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Topological reduction of tight-binding models on branched networks
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Noninteracting excitations on a generic discrete structure are described by means of a single-band tight-
binding Hamiltonian. Despite the simplicity of the model, topological inhomogeneity gives rise to nontrivial
spectral features. At the same time the lack of regularities makes the spectral analysis a rather hard task, since
powerful tools such as Fourier transform are ruled out. In this paper we introduce a rigorous analytical
technique, based on topological methods, for the exact solution of this problem in the case of branched
structures. We provide some examples illustrating the technique.
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I. INTRODUCTION: THE ROLE OF TOPOLOGY for relations in closed form, but it is not a requirement of the
technique. A deeper understanding of the features arising
The tight-binding Hamiltonian was originally introduced from topological arrangement is gained, in that the spectral
to deal with electronic excitations in solid materials but it properties of a complex structure are explicitly expressed in
was soon extended to the study of many other kinds oferms of the same properties of its simpler parts. The knowl-
excitationst The environment where these excitations takeedge thus gained can possibly be exploited in designing net-
place essentially consists of a collection of elementary buildworks displaying the desired spectral features.
ing blocks arranged into a network. These building blocks The present paper is organized as follows. Section I
are typically atoms, but they can also consist of more combriefly deals with the mathematical representation of discrete
plex structure: networks, from the topological point of view. A number of
When the network is regu|ar and periodic, asin Crysta]sl i'USGfU' definitions are also given there. In Sec. Il we intro-
is possible to isolate an elementary cell from which all theduce our tight-binding model, generalized to the case of an
features of the system stem. At length scales much higherbitrary network. In Sec. IV we review some mathematical
than the cell's size these features depend uniquely on th@ols that allow the computation of the spectrum of such an
dimensionality of the cell's packing. Periodicity, as well as arbitrary network, independent of its symmetries and regu-
any other strong regu|arity arising from Simp|e group'&l’ities. In Sec. V we describe bud reduction and provide
properties’ is particularly useful in the analysis of the spec- umerous examples that clarify the technique and its appli-
tral features of the system. It makes it possible to introduce &ation. Section VI consists of our conclusions.
(pseudo wave vectork that labels many quantities of inter-
est, such as the energy or the Green’s functiohen no
periodicity is present, a lattice cannot be used to describe a
discrete structure and there is no such simple labeling for the
physically interesting quantities. When no periodicity is present a lattice cannot be used to
In this paper the spectral properties of a single-band tightdescribe a discrete structure, the appropriate choice being a
binding model applied to inhomogeneous structures are ingraph® A graph, G={3,A}, consists of a set of points, or
vestigated. In order to analyze the features strictly arisingitesX and a set of links\ connecting the sites pairwise. In
from the topology of their arrangement we will simplify as the present paper lowercase italic lettgisk, . . ., will de-
much as possible the “internal structure” of the building note the sites of a network, and pairs of lowercase letters
blocks. The resulting model is simple yet rich, in that it re- enclosed in parenthesds,k) will denote the link joining the
tains the basic elements for a qualitative study of the effectgelevant sites. From an algebraic point of view a graph is
of topology on the spectral featurgéIn this framework we completely described by what is called &djacency matrix
will illustrate an analytical technique, which we callid re-  Every entry of this matrix corresponds to a couple of sites of
duction applicable to the large class of branched networksthe network, and it equals one if and only if this couple is
As its name suggests it makes it possible to account for thiyined by a link, otherwise it is zero,
spectral features stemming from an entire substructure off-

Il. REPRESENTATION OF AN ARBITRARY DISCRETE
NETWORK: GRAPHS

branching from a site of a given network, by reducing it to ey -
what we call itsbud This operation is a sort of topological = L 'J)_ 's alink of the graph (1)
renormalization, in the sense that the presence of an entire "0 otherwise.

