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Conductance scaling at the band center of wide wires with pure nondiagonal disorder
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The Kubo formula is used to get the scaling behavior of the static conductance distribution of wide wires
showing pure nondiagonal disorder. Following recent works that point to unusual phenomena in some circum-
stances, scaling at the band center of wires of odd widths has been numerically investigated. While the mean
conductance shows a decrease that is only proportional to the inverse square root of the wire length, the median
of the distribution exponentially decreases as a function of the square root of the length. Actually, the whole
distribution decays as the inverse square root of the length except close toG50 where the distribution
accumulates the weight lost at larger conductances. It accurately follows the theoretical prediction once the free
parameter is correctly fitted. Moreover, when the number of channels equals the wire length, but contacts are
kept finite, the conductance distribution is still described by the previous model. It is shown that the common
origin of this behavior is a simple Gaussian statistics followed by the logarithm of theE50 wave function
weight ratio of a system showing chiral symmetry. A finite value of the two-dimensional mean conductance is
obtained in the infinite-size limit. Both conductance and wave function statistics distributions are given in this
limit. These results are consistent with thecritical character of theE50 wave function predicted in the
literature.

DOI: 10.1103/PhysRevB.65.054201 PACS number~s!: 72.15.Rn, 71.55.Jv, 11.30.Rd
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I. INTRODUCTION

The existence of peculiar properties that differentiate p
nondiagonal disorder models from disorder models includ
diagonal disorder has a long history. Probably, the first c
tribution along this line corresponds to Dyson’s work on
one-dimensional phonon model published in 1953.1 The ex-
istence of a divergent density of states at the band cente
such disordered systems implying a divergent localizat
length was pointed in later works.2,3 Since then many works
on this subject have been published~a representative list ca
be found in Ref. 4!. The existence of some kind of deloca
ization transition at the band center of such models certa
disturbs the widely accepted statement saying that the
cific form of disorder does not matter in single-parame
scaling theory.5

A bipartite lattice is a lattice that can be divided into tw
sublattices such that the Hamiltonian changes sign und
transformation that changes the sign of the wave function
one sublattice. When pure nondiagonal disorder is con
ered on a bipartite lattice, the electron-hole symmetry of
spectrum is not destroyed by disorder. This property has
portant consequences as, for example, the existence o
eigenstate atE50 for any disorder realization of a syste
constituted by an odd number of sites~the spectrum shows
6Ea pairs plus a state atE50!. Recently, several works
pointing to the exotic behavior of transport properties
quantum wires showing chiral symmetry have be
published.4,6 For example, scaling of the conductan
strongly depends on the parity of the number of chann
along the wire. Also, related activity in field theory has pr
duced several models demonstrating a delocalization tra
tion in the vicinity of the zero-energy state.7

In this paper, the scaling properties of the simplest dis
der model preserving chiral symmetry have been caref
analyzed at the band center of quantum wires. Numer
0163-1829/2001/65~5!/054201~9!/$20.00 65 0542
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simulation has been used to get the whole distribution
conductances. While the mean value of the conductance
cays algebraically for wires of odd width, an alternative me
sure of the central value of distributions—the median
shows an exponential decay. Actually, the larger part of
conductance measurements has an exponentially small v
for large wires. Therefore, although the conductance dis
bution is certainly peculiar at the band center, I would s
use the term exponential localization when referring to
scaling behavior of the conductance of long wires. Res
change when the width and length of the wire coincide.
this case, the numerical simulation presented in this pa
uses a dot geometry point of view, keeping the size of
contacts finite while the dot area scaling proceeds. The c
ductance distribution converges to a well-defined limit tha
compatible with the predicted critical behavior of the state
the band center. It is shown that the analytic form used to
conductance distributions comes from a new underly
wave function statistics describing the distribution of weig
ratios of theE50 wave function.

The format of the paper is as follows. Section II define
quite simple chain model that allows some analytical res
and an unbound numerical simulation. Section III gives
more general disorder model on finite rectangular cluster
the square lattice. The way in which the conductance is
culated is presented in Sec. IV. Numerical results are give
Sec. V, first for wide disordered wires and, second, for squ
clusters. The last section of the paper compiles the m
conclusions reached by this numerical study of conducta
scaling.

