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Effects of a dipolar field in the spin dynamics of a Fermi liquid
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We study the spin dynamics of a normal Fermi liquid taking into account the demagnetizing field produced
by the spin system itself. Linear solutions of the spin dynamics equations in the form of standing spin waves
in a finite volume of liquid are found. At almost all known experimental conditions the influence of demag-
netizing field can be satisfactorily described by the first order of perturbation theory. We carried out perturba-
tional calculations for two geometries of experimental cell—spherical and finite cylindrical. We performed also
exact numerical simulations of the spin-wave spectra in a spherical cell at an arbitrary strength of the demag-
netizing field. The obtained results are applied in particular to conditions of recent expefBnafgrmeulen
and A. Roni, Phys. Rev. Let86, 248 (2001 ] related to the problem of zero-temperature transverse relaxation
in a polarized Fermi liquid. We found that not taking into account the demagnetizing field leads to negligible
errors in the measured relaxation time, thus supporting the conclusion of the absence of zero-temperature
spin-wave damping.
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[. INTRODUCTION spin polarization of a few percent revealed a finite value of
T, in a qualitative agreement with the zero-attenuation con-

The spin dynamics of a strongly spin-polarized normalcept. But the observet, were several times greater than the
Fermi liquid still captures appreciable theoretical and experitheoretical estimations in Refs. 2—4. On the contrary, the
mental interest. Among the main questions here is whethelecent measurements of linear spin-wave damping in dilute
the transversé.e., in a direction perpendicular to the exter- 3He at even higher polarizatiotsare in agreement with
nal field magnetization excitations are damped at zero temFomin’s theory ,=0), although the upper limit for a finite
perature. T, set by this experimenfdue to the error bajsdoes not

Polarizing a Fermi liquid creates a gaphyM/y, be-  allow one to rule out completely the existing theory of zero-
tween the two Fermi energies for spins up and down. Here temperature spin-wave damping.
is the gyromagnetic ratio ofHe nuclei andy, is the suscep- A coherent theory of strongly polarized Fermi liquids
tibility of the liquid. Meyerovich has pointed outhat the based on a properly defined ground state is lacking. On the
existence of the gap leads to a nonconventional temperatuagher hand, a proper interpretation of the experimental data
dependence of the transverse relaxation tiw(e'lj2+T§)—1, for a strongly polarized liquid is itself nontrivial.
whereT, is of the order of the gap, and therefore to a damp- The point is that the magnetic field acting on the spins of
ing of the transverse excitations even at zero temperatur& liquid is conventionally supposed to equal the external field
This idea has been pursued in several theoretical pagers H°. In reality the field inside a specimen is well known to
and was contested recently by Fomimho argued that the differ from H® due to the shape-dependent demagnetizing
conclusion of existence of zero-temperature attenuation ifeld proportional to the magnetization. An oscillating mag-
drawn from the wrong premises about the ground state of &étization thus acts back on itself via the demagnetizorg
polarized Fermi liquid, viz., from treating the quasiparticlesdipolan field. This phenomenon manifests itself as magneto-
between two Fermi levels as excitations. Whereas as long &#atic waves in ferrimagnets theoretically described by
the polarization of the liquid is conserved, these particleittel™ and Walker> Walker originally showed that if the
should be considered as an inalienable part of the grounghagnetizatiorM is supposed to obey the Larmor precession
state. around the internal magnetic fiekd',

Curiously, a similar discussion arose in mesoscopic phys- -
ics where aypoorly argued concept of finite dephasinr; ti&eyat (9t yH'X)M =0, @
T=0 has been develop®dnd conteste#® then becaus& andH' are related through Maxwell equa-

The results of the measurements of the spin diffusion cotions, they can self-consistently oscillate only with certain
efficients by spin-echo experiments in pufide (Refs. 9 and  frequencies localized in the range2yM near the Larmor
10) and in solutions offHe in “He (Refs. 11 and 1Pwith a  frequency.
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In an interacting Fermi liquid Eg.1) should be replaced The results for a sphere are compared to numerical simu-
with the Leggett system of equations. In the linear approxidations carried out in Sec. V, where we also calculate spin-
mation, solutions of this system are standing spin-wavevave spectra in the regimes of intermediate and strong de-
modes with the widths proportional to the transverse relaxmagnetizing fields.
ation time. So study of the behavior of the widths of the In the last section, Sec. VI, we discuss conclusions.
modes with temperature is one of the possible ways to detect
the zero-temperature transverse attenuation. Il. STATEMENT OF THE PROBLEM

For weakly polarizediquids the effects of the demagne-
tizing field can be discarded. But it is preferable to have . ) o )
strong polarizationsin order to increase the predicted tem-  1h€ Spin dynamics of a Fermi liquid is described by the

peratures of the attenuation onset. So the effect of polarizd=699€tt coupled system of two partial differential equations

o : 16
tion has to be taken into consideration for the proper inter®" the local magnetizatioh(r,t) and its current;(r,t),

A. Basic equations

pretation of_the. spectra. On the other hgnd, at sufficiently (9,+ yBX )M+ 4,3, =0, )
strong polarizations one can expect considerable changes in

the Leggett description of the Fermi-liquid spin dynamics. In w2 y J;
particular, due to the presence of two Fermi surfaces, a (Ji+ ¥BX)Ji+ 5-di(M—Mo)+x—-MxJ=——.
double set of the Fermi-liquid parameters must enter the An ! 3)

theory. We will use Leggett equations assuming that they are
still valid when the share of polarized nuclei of the liquid ~Here B is the flux density inside the sampiew? the
does not surpass 10%. renormalized Fermi velocity?=v2(1+F3)(1+F%3) and

To include dipolar field we have chosen to write out ther; the renormalized relaxation timg = 7/(1+ F3/3). Here
dipolar part of the internal fielth' explicitly as an integral of F3 andF3 are the coefficients of expansion of the antisym-
the magnetization, this integral being a general solution ofmetric part of the Fermi-liquid interaction in the spherical
Maxwell differential equations with Maxwell boundary con- harmonics. The equilibrium magnetization is
ditions. Thus we work with a closed integro-differential i
equation directly on the magnetization. Mo=XaH", @

A short review of other possible methods is done in thewhereH'=B—47M is the internal field.

Discussion section. The spin dynamics equations of a Fermi liquid reduce to

We start directly from the generalized Leggett equationghe form(2) and (3) in either of the regimes—collisionless
and study the effects of the demagnetizing field coherentlyC>1 or hydrodynamicC<1, where the regime parameter
We specialize to the case of linear spin waves, setting spin- i
echo experiments aside. C=x(yH)(M/Mo) 7. ®)

A full-blown study including numerical calculations is The factorM/M, accounts for the possibility of the polar-
done only for a spherical shape. For a finite cylinder as wellzation M being higher than the equilibrium valud ,—in
as for a sphere we also calculated the changes to the spec#gperiments*'® M/M,, varied from 1 to 5.
by the demagnetizing field using perturbation theory. The condition of applicability of the Leggett equatiths

Our results show that the demagnetizing field introducess that the characteristic scale of spatial inhomogengibe
small corrections(about 4%) to the value of the low- greater than the quasiparticle mean free pathor the mag-
temperature transversal relaxation rate experimentally detenetic lengthv7/C, which one is the shorter,
mined by Vermeulen and Rofit.Hence, the main conclusion )
of Ref. 13 about the absence of zero-temperature spin-wave gminfver,ver/Cl. (6)

damping is supported. In the collisionless regime G>1) the magnetic length
The paper is organized as follows. Sections Il and Ill formy _7/C is the shorter and thus should be smaller thkan

the basis needed to comprehend the authors’ point of view. Igvhile in the hydrodynamic regimed<1) the spatial scale

Sec. Il we show how to include the dipolar field in the stan-¢ should exceed the mean free paghr.

dard Leggett equations and how to linearize the result to Equation(3) contains the torque due to thecal molecu-

obtain an equation for spin waves subject to both exchangkr field kM(r,t)/x,, acting on curreng;(r,t). The combina-

and demagnetizing fields. tion of the Fermi-liquid constantsy andF?¢,
In Sec. Il as the simplest application of the theory devel-
oped we find corrections to the spin-wave spectra in a finite sF3I-F3
cylinder in the first order of perturbation theory. At the end of K= 1+—Fg" @)

Sec. Il we find dipolar limitations on the correct determina-
tion of the transverse relaxation time from the conventionameasures the strength of the exchange interaction. It vanishes
interpretation of the spectra. when turning the exchange off.

The next section, Sec. IV, contains a similar first-order Leggett originally® considered the case of a weakly po-
perturbational estimation of the dipolar-field corrections tolarized sample, whereiB=H®—the external magnetic field
the spin waves spectra in a spherical container. at infinity. Generally, the relation betwe@andH€ is to be
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determined from the conventional boundary value problem Consider a general stati®;M =0,J;=0) case. In order
of solving the magnetostatic equations in a nonconductindor J;=0 there should be
medium,

(M—=Mgy)=0 (15

dxH=0, B=0, 8 and then forsM=0 the magnetization should be locally

with Maxwell boundary conditions of the continuity &,  directed alongH':
andH, at the boundary of the sample andtéf-H€ at in-

finity. In Egs. (8), M(r)=xnAMHI(T). (16)
The functionA(r) must be such tha¥i(r) satisfies Eq(15).
H=B—4m7M. (9 This imposes restrictions on the spatial dependend®(oY,
, o but leavesA(0) arbitrary.
A general formal solution of !Eqs(g) and (9) satisfying So there exists continuum of static nonequilibrium mag-
the appropriate boundary conditions®is netization distributions numbered y=A(0). It is this A
which is represented a4/Mg in Table I.
H=H®+Hap, (10 In equilibrium (4), A(r)=1.
where To find a form of a nonequilibrium static magnetization
distribution, we shall use the smallnessygf. For pureHe,
M(r’) the magnetic susceptibility is
Hain(r) =@ af d3r’ (11) -
Ir=r’| Xn=1?y*No/2(1+F§)~10"", (17)

is called the dipolar field. It is straightforward to verify that whereN,=m*kg/27%42 is the density of states on the Fermi
Egs.(10) and(9) are indeed the solution in the whole spacesurface. For*He-*He mixturesy,, is less, proportional to
with the help of kFocsi/i, wherex is the concentration ofHe atoms in the
mixture.
Plr—r'["t=—4ms(r—r'). (12 Substituting Eq(16) into Eq. (13) yields

M in its turn has to be found from the Leggett equations HI(r)=H®(r)— 4mxA[A(r)HE(r)]+O(x2). (18
(2 and (3). Therefore, the closed system of integro-
differential Equationg?2), (3), and (9)—(11) completely de- For the reasons that will become clear below the external
scribes normal Fermi-liquid electrodynamics with the effectsmagnetic field is taken almost constant, with a small gradient
of both inhomogeneity and the demagnetizing field takeralong its direction
into account.

