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Conductance scaling at the band center of wide wires with pure nondiagonal disorder

J. A Verge*
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de InvestigacionesficantCantoblanco, E-28049 Madrid, Spain
(Received 2 February 2001; revised manuscript received 21 June 2001; published 27 December 2001

The Kubo formula is used to get the scaling behavior of the static conductance distribution of wide wires
showing pure nondiagonal disorder. Following recent works that point to unusual phenomena in some circum-
stances, scaling at the band center of wires of odd widths has been numerically investigated. While the mean
conductance shows a decrease that is only proportional to the inverse square root of the wire length, the median
of the distribution exponentially decreases as a function of the square root of the length. Actually, the whole
distribution decays as the inverse square root of the length except cloSe=t where the distribution
accumulates the weight lost at larger conductances. It accurately follows the theoretical prediction once the free
parameter is correctly fitted. Moreover, when the number of channels equals the wire length, but contacts are
kept finite, the conductance distribution is still described by the previous model. It is shown that the common
origin of this behavior is a simple Gaussian statistics followed by the logarithm of th@ wave function
weight ratio of a system showing chiral symmetry. A finite value of the two-dimensional mean conductance is
obtained in the infinite-size limit. Both conductance and wave function statistics distributions are given in this
limit. These results are consistent with thetical character of thee=0 wave function predicted in the
literature.
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[. INTRODUCTION simulation has been used to get the whole distribution of
conductances. While the mean value of the conductance de-
The existence of peculiar properties that differentiate pureays algebraically for wires of odd width, an alternative mea-
nondiagonal disorder models from disorder models includingure of the central value of distributions—the median—
diagonal disorder has a long history. Probably, the first conshows an exponential decay. Actually, the larger part of the
tribution along this line corresponds to Dyson’s work on aconductance measurements has an exponentially small value
one-dimensional phonon model published in 1$593e ex-  for large wires. Therefore, although the conductance distri-
istence of a divergent density of states at the band center @ution is certainly peculiar at the band center, | would still
such disordered systems implying a divergent localizatior's€ the term exponential localization when referring to the
length was pointed in later works’ Since then many works scaling behavior of the conductance of long wires. Results
on this subject have been publish@drepresentative list can change when the width and length of the wire coincide. In
be found in Ref. & The existence of some kind of delocal- this case, the numerical simulation presented in this paper
ization transition at the band center of such models certainljses a dot geometry point of view, keeping the size of the
disturbs the widely accepted statement saying that the sp&ontacts finite while the dot area scaling proceeds. The con-
cific form of disorder does not matter in Sing|e-parameterdUCtanCE distribution converges to a well-defined limit that is
scaling theory. compatible with the predicted critical behavior of the state at
A bipartite lattice is a lattice that can be divided into two the band center. It is shown that the analytic form used to fit
sublattices such that the Hamiltonian changes sign under @nductance distributions comes from a new underlying
transformation that changes the sign of the wave function otvave function statistics describing the distribution of weight
one sublattice. When pure nondiagonal disorder is considatios of theE=0 wave function.
ered on a bipartite lattice, the electron-hole symmetry of the The format of the paper is as follows. Section Il defines a
spectrum is not destroyed by disorder. This property has imquite simple chain model that allows some analytical results
portant consequences as, for example, the existence of amd an unbound numerical simulation. Section Ill gives a
eigenstate aE=0 for any disorder realization of a system more general disorder model on finite rectangular clusters of
constituted by an odd number of sitéhe spectrum shows the square lattice. The way in which the conductance is cal-
+E, pairs plus a state @=0). Recently, several works culated is presented in Sec. IV. Numerical results are given in
pointing to the exotic behavior of transport properties OfseC. V, first for wide disordered wires and, second, for square
quantum wires Showing chiral Symmetry have beenC'USterS. The last section of the paper Compiles the main
published®® For example, scaling of the conductance conc_:lusions reached by this numerical study of conductance
strongly depends on the parity of the number of channel§caling.
along the wire. Also, related activity in field theory has pro-
duced several models demonstrating a delocalization transi-
tion in the vicinity of the zero-energy stafe.
In this paper, the scaling properties of the simplest disor- Let me begin with a detailed description of the scaling
der model preserving chiral symmetry have been carefullyroperties of the conductance of a chain showing pure non-
analyzed at the band center of quantum wires. Numericalliagonal disorder. In this case, sign changes of the hopping