substructure is accounted for by means of an on-site potential

of geometrical origin. Since it is applicable also to structuresThe sum of the elements in theh row or column of the
that have already undergone a partial bud reduction, thiadjacency matrix gives the so calledordination numbebf

technique proves to be very efficient on recursively definedsite k, namely, the number of its nearest neighbas
structures. Indeed recursivity is of great help, since it allows=>,A = ZAkh -
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through some approximations: the wave functions are as-
sumed to be linear combinations of atomic orbitals; each
atomic site is assumed to contribute with a single spherically
symmetric orbital; these atomic orbitals are assumed to have
nonzero overlap only if they come from adjacent atomic
sites. In spite of the approximations that it has undergone, the
model described above is nevertheless rich and capable of
displaying the features arising from the topological arrange-
ment of the structure. We remark the fact that the topology of
the structure affects the Hamiltoni&8) both in the hopping
term, through the adjacency matrix, and in the local term, in
the form of a local potential depending on the site coordina-
tion. On a homogeneous network, such as a periodic lattice
FIG. 1. Graph of a generic network. Filled circles denote with homogeneous elementary cell, the local term is site in-
branching sites, i.e., sites that are the unique intersection of any twdependent and it can be dropped without loss of generality,
connected subgraphs. Unfilled circles denote nonbranching sites. since it simply results in a rigid shift of the spectrum. For a
generic structure this cannot be done, and moreover there is
Any sequence of consecutive links, no natural tool such as the Fourier transform for the diago-
(i,h),(h,k), ...,(,m),(m,j), is referred to as pathon the  nalization of the Hamiltonian. Hamiltonians of the foi(3)
graph. In the following a path starting at sitand ending at  are widely used. They describe noninteracting excitations in
sitej will be denoted by the symbdP; . In general such a ordered or disordered solidsThe so-callecdHiickel Hamil-
path may reach its ending sitealso at an intermediate step. tonianis a special case of Eq3) for vanishing local param-
When the path never passes through its ending site at aster. Due to its simplicity and to its content in topological
intermediate step it will be denoted by the symi#|. information it is widely used in chemistry as a qualitative
The bud-reduction technique, which we will illustrate in guide for planning and interpreting experimehi&he Schre
Sec. V, can be performed at sites of the graph cdlesich-  dinger operator for discrete-space quantum mechehiss
ing sites A site * of a graphg is a branching site if it is the also a special case of E¢3). We recall that the building
only intersection of any two connected subgrapls  blocks placed at the sites of the discrete network described
={21,A1},B,={2,,A,} of G={%,A}; in mathematical by A can be structures more complex than single atoms, such
terms, as groups of atoms within moleculésr even quantum de-
vices, such as Josephson junctions in the weak coupling
2U%=%, A UAR=A, limit.** In the following we are not going to consider disor-
der, but only the effects of topological inhomogeniiy the

2NZ={"} ANA=0. 2) spectral features of the Hamiltoni&®).
Any two subgraphs joined by a branching site are referred to
asbranchesWhat makes a branching site peculiar is the fact IV. GREEN’'S FUNCTIONS
that any path joining sites on different branches is forced to AND LOCAL DENSITY OF STATES
pass through it. Figure 1 illustrates the concept of branching
site. An approach to the spectrum of the Hamiltoni@ alter-
native to direct diagonalization is based on the so-cdted
IIl. TIGHT-BINDING MODEL FOR GENERIC cal density of statesLDOS), which is related to Green’s
STRUCTURES functions by the formuf&
In the following we will deal with a tight-binding Hamil- 1
tonian of the form pi(w)=——lIMIM[G;i(w+ie)], (4)
e—0

HEB=tAij+a255ij, (3) . L
where the subscripts refer to a generic sité the structure.

describing noninteracting excitatiofiypically electronson  We point out that most of the quantities we will introduce

a generic structure represented by the adjacency matrix carry an explicit site dependence, which in the case of per-

The off-diagonal term, containing the so-calledpping pa-  fect crystals with simple primitive cell usually drops, due to

rameter t and the adjacency matrix is referred tohepping  the spatial homogeneity. The Green’s functi@®F) is de-

term The diagonal term, containing the so-calledal pa-  fined by

rameter @ and the coordination matrig;; = z; ;; , is referred

to aslocal term The overall productz is usually referred G(w)=[w—H] '=[w—Za—tA] "}, (5)

to as theone-site energyt sitei. A Hamiltonian such as Eq.