‘Inside the sample the fiel#h from Eq. (10) is called HE(r)=H%1+zVo, /o). (19
H'—the internal -m.agneet|c f'EIid; The difference between ex-The presence of the field gradients in the perpendicular di-
ternal field at infinityH® andH' is usually denoted as rections, necessary for the fulfillment of the conditi@H®

e - =0, is inessential for the following discourse.
H'—H®=—4xn[M], 13 From Eg. (15 it then follows that VA=(1

—A)Vo /o ; ie., the spatial inhomogeneity &(r)=A
+2zVA has the same smallness.

Leaving in Eq.(18) only the first-order terms in eithegy,
d3 /) ,

where the(tensoy operatom, acting by the rule

M(r")
¥y
v|r—r’|

is called demagnetizing operator. Let us agree to denote an
operator with a caret over a letter and a tensor with an unti€re

derlined letter. The demagnetizing tensor operéltc'ns spe- w, = yH® (21)
cific to the shape of the sample, over volume of which the

integration in Eq.(14) is taken, and generally is coordinate IS the Larmor frequency and

dependent. It only reduces to the tensor of constant demag- _ .

netizing coefficientsn when acting on spatially homoge- om=4myM=4mxAoL (22

neous distributions in ellipsoidal sampl@scluding limiting 5 the frequency corresponding to magnetizatiafiz] is

- 1
ﬂ[M]:_E‘? (14) or zVw, /w_, we have

yH'= (0, +2ZV )z~ oyn[Z]. (20)

cases of a slab and an infinite cylingler generally a coordinate-dependent vector. For ellipsoidal
samples it reduces toz. If one of the principal axes of the
B. Static magnetization distribution ellipsoid (which are also the principal axes of the demagne-
In a linear spin wave the magnetization rotates with atizing coefficients tenson) coincides withz, we havenz
small amplitudem around its(large) stable valueM in a  =7n(®, wheren'? is thezth demagnetizing coefficient. E.g.,
static external magnetic field®=H®z. for a sphera@®@ =1, for a plane-parallel slab with the edges
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TABLE |. Comparison of the conditions of different spin-wave experiméRisfs. 13, 20, 18, and 21n pure *He and in solutions of
3He in “He. From left to right(i) The concentratiom of *He atoms in mixturegfor pure *He not given. (i) The static magnetizatio
in the units of the equilibrium magnetizatidf,, Eq.(4), in the external field; different from 1 only in Refs. 13 and 18; see the text for more
explanation iii) The Larmor frequency, /27, wherew, = yHE. (iv) The gradienVH®=V w, /y of external field.(v) The mean distance
between modegV w, in the units of frequency being the characteristic spatial distarid8)—the wavelength of Airy type spin waveévi)
wy =47 yM—a characteristic of the static demagnetizing fiéldi.) The radiusR for a box this is half-size; for factually used cylinders it
is also roughly the half-heightviii )—(x) The three parameters entering the Hamiltor{&t) used for simulations of the eigenvalue problem
in a spherical cell, §R)® and wy/2RVw, , give the relative importance correspondingly of the exchange molecular field and of the
demagnetizing field to the gradient of the external field; in a box these parameters lack strict meaning and are presented here in parentheses
only for an estimateC is the regime parametdb) at the temperature shown for each experiment in the left colyrin.The dipolar
parametek87) (cylinder and boxor (88) (spherg [more exactly, their more accurate equivale(®®) and(60), respectively; if it is much
smaller than unity, it signifies that perturbation theory can be applied at the conditions of the experiment. The input parameters for the
calculations come from various sourdéef. 22.

Concen- Magneti- Larmor Field Modes Dipolar
tration zation  frequency gradient distance parameter
X M N VHE Vo, oy R & C o (87) or (898
M, 27 27 2w R 2RV,
Parameters
and units (103 (MHz) (GlIsm (Hz  (Hz) (mm) (x10°%) (X103 (x1079)
Pure®He in a 1 1 2 122 0.48 (189 3.7 (0.3 1.17
rectangular box - 1 2 2 97 097 1 150 7.3 (0.79 2.5
T=1 mK 1 4 2 77 1.93 (119 146 (1.49 55
SHeHe in a spheré’ 1.82 1 258 3.62 60 92 04 133 25 10.1 38
T=20 mK 0.63 1 258 2.01 30 39 06 7 3 4.95 28
SHe*He in a 1 784 235 121 9.7 181 73
hemispheré 2 36.2 47.0 96 19 36.3 173
T=20 mK 93 3 341 4 544 70.6 05 84 29 54.4 288
4 49.4 94.1 76 39 72.5 413
Pure®He in 1 21.9 241 6.6 2.3 36 252
a finite 2 17.4 482 5.2 4.5 73 532
cylinder® - 3 312 5.1 15.2 723 2.0 4.6 6.8 109 809
T=20 mK 4 13.8 963 4.2 9.1 146 1099
5 12.8 1204 3.9 11 182 1385
SHe*He in 1 150 235 22 9.6 1.7 9.6
a finite 2 119 47.0 17 19 34 20
cylinderd 93 3 341 10.6 104 70.6 2.0 15 29 51 31
T=20 mK 4 95 94.6 14 39 6.8 42
aReference 20. ‘Reference 18.
PReference 21. dReference 13.
perpendicular t@ the coefficienn?=1, and for an infinite C. Linearized equations of motion
circular cylinder with the generatrix parallel @the coeffi- To obtain the linearized form of the equations of motion
cientn®=0. (2) and (3) we expand all the macroscopic quantities near

The small ratio RVw, /w,_, where R is the sample their stationary values:
size, and 4rx,A(0)~ 10 © are the two small parameters in

the problem. Conventionally the dipolar field is not taken He=H®Z+he, H'=H'+hl,
into account and the second parameter is considered negligi- _
bly small. This is no longer justified for recent experimental M=M+m, J=j;, (24)

conditions as is seen from Table |, where the ratio of the . - .
second parameter to the first, where the static value dfl' is that from Eq.(20). The radio

frequency fieldh® plays the role of a driving force for the
spin system response. We denoten' =h®—47n[m].
wu/2RV o , (23 The staticM in Eqgs.(24) is the result of the substitution
of Eq. (20) into Eq. (16):
is represented for various experimental conditions. Y/ xp= o (A+2Vw )Z2— oyAH®N[Z]. (25)
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However, we can retain only the greatest terniin Supposem, h depend on time as monochromatic waves,
. m, hece ™!, Then written out in components the equation of
M = xnAH®, (26)  motion form becomes

when linearizing Eqs(2) and (3). In Eq. (2) this is simply i
due to the fact that the terms bf to be omitted are of the —iE)( _my) _ “’_M( B hy) 32)
orderO(xnzVw, /o ) andO(x?2). In Eq. (3), M is divided my 4w\ hy |’
by x,, and the justification is lengthier. We will suppose Eq.
(26) and discuss why only the main termhh should be left  where we designated by, and w, respectively, the opera-
after the derivation below. tors

In practice one usually is interested in movements quasi-

my

+(D|_

my

stationary in the Larmor frame. To a first approximation one VM 4DR  o— ] D, 33
supposes thaj;(r,t) is stationary, i.e., precesses with fre- w =yH+DJ% 0= 0=iEd% (33
quencyyB: (d,+yBX)j;=0. Then resolving Eq(3) with o
respect tg; with M from Eq. (26) gives Multiplying by

_ ) 0 1

ji=— . C2[am szam+C z(zﬂm)] (27) 1 0
where the diffusion coefficienD,=w?7,;=3vZr(1+F3) results in the second-order inhomogeneous partial differen-
and tial equationy,, 'm=hi , or

C=kryM/xn=kT1A0 (28) 5_(;1m+4wﬂ[m]=hf. (34)

is another expression for the regime paraméber
One then plugs the divergence of HG7) into Eq. (2).
The divergence of; has the order

Here x, " is the inverse susceptibility tensor:

Ay 4w —lw
diji~Dod’m~(Do/&%)m, (29) Xo ==~ ~ | (35
Mllw o
where¢~3/Dy/Vw, is the characteristic scald9). So djj;
~(éVw,)m has already the smallnes¥», /w, . If we had To close the boundary value problem one must impose

accounted for the higher-order terms M than Eq.(26)  some appropriate boundary conditions mn Suppose that
when calculating the current, these terms would have entergtie container is made from a nonmagnetic material, there is
ji through the regime paramet€; and after multiplication N0 magnetization current into the walls, and we get the
with Do@?m would have produced terms of the order boundary condition in the form
O(xnzVw, /o )m and O(x2)m. That is why we were al- i
lowed to substitute simply Eq26) in Eq. (3). n;d;m|,=0. (36)

In the linear approximatiom(r) is in each point perpen-
dicular to the staticVi(r) if the absolute value of the mag- Heren, is a unit normal to the wall.
netization is conserved. Equati¢®5) shows that apart from In the normal variablesn. =m,*im, Eq. (34) has the

the majorx and y componentsm also has a minom,  €quivalent form
~xnM,. This component also may be seen to give higher-

order terms and is therefore negligible. A A he +4 0f d3 , 37
We will thus considem.L z. The last term on the right- (0 Fw)m..= 4 ) =1 s

hand side of Eq(27) then vanishes, and substituting E27)

into Eq. (2) one gets whence we estimate

m_~(o— o )M, 2o <m, .

(at—%(ﬂ m+2zX (yH'm+Ddm—yMh')=0. (30
We see that in the vicinity of the Larmor frequency, when

Here we left only the component oH' becauséd! , which ~ @=w_, the counterrotating componem_ may be ne-

multiplies vectorially only bym,z, produces termﬁ)(Xﬁ)_ glected with respect to the corotatimg, . Then Eq.(34)

In Eq. (30) we introduced the effective spin diffusion co- SImPlifies to a single linear inhomogeneous integro-
differential equation

efficient
= 2 ~ wM
D=DoCl(1+CY). 39 (Ft=w0)m, (1= 2he (1), (39
In the strong C>1) collisionless regimeD ~w?/3kw A is
temperature independent. with a generally non-Hermitian Hamiltonian operator
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Hm, =D

i )
1+ E) #?m, + yHy(r)m,

il +‘7*J M (1) o (39)

—d
8 |r—r’|

We may use the equivalenge d_=a>— 92, Eq. (20), and
the property(12) to rewrite the Hamiltonian as

7’:(m+:D

i
1+ E) Pm,+ o (rym,

+ 2M(1= 20, 1Dm, ~ A dm. T} (40)

Here the integro-differential operator

is the zz component of the demagnetizing tensid). And

ﬁzz[l] is a scalar function on coordinates, which actually

coincides with thezth demagnetizing coefficiemt® for el-

lipsoids with one of the principal axes parallel 2o Here
w, (r) denotesw +zVw, .
To conclude, we have derived equations of moti@4) or

PHYSICAL REVIEW B65 054301

Go=2

The absorption spectrum in the Hermitian case consists of a
series ofé peaks atw=w, . Indeed, writing real, in EqQ.

