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Topological reduction of tight-binding models on branched networks
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Noninteracting excitations on a generic discrete structure are described by means of a single-band tight-
binding Hamiltonian. Despite the simplicity of the model, topological inhomogeneity gives rise to nontrivial
spectral features. At the same time the lack of regularities makes the spectral analysis a rather hard task, since
powerful tools such as Fourier transform are ruled out. In this paper we introduce a rigorous analytical
technique, based on topological methods, for the exact solution of this problem in the case of branched
structures. We provide some examples illustrating the technique.
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I. INTRODUCTION: THE ROLE OF TOPOLOGY

The tight-binding Hamiltonian was originally introduce
to deal with electronic excitations in solid materials but
was soon extended to the study of many other kinds
excitations.1 The environment where these excitations ta
place essentially consists of a collection of elementary bu
ing blocks arranged into a network. These building bloc
are typically atoms, but they can also consist of more co
plex structures.2,3

When the network is regular and periodic, as in crystals
is possible to isolate an elementary cell from which all t
features of the system stem. At length scales much hig
than the cell’s size these features depend uniquely on
dimensionality of the cell’s packing. Periodicity, as well
any other strong regularity arising from simple gro
properties,4 is particularly useful in the analysis of the spe
tral features of the system. It makes it possible to introduc
~pseudo! wave vectork that labels many quantities of inte
est, such as the energy or the Green’s functions.5 When no
periodicity is present, a lattice cannot be used to describ
discrete structure and there is no such simple labeling for
physically interesting quantities.

In this paper the spectral properties of a single-band tig
binding model applied to inhomogeneous structures are
vestigated. In order to analyze the features strictly aris
from the topology of their arrangement we will simplify a
much as possible the ‘‘internal structure’’ of the buildin
blocks. The resulting model is simple yet rich, in that it r
tains the basic elements for a qualitative study of the effe
of topology on the spectral features.6,7 In this framework we
will illustrate an analytical technique, which we callbud re-
duction, applicable to the large class of branched networ
As its name suggests it makes it possible to account for
spectral features stemming from an entire substructure
branching from a site of a given network, by reducing it
what we call itsbud. This operation is a sort of topologica
renormalization, in the sense that the presence of an e
substructure is accounted for by means of an on-site pote
of geometrical origin. Since it is applicable also to structu
that have already undergone a partial bud reduction,
technique proves to be very efficient on recursively defin
structures. Indeed recursivity is of great help, since it allo
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for relations in closed form, but it is not a requirement of t
technique. A deeper understanding of the features aris
from topological arrangement is gained, in that the spec
properties of a complex structure are explicitly expressed
terms of the same properties of its simpler parts. The kno
edge thus gained can possibly be exploited in designing
works displaying the desired spectral features.

The present paper is organized as follows. Section
briefly deals with the mathematical representation of discr
networks, from the topological point of view. A number o
useful definitions are also given there. In Sec. III we intr
duce our tight-binding model, generalized to the case of
arbitrary network. In Sec. IV we review some mathemati
tools that allow the computation of the spectrum of such
arbitrary network, independent of its symmetries and re
larities. In Sec. V we describe bud reduction and prov
numerous examples that clarify the technique and its ap
cation. Section VI consists of our conclusions.

II. REPRESENTATION OF AN ARBITRARY DISCRETE
NETWORK: GRAPHS

When no periodicity is present a lattice cannot be used
describe a discrete structure, the appropriate choice bei
graph.8 A graph, G5$S,L%, consists of a set of points, o
sitesS and a set of linksL connecting the sites pairwise. I
the present paper lowercase italic lettersi , j ,k, . . . , will de-
note the sites of a network, and pairs of lowercase let
enclosed in parentheses (h,k) will denote the link joining the
relevant sites. From an algebraic point of view a graph
completely described by what is called itsadjacency matrix.
Every entry of this matrix corresponds to a couple of sites
the network, and it equals one if and only if this couple
joined by a link, otherwise it is zero,

Ai j 5H 1 if ~ i , j ! is a link of the graph

0 otherwise.
~1!