(3) can be obtained starting from the first quantizationwhereZ;;=z4;; . Denoting|i) the eigenfunction of the po-

Hamiltonian for a quantum particle experiencing ansition operator at sité and |¢,) the eigenfunction of

“atomic” potential V;(r)=V(r—r,;) at each sitd of a dis- the Hamiltonian operator relevant to the eigenvatg,

crete structureH=p?%/2m+3,V,(r). This can be dorle H|@)=wi/#), one can write Gjj(w)=(i|G(w)|j)
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=3 (i| AN Ai ) (w— ) L. Plugging this result into Eq4)  appearing in Eq(9) is related to the generating functién
and recalling that lim | Im(w*ie)~*=+75(w) one gets Pi;(\) for a random walkKRW) with probability py, of tak-
ing the step l1,k). The function

(w)= S(w— wy)|(i 2, 6
pil@) =2 dw=wyl(i| 40l ©6) yi@=> T pue (1D

Fij (hK)eF
The normalization of the eigenfunctions of the position op-, . . . . . .
erator and the completeness of the Hamiltonian’s eigenfuncl2UIIt using only paths constrained as described in Sec. Il, is

tions yield the normalization of the LDOS. Equatid6) In turn related to the generating function for the probability
sheds light on the significance of the LDOS at sitét is a  Of first arrival F;; (A).

sort of projection on that site of the density of statB©9), B

p(w)=38(w— wy). The DOS is recovered by simply sum- Tij (@)= 8y vij(@)Tj (o). (12
ming the LDOS over all sites. When the last site is the same as the first this reads

Simple algebraic manipulations of E) yield
1

1-vi(w)’
wherel'j(w)=T'ji(») and y;(w)=y;i(®).
We mention that the expansidii) for the GF and the
A N An . function vy;(w) of Eg. (11 are well-known mathematical

1 9iiny Oy Ry ™ Oy Py tools. They are referred to dscator expansiol or renor-

7) malized perturbation expansith and renormalized
interactort” or self-energy'® respectively.

I(w)= (13

_ 1 > [(w—Zza) *At]f

Gjj(w)= o—za &

=g,-2tk >
=0 hy,.

e

where gi(w)=(w—2za) ' is often referred to as
locator*~®at sitei, and it is nothing but the limit of the GF V. BUD REDUCTION

G;; for vanishing hopping parameter, . )
The analogous of formul@l3) in the framework of RW is

well known and is due to the factorization properties of the
5ij=0i(w) 6 . (8 generating function®;; andF;; . Since the proof line for the

bud-reduction technique is very similar, in the following Eq.
This can easily be shown by means of E§), simply by (13) is proved employing a path techni_qye. First of aII_ we
observing thatw— H=w—aZ is a diagonal matrix when the label all the relevant pa.ths in some definite though %rbltrary
hopping term vanishes, i.e., when the “atoms” of the struc-S€quence for enumerating purposes. Thu@ileut{Pi(i”)_}nzl _
ture are isolated from each other. For this reason we refer tB€ the set of all unrestricted paths starting and ending at site
gi(w) as theatomicGF at sitei. Since the chain of adjacency i, and letF;={F{"}N_, be the subset d? consisting of the
matrix's elementsAjy Ap .-+ An,_j in Eq. (7) is nonvan- paths restricted as explained in Sec. Il. Note that bo#nd

lim Gij(w)=

t—0 w—Zia

ishing only if {i,hy,h,, ... h_1,j} is a connectek-step N may be possibly infinite. Let« denote the operation of
path joining the sitesandj, the GFG;j(w) can be viewed as joining two paths. The only requirement for this operation is
a weighed sum over the pati#%; joining i andj, that the starting site of the second path is the same as the
ending point of the first one. For instang<P; is a path
starting ati and ending ak. Let
Gyj(@)=g; 2 I pn )
Pij (h,k)eP”
P)= t 14
wherepn(w,t,a) =tg,(w,a) is the contribution relevant to P(P) (hkjeP 9 19

the step [i,k). Due to the extreme simplicity of the present . . .
model this quantity is a function only of the site from which P€ @ function of paths. The following equality holds:
the step is taken. In a more refined model the hopping pa- _

rameter would be a link variablg,, and this explains the P(Pij>Pi) = P(Pij)P(Pik)- (15
dependence gby, on both of the sites involved in the step. As already pointed ouf;CP;. Moreover any concatenation
Note thatpy, is a dimensionless quantity. Thus the LDOS isof elements inF; is in P,. More precisely for anyP{”

a local quantity, in the sense that it refers to a single site ot P, there exists a subset &, {FF}_,, such thatP{"
the structure, but it takes into account the whole structure— FMa F@sa- s FM | Heren is nothing but the number
This is because it depends on a GF, which is a weighed sugk times the pathP
over all possible closed paths passing through the site und
examination. The function