(45) asw,+10 we see that the imaginatgbsorption part of

Eq. (41) is a weighted sum ob functions:

(45

ja)al

—772 |(a|he+>|25(w—wa). (46)

In the general case of a non-Hermitian Hamiltonian the
expansion45) should be revised. We postpone the appropri-
ate discussion until Sec. V. Here it is enough to say that the
numerators in the serig45) remain the same in the general
case, but the eigenfrequencies become complex, meaning
that in general spectrum consists of Lorentzians.

The following important conclusion drawn on the basis of
Eqg. (45 also holds in the case of a non-Hermitian Hamil-
tonian. In ahomogeneouéV w, =0) external static fieldsl®
and for ellipsoidal samples the Hamiltonie40) has uniform
solutions, so-called Kittel mod&swith the frequencies

W\
wo= o+ 7(1_3ﬂzz)a (47)

wheren,, is the zz component of the demagnetizing coeffi-

(38) for small deviations of magnetization from static values.cient tensom.

The magnetization as a function of external rf field is a re-

sponse of the system on a particular radio frequencyhe

full form of the equations of motiori34) is unnecessarily

For customary sample sizes the rf figltimay be consid-
ered spatially uniform. Then from E¢46) it follows that it
is impossible to excite a nonuniform mode by a homoge-

complicated because it contains superfluous information oneous rf fieldh®, because thetw|h®* ) («|0), where|0) is

the dynamics of the counterrotating component of the

the Kittel mode, and different modes are mutually orthogonal

magnetization. An example of solution of the full equation(a|0)=§5,,,.

(34) for an infinite medium in a uniform magnetic field is

analyzed in Appendix A.
The rest of the paper deals with E§9).

We conclude that in order to couple to nonuniform eigen-
modes the external static magnetic field shouldrf@mo-
geneougsee Eq.(19)] so that there would not exist a uni-

The response of the liquid is detected through changes iform eigenmode.

the impedance of the NMR coil, which are proportional to

(see Appendix B
x=(h*[G,[h*%), (4D
whereG,, is the Green operator:

Im*)=(wy/4m)G,|he"). (42)

IIl. FINITE-CYLINDRICAL CELL

Study of the eigenstates of the Hamiltonigt®) in gen-
eral is possible only numerically. This has already been done
in Refs. 20 and 21, neglecting the contribution of the dipolar
field. The former work dealt with Eq(40) in rectangular
boxes, while the latter in spherical containers.

In this paper we study the dipolar field effects due to the

The Green operator may be expanded into an infinite surthird term in Eq.(40) numerically in Sec. V. At the same
in the eigenfrequencies, of the homogeneous equation time, in the case ofvy=0 the problem allows an explicit

corresponding to E(.38),

7:(|a>=w|a>, (43
with the boundary condition

ndila)|,=0. (44

For a Hermitian Hamiltonian the eigenfrequenciesare
real and the expansion is

analytical solution for some typical experimental conditions.
Such solutions are of undeniable interest—with them in hand
we may use perturbation theory to calculate corrections to
modes in the first order im), . So the two following sections
are dedicated to such solutions and to the calculations of
perturbational corrections, respectively, in the geometries of
a finite cylinder and a sphere.

We start the consideration of finite cylinders from ideal-
ized one-dimensional geometry of a plane-parallel slab. Next
we calculate the first-order perturbations to the modes fre-
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guencies due to the finiteness of the cylinder.

A. Slab

In the absence of dissipation, whén =0, the effective
diffusion coefficientD(1+iC 1) is real and thus the Hamil-

tonian A (40) is Hermitian.

In the slab geometry the solution should be sought in th(=Z

form

m*(r)=e*my(2),

wherer  is the coordinate vector in the plane perpendicular

to z. Nevertheless, as is clear from Eg1), only the solu-
tions withk=0 contribute to the observation signal if the rf
field h® is homogeneous.

The eigenfunctionsng (z) =(z|a) then are the combina-
tions of the two Airy functions

(z|@)=AAi(arg +BBi(arg), (48
where arg-(w,— 0, —2z2Vw)/éVo, , and
é=3DIVaw, (49)

is the characteristic wavelength. Its sign depends on the rel

tive sign ofD andV w, and thus on the sign of. In He and
in 3He-*He solutions with a concentration>3.5%, « is
positive. We conside£>0 for definiteness.

The boundary condition$44) on the two plane bound-
ariesd,| a)|,—o. =0 determine the eigenfrequencies and
the ratio of the coefficient8/A. The remaining coefficier
is determined from the normalization conditi¢a|a)=1.

When L> ¢ the influence of the lower wall of the con-
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Thus the complex eigenfrequencies in the presence of dis-
sipation can be easily obtained from the real ones in the
absence by the substitutidfl). This statement applies not
only to Eq.(50) but to any spectrum of the Hamiltoni&40).

Let us now consider the effects of the dipolar field. We
may utilize the results of Appendix A since a slab is infinite

in the direction perpendicular tand modes depend on only
. In such conditions the demagnetizing field is local:

n,=n{y=1. (52
It is then obvious from Eq(40) that the dipolar field
produces no effect on the spin-wave spectr(B) apart
from a uniform shift by

(2 y= —

1
Som(1-3n{)= (53

W\ -

Such a shift does not distort the spectrum—it does not
change either the mutual positions of the modes or their
widths, from which the characteristics of the liquid are de-
rived.

We rather aim at finding those distortions, so we proceed

% a more relevant shape of a cylinder of a finite radius,

which as well as all finite shapes as we will see does give
such distortions.

B. Finite cylinder

Consider a finite cylinder with the base radi®s- ¢ and

heightL> ¢ and a generatrix parallel tn We find the influ-
ence of the finiteness of a specimen on the magnitude of

tainer is negligible and the modes are localized near the udipolar corrections to the spectrum in the first order of per-
per wall and decay exponentially into the bulk on distancesurbation theory.

~¢&. Then the eigenfunctions are just the Airy functions of

the first kind—Ai and Eq(48) becomes

L-z
3
where @,<0 is thenth zero of the derivative of the Airy

function Ai":aj~—1.02,a,~—3.25a3~—4.82, etc. The
eigenfrequencies are

+al
nZ

<z|a>z<z|nz>=AAi(

Wa=wn = oL+ LVw, + ar'12§Vw|_. (50

Inclusion of dissipatiorC~1+#0 makes the diffusion co-
efficient complex. The Hamiltoniat0) then becomes non-

Hermitian. The complete analysis of the spectra of a non-

Hermitian Hamiltonian is possible only in the framework of

the general formalism to be developed in Sec. V.
However, for the moment it is sufficient to make the fol-

lowing statement. In the presence of dissipatien t+0), &

in Eq. (49 becomes complex,

E—E(1+iI/C)M3, (51)

and so do arguments of the eigenfunctidd8). Eigenfre-
guencieg50) also acquire imaginary parts due §entering
the expression.

The first-order perturbational corrections to the modes
frequencies are the averages of the perturbdtguolarn op-
erator in the given eigenstate,(r):

5dipwa=%(1—2 2GS

- f PE(r)n,f wa(r)]dBr). (54)

In a finite cylinder the dipolar-free eigenfunctipa) sat-
isfying boundary condition§44), written in cylindrical coor-
dinatesz,p, ¢ is

L-z gr;pm
—_— J
£ " R
2:N,=0,1,2 ... = are, respectively, the longitudinal
and radial quantum numbers ant= —oo, ... ,+% is the
azimuthal quantum numbefy, , is the (,+ 1)th zero of the
P
derivativeJ;, of the Bessel functiod,,, and Cn,n,m are the

normalization coefficients.
From the general formulél) it is not hard to see that
only the modes wittn,=m=0 couple to the homogeneous

p)e‘m‘P, (55)

j— H !
wnznpm_ CnZanAI ( + anz

wheren, ,n
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rf field. Indeed,|n,00) is uniform in the plane perpendicular

to z. Therefore, integrals likén,n,m[h ™€) are proportional
to (n,m|00) = Sn,00mo-

Calculating Eq.(54) with Eq. (55) yields (see Appendix
C)
o due to 1
o static inhomogeneity
cylinder__ © oscillating part
n, ~ Wy

dipolar correction
to the mode frequency
005 0.10 0.15 0.20
o

5dipw

[°)
T © 020060000000 060060 0
Il

0 5 10 15 20
mode number n,

(56) FIG. 1. Comparison of the two parts in the parameter of distor-
tion of the spin-wave spectrum in a finite-cylindrical cell brought

. about by the demagnetizing fiefthe two last terms of E¢56) in
The first two terms not dependent on the mode number units of wy for &/R=0.015 andL=2R]. The first parfthird term

describe uniform shift of the spectrum, and the last two termg, Eq. (56)] (O) is due to the demagnetizing field produced by the
dependent om, through the numerical constards, , W, yotating partm of magnetization. The second pétie last term in
Enz, and@nz, which are of the order of unitisee Table Il in  Eq. (56)] (O) results from the inhomogeneity of the dipolar field

Appendix Q, give the sought-for spectrum distortion. produced by the initial static distributiod = y,AH®z of magneti-
We see that for finite/R the spectrum undergoes distor- zation in a finite-cylindrical sample.
tion proportional to the parameter
In ellipsoids, in particular in a sphere, the demagnetizing
20y ¢ JRPLY field produced by the initial static distribution bf is homo-
7EVw, R n PO (57)  geneous. And so there is only the distortion to the spectrum
from the rotating partn of magnetization as we will see in
the next section. This makes ellipsoidal shapes advantageous
if the dipolar field effects are unfavorable.
To conclude, we found the corrections to the spin wave
modes in a finite cylinder due to a weak demagnetizing field
in perturbation theory. These corrections consist in shifting
e spectrum as a whole, changing the relative distances be-
tween the modes and in narrowing down the modes. The two

wherew,,=4m7yM characterizes the magnetization density,
Vw, is the gradient of the Larmor frequendy,s the radius
of the cylinder base., is its height, and is the wavelength
(49) of an Airy-type standing spin wave. The quantity o,
gives the average distance between modes in the units
frequency.® andW¥ are numbers of the order of unity.