The sum of the elements in thekth row or column of the
adjacency matrix gives the so calledcoordination numberof
site k, namely, the number of its nearest neighborszk
[(hAhk5(hAkh .
©2002 The American Physical Society02-1
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Any sequence of consecutive link
( i ,h),(h,k), . . . ,(l ,m),(m, j ), is referred to as apathon the
graph. In the following a path starting at sitei and ending at
site j will be denoted by the symbolPi j . In general such a
path may reach its ending sitej also at an intermediate step
When the path never passes through its ending site a
intermediate step it will be denoted by the symbolFi j .

The bud-reduction technique, which we will illustrate
Sec. V, can be performed at sites of the graph calledbranch-
ing sites. A site * of a graphG is a branching site if it is the
only intersection of any two connected subgraphsB1
5$S1 ,L1%,B25$S2 ,L2% of G5$S,L%; in mathematical
terms,

S1øS25S, L1øL25L,

S1ùS25$* %, L1ùL25B. ~2!

Any two subgraphs joined by a branching site are referre
asbranches. What makes a branching site peculiar is the f
that any path joining sites on different branches is forced
pass through it. Figure 1 illustrates the concept of branch
site.

III. TIGHT-BINDING MODEL FOR GENERIC
STRUCTURES

In the following we will deal with a tight-binding Hamil-
tonian of the form

Hi j
TB5tAi j 1azid i j , ~3!

describing noninteracting excitations~typically electrons! on
a generic structure represented by the adjacency matriA.
The off-diagonal term, containing the so-calledhopping pa-
rameter t, and the adjacency matrix is referred to ashopping
term. The diagonal term, containing the so-calledlocal pa-
rameter a, and the coordination matrixZi j 5zid i j , is referred
to as local term. The overall productazi is usually referred
to as theone-site energyat sitei. A Hamiltonian such as Eq
~3! can be obtained starting from the first quantizati
Hamiltonian for a quantum particle experiencing
‘‘atomic’’ potential Vi(r )5V(r2r i) at each sitei of a dis-
crete structureH5p2/2m1( iVi(r ). This can be done9

FIG. 1. Graph of a generic network. Filled circles deno
branching sites, i.e., sites that are the unique intersection of any
connected subgraphs. Unfilled circles denote nonbranching site
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through some approximations: the wave functions are
sumed to be linear combinations of atomic orbitals; ea
atomic site is assumed to contribute with a single spheric
symmetric orbital; these atomic orbitals are assumed to h
nonzero overlap only if they come from adjacent atom
sites. In spite of the approximations that it has undergone,
model described above is nevertheless rich and capabl
displaying the features arising from the topological arran
ment of the structure. We remark the fact that the topology
the structure affects the Hamiltonian~3! both in the hopping
term, through the adjacency matrix, and in the local term
the form of a local potential depending on the site coordi
tion. On a homogeneous network, such as a periodic lat
with homogeneous elementary cell, the local term is site
dependent and it can be dropped without loss of genera
since it simply results in a rigid shift of the spectrum. For
generic structure this cannot be done, and moreover the
no natural tool such as the Fourier transform for the dia
nalization of the Hamiltonian. Hamiltonians of the form~3!
are widely used. They describe noninteracting excitations
ordered or disordered solids.1 The so-calledHückel Hamil-
tonian is a special case of Eq.~3! for vanishing local param-
eter. Due to its simplicity and to its content in topologic
information it is widely used in chemistry as a qualitativ
guide for planning and interpreting experiments.8 The Schro¨-
dinger operator for discrete-space quantum mechanics10 is
also a special case of Eq.~3!. We recall that the building
blocks placed at the sites of the discrete network descri
by A can be structures more complex than single atoms, s
as groups of atoms within molecules,2 or even quantum de
vices, such as Josephson junctions in the weak coup
limit.11 In the following we are not going to consider diso
der, but only the effects of topological inhomogeneity6 on the
spectral features of the Hamiltonian~3!.

IV. GREEN’S FUNCTIONS
AND LOCAL DENSITY OF STATES

An approach to the spectrum of the Hamiltonian~3! alter-
native to direct diagonalization is based on the so-calledlo-
cal density of states~LDOS!, which is related to Green’s
functions by the formula12

r i~v!52
1

p
lim
e→0

Im@Gii ~v1 i e!#, ~4!

where the subscripts refer to a generic sitei of the structure.
We point out that most of the quantities we will introduc
carry an explicit site dependence, which in the case of p
fect crystals with simple primitive cell usually drops, due
the spatial homogeneity. The Green’s function~GF! is de-
fined by

G~v!5@v2H#215@v2Za2tA#21, ~5!

whereZi j 5zid i j . Denotingu i & the eigenfunction of the po
sition operator at sitei and ufk& the eigenfunction of
the Hamiltonian operator relevant to the eigenvaluevk ,
Hufk&5vkufk&, one can write Gi j (v)[^ i uG(v)u j &

o
.