W reaches sité. Note that the elements

BF the subset of; are not necessarily all distinct. Thus, for

anyh, p(P{") is the product of factors of the(F{¥) kind,

each raised to some positive integer powdk). At this

rij(w)ZE H Phk (10) point.ift is easy tc_> understand that the following formal
Pij (hKk)eP; equalities, which yield Eq13), hold:
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1 O0—0

1- y(i16) FIG. 2. A dimer.

Now let us focus on the branching point. Let * be a branch-thys the GF's at the sites of the trunk can be evaluated by
ing point splitting the graply into two branches as in EQ. pruning off all the branches, provided that the atomic GF’s at

(2). In the following we are going to show that the evaluationthe pranching sites are changed into the corresponding GF’s
of the GF at any site of one of the branches can be equivasf the pruned branches. Since they carry all the information

lently performed by pruning out the other branch, providediglevant to the corresponding branches these new atomic
that the atomic GF at the branching point is changed into agF's can be viewed as their buds. This operation of bud

appropriate function. It will turn out that the appropriate newreduyction can be repeated iteratively within the branches and
atomic GF is nothing but the GF of the pruned branch at thgjjves rise to a topological simplification of the original struc-

N h e
p(f&”)l =2 =
1 h=0

N w
=2 p(P=2> {
k=1 h=0 ||

branching site. In formula, ture. Of course for an exact result the knowledge of the exact
G.—G7T 1 GF’'s of the pruned branches is still needed. When these
i iilg*IGf* ’ 17) functions are not known a trial expression can be plugged in

to get approximate results. Fromdawn-toppoint of view
this approach seems well suited for the tailoring of spectral
roperties. The effect of appending a secondary structure to a

where7 and B denote, respectively, the branch containing
which we call thetrunk of the structure, and the branch off-
springing from the branching site *. As superscripts, thes

- . nown one on the LDOS is simply obtained by plugging in
letters denote restriction to the relevant substructure. First . . . . |
all we consider the GF at the branching site *. Since thg € appropriate atomic GF. Since we will examine only the

. . . . F's relevan h me site, from now on we simplify th
paths involved iny, , never go through * at an intermediate GF's relevant to the same site, from now on we simplify the

. X notation by dropping one of the repeated subscripts. A super-
step, they take place entirely either Bror on 5. Thusy, script will denote the structure relevant to the GF under ex-
is the sum of two terms,

amination. The following sections contain some examples of
bud reduction. We start with very simple building blocks that
Ye= 2 P(Pu)+ 2 P(Pu)=vI+95. (18  are then used to deal with more complex structures. The
Pax €T Pix =B power of bud reduction in dealing with recursively defined
From eachp(P,, ) appearing in Eq(18) it is possible to structures is illustrated. Since it goes beypnd the purpose of
factor out a terng, . Thusg, appears iny,, , VI* " and the present paper, we refer to a forthcoming artitfer the

75* only as an overall factor. This means thgt can be detailed discussion of the spectral features.
changed into another function, sgy , through the simple

multiplication by the factog, ‘g, . For instance, A. Fundamental building blocks
= In this section we apply the technique above illustrated to
Ya(0)lg, =g, = 9% Ox Vs (@) (19 some simple structures, which can be used as building blocks
- . . . . of more complex networks.
and similarly for anyy-like function, at any site. A substitu- Dimer. A dimer is a simple structure whose graph consists

tion of the atomic GF at a generic sttecan also account for ; PR

the introduction of a Iocalgpotentiajh at that site. In this of two Slte? connected by a I|r_(IF|g. 2, Letg, andg, be the
L X atomic GF’s at its two sites. Since there is only one restricted

case the Hamiltonia(B) would have a further diagonal term a1 starting and ending at either of its sites, it is easy to