The calculations of the dipolar field effects in the first last are of interest for us since they deform the spectrum
order of perturbation theory allow us to estimate the maxi- There are two contributions to the spectrur'n

mum error due to the demag_neﬂyng field in the .determma'deformation—one from the static inhomogeneous demagne-
tion of the transverse relaxation timefrom the spin-wave

spectra(see Appendix ¢ tizing field and the other from the rotating part of the mag-

This error turns out to be of the order of the parameternetization' The first contribution exists only in nonellipsoidal
. i samples, in which a homogeneous static magnetization pro-
(87), i.e., for the experimeft ~4.2% forM/M,~4. P 9 9 P

. . . duces inhomogeneous demagnetizing field.
Thus, interpreting spectra according to the usual theory 9 g g

not taking into account the demagnetizing field induces an
error in the derived value of the transverse relaxation time of IV. SPHERICAL CELL
the order of the parameté€8?).

The term proportional teb,, comes from the demagne-

tizing field produced by the rotating part of magnetization.
While the term proportional to#, is due to the spatial in-

Though for a spherical container exact analytical solution
in the absence of dipolar field turns to be impossible, one can
obtain an explicit expression for several first modes in adia-
batic approximation if the radius of the sphd®e- .

homogeneity of the demagnetizing field47n[M] pro- The prerequisites of adiabatic approximation might be
duced by the initial statithomogeneous!distribution ofM,  best understood if one exploits the analogy with the Schro
Eq. (26), in a finite cylinder. dinger equation for a particle moving in an external field. If

The values of these two terms are plotted in unitsogf  the movement in one direction is somehow more restricted
as functions of the mode number in Fig. 1 #iR=0.015 than in the otherggeometrically or by an external figldt is
andL =2R. Apart from being greater, the term brought abouta consequence of Heisenberg uncertainty relations that the
by the spatial inhomogeneity of the static distribution of themovement in this direction will be faster. The slow enough
dipolar field depends stronger on the mode number, thus renovement in the other directions then will make up an adia-
sulting in bigger mutual shifts of the modes. So the mainbatic perturbation that is known not to change the state of the
source of the spectrum distortion in a finite cylinder turns outparticle describing the fast motion.
to be the inhomogeneity of the static dipolar field. As a result, the wave function can be combined as a mul-
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1.0

T , | \ \ Note that the numerical scheme developed in Ref. 21 re-
quires more and more computational effort #otending to
zero. The calculation time to get safe eigenfrequencies val-
ues grows. That is why the numerical curves are not shown
in the vicinity of zero. Since we ourselves use a similar com-
putational technique, we put off more detailed discussion
until Sec. V.

Contrariwise, the discrepancy between approximate and
numerical curves at largé is accounted for by inapplicabil-
ity of adiabatics out of the regio&<R.

= ‘
hA; N

o
o©
T

eigenfrequencies (o - )/RV o,

nn
00 So approximate and numerical methods complement each
061-2:01 7 other. While numerics is the method of choice for relatively
? g large ¢&/R when adiabatics breaks down, it requires increas-
03 ] ingly larger basis to obtain reliable results for smélR. In
11 2 this region it is easier to calculate eigenfrequencies in adia-
104 Ve 5 '3 batic approximation.
0.4 ‘ ! . LoANGN ‘ Let us now look on dipolar field correction to the modes.
0.00 0.05 0.10 0.15 0.20 Quite analogously to the case of a finite cylinder, we ob-
£R tain for the corrections to the modésee Appendix D
FIG. 2. Comparison of the first several spin-wave modes fre- P \/;
guencies in a spherical cavity obtained numericédlglid curves S apSPhere B 1+ n; 4 1§ 60
(Ref. 23] and in the adiabatic approximatigdashed curves, Eq. dip® d 3 4 2R (60)

(59)]. The eigenfrequencies are plotted as functions of the gRo

Lo , i J)arts of the modes
tiplication of an envelope depending only on the unrestricte

coordinates and of the fast motion state depending on the

unrestricted coordinates as on parameters. S ImeSPhere “m ‘DHZ\E 4 i 61
This approach givegsee Appendix D for the eigenfre- dip M@ T12C 4 2R’ (61)
guencies

Numerical constantd,, are the same as in E(56).

arflz_ IZE(anﬂLl) , The parameter determining the relative value of the dipo-

=w +RVw + &V . . .
@npn= OL oLt EVer lar field effects in a sphere is

(58)
where w, is the Larmor frequency in the center of the \/;“’M 4 /i 62)
sphere, ana,,n,=0,1,2 ... = are the longitudinal and ra- 4Vw, V2R’
dial quantum numbers, respectively. SIIR<1~«a;,, we
see that the lower-lying levels belong tg, and therefore In the next section we will solve the eigenvalue problem

decay exponentially with diminishing Modes withn,=1 iy a sphere in the presence of a dipolar field of an arbitrary
will make a single oscillation before vanishing, modes withstrength. It is interesting to compare the results of numerical
n,=2 a double, etc. simulations with the first-order perturbational corrections
Equation(58) reduces to Eq(50) in the limit ¢/R—0 as  \ritten above.
it must. Indeed, in both Eq$58) and (50) there figures the To this end the positions Re(,— ) and half-widths
Larmor frequency at the top of a sample=L for Eq.(50)  |me,, of the first four modes obtained from both numerics
andz=R for Eq. (58) and the second term in brackets in Eq. and analytics are plotted in Fig. 3 for sevess), . Heights
(58) tends to zero wheg/R—0. are plotted only as obtained numerically. As one can see
If we introduce dimensionless frequencies according tGrom Fig. 3, perturbational approximation is satisfactory for
Ref. 21, 0,= o +RVw f,, we conclude that the observ- the values ofvy,/2RV w, up to~0.1 or for values of62) up

&
fa=1+2

able eigenfrequencies for our problem are described in thgy —0.4. The small discrepancy between numerical and ana-
adiabatic approximation by lytical results even in this region is accounted for by the
restrictions of the adiabatic approximation used to fulfill ana-
, [ € lytical calculations.
Qn, ™ 2§(2”p+1) : (59 The spectra themselves calculated numerically for several
values ofw), are shown in Fig. 4. Modes weights are redis-
The comparison between this formula and the results obtributing between adjacent modes witty, growing. Not
tained numerically in Ref. 21 is shown in Fig. 2. In Ref. 21 only the weights but also half-widths and positions of the
the combinatioré/R was designated as. modes change.
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1.0

®,/2RV® =0.8

2 1

Re (0 -0)/RVa,
0.8

eigenfrequencies,
0.6

A

o /RV®

o
0.010

half-widths,

|im

0.005

absorption signal (arb.units)

° ' ' ' | 10 |[®,/2RV ® =0.2 ]
° simulations z !
--------- perturbation sl 8 8
theory

heights (arb.units)
5

© 0.4 0.8 1.2 16 2.0 S 76 5 4 3 |
L 8 4
o, /2RV o, . ‘ | |
0.4 0.6 0.8

FIG. 3. The dependence of the frequencies, half-widths, and
heights of the first four mode@umbered in the same order as in
Fig. 2) on the strength of the demagnetizing fialg, (solid curve$ . . . i
obtained by numerical simulations in Sec. V. Input parameters are G- 4. Spin-wave spectra obtained numerically in Sec. V for
¢/R=0.1C=20. First-order perturbational correctioriglashed S€Veral wm/2RVw <1. Input parameters arg/R=0.1.C=20.
lines) calculated in the text belong to the regian,/2RVw <1,  Modes are numbered in the same order as in Fig. 2.
Perturbational calculations were done only for the modes with ra- ) ) ) ) .
dial quantum numberns,=0; among the four depicted only the first functions, viz., the set of eigenfunctions of the Hermitian

and fourth are of the type. Heights of the modes are impossible teonjugate operatof ", is to be introduced®
calculate perturbationally. The eigenvalues of the operatir™ are just the complex

V. SPHERE: NUMERICAL CALCULATIONS conjugates of the eigenvalues Af Indeed, the eigenvalues
are found from a secular equation. And for the Hermitian
The complexity of the Hamiltonia40) does not allow conjugate operators these algebraic equations may be shown
finding exact eigenfunctions by analytical methods aparto be complex conjugate.

from using perturbation theory. Nevertheless, it is always Thus the set of eigenfunctions 6¢* may always be
possible to solve Eq43) numerically. We chose a spherical ,ymbered with the same index. To distinguish this set
container for numerical investigations. from | ) we will denote it by|a)y:

Before proceeding to the description of the simulation
scheme utilized, a formalism is to be established for solving
an eigenvalue problem with a non-Hermitian Hamiltonian.
Of interest for us is the generalization of the expangih) ~
of the Green function into series over eigenfunctions. The H' | ayy= o} | ady. (64)
following subsection is dedicated to the topic. ) o ] .

In the two remaining subsections we discuss respectivelfioWever, it should be borne in mind that)y like ) is an
the technique and the results, other than already mentioneéfdinary set of ket vectors, which has the corresponding set

in the previous section, of the numerical simulations. of bra vectors. _ _ _
It turns out then that, notwithstanding that neither the set

|a@) nor |a)y is orthogonal, there is orthogonalityetween
the two setslndeed, following a conventional scheme of

In this subsection we derive an analog of &45) for a  proving mutual orthogonality of eigenfunctions, we note that
non-Hermitian Hamiltoniar{+ H". For H#H" the set of

eigenfunctionda) of 7 is not orthogonal. A second set of H(a|f{|,8>:wﬁ wa|B).

frequency (0-0)/ RV,

7:(|a>: w4|a), (63

A. Green function of a non-Hermitian Hamiltonian
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On the other hand, Therefore from the definitiori64) we immediately con-
A . . R clude that in the case of a symmetric Hamiltonian"
HalH=(H"a))" =(0g]a)) " = warbal. 69 _fp the two sets of eigenfunctions are related through

Multiplying this by |8) and subtracting the previous result, {f|a@)y=(r|@)*=(a|r). Expression(70) for the relative
we see that weights of the modes simplifies then to

(0a—wp) alB)=0. (66)

2
f (r|a)d3r) . (73
Thus|B) and|a)y are orthogonal ife# 8. So it is said . _ _
that the two set$a) and|a), constitute abiorthogonal set  Note that thecomplex value itself of the integral is squared,

of eigenfunctions. not its absolute value, as it would be should the Hamiltonian
The expansion of an arbitrary function into a convergentoe Hermitian. We will use the expressi6rg) for the modes
series is then possible: weights in numerical calculations of the spectra.
|X>:2 |a> H(a|X>. (67) B. Numerical approach

One of the methods for solving a spectral Sturm-Liouville
Here the eigenfunctions are supposed to be normalized gyoblem(conceptually, perhaps, the simplesbnsists in its
that finite-dimensional approximation. Formally, we then are left
with the standard algebraic spectral problem. For the solution
Ha|B)=0,p. (68  of the latter one can implement one of ready-safe well-
established algorithms. However, one must be cautious with
Performing such an expansion ftr*) in Eq. (38), one  the dimension of approximation.

obtains One of the possible discretization techniques is to find
eigenfunctions in the representation of some complete ortho-
G.=3 @) H<“|. (69  normal set of functions when the Hamiltoni40) would
¢ T w,me become a matrix. Such a scheme was developed in applica-

tion to spin waves in Refs. 20 and 21.