2-2
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5(k^iufk&^fkuj&(v2vk)
21. Plugging this result into Eq.~4!

and recalling that lim
e→0

Im(v6 ie)2157pd(v) one gets

r i~v!5(
k

d~v2vk!u^ i ufk&u2. ~6!

The normalization of the eigenfunctions of the position o
erator and the completeness of the Hamiltonian’s eigenfu
tions yield the normalization of the LDOS. Equation~6!
sheds light on the significance of the LDOS at sitei. It is a
sort of projection on that site of the density of states~DOS!,
r(v)5(kd(v2vk). The DOS is recovered by simply sum
ming the LDOS over all sites.

Simple algebraic manipulations of Eq.~5! yield

Gi j ~v!5
1

v2zja
(
k50

`

@~v2Za!21At# i j
k

5gj (
k50

`

tk (
h1, . . . ,hk21

giAih1
gh1

Ah1h2
•••ghk21

Ahk21 j ,

~7!

where gi(v)[(v2zia)21 is often referred to as
locator1,13–15at sitei, and it is nothing but the limit of the GF
Gii for vanishing hopping parameter,

lim
t→0

Gi j ~v!5
1

v2zia
d i j 5gi~v!d i j . ~8!

This can easily be shown by means of Eq.~5!, simply by
observing thatv2H5v2aZ is a diagonal matrix when the
hopping term vanishes, i.e., when the ‘‘atoms’’ of the stru
ture are isolated from each other. For this reason we refe
gi(v) as theatomicGF at sitei. Since the chain of adjacenc
matrix’s elementsAih1

Ah1h2
•••Ahk21 j in Eq. ~7! is nonvan-

ishing only if $ i ,h1 ,h2 , . . . ,hk21 , j % is a connectedk-step
path joining the sitesi andj, the GFGi j (v) can be viewed as
a weighed sum over the pathsPi j joining i and j,

Gi j ~v!5gj (Pi j
)

(h,k)PPi j

phk , ~9!

wherephk(v,t,a)5tgh(v,a) is the contribution relevant to
the step (h,k). Due to the extreme simplicity of the prese
model this quantity is a function only of the site from whic
the step is taken. In a more refined model the hopping
rameter would be a link variablethk and this explains the
dependence ofphk on both of the sites involved in the ste
Note thatphk is a dimensionless quantity. Thus the LDOS
a local quantity, in the sense that it refers to a single site
the structure, but it takes into account the whole structu
This is because it depends on a GF, which is a weighed
over all possible closed paths passing through the site u
examination. The function

G i j ~v!5(Pi j
)

(h,k)PPi j

phk ~10!
05420
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appearing in Eq.~9! is related to the generating function16

P̃i j (l) for a random walk~RW! with probability p̄hk of tak-
ing the step (h,k). The function

g i j ~v!5(Fi j
)

(h,k)PFi j

phk , ~11!

built using only paths constrained as described in Sec. I
in turn related to the generating function for the probabil
of first arrival F̃ i j (l).

G i j ~v!5d i j 1g i j ~v!G j j ~v!. ~12!

When the last site is the same as the first this reads

G i~v!5
1

12g i~v!
, ~13!

whereG i(v)[G i i (v) andg i(v)[g i i (v).
We mention that the expansion~7! for the GF and the

function g i(v) of Eq. ~11! are well-known mathematica
tools. They are referred to aslocator expansion17 or renor-
malized perturbation expansion18 and renormalized
interactor17 or self-energy,18 respectively.