Vij=dijoinvn, and the atomic GF would readn(w)=(w  show thaty,=y,=t2g,g, . Thus, for a dimer

—zpa—vyp) L. Now, making use of Eqg9) and (13) it is

possible to write

-1 (g ,gr>=1L. 22)

g* g* _tzglgr

1-95—y] 1-9%

Gux =

(20 Obviously the GF relevant to the other site has the same
When we restrict the structure ®or B the GF’s at * read, functional form. It is enough to swagy andg; .

respectively, GZ, =g,(1—y2)"* and G%, =g,(1 Trimer. A trimer is a simple chain whose graph consists of
—95)~1 Thus, recalling Eq(19), Eq. (20) becomes three sites and two links connecting two external sites to a
central ongFig. 3. Letg, andg, andg, be the atomic GF's
Gyp =GB, [1-g.'GE, yI171 at its three sites. Since a trimer can be seen as a dimer branch

B off-springing from a dimer trunk we can write
:Gf* [1- 73|g*=Gf*] 1= GZ* |g* =G5 (21)

which is nothing but Eq(17) in the special case=*. The @—@—@

proof for the general case can be obtained in the same fash-
ion. Formula(17) holds for any branching site of the trunk. FIG. 3. Atrimer.
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@_@_@ ...... @ a. b. . : . C. ©
FIG. 4. Ann-mer. o—=

01(1—t%g.0,)

Gi(91,9¢.9,) = G{(9.G/(gc.9,)= FIG. 6. Examples of simple bud reduction. The dark gray

2 L
1-1t79¢(91+9c) bubbles represent the bud atomic GF’s. The white contoured struc-
tures inside them are the relevant branches. Note that the new
Oc atomic GF are always evaluated at the branching é#eTrimer.

t _d d _
Ge(91.9¢.9)=G(9,G(9c,9r))= ﬁ’ The two sites on the right site are reduced to a bud. The trimer turns
9eclOiT e 23) into a dimer. The GF at the left and right site of this dimer give
respectively the GF at the left and at the central site of the original
2 trimer; (b) Five-junction. The dimer consisting of the central site
t _ ~dy~d ~ 9/(1-t°gi9c) and site five is collapsed to its bud. This way it is possible to
Gi(91,9¢.90) =G (Gr(91,90).9)=—5 ————- , - :
— + evaluate the GF's at the origin or at one of the other four peripheral
1-1t9¢(91+9c) , S
) _ sites by means of the relevant GF's for a four-juncti¢c); Five-
n-mer lterating the procedure used for the trimer junction. The four-junction consisting of the origin and of the pe-
it is possible to deal with a chain of length for anyn (Fig.  ripheral sites from one to four is collapsed to its bud. The GF for the
4). More generally the atomic GF at one end af-mer can  dimer allows one to evaluate the GF at site five.

be obtained from the same function relevant to kprfer,

k<n: G{"(g1, ...,9)=G¥(g;,...,0¢_1, Ann-fold junction, for anyn, can be obtained in exactly the
G{" (g, ... .gn). In particular, wherk=2 same way, simply by iterating the procedure shown above
(Fig. 6).

G"(gy, ... 80 =Gg:1,G" M(gs, ... Gn) - N
! ! " ! ! ! 2 " GSJ(gO!gl! v ign):G(()n l)](G?(901gn)ygly e agn—l)

J1
= - . (29 9o
1-1t%9,G" gz, . .. On) =, (27)

n
The Green’s function at an intermediate site can be 1_t290j§=:1 9n
obtained by combining the results for dimers and
n—(mel[)s as well: G"(g;, ... .9,)=G%G"(g;,...,g0, and
Gi" (Gk+1s - -+ Gn), Y O<k<n. nj _ ~d n—1)j
Junction The central site of a trimer can be seen as a G(Go.91, -+ Gn)=Gi(91,6" Vdo,92,93, - - - Gn)
twofold junction joining the two external site§ig. 5. A =g,(1+t%g,GY). (28)
threefold junction can be simply obtained by plugging a
dimer GF into the atomic GF of the twofold junction site, - .
B. Infinite Chains
G3(90.91.92,93) = GL(91,G{(9o.93).02) Semi-infinite homogeneous chaiBHC). It is a semi-
infinite linear chain with constant atomic Gg(Fig. 7). The