A handy orthonormal set to choose is that of eigenfunc-
tions of the Laplace operator satisfying the boundary condi-
tions for the geometry in question:

This is the sought-for generalization of Eg45). For a Her-
mitian Hamiltonian the two sets coincidle)=|a)y, and Eq.
(69) reduces to Eq45).

Thus we see from Eg41) that the spectrum of a non-
Hermitian Hamiltonian consists of a set of Lorentzians at [a2+k2]|,u>=0 (74)
w=Rew, with half-widths Inw, each entering with a # '
weight (h®"| ) y(a|h®"). If the rf field can be regarded as

uniform on the scales of the sample, the relative weights of nidi| )] ,=0. (75)
the Lorentzian peaks are Here u stands for a complete set of indices needed to de-
scribe a statek,, are wave constants. In the case of such a
f <r|a>d3rj H(a|r’>d3r’. (70) choice of the set the first term of the Hamiltoni&t0) be-
comes trivial and the boundary conditions are met automati-
cally.

In our particular case, the Hamiltoni&40) is symmetric
H*="H*. This is trivial to see without the dipolar field term,
but this term can also be shown to (sea) symmetric, since
partial differential operatoﬁf and the Green operatgr, are
both real symmetric and commutativéG..= G..d> . [We re- |“>:% lu)pla), |a>H:Ey [v)(v|ah,  (76)
mind the reader that for an integral operator with a kernel
G(r,r") the Hermitian conjugate has the ker@t (r’,r).]  where the coefficients of expansidp|a) and (v|a), are

The eigenfunctionga), |a)y of the operatorsH, H*
then take the form

Indeed, we write found numerically as right and left eigenvectors of the matrix
form of the Hamiltonian(40) corresponding to eigenfrequen-
. m(r’ 1 ciesw,:
ﬁfgwm=&§f Ld3r’=f m(r’)d2, ———d3r’.
r=r] r=r]
(7D 2 Hyu(vla)=oupla), (77

Taking the integral 2 times by parts and taking into account
thatm(r’)/|r—r’|—0 atz’'— *+«, we get
2 H(a|v>Hv,u,:wa H<a|1u‘>’ (78)

2
as,m(r") .

f %' =G,.0%m. (72) .
[r—r’] whereH,,,=(u|H|v).
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For a sphereu denotes the set,|,m of the radial, polar, The matrix elements af/R were written in Ref. 21, and
and azimuthal quantum numbersi=0,1,2,..., m=—1, the integrals arising should be calculated numerically. The
—I+1,...]=1,. The corresponding basis is rather lengthy calculations of the matrix elementsipfwere

separated into Appendix E.
<r|,U«>:<r|n|m>:Cn|j|(kn|r)Y|m(F), (79 We cite here only the results. The matrix elements of
z/R=r cosl/R, whered is the spherical polar angle, are non-
wherej, is the spherical Bessel functiol," is the spherical ~Z€ro only ifl"=1%1:

harmonic, and renormalization coefficients, are defined

according to (nl|zZ/R|n",I"=1%1)

R
:Cgcn|cnr|rf0 j|(kn|r)j|r(knr|rr)r3dr/R.

R
CnICn’If jl(knlr)jl(kn’lr)rzdr:5nn’ . (80)
’ (82
The wave constantk,, depend on the boundary condi- Heré\ is the greater of,1” and
tion. That of Eq.(75) requires thak, R be the 6+ 1)th zero Cg=A/\/KZ—_1. (83

of the derivatived, j,(r) of the spherical Bessel function.
Since we are interested only in axisymmetric modes,
which couple to a homogeneous rf field, we may simplify the
formulas by working with a subbasjal0).
Infinite indexingn,| is to be truncated at some finite val-

The matrix elements oﬁzz are nonzero only if'={l,l
+2} [see Eq(E28) in Appendix B:

ues for numerical computation. Maximum values mpf,, (nl| —n,n'l)= 5,1”, ! —(c”)2—(c%, ,)?],
I max @re restricted by computational tractability of resulting
matrices.

On the other hand, justification for such a truncation 'S(nl|——nzz|n’ I"=1%2)

that coefficientgnl|a) tend to zero for large,| because of
the oscillating character of,. We expect(nl|«) close to

zero when the characteristic scajeof the function(r|a) =c3c}_1CniCn1 R?

becomes greater than the periedR/n of the oscillations of , ,

the basis functiorj,. Empirically, n.,=10 is already quite kaJHl(kn'R)J'( 1’ R) =Ko/ jisa(kn "’R)Jl(kan)
good for customaryé/R~0.1. Note that the change in k —K? iy

j1(Kpr) with increasind is much less dramatic. So mors
are to be retained in the subbasis. We usgg=51. Further
increase 0ofnyay.Imax Proved to have no apparent effect on
the spectra fo€/R~0.1.

However, foré/R—0 more and more subbasis functions
should be kept, which leads to rapid slowing down of the
computations. In this limit adiabatic approximatitsee Sec.
IV) gives safer results.

It is convenient to seek for the eigenfrequencigsin the
form w, +RVw f,. The Hamiltonian for the matrix equa-
tion onf,,

(84)

It may be verified that the matrignl|7|n’l") is indeed
symmetric.

The algebraic eigenvalue problem for E§1) with Eq.
(82) was solved using a standard subroutine from the linear
algebra packageaPAck. Eigenvectors were then normalized
and the left and right eigenvectors used to find the modes
weights.

In calculating modes weights using E@g7) and(78) we
note that(r|000)=1/\V, whereV=47R%3 is the sphere
volume. Thus

6 (anR)Zﬁnn’ﬁll'

. ¢\°
(nl|Hen'1"y=~{ 3| | 1+
! (R)( f(r|n|m)d3r=N(Ooqn|m>=\/V5no5|o5mo- (89

z
+(nl|§|n’l ") The general formul#70) in this case reduces to

V(000 a) (2| 000). (86)

ZRV <n|| DZZ|rI I >l (81)
C. Results of simulations

comprises three parameteyR, the ratio oy/2RVw, of  Numerical results in the absence of the dipolar field were
wy, to the total field gradient over the sample and the regimgptained in Ref. 21. Whemy =0 there remain only two
parametelC. Here we have USEd—lznsphere 3 parameters in the problem: the ra#itR of the characteristic

The matrix elements af/R and ofn,, by integrating over  wavelength to the sphere radius and the regime parar@eter
the solid angle with appropriate spherical functions reduce tavhich determines half-widths of the modes. The dependence
integrals over the radial coordinate of the spin-wave spectrum offR in the limit of weak de-
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| 7 ©,/2RV o =7.39
5| C=20
——C=5
0 1 1 | L
©,/2RV o =2.72
- 5 |

L 1 I 1 1
,/2RV® =0.368

absorption signal (arb.units)
absorption signal (arb.units)

5
70)M/2 RVmL=O
5| |
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 0 I 1 ! | L I I | |
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

frequency (o-0 )RV,
frequency (w-m )/RVo,
FIG. 5. Absorption signals of a polarized Fermi liquid in a
spherical container for several regime parame@ris neglect of FIG. 6. From bottom to top: evolution of the spin-wave spec-
the dipolar field effectso,,=0 (gray solid curvesand for a dipolar ~ trum of a polarized Fermi liquid at a crossover from weak to strong
field of an intermediate strengthy/2RV w_ =1 (solid curve. The ~ demagnetizing fields. Several adjacent Silin modes form a group
ratio ¢/R was put 0.1. which evolves further as a magnetostatic whole. The distance be-

tween magnetostatic modes grows witly until we are left with

.. . - . . the sole mode in which magnetization in the whole sample oscil-
magne.tlzmg fleld. Wa‘?’ plotted In Fig. 2 to Compare ad'gba“qates uniformly. Input parameters weffR= 0.1, C= 20 (gray solid
approximation with simulations. A typical absorption signal curves, andC=5 (solid curves.

in the absence of the dipolar field is depicted as gray solid
curves in Fig. 5 for severalC. A decrease irC results in
modes broadening without changing their positions.

When wy, is small enough the dipolar field constitutes a

nonuniform magnetostatic modes since the influence of ex-

ternal field gradienV w is negligible for largew,, .

perturbation to conventional Silin spin waves. It is this re- The behavior describgq Is not altered t_)y larger dissipation

gime which was studied perturbationally in Sec. IV. (smallerC) other thgn Silin mpde; grouping becomes more
pronouncedsee solid curves in Fig.)6

In this subsection we shortly consider other results of nu“ The dependence o@ of a spectrum for a demagnetizing

merical calculations, viz., regimes of intermediate and strong. . : R
demagnetizing fields. Although these regimes were not rea(‘li]-'(ald of an intermediate strengtin{,/2RVw, =1) is plotted

ized so far in Fermi liquidgsee Table )l one cannot leave In Fig. 5 as SO“.d Curves. Pronognced adjacent modes for

: larger C merge into magnetostatic conglomerates with no
out what is to be expected. Y : .