II. TOY MODEL

Let me begin with a detailed description of the scali
properties of the conductance of a chain showing pure n
diagonal disorder. In this case, sign changes of the hopp
©2001 The American Physical Society01-1
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parameters do not matter and changes in their absolute v
should be considered. One case that allows some ana
results consists of a chain with hopping parameters that
domly take values of 1 and& with equal probability. Start-
ing from the self-energy of an ideal chain at its band cen
S052 i , successive self-energies can be obtained thro
the disordered part of the chain by means of the usual it
tive sequence@see, for example, Eqs.~7!–~10! in Ref. 3#:

Sn1152
tn
2

Sn
, ~1!

where tn
2 takes value 1 or 2 with equal probability. Sinc

self-energy remains purely imaginary, a more conveni
form is possible:

2Sn11 / i 5
tn
2

~2Sn / i !
. ~2!

The conductanceG of a sample is obtained from the sel
energy at the end of the disordered chain partSN / i :

G5
4~2S0 / i !~2SN / i !

@11~2S0 / i !~2SN / i !#2 5
4~2SN / i !

@11~2SN / i !#2 . ~3!

Equation~3! shows that the conductance varies betwee
and 1 as it corresponds to a one-channel system. Actually
conductance takes the value 1 only if2SN / i 52S0 / i 51.
Repeated use of Eq.~2! shows that the form in which the
random hopping elements appear in the self-energy exp
sion is

t0
2t2

2t4
2
¯

t1
2t3

2t5
2
¯

. ~4!

Therefore, a perfect transmission through the chain is
tained when the number of normal~hopping equal to 1! and
strong ~hopping equal to&! bonds of the numerator coin
cides with the corresponding numbers of the denomina
Solving this simple combinatorial problem, one gets a pr
ability

p~G51!5
1

2N (
n50

N/2 F ~N/2!!

~N/22n!!n! G
2

~5!

for the peak of the probability distribution of the condu
tance atG51.8 Notice that the distribution is a sum ofd
functions since the hopping takes just two different valu
for example, the peak below the one atG51 appears atG
58/9 and corresponds to2SN / i 52 or 2SN / i 51/2 ~one
extra strong bond either in the numerator or the denom
tor!. An asymptotic expansion for large enough chain leng
can be found for the sum in Eq.~5!:

p~G51!;A 2

pN
. ~6!

The scaling behavior of this peak is enough to explain
inverse square root law for themean valueof G given that
other peaks of the distribution decay in a similar or fas
way with the size of the chain. This is an interesting behav
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since it perfectly coincides with scaling predictions for wid
wires of odd number of transversal modes.6

Numerical simulations can be done as precise as ne
sary for this simple model. This fact allows a detailed co
parison with theoretical predictions. Figure 1 shows the sc
ing of the conductance as described by its mean value.
root-mean-square deviation is about some tenths of the
ductance unit. In any case, the average conductance at
sizes (N.1000) shows a power-law scaling with the di
tance that is compatible with the inverse square root
given by Eq.~6!. According with this result, a disordere
chain with pure nondiagonal disorder shows nonstand
scaling at the band center. Nevertheless, alternative meas
of the central value of the distribution restore to some w
the usual exponential decay of one-dimensional cond
tances,even in the presence of chiral symmetry. For e
ample, the geometric mean20 of the same conductance distr
butions shows a much more pronounced decrease
length ~see Fig. 2!, although the corresponding standard d
viation is of the same order as the mean, making doubtfu
statistical relevance. But there are other alternatives wh
do give a good description of the overall scaling of the d
tribution. Both the median21 and any definition based on th
value of the integral of the distribution between 0 and
arbitrary upper limitGmax flow to exponentially small values
The physical meaning is clear in this case: half or more
the measures are exponentially small at large chain leng
Actually, the precise scaling law for these central value
ternatives is

G0;exp~2AL/j!, ~7!

where j gives a measure of the exponential localizati
length. Figure 2 shows that fits according to this law a
excellent over the whole length range. The ultimate rea
for such statistically disappointing results is simply the u
usual size scaling of the distribution. While the major part
the distribution belowG51 decays in an algebraic form, th

FIG. 1. Length scaling of the conductance of a disordered ch
at E50. Average conductance is given in units of the conducta
quantume2/h. Although the variance of the conductance distrib
tion is large, the values given for the averages show error bars
are sensibly smaller than the symbols representing the mean va
The fit at large lengths by a power-law curve of exponent20.51
60.01 is also shown.
1-2
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CONDUCTANCE SCALING AT THE BAND CENTER OF . . . PHYSICAL REVIEW B 65 054201
weight of the distribution accumulates in an exponentia
small region nearG50 ~Fig. 4 in Sec. V illustrates graphi
cally this behavior!. In this way, the upper part of the distr
bution dominates the scaling behavior of the mean, ro
mean-square deviation, etc., while the accumulation aG
50 gives the behavior of central value definitions based
the integral of the distribution. In my opinion, these last de
nitions are better suited for characterizing the whole dis
bution than standard averages. Ultimately, one should loo
the precise experimental protocol followed to get a value
the conductance before making predictions about the re
of the measurements.