_ 90 (25) GF at its origin can be evaluated by regarding the structure
1-t20go(g1+ 9+ 03) as a SHC branching off from dimer trunk,
The GF at one of the three external sites can be obtained Gs"%9)=G"g,.G5"g)]. (29

from the one at one end of a dimer by plugging the GF of the

central site of a trimer into the atomic GF of the other end, RECUrsion dzue tgHgngOdgL%/ gives fise 1o a second order
equation: t°g[Gg —Gg ~+g=0. The requirement

G1/(90.91.92.95) = G{(91,G((92.90.93) lim,_,G5"=9, Ed. (8), selects the solution,

1-V1-(2tg)” 29

2t%g 1+1-(2tg)?
The GF at a site different from the origin is evaluated as the
same function for one of the ends of emmer, provided that

the atomic GF at that end is changed into the GF at the origin
of a SHC.

_ [1-t°go(g2+ga)1gs
1-t2go(9;+92+93)

(29 G5"U9)=

(30

FIG. 5. A junction. FIG. 7. A semi-infinite homogeneous chain.
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FIG. 8. A semi-infinite chain. FIG. 10. An infinite chain with impurity.

Semi-infinite chai(SCO). In a semi-infinite chain the ori- C. Bethe lattices and Cayley trees
gin is a special site; since it is the only site with coordination
1, it may have a different atomic GlFig. 8). Let, therefore,
0o be the atomic GF at the origin amgdthe atomic GF at any
other site.

An n-fold Bethe lattice (-BL) is an infinite network of
sites with coordinatiom, i.e., of n-fold junctions. Note that
the HIC is nothing but a 2-BL. Actually a BL is the simplest
loopless homogeneous structure after the homogeneous

SC _ ~d SHC, chain. As in a homogeneous chain all the sites of gl
G57(90.9)=Gi(90,G¢™1(9)) are equivalent. For a recent publication on Bethe lattice see
1 1 -1 Ref. 4. A possible way to work out the GF at one of the
=13, E(l— V1-(2tg)®)| . (8D  n-BLs sites consists in considering any HIC subgraph of this
structure as its trunk. Inside each of the€ branches off-
The procedure for a site different from the origin is the samespringing at every site of this trunk one can recognize in turn
as the one outlined for the SHC. Both in SC and SHC casea SHC trunk, dressed with the same atomic GF as the main
Eq. (31) provides an alternative way: the GF at #th site is  trunk. Thus the-BL can be seen as a HIC, whose atomic GF
the same as the one for the origin of a SC provided that thg is the one for the central site of ax{2) junction; the
atomic GF at the origin is the GF for the end of an appro-atomic GFP for the peripheral sites of this junction are in
priate k-mer. turn the GF for the origin of a SHC, whose atomic GF's once

Homogeneous infinite chaifHIC). Let g be the atomic again equall. Equation(34) and Fig. 11 display the bud

GF at each of the equivalent sites of an infinite chdig.  reduction described above:
9). We can obtain the GF at one of these sites by regarding it

as a branching site where a SHC branch springs off from a GrBL=GIC(J(g)),
SC trunk. !
. J(8)=G{(5.5(9).5(8), ... ), (34
GHIC :GSC GSHC , = 32 —_—
0 (g) 0 ( 0 (g) g) 1—(2tg) ( ) n—2 entries
The following bud-reduction schemes yield the same result: S(g)=G*U(g)).
G§'“(9)=G{(G5"19),G5"(a) The combination of the last two equations of Kg4), to-
_ GL(GSHS GSHC gether with Eqs(27) and(30), give a self-consistency equa-
=Gc(G519).9.G5 7 (9))- tion for J. The GF for then-BL is thus worked out by plug-