II. TOY MODEL
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parameters do not matter and changes in their absolute value 10° e
should be considered. One case that allows some analytic ®e .
results consists of a chain with hopping parameters that ran- .
domly take values of 1 and2 with equal probability. Start- 3, ¢
ing from the self-energy of an ideal chain at its band center 5
3= —1I, successive self-energies can be obtained through 5 o
the disordered part of the chain by means of the usual itera- =
tive sequencésee, for example, Eq$7)—(10) in Ref. 3] z
S
t
1= E_n, (1) 7
107 ") "y 6
wheret? takes value 1 or 2 with equal probability. Since 10° 10 10 10
. . : . CHAIN LENGTH
self-energy remains purely imaginary, a more convenient
form is possible: FIG. 1. Length scaling of the conductance of a disordered chain
2 at E=0. Average conductance is given in units of the conductance

n @) quantume?/h. Although the variance of the conductance distribu-
(=2, tion is large, the values given for the averages show error bars that

. . are sensibly smaller than the symbols representing the mean values.
The conductanc& of a sample is obtained from the self- the it at large lengths by a power-law curve of exponer@.51

energy at the end of the disordered chain agti: +0.01 is also shown.

— 4(_20“_)(_2’\‘“_) 5= 4(_2’\'”_) 5. (3 since it perfectly coincides with scaling predictions for wide
[1+(=Zo/D)(=2n/D)]° [T+ (=2 /i)] wires of odd number of transversal modes.

Equation(3) shows that the conductance varies between 0 Numerical simulations can be done as precise as neces-
and 1 as it corresponds to a one-channel system. Actually, &Y for this simple model. This fact allows a detailed com-
conductance takes the value 1 only-ifS/i=—3,/i=1.  Parnson with theoretical predictions. Figure 1 shows the scal-

Repeated use of Eq2) shows that the form in which the ing of the conductance as described by its mean value. The

random hopping elements appear in the self-energy eXpreggot—mean-square deviation is about some tenths of the con-

—Snpali=

sion is ductance unit. In any case, the average conductance at large
sizes (N\>1000) shows a power-law scaling with the dis-
tﬁtgtﬁ«'- tance that is compatible with the inverse square root law
t—lrtsrtsr (4) given by Eq.(6). According with this result, a disordered

chain with pure nondiagonal disorder shows nonstandard
Therefore, a perfect transmission through the chain is obscaling at the band center. Nevertheless, alternative measures
tained when the number of norm@lopping equal to land  of the central value of the distribution restore to some way
strong (hopping equal to/2) bonds of the numerator coin- the usual exponential decay of one-dimensional conduc-
cides with the corresponding numbers of the denominatofances,evenin the presence of chiral symmetry. For ex-
Solving this simple combinatorial problem, one gets a probample, the geometric me#of the same conductance distri-

ability butions shows a much more pronounced decrease with
length (see Fig. 2, although the corresponding standard de-

1 N2 (N/2)! 2 viation is of the same order as the mean, making doubtful its

p(G=1)= ano (NIZ=myint (5 statistical relevance. But there are other alternatives which

do give a good description of the overall scaling of the dis-
for the peak of the probability distribution of the conduc- tribution. Both the mediait and any definition based on the
tance atG=12 Notice that the distribution is a sum & value of the integral of the distribution between 0 and an
functions since the hopping takes just two different valuesarbitrary upper limitG,,,, flow to exponentially small values.
for example, the peak below the one@t1 appears a6 The physical meaning is clear in this case: half or more of
=8/9 and corresponds te X /i=2 or —2/i=1/2 (one the measures are exponentially small at large chain lengths.
extra strong bond either in the numerator or the denominaActually, the precise scaling law for these central value al-
tor). An asymptotic expansion for large enough chain lengthgernatives is

can be found for the sum in E¢b):