: . distinction for smallelC. No apparent relation, especially for
As wy increases the spin-wave spectrum undergoes . .
- . : SmallerC, can be seen with the spectrum in the absence of

crossover from Silin type for small demagnetizing f|elds,[he demaanetizing field
(o /2RVw <1) to magnetostatic type for large demagne- 9 9 '
tizing fields (wy/2RVw, >1). On a gross scale this transi-
tion is represented in Fig. 6 fgf/R=0.1 andC=20 (gray VI. DISCUSSIONS
solid curveg and C=5 (solid curve$. Modes weights

change so that adjacent Silin modes group into fewer mag- A. Method
netostatic modes. These separate at even lasgeuntil a We studied the influence of the dipolar demagnetizing
uniform (Kittel) mode singles out at extremely largg; . field on the spectrum of linear standing spin waves in a po-

This latter mode is the only one to remain because wearized Fermi liquid in a finite container.
chose a uniform radio-frequency field for the response of the A somewhat resembling problem was studied in the 1970s
system. And a nonuniform rf field is required to couple toin ferrimagnets. deWames and Wolfr&heonsidered not the
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Larmor-precession cas€l), but the true Landau-Lifshitz In afinite volume of a liquid strengthening of the demag-
equations of inhomogeneous magnetization dynamics thatetizing field results in the crossover from the Silin-type
contain an additional exchange torque term depending on th&pin-wave regime to the regime of magnetostatic waves. In
Laplacian of the magnetization. This term is similar to thatthis latter the mechanism of the forming of the standing spin
arising from the Leggett equatiofisee Eq(30)]. waves has nothing to do with the exchange physics of Fermi
The situation in ferrimagnets and in polarized Fermi lig- liquids. Magnetostatic spectra are in no way specific to the
uids belong, however, to different limiting cases. In ferri- Fermi liquid and so contain no information on its parameters.
magnets the dipolar field effects—magnetostatic waves—are For intermediate polarizations the demagnetizing field in
pronounced and exchange is a perturbation. In a paramag-finite volume of a liquid leads to the corrections to Silin-
netic Fermi liquid under conventional experimental condi-type spin-wave spectra, both shifting the spectra uniformly
tions, on the contrary, it is the dipolar field whose effect isand also changing the distances between the modes and the
smaller. modes widths. These changes of the second type which dis-
There is another obstacle of transplanting the approach dbrt the spectra are undesirable from the point of view of
deWames and Wolfram to our needs. In order to accommaoderiving parameters of the liquid from the spectra.
date all the inhomogeneities—both from the Landau-Lifshitz We have seen that the parameter determining the influ-
equations and from the Maxwell equatioi®—the resulting  ence of the demagnetizing field on the spectra of spin waves
differential equation for magnetostatic potential is of thein a finite cylinder in the first order of perturbation theory is
sixth order in spatial derivatives. Though it was manageable

in a quasi-one-dimensional situatiofferrimagnetic sub- 20y € JROLY

stance yttrium iron garnet YIG is grown as thin filmst TV, ﬁ'n P (87)
becomes virtually intractable in any, even the simplest, 3D

geometry. wherew), =47 yM characterizes the magnetization density,

An approach to include dipolar field into magnetizationy, is the gradient of the Larmor frequendyiis the radius
dynamics analogous to ours was used by Dewli@l®® in  of the cylinder basel. its height, and¢ is the wavelength
application to solid bcéHe. In this material the dipolar field (49) of an Airy-type standing spin wave. The quantily o,
gives rise to multiple spin echos at times following two  gives the average distance between modes in the units of
isolated rf pulses at times 0 and Reference 25 explained frequency.® and¥ are numbers of the order of unity.
this phenomenon quantitatively using a simplified local ap-  For a sphere, an analogous parameter was
proximation for the dipolar field valid for a slab infinite in
the directions perpendicular to the external fi¢idthough \/;wM 4 [¢
this restriction was not properly emphasized in the paper 4%V \/ﬁ
Later Fomin and Vermeuléhutilized the form of the dipolar “L
field term of Ref. 25 to study dipolar corrections to a two- The values of these parametdidong with the values of
domain coherently precessing structure. some others having appeared in the Xdat several recent

As for linear spin waves, in this local approximation nei- spin-wave experiments are arranged in Table I.
ther the relative positions of the modes nor their half-widths = The ratio M/M, of the absolute valué/ of the static
and heights change, and the spectrum only shifts as a wholghagnetization to the equilibrium magnetizatibh, accounts
The demagnetizing field is by definition shape dependent anghr the possible higher than equilibrium polarization of the
it is erroneous to use the local approximatepriori. liquid. Polarizing a liquidM /M, times its equilibrium value
increases proportionally the strength of the demagnetizing
field as well as the parametef87) and (88). For the

The strength of the demagnetizing field is proportional toexperiments?*#whereM/M, could be changed, we present
the polarization of the liquid. So in conventional weakly po- in Table | the data for several integer valuesvfM, which
larized liquids the dipolar field can be neglected, while forare close to the real experimental values.
strong enough polarizations its effects overwhelm usual For conditions when the dipolar paramet8v) or (88) is
Fermi-liquid exchange field spin dynamics. smaller than unity one can use perturbation theory to get

Because of its long-range character, the dipolar interactiogorrections to the modes frequencies.
introduces an additional nonlocal term into the equations of As the comparison between perturbation-theory-based
the spin dynamics. This term is an integro-differential opera-analytical calculations and numerical simulations for a
tor on the magnetization, wherein the integration is takersphere showssee Fig. 3 perturbation theory has acceptable
over the volume of the liquid. As a consequence the correcaccuracy up to the values ofy/2RVw ~0.1 or Egs.(87)
tions to the spin dynamics depend strongly on the shape afnd(88) ~0.4. However, at greater values of the parameters

(88)

B. Main results

the container. (87) and (88) the discrepancy between perturbation theory
In particular, the influence of the demagnetizing field onand numerics grows dramatically.
the spectrum of standing spin waves in (@finite) slab re- When the spin-wave spectra are used for measuring the

duces for an arbitrary strength of the dipolar field simply totransverse relaxation time, a proper treatment of experi-
uniform shift of all the modes by wy, = —47yM, whereM mental data taking into account dipolar field corrections is
is the static magnetization of the liquid in an external fieldnecessary. We estimated that the dipolar restrictions on the
and y the gyromagnetic ratio. correct determination of from the conventional interpreta-
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tion of the spectra are of the order of the paramé&j or  where by definition
(89). In particular, for the experimehitabout 4.2%. The lat-

ter means that the effect of a dipolar field cannot significantly o I » d
change the main conclusion of this article that the da0148)= maa\/ﬁ:—ﬂafz T/2=—21rsgra.
polarization-induced zero-temperature spin-wave damping ) L =y

does not exist, which is in disagreement with previous spirHerer, denotes the coordinate vector in the plane perpen-
echo experiment¥;!? dicular tos.

A major inference for planning future experiments is the
proposal to use ellipsoidal, in particular, spherical containers,
not only because the estimation of the shape-dependent di- A[M]=5(5m) (A2)
polar field effects is simpler, but also because there are two - ‘

roughly equal contribl_Jtions to the' spin-wave spectrum dis- The case of an infinite medium in a uniform magnetic
tortion: one from the inhomogeneity of the static demagnesig|q (j.e., Vw, =0) is the simplest. Looking for a solution of
tizing field and the other from the demagnetizing field Pro-Eq. (34) in the form of a running wave

duced by the rotating part of the magnetization. The first

contribution exists only in nonellipsoidal samples, in which a m(r)=mge'¥, (A3)
homogeneous static magnetization produces inhomogeneous o

demagnetizing field. For this reason implementation of suclwve haves=k. Hence, Eq(34), from which the components
shapes for the experiments on the elicitation of the liquidf the constanm, are to be found, becomes a linear alge-

2r/

Son;;[f]=s;s;f and

characteristics from the spectra is disadvantageous. braic equation

The dependences of Eq87) and(88) on experimentally _ . _ o
controllable parameters are as follows: E§7) < In w, o tonky  —io+oykdk, om
<In(Dg/x7), *Va NV, *R~%, and Eq.(88) xw’4, Mo=7-hi.

i~ o ~ r2
«(Dg/kr) ¥ «Ve ¥ «RY So a biggerR and a lotaukdky, ook
bigger gradient diminishes the contribution of the demagnewherew, = w, — Dk? andw= w+i(D/C)k?.
tizing field. Herem, as a function of frequency has resonance authe
But for typical experimental conditions, as one can seeyhich render the determinant of the matrix zero. This gives a
from Table I, strongly polarizedHe-*He solutions never are Holstein-Primakoff-type spectrum with an additional attenu-
too far beyond the regime of Silin spin waves perturbed byation term due to dissipatiof ~1+0:
the demagnetizing field, whereas putide at strong polar-
izations is in the “deep intermediate” regime, for which the
results of Sec. V apply. In view of this, even at most favor-
able cell size and field gradient, pure highly polarizttdie R
seems to be unsuitable for a study of Silin wave spectra. where# is the angle between andk.

w=(w_—Dk?(w_—Dk’>+ wysirfd) —i gk% (Ad)
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2c 8
(P. K).
due to dispersionl is the current through the coil. A line
APPENDIX A: SPIN WAVES IN AN INFINITE MEDIUM over an expression here designates time average over oscil-
IN A UNIFORM MAGNETIC FIELD lation period.

Second, the resistanéeappears owing to the dissipation

The nonlocal dipolar term[ m] is known to become local of the energy of the field in the specimen:

in the important case of a medium infinite in two directions,

with the proviso tham depend on only the remaining third , 1
coordinate. The direction in whictm varies we denote as Rl :EJ H(t,r)a,B(t,r)d. (B2
and then the medium should be infinite in the two directions
perpendicular tcs. Making use of the general solutigi®)—(11) and of the

In such conditions, expansion(24) we write

f(r’ PN - = eA+ € + .
0iajf | ( 3| d3r’=sisj03f dsG1q(s—s")f(s")ds/, H(1)=H"2+h"(0) +Hap, (B3)
vir—r
(A1) B(t)=(H®+47M)z+ h®(t)+47m(t)+Hgp. (B4)
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In taking space integrals of mutual scalar products of differ-

ent terms ofH(t) and B(t) we note that those containing

Hgip transform into integrals over a remote surface. Since
beyond the specimen magnetization is zero, such integrals

vanish.

In bilinear expressions we should write the monochro-

matic rf field h®(t) = h® coswt ash®(t) = 3(h®+h®*), where
he=hge ! Similarly, the rotating part of the magnetiza-
tion should be written in the forrm(t) =% (m+m*), where
m=mye (O (1)).

Then the impedancE=R—iwlL/c? of an NMR coil can
be written in the form

z:zo+|—2f he(t,r)(d;—iw)m(t,r)d3r =2,
—iwl—zf he* md®r, (B5)

whereZ, is the impedance without sample. So the change i
the impedance of the coil due to sample is proportional to

2[ h®* md3r~(h®*|m™"). (B6)

PHYSICAL REVIEW B65 054301

»J2(kR) (L
1k2 JO V(2)

V(2)n,{ ®(2)]d%r = — 7R? f

\% 0

L
><J d(z')o%e M7 ldz' dzdk
0

(C3
In the first integral in Eq.(54), \I’(z)zzpﬁz(z),d)(z):l,
while in the second¥(z)=®(z)= ¢nz(2)-
As a result of differentiating expansid2) we have

d2e M= —2k5(z—2") +kPe K=l (4

The integral of thes-functional part is the simpler; using
Ix133(x)dx=13, we obtainmR?[§¥ (z)®(z)dz For both
integrals in Eq.(54) this gives unity.

