagnetic field.
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