5 Go~exp(— L/§), (7)
p(G=1)~ NN (6)  where ¢ gives a measure of the exponential localization

length. Figure 2 shows that fits according to this law are
The scaling behavior of this peak is enough to explain arexcellent over the whole length range. The ultimate reason
inverse square root law for theean valueof G given that  for such statistically disappointing results is simply the un-
other peaks of the distribution decay in a similar or fasterusual size scaling of the distribution. While the major part of
way with the size of the chain. This is an interesting behaviotthe distribution belowG=1 decays in an algebraic form, the
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absolute values of the hopping can fluctuate in addition to
their signs or complex values of the hopping parameters can
be considered if random magnetic fluxes are simulated. The
results described below are not sensible to any of these
modifications of the disorder model. Numerical values are
somewhat changed, but trends remain exactly the same.

IV. CONDUCTANCE CALCULATION

CONDUCTANCE

Randomly generated samples oK M clusters are con-
nected to ideal leads of widtkl. Typically, L>M in a wire
% , , , geometry. The conductance of the whole system is obtained
0 200 400 600 800 using Kubo formul& within exact one-electron linear re-
SQUARE ROOT OF THE CHAIN LENGTH sponse theory. Computational details are given
elsewheré!!? Let me just mention that the inversion of the
ductance distribution is described by an alternateatral value Hfam|lton|an matrix needed to get th_e Green funcﬂon_of_ the
such as the average value of the logarittsulid circles, the me-  Wire cannot proceed slab by slab as is usually done within an
dian (open circley or the conductance value at which the integral OPtimized code. Numerical divergences take place owing to
of the distribution reaches a value of Q@own triangles All of ~ the existence of a true eigenstate at exa€ilyO for any
them are fitted in the whole range of chain lengths by an exponenPiece of the system showing an odd number of sitee
tial law decaying as a function of the square root of the samplematrix E—H is locally singulay. Nevertheless, numerical
length. calculation proceeds straightforwardly when pivoting over

. o } ~ the whole Hamiltonian matrix that includes the ideal leads is
weight of the distribution accumulates in an exponentiallyg|iowed.

small region neaG=0 (Fig. 4 in Sec. V illustrates graphi-
cally this behavioy. In this way, the upper part of the distri-
bution dominates the scaling behavior of the mean, root-
mean-square deviation, etc., while the accumulatiorGat A. Wide disordered wires

=0 gives the behavior of central value definitions based on  Tne first aim has been the recovery of some important
the integral of the distribution. In my opinion, these last defi- o5 its obtained for wide wires by Mudry, Brouwer, and

nitions are better suited for characterizing the whole distri-g,;,sakf In particular, the exotic dependené:e of the s,caling
bution than standard averages. Ultimately, one should look gL, on the parity of the wire width is obtained for the present
the precise experimental protocol followed to get a value ot 4e| (a simplification of their random flux modelOpen

the conductance before making predictions about the resuﬂoundary conditions have been used to get conductances of

FIG. 2. Length scaling for the model of Fig. 1 when the con-

V. RESULTS

of the measurements. stripes of fixed width and number of open chanrgie wire
width is equal to the number of channels at the band center
I1l. NONDIAGONAL DISORDER MODEL Sample lengths have been varied from 99 to 1980 in steps of

299- As many as T0samples are necessary to get good values
of means and other central values of conductance distribu-
tions. Figure 3 shows the scaling law for two typical odd