So thes-functional part in the dipolar operator for trans-
versely homogeneous spatial distributions gives the local

r§Iab value(52).

The second part in EC4) is shown below to be nonzero
only for finite samples. Indeed, it yields
L L |Z—Z,|
—WRJ \If(z)J’ d(2')F
0 0

T)dz dZ,

The real part of this quantity gives the dispersion spectrumwhere

while imaginary the absorption.

Introducing the Green operatdf,, Eq.(42), and normal-
izing, we arrive at expressiof@1l).

APPENDIX C: DIPOLAR CORRECTIONS TO MODES
IN A FINITE CYLINDER

In this appendix we derive expressi(@6) for mode shifts
due to dipolar field in a finite-cylindrical cell.

The normalization coefficients of transversely homoge-

neousn,=m=0 modes(55) are

¢ 2= szgfugwAiz(H o’ )dx (C1)
nZ 0 nz .

)

F(IO)=J0

is the Laplace transform af?. Although its value can be
found in tablegsee, e.g., Ref. 2&ormula 6.612] for our
purposes it is sufficient to know its value for smajlwhere
it diverges logarithmically:

J3(x)e”PXdx (C5)

|z—27'| 1I e?|z—z7'| 6
R | =" 8rR C6)
Writing for small z
fL' Lt P NI
0n 8R Z' = nﬁ zna (z%)

The upper limit may be put equal to infinity and then the last

dimensionless integral is a number depending onlynpn

In calculating the integrals in Eq54) we use the expan-
sion of the Green function in cylindrical coordinatéRef.
19, p. 140:

+ oo

m;x eim(<P_<P') JO e_klz_Z"Jm(kp)\]m(kp’)dk.
(C2

1 p—
=]

Integrals overy and ¢’ give (27)%68,0. Then the inte-
grals overp andp’ with J, give R2J%(kR)/k? so that

and substituting I{ — z)/£— X we obtain for the first integral
in Eq. (54):

1 | eL \Pnz §| ®nzg c
TaRMR T 7 R e €7
And for the second integral in E¢54)
2(I)nz g eZEnzg
1+ S (C8)

8R

Here then,-dependent constants
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TABLE Il. Numerical constants in the expressit#6) for mode For finite C~* the scale¢ should be replaced with the
shifts due to dipolar field as functions of the mode number. complex £&(1+i/C)Y. This means that the dipolar field
changes also imaginary parts of the eigenfrequencies and
n, 0 1 2 3 4 S hence half-widths of the modes. In the collisionless regime
@, 11197 09377 0.6949 0.6449 05717 05443 (C>1) the imaginary part of the correctidb6) equals
E"i 0.5431 0.3525 0.2441 0.2384 0.2019 0.1989 £ SR L
W, 06792 2165 32134 4109 4915 5659 5. imes cyhnder hd.l By In———+ ¥ Ing—
®, 09189 2481 3.657 4.667 5576  6.419 3C 7R © B, ¢ On )"
(C14)
2 So the dipolar field changes the widths of the modes pro-

portionally to wy, . Since for all parameters being positive

{f:, Ai(x)dx

o = E 2 (C9) the initial imaginary parts (1B)a,’12§Vw|_ of the mode450)
2 (= 2 ' are negative, the modes narrow down in the first approxima-
, Ai(x)dx tion
" As a matter of fact, experimentally measured are not the
0 w absolute positions of the modes frequencies but rather their
f , f In[x=x"|Ai(x)Ai(x")dxdx positions relative to each other. So modes positions in Ref.
U ¥ 13 were determined relatively to the positiary of the ze-
In =n,= o 2 ' roth mode: notw, but w,— w.
{j , Ai(x)dx To diminish the error due to the data scattering in the
~%n, value of the slope derived from the fitting, it is desirable to
(C10  fix the Larmor frequency at the walb, +LVw, which is
experimentally badly determinable. So the positioy was
f XAIZ(X)dX put equal to its valuen¥=w +LVae +aiéVw, in the
absence of the dipolar field. This means that instead pf
(C1) -, — LV, in the denominator of EqC13) actually used
J AIZ(X)dX in Ref. 13 was RHw,— wg) + @ éVo =R (w,~ wg)
—w —LVo + w((JO)].
Calculating the ratio of Ima,, to this quantity taking into
f X In(x)Ai(x)dx account the dipolar correctior{s6) and (C14) we get
N®, = —— (C12 1, ew £, 8R
f ,XAiZ(X)dX 3C Ct’r’] ngL R 0 e2+(I>nZ/<I>oEO§
) ) ’ el=Vn, VoL
are of order unity, as is seen from Table Il, where they are +¥n i (C15
. . . 0
calculated numerically for the first six modes. 0113

Plugging Eqs(C7) and(C8) into Eq.(54) we get for the
dipolar corrections to the modes frequencies in a finite cyl- So the error introduced to the determinatiorCof of the
inder expressior56). order of Eq.(87).

Dipolar error to transverse relaxation time APPENDIX D: SOLUTIONS FOR A SPHERICAL CELL

We are now in a position to estimate the error in the IN ADIABATIC APPROXIMATION
determination of the transverse relaxation time because of | this appendix we obtain spin-wave solutions in a

the dipolar field. _ _ . sphere neglecting the dipolar field.
As an example, we consider the expenmjén_uher_eln_r For a solution of the three-dimensional eigenvalue prob-
was obtained from the regime parame@r which, in its  |em in a sphere of a raditR,

turn, was determined from the slope of the linear fit to the

dependence of modes half-widths dim on their position [D#*+ 2V Ju(z,r,)=dwu(zr,), (D1)
Re(w,— o, —LVw). In the collisionless regime in a finite
cylinder, as is seen from Eq&0) and (51), the two quanti- drul,—g=0, (D2)

ties are related through where we denotedw= w— w, for brevity, the adiabatic ap-

proximation consists in the substitution

Imw,
~—. C13 .
R w,—w —LVw ) 3C (€13 u(z,r)=v(z;p)w(p)e'™*, (D3)
We now find the dipolar correction to this value. Whereunz(z;p) are the eigenfunctions of the equation
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[D2+2Vw Jvn (Z;p)=0n (p)vn(Zp). (D4) The first term is proportional to &/ while the second to
: ‘ ‘ 1/R and in the casé<R the boundary conditions reduce to

The coordinate notations are represented in Fig. 7. Th much simpler form

appropriate boundary conditions for E@4) will be dis-

cussed below. =

Then Eqg.(D1) becomes &ZUnJZ%R_pzlzR 0 Rt
_ _ Finally we formulate once again all our assumptions, i.e.,

vn (Zp)[D3F +wp (p) = Sw]w(p)e™+De™ (Wit vy, p, & p?l£<R. These three reduce <R if p~1/\/a, where

1/\/a is the characteristic transverse spatial scale of the wave

function[see Eq(D16) below.

Now we proceed to the solution itself. First, E4P4)

The adiabatic approximation utilizes the fact that the second,q 1 be solved with the boundary conditiofis (D11) at
term could be for certain conditions neglected with respect tg, _ R—p2/2R and (i) v;—0 asz— — .

Dafw(p). Then we would obtain an effectively decoupled  The solution is then
eigenvalue problem describing the slow transverse motion:

+29,Wd,0, ) =0. (DS)

, | _ [ on(p)—2V ey
[D3? + wn (p)IW(p)e™e= Sww(p)e™. (D) vn(Zp)=Ai e, ) (D12
For an estimate of the conditions of the possibility of thatWhere
neglect we write p?
wnz(p)=(R—ﬁ+§aéz Vo, (D13)

v (Z;p)~ 3,230 ~(pIR) Iy , (D7)
anda/,<0 is thenth zero of the derivative of the Airy func-

and from Eq.(D4) we see that,v, ~v, /&, where¢ is the  tion Ai’.
Airy spin-wave characteristic wavelengt#9). On the other Then Eq. (D6) describes a two-dimensional harmonic
hand, J,w~w/p. So the condition of applicability of the oscillator
adiabatic approximation to this problem is that the ratio of
the second term in EqD5) to Dafw(p) should be smaller
than unity:

Vo, p? .
Do?— —=* %} (p)e™

p2IRE<1. (D8) =[o—(ap é+R)Vow(p)e™. (D14

The boundary conditiofD2) on u reads The solution in polar coordinates is

_ _|m|a—apZ2y |m| 2
. w =p'e L, '(ap?), D15
[cosfd,+sinbd,]v, (z;p)W(p)e™=0. (D9) ”pm(p) p ”p( P°) (D19

whereL(z) are the Laguerre polynomials and we denoted
For small# we have co®~1—p%/2R? and sind~p/R. Esti-

mating d,un, as above, we see that sﬂﬂpvnz is of the order , VoL 1
of (p/R)%d,v n,s and in first order irnp/R the boundary con- a “2DR_ 28R’ (D16)
ditions are
The corresponding eigenfrequencies are
p
W v, + =00 W) =0. (D10 , 3
( z¥n, R n,“p Z%R7p2/2R wnzn:wL+vaL+§va anz_ 2§(”+ 1) y
———————— . where w; is the Larmor frequency in the center of the
P spheren=2n,+|m|.
/_ i Again we remark that only the modes with zero azimuthal
; quantum numbem couple to the rf field. Eigenfunctions
p with m=0 occur for evem=2n,, as is written in Eq(58).
Effects of dipolar field in the first order
z 0 R of perturbation theory
We now calculate the demagnetizing field correcti®
to the modes in a sphere.