V. BUD REDUCTION

The analogous of formula~13! in the framework of RW is
well known and is due to the factorization properties of t
generating functionsP̃ii andF̃ ii . Since the proof line for the
bud-reduction technique is very similar, in the following E
~13! is proved employing a path technique. First of all w
label all the relevant paths in some definite though arbitr
sequence for enumerating purposes. Thus letPi5$P i i

(n)%n51
N

be the set of all unrestricted paths starting and ending at

i, and letFi5$F i i
(n)%n51

Ñ be the subset ofP consisting of the
paths restricted as explained in Sec. II. Note that bothN and
Ñ may be possibly infinite. Letq denote the operation o
joining two paths. The only requirement for this operation
that the starting site of the second path is the same as
ending point of the first one. For instancePi jqPjk is a path
starting ati and ending atk. Let

p~P!5 )
(h,k)PP

tgh ~14!

be a function of paths. The following equality holds:

p~Pi jqPjk!5p~Pi j !p~Pjk!. ~15!

As already pointed outFi,Pi . Moreover any concatenatio
of elements inFi is in Pi . More precisely for anyP i i

(h)

P Pi there exists a subset ofFi , $F i i
(k)%k51

n , such thatP i i
(h)

5F i i
(1)
qF i i

(2)
q•••qF i i

(n) . Heren is nothing but the numbe
of times the pathP i i

(h) reaches sitei. Note that the elements
of the subset ofFi are not necessarily all distinct. Thus, fo
anyh, p(P i i

(h)) is the product of factors of thep(F i i
(k)) kind,

each raised to some positive integer powern(k). At this
point it is easy to understand that the following form
equalities, which yield Eq.~13!, hold:
2-3
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G i5 (
k51

N

p~P i i
(k)!5 (

h50

` F(
l 51

Ñ

p~F i i
( l )!G h

5 (
h50

`

g i
h5

1

12g i
.

~16!

Now let us focus on the branching point. Let * be a branc
ing point splitting the graphG into two branches as in Eq
~2!. In the following we are going to show that the evaluati
of the GF at any site of one of the branches can be equ
lently performed by pruning out the other branch, provid
that the atomic GF at the branching point is changed into
appropriate function. It will turn out that the appropriate ne
atomic GF is nothing but the GF of the pruned branch at
branching site. In formula,

Gii 5Gii
T ug

*
5G

**
B , ~17!

whereT andB denote, respectively, the branch containingi,
which we call thetrunk of the structure, and the branch of
springing from the branching site *. As superscripts, the
letters denote restriction to the relevant substructure. Firs
all we consider the GF at the branching site *. Since
paths involved ing* * never go through * at an intermedia
step, they take place entirely either onT or onB. Thusg* *
is the sum of two terms,

g* 5 (P
**

PT
p~P** !1 (P

**
PB

p~P** !5g
*
T 1g

*
B . ~18!

From eachp(P** ) appearing in Eq.~18! it is possible to
factor out a termg* . Thusg* appears ing** , g

**
T , and

g
**
B only as an overall factor. This means thatg* can be

changed into another function, sayḡ* , through the simple
multiplication by the factorg

*
21ḡ* . For instance,

g* ~v!ug
*

5ḡ
*
5g

*
21ḡ* g* ~v! ~19!

and similarly for anyg-like function, at any site. A substitu
tion of the atomic GF at a generic siteh can also account fo
the introduction of a local potentialvh at that site. In this
case the Hamiltonian~3! would have a further diagonal term
Vi j 5d i j d ihvh and the atomic GF would readḡh(v)5(v
2zha2vh)21. Now, making use of Eqs.~9! and ~13! it is
possible to write

G** 5
g*

12g
*
B 2g

*
T 5

g*
12g

*
B F12g

*
21S g*

12g
*
B D g

*
T G21

.

~20!

When we restrict the structure toT or B the GF’s at * read,
respectively, G

**
T 5g* (12g

*
T )21 and G

**
B 5g* (1

2g
*
B )21 Thus, recalling Eq.~19!, Eq. ~20! becomes

G** 5G
**
B @12g

*
21G

**
B g

*
T #21

5G
**
B @12g

*
T ug

*
5G

**
B #215G

**
T ug

*
5G

**
B , ~21!

which is nothing but Eq.~17! in the special casei 5*. The
proof for the general case can be obtained in the same f
ion. Formula~17! holds for any branching site of the trunk
05420
-