. widths (9 and 19 channelsn a log-log plot. Error bars are

H=2 ty.&¢, (8)  comparable to the symbols representing the conductance av-
" erages. A power-law fit to the numerical data is compatible
whereél’r creates an electron on sitel and!|’ are nearest- with a mean conductance scaling proportional to the inverse
neighbor sites, and;, is the hopping energy from siteto  square root of the sample length

[". It takes values 1 and-1 with equal probability. Let me

refer to this model as the random hopping siBiS) model. 1

Obviously, the square lattice can be divided into two sublat- (G)~ ﬁ

tices such that atoms belonging to one of them hop only to

sites belonging to the other sublattice when described byhis is precisely the scaling law obtained in Ref. 6 for quan-

Hamiltonian (8). Therefore, this Hamiltonian changes sign tum wires of an odd section. Notice that scaling proceeds

under a transformation that changes the sign of the electrosmoothly without distinguishing odd and even wire lengths.

operators on one sublattice. Consequently, the spectrum As noted by these authors, the variance of the conductance
symmetric relative to the band centerBat 0 for any disor-  distribution is as large as its mean, making the mean a poor
der realization, i.e., for any values of the random variables otharacteristic of the whole distribution. Actually, the pre-

The lattice Hamiltonian describing random hopping on
L XM cluster of the square lattice is

the modelt}. dicted relationship

The model given by Eq8) is probably the simplest two-
dimensional model showing chiral symmetry. Many changes _c
can be done to this model preserving chirality. For example, (G)y 3
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CONDUCTANCE
)

10

100 1000
WIRE LENGTH

PROBABILITY
=

FIG. 3. Length scaling of the mean conductance of a wire of 9
(open circleg or 19 channelgopen squargsat the band centery 10
=0). Average conductances are given in units of the conductance
quantume?/h and fitted to power-law curves of exponent£.51
+0.01 and—0.54+0.01, respectively. Solid symbols give the val-
ues of the variance obtained for the same sets of randomly gener-

ated samples. Dashed lines are just 2/3 of the previous fits. Error 100 02 04 06 03 Lo
bars are of the order of the symbols representing the averages. CONDUCTANCE
is accurately reproduced by the numerical detee solid FIG. 4. Length scaling of the probability distribution of conduc-

symbols of Fig. 3 and the dashed lines that are simply 2/3 ofances of a nine-channel wire. Solid circles, open circles, and dia-
the previous fits On the other hand, when an even numbermonds give histograms for the statistics of Kamples of lengths

of channels is studied, exponential scaling of the averaggopo, 1000, and 10000, respectively. Solid lines give results ob-
conductance together with an exponentially small typical detained from Eq(10). The conductance unit &/h.

viation is obtained in complete agreement with previous

work 8
A deeper understanding of scaling of the conductance 1
mean value can be obtained from the analysis of the whole p(G)= 2G’ ©

conductance distribution. Here, conductances for® 10

samples of width 9 and lengths 20and 18, and 16 have hich is auite diff ¢ h btained b ical
been compiled and the corresponding histograms plotted jyhich Is quite ditterent from the one obtained by numerica
Fig. 4. It is clear that the probability for large values of the S",““'*”‘_“O”- There is a direct mathemancal_ reason explaining
conductance diminishes as the length of the wire increase%?'s ff';ulure. Typically, several §tates contrlbutg t'o the Green
Actually, since the plot is semilogarithmic, the roughly equal unction ca_llculated at an arbltrary_ energy within the spec-
separation between solid and open circles for one side ang"m ofa d|sprdered syst_em. But this IS not the case when the
between open circles and diamonds for the other side implie rgen'functlo.n of a chiral system is caIcuIated]:‘&FO

a power-law decrease of the probability. The weight that thé/"h'Ch IS an .e|genene'rgy.of the isolated system with an odd
probability distribution loses for large conductance valueéﬁ"“'m_ber of sites. In this situation, both the Green fu_nctlon of
goes close t&=0. | have checked that the divergence of thethe isolated finite system and the one corresponding to the