Thus Eq.(32) can also be derived from a recursive second-9ing the expression obtained fdrinto Eq. (32), as required

order equation for a trimer. The required GF is the GF at thdy the first of Eq.(34),

central site of a trimer in whose external atomic GF's we

plug the required result itself. The central atomic GF is theag, X _x & &K A R F

same as in the original structure. g g g
Infinite chain with impurity(ICI). If we change the atomic

GF of just one site of the HIC above intp, we obtain an

infinite chain with a single impurityFig. 10. The GF at the

impurity site can be obtained by means of the following

bud-reduction schemes:

Gy (90.9)=G54G5490.9).9)

=G(G5%90.9).65"19))
 t/~SHC SHC FIG. 11. Four fold Bethe latticé4-BL); (a) The whole structure
=G(Go (9).90.G5 (9)) is shown. The links are drawn with different lengths just for graphi-
all of which yield cal convenience. The shading shows one possible chain substructure
that can be chosen as the trunk for the bud-reductibp;Bud-
1 1 -1 reduced structure: only the trunk is shown) Bud-reduced struc-
G'OC'(go,g) = {—— —(1- \/1—(2tg)2)} . (33) ture: the structure of the main buds is shown. They consist of trim-
%9 9 ers whose external sites’ GF are the result of a further bud
reduction.(d) Bud-reduced structure: the structure of the secondary
------- O—O—O—O—O buds is shown. Note that, due to the recursivity of the structure,
they are defined in terms of the main buds. The sites at which the
FIG. 9. A homogeneous infinite chain. GF's are evaluated are surrounded by dashed lines.
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a .....: . .’. . B 2 o b,
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X X X X
o d
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FIG. 13. Fern lattices. Filled circles: sites wittx4. Unfilled
circles: sites withe=2; (a) (2,1) fern lattice, also known as comb
lattice or fish bone(b) (2,2) fern lattice; some secondary structures

FIG. 12. Fourfold Cayley tref(4,4-Ct]; (a) The whole struc-  are drawn in light gray only for graphical convenience.
ture is shown. The links are drawn with different lengths for graphi-
cal convenience. The sites with coordinatipa 1 are shaded in
gray. (b) Bud-reduced structures for the GF of the structure. From
left to right: site at the origin, site at distancefrom the origin, A fern is a plant characterized by an evident self-
peripheral sitdat distance from the origin; (c) recursion relations ~ Similarity. The secondary structures branching off from the
for the bud-reduced structures. The sites at which the GF's arghe main stalk mimic the whole structure. This resemblance
evaluated are surrounded by dashed lines. between the branches and the main structure goes on up to a
certain orderf, at which the branches are simple leaves or
stalks. An infinitefern lattice (FL) has a similar structure: at
2(n—1)g . AP .. . )

_ (35)  every site of an infinite homogeneous chaifdentical sec
n—2+ny1l—(n—1)(2gt)? ondary structures branch off. These are in turn semi-infinite

Lo oo homogeneous chains carryitgidentical tertiary structures,
e e T, e 227 s on At some rathe b substuctures brancing of
Known a,sCaery treé An n-fold Cayley.tree of radius From every site are simple sem.|—|nf|_n|te homoggneous chains
[(n,r) Ct] is a structure invariant underfold discrete ro- (see Fig. 13 Thus a fer lattice is characterized by two
tati(’)ns centered at its central site, which we refer to as it arameters, thbranching number and theorder f. Most of
' he sites of a fern lattice, namely, the ones on the branches of

origin. Every site whose distance from the origin is lowerhighest order. have coordination numbzer2. All the other
than the radius has coordination numizern. The periph- SR '
ones have coordination numbe+b+2.

eral sites, whose distance from the origin equals the radius, The position of a site relative to the origin of the stalk to

have coordination number=1. A (n,r) Ctis thus a nonho- which it belongs may be specified by means of two param-

gﬁggr}?gﬁtﬁgug:;ﬂiﬁ' gglitzievz:genst pll\laoctidtﬁ;tthguzagetﬁ Biers: the distance from the origin and an integer identifying
9 q ) ’ $he stalk. This origin is in turn a site belonging to a stalk of

exponential growth, the number of peripheral sites is of theiower order, and it may be identified the same way. Thus a
same order as the number of internal sites. As illustrated b¥ite belongi,ng to a secondary stalk of orétek=2 ' )