a-
d
n

e

e
of
e

h-

Thus the GF’s at the sites of the trunk can be evaluated
pruning off all the branches, provided that the atomic GF’s
the branching sites are changed into the corresponding G
of the pruned branches. Since they carry all the informat
relevant to the corresponding branches these new ato
GF’s can be viewed as their buds. This operation of b
reduction can be repeated iteratively within the branches
gives rise to a topological simplification of the original stru
ture. Of course for an exact result the knowledge of the ex
GF’s of the pruned branches is still needed. When th
functions are not known a trial expression can be plugged
to get approximate results. From adown-toppoint of view
this approach seems well suited for the tailoring of spec
properties. The effect of appending a secondary structure
known one on the LDOS is simply obtained by plugging
the appropriate atomic GF. Since we will examine only t
GF’s relevant to the same site, from now on we simplify t
notation by dropping one of the repeated subscripts. A su
script will denote the structure relevant to the GF under
amination. The following sections contain some examples
bud reduction. We start with very simple building blocks th
are then used to deal with more complex structures. T
power of bud reduction in dealing with recursively defin
structures is illustrated. Since it goes beyond the purpos
the present paper, we refer to a forthcoming article19 for the
detailed discussion of the spectral features.

A. Fundamental building blocks

In this section we apply the technique above illustrated
some simple structures, which can be used as building blo
of more complex networks.

Dimer. A dimer is a simple structure whose graph consi
of two sites connected by a link~Fig. 2!. Let gl andgr be the
atomic GF’s at its two sites. Since there is only one restric
path starting and ending at either of its sites, it is easy
show thatg l5g r5t2glgr . Thus, for a dimer

Gl
d~gl ,gr !5

gl

12t2glgr

. ~22!

Obviously the GF relevant to the other site has the sa
functional form. It is enough to swapgl andgr .

Trimer. A trimer is a simple chain whose graph consists
three sites and two links connecting two external sites t
central one~Fig. 3!. Let gl andgc andgr be the atomic GF’s
at its three sites. Since a trimer can be seen as a dimer br
off-springing from a dimer trunk we can write

FIG. 2. A dimer.

FIG. 3. A trimer.
2-4
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Gl
t~gl ,gc ,gr !5Gl

d
„gl ,Gl

d~gc ,gr !…5
gl~12t2gcgr !

12t2gc~gl1gc!
,

Gc
t ~gl ,gc ,gr !5Gr

d
„gl ,Gl

d~gc ,gr !…5
gc

12t2gc~gl1gc!
,

~23!

Gr
t ~gl ,gc ,gr !5Gr

d
„Gr

d~gl ,gc!,gr…5
gr~12t2glgc!

12t2gc~gl1gc!
.

n-mer. Iterating the procedure used for the trim
it is possible to deal with a chain of lengthn, for anyn ~Fig.
4!. More generally the atomic GF at one end of an-mer can
be obtained from the same function relevant to an (k)-mer,
k,n: G 1

(n)(g1 , . . . ,gn)5G 1
(k)
„g1 , . . . ,gk21 ,

G1
(n2k11)(gk , . . . ,gn)…. In particular, whenk52

G1
(n)~g1 , . . . ,gn!5Gl

d
„g1 ,G1

(n21)~g2 , . . . ,gn!…

5
g1

12t2g1G1
(n21)~g2 , . . . ,gn!

. ~24!

The Green’s function at an intermediate site can
obtained by combining the results for dimers a
n-mers as well: Gk

(n)(g1 , . . . ,gn)5Gl
d
„Gk

(k)(g1 , . . . ,gk…,
G1

(n2k)(gk11 , . . . ,gn)), ; 0,k,n.
Junction. The central site of a trimer can be seen as

twofold junction joining the two external sites~Fig. 5!. A
threefold junction can be simply obtained by plugging
dimer GF into the atomic GF of the twofold junction site,

G0
3j~g0 ,g1 ,g2 ,g3!5Gc

t
„g1 ,Gll

d ~g0 ,g3!,g2…

5
g0

12t2g0~g11g21g3!
. ~25!

The GF at one of the three external sites can be obta
from the one at one end of a dimer by plugging the GF of
central site of a trimer into the atomic GF of the other en

G1
3j~g0 ,g1 ,g2 ,g3!5Gl

d
„g1 ,Gc

t ~g2 ,g0 ,g3!…

5
@12t2g0~g21g3!#g1

12t2g0~g11g21g3!
. ~26!