. 1 - n-6 . extended system including the lea@sd related to the pre-
probability atG=1is proportional to I¥1~G, while the vious one by a Dyson equatipare dominated by the pole at

divergence at the origin looks also algebraic, but with an_"~" . . I
exponent starting close te3 for small disorder and decreas- E._ O—tha_t is, are completely d_etermm_ed by e 0
eigenfunction. In the next subsection, | will exploit this fea-

ing towards—1 as disorder increases. D
9 ture to analyze the conductance distribution as a conse-

Although the conductance corresponding to ide@eind- . . . )
isorderegl wires equals their widthé and 19, in this case quence of a precise wave function statistics. Meanwhile, let
' Jys return to the theory of Ref. 6 to analyze the numerical

Fig. 4 shows that conductance just reaches the value of 1 f L sults

disordered systems. It seems that just one channel is effels Mudrv. Brouwer. and Furusaki aive the following exore
tive. Therefore, it is tempting to compare these conductance. udry, brouwer, urusaxi giv wing expres-

distributions with the one corresponding to one randorr> N for the conductance distribution of wires with an odd

channel within the orthogonal universality cldssarguing number of channels in the localized regifsee Eq(4.10 of

that before localization the effect of disorder is just random—the second paper of Ref]:6
izing transport coefficients. But the comparison is very bad

since apart for small differences all theories show probabili- \F exp{— C[arcoshiG 1?1}

ties that continuously decrease frag+=0 to G=1. In par- p(G)=\/— , (10
ticular, the simplest result that applies to a random channel & GV1-G

described by scattering matrices of the circular orthogonal

ensemble is where
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FIG. 5. Dependence of the mean conductance and variance on
the number of channels for a fixed length of 2000. The number of
samples used to get accurate values of the statistical value$.is 10
Two fits to the data are shown: one using Eds11g and(4.11bH
of the second paper in Ref. 6 with=1.646 (dashed ling and a
linear fit[C given by Eq.(15)] (solid line).

10

0 500 1000 1500 2000

[ Mz +M-=2 WIRE LENGTH
C:I M—1 ' (11) FIG. 6. Length scaling of the conductance of a wire of 9

) ) ) (circles or 19 channelgsquaresat the band centel§=0). Scal-
with | the mean free path, the wire length, and/ the wire  jng of the mediar(solid symbols is shown besides the data of Fig.
width (which coincides with the number of channels at thes in a semilogarithmic plot. Medians can be fitted over the whole
band center A second scaling parametgithat characterizes  range of studied lengths by E(f) giving values of¢ equal to 5.73
the disorder on a microscopic scale does not appear becauged 8.99 for the 9 and 19 channels wires, respectively.
it vanishes for the random flux modé@kFM) and the model
studied herésee Sec. lllis just a special case of the RFM.  Consequently, the distribution given by Ea0) will be used
When C is small enough €<0.01) the distribution is very with
well described by a much simpler expressi@nror smaller

than 1% forG+0) c 0.3515 + 2.3050

(19

(G) \F - (12 L
P T GJ1-G' to describe the results obtained by numeric simulation.
The probabilityp(G) is shown in Fig. 4 as solid lines.
hough the three numerical distributions are nicely repro-
duced, the accuracy is better for wider wires as expected
c from the theory{M <L is assumed in the theory leading to
©=2y%

which allows the evaluation of the mean and the variance OL\It
the distribution:

Eqg. (10)]. The divergence ab=1 is of the inverse-square-
root form, while the apparer@ ! nonintegrable divergence
at the origin is regularized by the complex numerator which
(GZ):E<G>. vanishes atG=0. In conclusion, Eq(10) is a very good
3 description of the numerical data once the const@nis

Using the explicit form ofC [Eq. (11)] an expression is ob- properly estimated.