Fig. 12 the GF at the origin of en(r) Ct can be obtained by may be identified by means df—1 pairs of coordinates

means of three bud-reduction equations, v .
plus one more parametgy, specifying the coordinate along
the main stalk. Due to symmetry properties, sites belonging

Q
o]
Q
d
Q
d
Q
d
Q
d
Q
d
Q
d
Q
d

o)
o)
0
o)
o)
o)
o]
o)
o)
o)
o]
o)
o)
o)
o)

D. Fern lattices

G (g)=

n,r)C __nj X .
Go (818,) =G (8L 1(818p)s - - ) to stalks of the same ordkrand identified by the same set of
—_— “distance” coordinates{x,, ... Xy}, are equivalent, inde-
n entries pendent of the remaining coordinates. Thus the GF's at a site

Ty belonging to a stalk of ordek>2, of a (b,f) fern lattice
=G Dig. .
Lgigp)=Go" (giLis1(8in8p)s---) (36) [(b,f)FL] may be identified by means of a vectef) of
. lengthk—1[x("=1 Vh=1,... k—1). The GF at such a
nol enmes site can be obtained as
Lr:gp’
i i valenti G ™ (95,0 =Gy (Ou0,d(gs,L)),  (37)
whereg; is the atomic GF at any of th@quivalent internal x 19s,91) =000 (Ox0,J(Gs,Li)),
sites, whileg,, is the atomic GF at any of théequivalent
peripheral sites. Note that the second equation of (Bf).  where

sets a recursion relation that is closed by the third equation. J(goL)=G5(g,LyL;, . ..),
Also note that imposing the fixed point conditidn(g;)

—_—
=L.1(9;)=L(g;) and plugging the solution into the first b entries

equation of Eq.36) one recovers the result for thefold

Bethe lattice, formul&35). As illustrated in Fig. 12, the bud Li=Gy" U (gsLis1)), (39
reduction for the sites other than the origin is a little more SHE

complex, due to the lower degree of symmetry. Ly=Gy (g1,

054202-7



P. BUONSANTE, R. BURIONI, AND D. CASSI PHYSICAL REVIEW B5 054202

and whereg, is the atomic GF at the sites with coordination VI. CONCLUSIONS
numberz=b+2, whereasy, is the same quantity for the

sites  with coordinatiqn numbe_rz=2. The _function binding model applied to inhomogeneous structures are in-
O,w(9s,9) appearing in Eq(37) is an appropriate bud- egtigated. Since the lack of translational invariance rules out

reduced atomic GF, which can be evaluated by a straightfory powerful analytical tool such as the Fourier transform, and
ward bud-reduction scheme. Since in the most general casgrces a direct-space approach, the spectral properties are
this operation is rather long, we omit it in the present article.recovered through the evaluation of the GF’s, which are ex-

Due to translational invariance the GF's along the mainplicitly site-dependent quantities. An analytical technique,
stalk are all equivalent. This makes their evaluation quitehased on the properties of the GF's in the presence of
easy: branching sites, is developed and illustrated by means of
many examples. This technique, which we call bud reduc-

ngs,f)FL(gs’gl):GgIC(J(gS,LZ))_ (39) tion, aI_Iows us to account for an entir_e s_ubstructure off-

branching from the network under examination by means of

a sort of on-site potential of geometrical origin. It can also be

It is interesting to note that the fixed point relatibn, ;  performed telescopically, meaning that the bud-reduced
=L, sets in some sende=c<. In this case all the sites are branches may in turn carry substructures which have already

equivalent and have coordination numizerb+2. Thus a  undergone bud reduction. This tool yields a topological sim-

n-BL can be thought of as an(-2,°) fern, and indeed Eqgs. plification of the structure under examination and allows a
(38) and(39), together with the fixed point relation, give Eq. better understanding of the effect of each substructure on the

In this paper the spectral properties of a single-band tight-

(35) once again. spectral properties of the system. The insight gained on the
We refer to a forthcoming articté for the explicit evalu-  effects of different topologies may be a guide in designing

ation of the GF’s of some fern lattices of interest. networks displaying the desired spectral features.
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