FIG. 4. An n-mer.

FIG. 5. A junction.
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An n-fold junction, for anyn, can be obtained in exactly th
same way, simply by iterating the procedure shown ab
~Fig. 6!.

G0
nj~g0 ,g1 , . . . ,gn!5G0

(n21)j
„Gl

d~g0 ,gn!,g1 , . . . ,gn21…

5
g0

12t2g0(
j 51

n

gn

, ~27!

and

G1
nj
„g0 ,g1 , . . . ,gn…5Gl

d~g1 ,G(n21)j~g0 ,g2 ,g3 , . . . ,gn!

5g1~11t2g1G0
nj!. ~28!

B. Infinite Chains

Semi-infinite homogeneous chain~SHC!. It is a semi-
infinite linear chain with constant atomic GF,g ~Fig. 7!. The
GF at its origin can be evaluated by regarding the struct
as a SHC branching off from dimer trunk,

G0
SHC~g!5Gl

d@g,G0
SHC~g!#. ~29!

Recursion due to periodicity gives rise to a second or
equation: t2g@G0

SHC#22G0
SHC1g50. The requirement

lim
t→0

G0
SHC5g, Eq. ~8!, selects the solution,

G0
SHC~g!5

12A12~2tg!2

2t2g
5

2g

11A12~2tg!2
. ~30!

The GF at a site different from the origin is evaluated as
same function for one of the ends of ann-mer, provided that
the atomic GF at that end is changed into the GF at the or
of a SHC.

FIG. 6. Examples of simple bud reduction. The dark gr
bubbles represent the bud atomic GF’s. The white contoured st
tures inside them are the relevant branches. Note that the
atomic GF are always evaluated at the branching site;~a! Trimer.
The two sites on the right site are reduced to a bud. The trimer tu
into a dimer. The GF at the left and right site of this dimer gi
respectively the GF at the left and at the central site of the orig
trimer; ~b! Five-junction. The dimer consisting of the central si
and site five is collapsed to its bud. This way it is possible
evaluate the GF’s at the origin or at one of the other four periph
sites by means of the relevant GF’s for a four-junction;~c! Five-
junction. The four-junction consisting of the origin and of the p
ripheral sites from one to four is collapsed to its bud. The GF for
dimer allows one to evaluate the GF at site five.

FIG. 7. A semi-infinite homogeneous chain.
2-5
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Semi-infinite chain~SC!. In a semi-infinite chain the ori-
gin is a special site; since it is the only site with coordinati
1, it may have a different atomic GF~Fig. 8!. Let, therefore,
g0 be the atomic GF at the origin andg the atomic GF at any
other site.

G0
SC~g0 ,g!5Gl

d
„g0 ,G0

SHC~g!…

5F 1

g0
2

1

2g
~12A12~2tg!2!G21

. ~31!

The procedure for a site different from the origin is the sa
as the one outlined for the SHC. Both in SC and SHC ca
Eq. ~31! provides an alternative way: the GF at thekth site is
the same as the one for the origin of a SC provided that
atomic GF at the origin is the GF for the end of an app
priatek-mer.

Homogeneous infinite chain~HIC!. Let g be the atomic
GF at each of the equivalent sites of an infinite chain~Fig.
9!. We can obtain the GF at one of these sites by regardin
as a branching site where a SHC branch springs off from
SC trunk.

G0
HIC~g!5G0

SC
„G0

SHC~g!,g…5
g

A12~2tg!2
. ~32!

The following bud-reduction schemes yield the same res

G0
HIC~g!5Gl

d
„G0

SHC~g!,G0
SHC~g!…

5Gc
t
„G0

SHC~g!,g,G0
SHC~g!….

Thus Eq.~32! can also be derived from a recursive secon
order equation for a trimer. The required GF is the GF at
central site of a trimer in whose external atomic GF’s
plug the required result itself. The central atomic GF is
same as in the original structure.