tained that can be used to fit the remaining pararietece Let us try an alternative way of characterizing the central

: alue of distributions of the form shown in Fig. 4. Previous
%rélgnough numbers of widths and/or lengths have been Stue(i,xperience with disorder models of this kind proves that the

median is more robust than the mean for some distributions
| M24+M—2 showing largeG variances but smaller I®) variances, i.e.,
(GYL=———— (13)  when the geometric mean does it better that the usual arith-
™ M-1 metic meart! Unfortunately, the distribution of i) is also
Figure 5 shows a fit to the mean and variance values obvery broad in the present case. Scaling results for the toy
tained for sets of 0randomly generated samples of length model of Sec. Il suggest the use of the median. Figure 6

L=2000 and widthM from 3 to 37. While Eq.(13) works  gives the median scaling obtained for the previously col-
reasonably good for large widths it fails nédr=3. Actually,  lected conductance distributions. It can be seen that median

an alternative fit by a linear law works sensibly better: values are exponentially smaller than mean values at large
wire lengths. The fact that the median scales towards 0 can
(G)’L=aM+b. (149 be inferred from the scaling of the histograms given in Fig.
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4, although the accumulation near exponentially small values 10°
of G is not visible in the figure. Even the scaling law of
medians is the same that describes the chain neeel Eq.
(7)]. Alternatively, the exponential decay of the median as a
function of the square root of the wire length can be inferred
from Eq.(10) once the distribution is written as a logarithmic
normal distribution using the variable change described in
the next subsection.

The practical meaning of the result is quite clear: more
than half of the conductance observations are exponentially
decreasing as the wire length increases. Actually, the fraction 05 02 0a 06 Y To
of the samples showing exponentially small conductances CONDUCTANCE
increases with wire length because probability be@Bw 1
decreases monotonically. Just the difference with a conven- FIG. 7 Probabilit_y distribution of conductances between point
tional one-dimensional scalin@s, for example, the one ob- contacts in a large dlsorQered square sgmple. Result§ for thrge §|zes
tained for wires of even widjhcomes from the power-law (L=599,699,799) are given together with the theoretical prediction

- S iven by Eq.(10) with C=0.0948(all four lines are seen as the thin
decrease of the upper part of the probability distribution thaﬁne in the figure. The universaldistribution corresponding to the

should be compared with the exponential decrease charactgtsinite two-dimensional system is given by the thick lin€ (

istic of standard scaling. =0.0471). The conductance distribution corresponding to the
Porter-Thomas wave function statistics is given by the dashed line.
Conductance unit ig?/h.

PROBABILITY

B. Two-dimensional system

While a standard study of the scaling of the conductance T Ap(r)?y(r’)? 16
in two dimensiong2D) would imply the calculation of con- ()2 g(r)?)?
ductances of increasing XL samples connected to ideal
leads of width equal to the square siden this work | have
used a dot setup specially designed for the study of just on

conducting state® Certainly, when the number of incoming
hannels is fix int-con metry, the only f E . . .
channels is fixed by a point-contact geometry, the only facto or a very precise calculation of the whole conductance dis-

that affects the value of the conductance is the &zea of L
the dot. In this way, the presumably increase of the conduct-.”buuon’ the dependence of the conductance on the separa-

tance due to wider contacts does not obscure the underlyi ! hn bietwneei-nt p0|{1:hcotr)1tar11((:jts Isntn(r)ti glvtinir?y dtge ;:ch?r:“'vre}_
scaling law strictly due to the increased size of the system. € eigenstate at tne band center 1S obtained by direc €