As we saw in the previous subsection, the dipolar-free
FIG. 7. A scheme of the coordinate system used to solve théolution of the equations of motion satisfying boundary con-
eigenvalue problem in the adiabatic approximation. ditions (44) is
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p? ~1/2Réa= JEI2R; therefore,|z—2z'|~¢&x—x'|. Then the
R— SR * ) integrals overp andp’ can be takeff (formula 6.631:
l’/l”z”pozcnznpoAi T—Far”z e % lanp(apz)’
* 2 1 2
(D17) JO e 723 (kp)pdp= ae—k 23, (D20)
wheren,,n,=0,1,2 ... %, andm was put equal to zero
because only the modes with=0 couple to the homoge- The integral ovek,
neous rf field. Furthermore, for simplicity we consider
modes withn,=0 for whichL, =1. fme‘kz’ae‘kpkzdk, (D21)
In order to calculate the normallzat|on coefﬂCl@qtoo, 0
2 ~4/€IR. Therefore,
. ) R— SR 2 we can substitute ED21) with the zeroth term of its ex-
C_SOZZWJ e—apZJRf” 2R A2l ————— [ dzpdp pansion in series with respectpa/a, which is}ywa®. Then
Nz 0 —R+p22R 3
we make the substitution= (R— p2/2R—2z)/& J U (20, ¥ (2)]d%r
\V2 r4 z
2(R—p?/2R)/E—»
nOO 27T§f e @ J (REpT2RIE 2(X+ar'1z)prdp @, (I)nz\/;4
mE [+
= f AiZ(x+ o )dx. (D19 (D22)
O z
where®,, ,are the same numbers as in the case of a cylinder.
Here the upper limit of integration overmay be estimated | the end we obtain E(60) for the corrections to the

as~(R/é—1/aR¢)=(R/IE—2¢/R)> 1, after which the in-  modes.
tegral overx decouples from that oves in the approxima-
tion ¢/R<1. A APPENDIX E: MATRIX ELEMENTS
In the case of a spheme,J1]=n?=1% and as was al- OF THE DEMAGNETIZING OPERATOR
ready mentioned there is no contribution to the spectrum . , L ) )
distortion from the static dipolar field. One needs only to !N this appendix we are going into the detail of calculation

calculate the second integral in E&4). of the matrix elements of the dipolar integro-differential op-
Again, the 8-functional term in Eq(C4) using® erator n,,. We show that only those elements
(nlm|n,/n’I"m’) are nonzero that are between the states

with m=m’ andl’'=1,1+2.
Before proceeding we remark on notation. We will write

) ) ) the integral operator in Eq14) as
can be easily seen to give a constant 1 as it should. In the

limit ¢/R—0 a sphere transforms into a half-space, the R

modes being localized near the boundary. A half-space is a gwM(r):f

particular case of a slab, with the height-«. Hence the

solutions in a sphere in the lim#R— 0 transform into so-

lutions for a thick slab depending on orty The demagne-

tizing tensor for such solutions reduces to a constant
The second term in EqC4) gives

oc 1
fo kJ,(kp)J,(kp")dk= ;5(p—p’)

M(r")
r=r’|

the justification being that,, is the Green operator for
Laplace equation with the boundary condition of vanishing
at infinity.

So our plan for this section is, first, to calculatg/nim).

——d%, (E1)

- 3 Then, second, we calculate the result of acting’pbn an
jvlﬂnz(z)ﬂzz[ ¢n,(2)]dr arbitrary functionf(r) expanded in spherical harmonics:
© 0 0 — me e
= —mc? £ fo 2 fo e 223 (kp) fo &3 (kp') f(N)=2 fim(n)Y(D). (E2
o (e, By substitutingG..|nIm) for f we eventually find the ma-
X fo Ai(X+ap ) fo Ai(X"+ay) trix elements themselves.

><e_kglx_xl+(”2_”,2)/2R§|dx’pr'dp’pdpdk. (D19 1. Calculation of G,.|nIm)

The two terms under the module sign appeared fiam We find G..|nIm) directly by integration, using a well-
—Z7'|. We can estimatex—x'~1 and @2—p’'?)/2Ré  known formula from the theory of spherical harmonics:
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|r—r | 2 2|+1Ym(r)Ym*(r ) rirt

wherer _ (r-) is the smaller(largen of r andr’. Then,

rr’t Ror )

(E3)

G../nlm)

4 m, A
Imcm\ﬂ (r)

PHYSICAL REVIEW B65 054301

N .1 -
0:r§r+0rﬁg+¢ma¢, (Ell)
it can be verified that
9,=C0S00;+ 5 —sing(e'?l_—e ¥1,).  (E12
Herei=—irxdis the angular momentum operator,
l,=—ia,, T.=e""®(xa,+icoths,), (E13

The integrals on the right-hand side can be taken easily awhich has the well-known effect on the spherical harmonics:

follows. We notice th&f

X 1100==a,0x"" 1 (0], (E4)
o100 =a0x"" 11001, (E9
Taking integrals from the two sides we obtain

x[y\! 1

[ i may=ico. (€9

0
a/x\! |
L(y) Jirady=j(x)—| z| i(@). (E7)

On plugging the above into EGE3) and using another
property of the spherical Bessel functions,

) _ 21+1 .
100+ 10 = =i, (E8)

we get a sum of two terms:

2

nim
R)Z

nl

47R? ¢
- 21+1k,R

goon n
(k

|
Y.‘“(h(%) j1-1knR). (E9

This expression is inapplicable whép,R=0, which takes

place forn=1=0. In this particular case, integrating explic-

itly, we get
R R R? r?
goc|000>:47TCooY8(r)jo(0)(? - E) .

2. Calculation of @f(r)

Making use of the overt expressions of the basis vectors

in the spherical coordinates
I =X sin 6 cose+Yy sin @ sing+zcosé,
6=xcosé c05¢+§/cosa sinqo—isin 0,

©=—Xsing+ycose, (E10

and of the Nabla operator

LYP=myn, (E14
T.Y"=J0—-m)(I+m+1)Y"?, (E15
T_y"=Ja+m)(I—m+1)Y" . (E16)

The product of each spherical harmonic with &atf

=Y}, cos#=Y?, or singe '¢=Y; L, is a sunt’
singe " Y"=amy" t—bMY"t, (E17)
singe' ¢Y"=—a, MY b MY, (E18
cosOY"=c/" Y} +c"Y ", (E19

of the harmonics with the adjacehtand m multiplied each
by a coefficient(which, in fact, are particular cases of the
Clebsh-Gordan coefficients

m+1l—-m+2

I_
m__
a _\/ 21+ 1

21+3
m l+m I+m—-1
P N2I4+1 21-1"
m l+m |I—m E£20
“=Nar12-1 (E20

Hence from Eq(E12
78= 2 (=YL L+ oYL L) fin(r). (2D

Here the coefficients turn out to be the same as in(E49),
and we introduced two differentiating operators

Lf=—a.+Ir,
Ly =a,+(1+1)/r. (E22

We may rewrite(E21) by shifting the summation indices
as

azf<r)=% (0 m(NY(T),
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TABLE Ill. OperatorsZ;” ,Z; .

f(r) r! 'l NG ji(const)
L f 0 (21 +1)f/r  jy1q(r)  const, .(const)
Lyt @+ 0 j1—1(r)  consf,_;(const)

(9)im=—C"L o f _imt O Lo iam.  (E29)

Then repeating the procedure, we get
(N =2 (EDm(YT(D),

with
(2 im=cle™ 1 L1 Ly o ot L() 2+ (% 1)?]

X(2) fim+ b 1C 2L 1 L of i om- (E249)

Here we used that,” ;2 =L, L] = — (%), where ¢?),
is thelth component of the Laplace operator:

I

[(I+1)

2\ _ 12
(3%)=d?+2 .

(E25

Changing the summation indices in each term again we

arrive at
ARDRCIRCIA GOV ICREICHNE
XYM (7)1 e™Y o (D L1 Ly Him. (E26)

3. Matrix elements

SubstitutingG..|nlm) from Eq. (E9) into Eq. (E26) and
using the properties oﬁif’ ,le_ summarized in Table Ill, we
find

32G..InImy=cl". 1" 5Cn1j 1+ 2(Knil) Y] (1)

4

—[(cM?+(cl ) ?]Inim)

+c™ ¢"Co Y (0] - 2(Kni)
ji—a(kaR) (1) 72
- R

(E27)
It is not hard to verify by straightforward differentiating that
this expression holds also for=1=m=0.
The matrix elementgn’l’m’|#2G..|nIm) are to be ob-
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sample. In doing so we see that only the elements with
=m,I’'=1,1=2 are nonzero as we already mentioned
in the text

1 ..
(nim| Eﬁggmm’,l’:l —2,m)

R
:(C|m—1c|m)f cc'ji(kn)j(k'r)radr,
0
1 25 ’ my 2 m \2
(nim| =28 1m)= = [(c]) 2+ (cf% )21 gn
1 27 royr
(nlmlEazgan A7 =142m)

m m R- .
=(c/l_,chec’ fo ji(kn)j (k' ryredr

R3j|+1(kR) Ji+1(K'R)

—(21+3) KR R

: (E28

where we introduced shorthand notatior k,,;, k' =kp//,
C=Cp, andc’'=cps .
In the last term we used

R
JOj,(kr)r'*zdr/R'=R3j|+1(kR)/kR, (E29

with k=k,,;. There is one exception, though, whésn
=0 — thenk, =ky=0 and the division in the right-hand
side of Eq.(E29 is undefined. Integrating straightforwardly,
we get instead?®j,(0)/3.

At the end, we take integrals in the off-diagonal elements
of Eq. (E28 using the formulas belot® (formula 5.54:

| i@xiioxxeax

L bji—a(bx)ji(ax) —aj—1(ax)j;(bx)
=X a2—Db2

, —bjir1(bx)ji(ax) +aji.1(ax)ji(bx)
a2_b2

X

,Dji+1(bX)ji 4 2(ax) —aji+ 1(ax)ji+2(bx)
X a2_b2

1(bx)
bx

+3)x3j|+1(ax) Ji+
a

+(2l (E30

tained from this expression by integrating with the complexHere a#b and we consecutively applied recurrent relation
conjugate of Eq.(79) over the spherical volume of our (E8) first toj,_, and then tgj,.
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Plugging the integration limits we see that above-diagonal
(I"’=1+2) elements equal corresponding below-diagonal

(I"=1-2) with the appropriate changg«l. (For n=|
=0 this is to be verified manually.

Finally, we get formuld84) in the text for the dipolar part
of the Hamiltonian.

The casea=b in Eq. (E30) is used in the calculation of
the normalization coefficients,,;, Eq. (80):

:2 2 :X_3-2 . :
fh(aX)X dx=SLii(ax) —ji-1(@x)ji+a(ax)].

We get

R3 —-1/2
CnI:(?[jlz(kan)_jll(anR)jHl(kan)]) ,

R3
(?{jlz(kan)_Fjlz-#l(kan)

-1/2

1
i1(kniR)j ko R
kanh( nR)J1+1(KyR)

whenn+I1=1. Forn=1=0 we haveky=0 andj,_, grows
unlimitedly when its argument tends to zero. Then we inte-
grate directlycyo=(R%j3/3) Y2
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