Infinite chain with impurity~ICI!. If we change the atomic
GF of just one site of the HIC above intog0 we obtain an
infinite chain with a single impurity~Fig. 10!. The GF at the
impurity site can be obtained by means of the followi
bud-reduction schemes:

G0
ICI~g0 ,g!5G0

SC
„G0

SC~g0 ,g!,g…

5Gl
d
„G0

SC~g0 ,g!,G0
SHC~g!…

5Gc
t
„G0

SHC~g!,g0 ,G0
SHC~g!…,

all of which yield

G0
ICI~g0 ,g!5F 1

g0
2

1

g
~12A12~2tg!2!G21

. ~33!

FIG. 9. A homogeneous infinite chain.

FIG. 8. A semi-infinite chain.
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C. Bethe lattices and Cayley trees

An n-fold Bethe lattice (n-BL! is an infinite network of
sites with coordinationn, i.e., of n-fold junctions. Note that
the HIC is nothing but a 2-BL. Actually a BL is the simple
loopless homogeneous structure after the homogene
chain. As in a homogeneous chain all the sites of then-BL
are equivalent. For a recent publication on Bethe lattice
Ref. 4. A possible way to work out the GF at one of t
n-BL’s sites consists in considering any HIC subgraph of t
structure as its trunk. Inside each of then-2 branches off-
springing at every site of this trunk one can recognize in t
a SHC trunk, dressed with the same atomic GF as the m
trunk. Thus then-BL can be seen as a HIC, whose atomic G
J is the one for the central site of a (n-2) junction; the
atomic GFP for the peripheral sites of this junction are
turn the GF for the origin of a SHC, whose atomic GF’s on
again equalJ. Equation ~34! and Fig. 11 display the bud
reduction described above:

~34!

The combination of the last two equations of Eq.~34!, to-
gether with Eqs.~27! and~30!, give a self-consistency equa
tion for J. The GF for then-BL is thus worked out by plug-
ging the expression obtained forJ into Eq. ~32!, as required
by the first of Eq.~34!,

FIG. 10. An infinite chain with impurity.

FIG. 11. Four fold Bethe lattice~4-BL!; ~a! The whole structure
is shown. The links are drawn with different lengths just for grap
cal convenience. The shading shows one possible chain substru
that can be chosen as the trunk for the bud-reduction;~b! Bud-
reduced structure: only the trunk is shown.~c! Bud-reduced struc-
ture: the structure of the main buds is shown. They consist of tr
ers whose external sites’ GF are the result of a further b
reduction.~d! Bud-reduced structure: the structure of the second
buds is shown. Note that, due to the recursivity of the structu
they are defined in terms of the main buds. The sites at which
GF’s are evaluated are surrounded by dashed lines.
2-6
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Gi
n-BL~g!5

2~n21!g

n221nA12~n21!~2gt!2
. ~35!

As stated above a Bethe Lattice is an infinite homogene
structure, and its sites are all equivalent. Its finite version
known asCayley tree.3 An n-fold Cayley tree of radiusr
@(n,r ) Ct# is a structure invariant undern-fold discrete ro-
tations centered at its central site, which we refer to as
origin. Every site whose distance from the origin is low
than the radius has coordination numberz5n. The periph-
eral sites, whose distance from the origin equals the rad
have coordination numberz51. A (n,r ) Ct is thus a nonho-
mogeneous structure. Only the sites placed at the same
tance from the origin are equivalent. Note that, due to
exponential growth, the number of peripheral sites is of
same order as the number of internal sites. As illustrated
Fig. 12 the GF at the origin of a (n,r ) Ct can be obtained by
means of three bud-reduction equations,

~36!

wheregi is the atomic GF at any of the~equivalent! internal
sites, whilegp is the atomic GF at any of the~equivalent!
peripheral sites. Note that the second equation of Eq.~36!
sets a recursion relation that is closed by the third equat
Also note that imposing the fixed point conditionLk(gi)
5Lk11(gi)5L(gi) and plugging the solution into the firs
equation of Eq.~36! one recovers the result for then-fold
Bethe lattice, formula~35!. As illustrated in Fig. 12, the bud
reduction for the sites other than the origin is a little mo
complex, due to the lower degree of symmetry.