Two different limits are well known for large values &f ~ Sion of the Schrdinger equationkiy=0) whereH is given
First, ballistic transport through the sample can occur as hagy EQ.(8). Once theE=0 wave function statistics is known,
pens in chaotic cavities. This limit is described in a firstEd- (16) can be used to get a conductance distribution. For
approximation by the scattering matrices of the circular or-example, if the Porter-Thomas fotfrwere valid
thogonal ensembléCOE).*® Roughly speaking, a conduc-
tance of abou} per channel can be expected. Second, Ander- 1
son exponential localization would imply an exponentially J2mt
small value of conductances for large enough dot sizes. This
limit applies to diagonal disorder, for example. At the bandwheret=Ng(r)?, N being the number of sites, the conduc-
center of a system with chiral symmetry, numerical simula-tance distribution would be given by
tion shows a behavior similar to the ballistic ofsee Fig. 7.
Me.an conductance converges tq a'wel'l—defined finite limit, p(G)= J“fxdt dt’ f(t)f(t’)&(G—
while the whole conductance distribution perfectly de- oJo
scribed by Eq(10). Since now the system is not quasi one . . . .
dimensional as wide wires are, one is forced to conclude that'hich can be integrated to give the final result
there should be deep general reasons for the validity of Eq.
(10) in this context. Ppr(G)= E

Let me briefly describe the numerical procedure. The T JG(1-G)
transmission between any couple of points within the dot is
calculated and the corresponding conductance distribution Although probabilitypp(G) reproduces some features of
obtained. To this end, two clean infinite chaitise leadsare  the conductance distributions shown in Figs. 4 and 7 for the
attached through two arbitrarily chosen lattice sites withinsmaller cluster sizegor example, the square-root divergence
the disordered square samfilee do}. For this geometry, the at G=1), it is clearly noncomparable to the accurate result
transmission from site to siter’ is given by the following given by Eq.(10). What comes as a surprise is the fact that a
expression: logarithmic normal distribution of the wave function ratios

where ¢(r) is the wave function at the band center. From
gwis equation, & T=<1, and the conductance is between zero
and one quantum unit for this numerical simulation. While
he large number of transmission evaluationsy(_*) allows

f(t)= exp—t/2), (17)

!

vy 8

(19
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FIG. 8. Probability distribution of the wave function weight ra-  FIG. 9. Size scaling of the mean value of the conductance be-
tio in a square disordered dot. Results for two sides99 and  tween point contacts in a square disordered dot. The solid line is a
499 are given as solid lines together with the theoretical predictiorfit of the form given by Eq.(22) with an asymptotic value o&

[Eq. (20)] for C=0.091 24, which corresponds to=499 (dashed  =0.245. Conductance is given in units of the conductance quantum
line). The universaldistribution corresponding to the infinite two- e’/h.
dimensional system is given by the thick lin€+0.0471).

(G)=a+bL™ V4 (22)
t/t" exactly gives the conductance distribution proposed by
Mudry et al® That is, assuming with a very good precision. The asymptotic value corre-
sponding to the infinite limit is 0.245. Finite values of the
C C conductance of two-dimensional systems showing chiral
g(x)= \ /E exp( - sz), (200  symmetry have been predicted in a number of pah&t§-*®

Although the present numerical simulation nicely supports
) o these theories, some caution must be used for two main rea-
beingx=In(t/t'), the conductance distribution is given by  gons. First, a somewhat practical reason:  results heavily de-
pend on the fact that the Green function of this problem is
just given by only one particular state. While the energy of
: (21 this state is well defined theoretically, it could be difficult to
make an experiment at just a particular energy. Previous au-
thors on the subject have clearly shown that chirality is lost
as soon a£=0 is left® The second reason is a bit more
technical. Scaling properties have been obtained for clusters

f_ocdx g(x) 5( G- e 52

This integral is easily solved giving(G) of Eg. (10) with

_ 4 of an odd number of sites and, therefore, a stat&a.
T eXfe X+ 2 Present computational facilities do not allow one to prove
that the scaling of clusters of an even number of states pro-
or, equivalently, ceeds in the same waylNote that in this case the Green