FIG. 12. Fourfold Cayley tree@~4,4!-Ct#; ~a! The whole struc-
ture is shown. The links are drawn with different lengths for grap
cal convenience. The sites with coordinationz51 are shaded in
gray. ~b! Bud-reduced structures for the GF of the structure. Fr
left to right: site at the origin, site at distancei from the origin,
peripheral site~at distancer from the origin!; ~c! recursion relations
for the bud-reduced structures. The sites at which the GF’s
evaluated are surrounded by dashed lines.
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D. Fern lattices

A fern is a plant characterized by an evident se
similarity. The secondary structures branching off from t
the main stalk mimic the whole structure. This resemblan
between the branches and the main structure goes on up
certain orderf, at which the branches are simple leaves
stalks. An infinitefern lattice~FL! has a similar structure: a
every site of an infinite homogeneous chainb identical sec-
ondary structures branch off. These are in turn semi-infin
homogeneous chains carryingb identical tertiary structures
and so on. At some orderf the b substructures branching of
from every site are simple semi-infinite homogeneous cha
~see Fig. 13!. Thus a fern lattice is characterized by tw
parameters, thebranching number band theorder f. Most of
the sites of a fern lattice, namely, the ones on the branche
highest order, have coordination numberz52. All the other
ones have coordination numberz5b12.

The position of a site relative to the origin of the stalk
which it belongs may be specified by means of two para
eters: the distance from the origin and an integer identify
the stalk. This origin is in turn a site belonging to a stalk
lower order, and it may be identified the same way. Thu
site belonging to a secondary stalk of orderk (k52, . . . ,f ),
may be identified by means ofk21 pairs of coordinates
plus one more parameterx1, specifying the coordinate alon
the main stalk. Due to symmetry properties, sites belong
to stalks of the same orderk and identified by the same set o
‘‘distance’’ coordinates,$x2 , . . . ,xk%, are equivalent, inde-
pendent of the remaining coordinates. Thus the GF’s at a
belonging to a stalk of orderk.2, of a (b, f ) fern lattice
@(b, f )FL# may be identified by means of a vectorx(k) of
lengthk21@xh

(k)>1 ;h51, . . . ,k21). The GF at such a
site can be obtained as

Gx(k)
(b, f )FL

~gs ,gl !5Gx
k21
(k)

SC
„Ox(k),J~gs ,Li !…, ~37!

where

~38!

-

re

FIG. 13. Fern lattices. Filled circles: sites withz54. Unfilled
circles: sites withz52; ~a! (2,1) fern lattice, also known as com
lattice or fish bone;~b! (2,2) fern lattice; some secondary structur
are drawn in light gray only for graphical convenience.
2-7
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and wheregs is the atomic GF at the sites with coordinatio
numberz5b12, whereasgl is the same quantity for the
sites with coordination numberz52. The function
Ox(k)(gs ,gl) appearing in Eq.~37! is an appropriate bud
reduced atomic GF, which can be evaluated by a straight
ward bud-reduction scheme. Since in the most general
this operation is rather long, we omit it in the present artic

Due to translational invariance the GF’s along the m
stalk are all equivalent. This makes their evaluation qu
easy:

Gms
(b, f )FL~gs ,gl !5G0

HIC
„J~gs ,L2!…. ~39!

It is interesting to note that the fixed point relationLi 11
5Li sets in some sensef 5`. In this case all the sites ar
equivalent and have coordination numberz5b12. Thus a
n-BL can be thought of as a (n22,̀ ) fern, and indeed Eqs
~38! and~39!, together with the fixed point relation, give Eq
~35! once again.

We refer to a forthcoming article19 for the explicit evalu-
ation of the GF’s of some fern lattices of interest.
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VI. CONCLUSIONS

In this paper the spectral properties of a single-band tig
binding model applied to inhomogeneous structures are
vestigated. Since the lack of translational invariance rules
a powerful analytical tool such as the Fourier transform, a
forces a direct-space approach, the spectral properties
recovered through the evaluation of the GF’s, which are
plicitly site-dependent quantities. An analytical techniqu
based on the properties of the GF’s in the presence
branching sites, is developed and illustrated by means
many examples. This technique, which we call bud red
tion, allows us to account for an entire substructure o
branching from the network under examination by means
a sort of on-site potential of geometrical origin. It can also
performed telescopically, meaning that the bud-redu
branches may in turn carry substructures which have alre
undergone bud reduction. This tool yields a topological s
plification of the structure under examination and allows
better understanding of the effect of each substructure on
spectral properties of the system. The insight gained on
effects of different topologies may be a guide in design
networks displaying the desired spectral features.
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