function should be recalculated for any new position of the

point contacts since storing of the whole Green function ma-
fzarcosmel/z) trix of the isolated cluster is not possible.Nevertheless, |
2 ' have checked that odd and even differences are minimal for

small systems.
This result gives some clue over the complic&edepen- The universalconductance distribution at the band center
dence that happens to appear in its distribution function. Nuef a two-dimensional chiral system shown by the thick line
merical simulation(see Fig. 8 shows that Eq(20) accu- in Fig. 7 is probably the most original result in the paper. It
rately describes the wave-function-squared ratios of largeorresponds to the— oo limit of Eq. (22) which is obtained
disordered two-dimensional systems and, consequently, cofer C=0.0471 in Eq.(10), but does not differ very much
ductance distributions of the form given by Ed0) are valid  from the distributions corresponding to the simulated sizes
in this case. (L=599,699,799) plotted as three thin indistinguishable
Let us now discuss the scaling properties of the meaitines. All three are accurately described by EtQ) with C

conductance at the band center. Conductance has been aver0.0948. Although obtained for point contacts, previous ex-
aged over a significant number of randomly generategberience with wide wires proves that minor differences
samples of increasing linear sizés) keeping almost con- should be expected for wider but finite contatd.et me
stant the total number oheasurementg-igure 9 shows the insist on the idea that perfect agreement with the theoretical
results obtained by this numerical procedure. The scaling ofonductance distribution is also explained by a particular dis-
the mean conductance can be fitted to a model of the formtribution of wave function weight ratigsee Eq(20)] that is
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confirmed by numerical simulation. Figure 8 gives the distri-length, but to its square root. That is a significant deviation
butions obtained for a small cluster size=99)—higher from standard localization theory.
maximum value—and for a larger sizé €£499) together Surprisingly, statistical conductance properties of two-
with its corresponding Gaussi@dashed ling The thick line  dimensional systems connected to point contacts are de-
gives theuniversalprediction for this statistical measure of scribed at the band center by the same distribution that de-
the wave function. Consequently, | think that unusual phescribes wide wires. It has been shown that this statistics
nomena as they have been described in the literature asppears due to the existence of an underlying Gaussian dis-
quite compatible with present results for the conductancdribution of the logarithm of the ratio of the wave function
distribution/17:18 weights at E=0. The main difference with quasi-one-
dimensional systems is that now both the mean and median
V1. DISCUSSION conductances seem to reach a finite limit. Timéversalsta-
tistical distributions of conductance and wave function ratios
.The _scaling p_roperti.es of the conductance distribution ok zve been obtained. Although they share some properties
wide wires showing chiral symmetry have been analyzed byith the corresponding statistics of the circular orthogonal
numerical solution of a simple model Hamiltonian. Predic-ensemple, it has been shown that they differ. This numerical
tions of a power-law decrease of the mean conductance hayggsyt calls for some theory able to explain the origin of such

been confirmed. Besides, the strange scaling properties of thesimple statistics of the wave function at the band center of
distribution give rise to unusual statistical properties thaty chiral system.

have been described in the main text. For example, while the
slow algebraic decay of the mean conductance is due to few
but very large fluctuations, it has been shown that almost all
conductance measurements are exponentially small for large
wires. Actually, an exponential law is obtained for the me-  This work has been partially supported by Spanish Comi-
dian of the distribution and for any generalization of thesion Interministerial de Ciencia y Tecnol@g(Grant No.
median based on the integral of the distribution. NeverthePB96-008% and Direccim General de EnSanza Superior e
less, exponential decay is not proportional to the samplénvestigaciam y Ciencia(Grant No. 1FD97-1358
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?The geometric mean is obtained from the average of the loga- value Xy for which larger and smaller values fare equally
rithm of the random variable by probable:

(X)geon=EXRIN(X)). Fm

ed 1 *
21The median of a probability distribution functiop(x) is the p(x)dx=§=J p(x)dx.

* Xmed
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