III. NONDIAGONAL DISORDER MODEL

The lattice Hamiltonian describing random hopping on
L3M cluster of the square lattice is

Ĥ5 (
^ l l 8&

t l l 8ĉl
†ĉl 8 , ~8!

where ĉl
† creates an electron on sitel, l and l 8 are nearest-

neighbor sites, andt l l 8 is the hopping energy from sitel to
l 8. It takes values 1 and21 with equal probability. Let me
refer to this model as the random hopping sign~RHS! model.
Obviously, the square lattice can be divided into two sub
tices such that atoms belonging to one of them hop only
sites belonging to the other sublattice when described
Hamiltonian ~8!. Therefore, this Hamiltonian changes sig
under a transformation that changes the sign of the elec
operators on one sublattice. Consequently, the spectru
symmetric relative to the band center atE50 for any disor-
der realization, i.e., for any values of the random variables
the model$t l l 8%.

The model given by Eq.~8! is probably the simplest two
dimensional model showing chiral symmetry. Many chang
can be done to this model preserving chirality. For exam

FIG. 2. Length scaling for the model of Fig. 1 when the co
ductance distribution is described by an alternativecentral value
such as the average value of the logarithm~solid circles!, the me-
dian ~open circles!, or the conductance value at which the integ
of the distribution reaches a value of 0.9~down triangles!. All of
them are fitted in the whole range of chain lengths by an expon
tial law decaying as a function of the square root of the sam
length.
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absolute values of the hopping can fluctuate in addition
their signs or complex values of the hopping parameters
be considered if random magnetic fluxes are simulated.
results described below are not sensible to any of th
modifications of the disorder model. Numerical values a
somewhat changed, but trends remain exactly the same

IV. CONDUCTANCE CALCULATION

Randomly generated samples ofL3M clusters are con-
nected to ideal leads of widthM. Typically, L@M in a wire
geometry. The conductance of the whole system is obtai
using Kubo formula10 within exact one-electron linear re
sponse theory. Computational details are giv
elsewhere.11,12 Let me just mention that the inversion of th
Hamiltonian matrix needed to get the Green function of
wire cannot proceed slab by slab as is usually done within
optimized code. Numerical divergences take place owing
the existence of a true eigenstate at exactlyE50 for any
piece of the system showing an odd number of sites~the
matrix E2Ĥ is locally singular!. Nevertheless, numerica
calculation proceeds straightforwardly when pivoting ov
the whole Hamiltonian matrix that includes the ideal leads
allowed.

V. RESULTS

A. Wide disordered wires

The first aim has been the recovery of some import
results obtained for wide wires by Mudry, Brouwer, an
Furusaki.6 In particular, the exotic dependence of the scali
law on the parity of the wire width is obtained for the prese
model ~a simplification of their random flux model!. Open
boundary conditions have been used to get conductance
stripes of fixed width and number of open channels~the wire
width is equal to the number of channels at the band cen!.
Sample lengths have been varied from 99 to 1980 in step
99. As many as 104 samples are necessary to get good val
of means and other central values of conductance distr
tions. Figure 3 shows the scaling law for two typical od
widths ~9 and 19 channels! in a log-log plot. Error bars are
comparable to the symbols representing the conductance
erages. A power-law fit to the numerical data is compati
with a mean conductance scaling proportional to the inve
square root of the sample lengthL:

^G&;
1

AL
.

This is precisely the scaling law obtained in Ref. 6 for qua
tum wires of an odd section. Notice that scaling procee
smoothly without distinguishing odd and even wire length
As noted by these authors, the variance of the conducta
distribution is as large as its mean, making the mean a p
characteristic of the whole distribution. Actually, the pr
dicted relationship

^G2&

^G&
5

2

3

l

n-
le
1-3
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is accurately reproduced by the numerical data~see solid
symbols of Fig. 3 and the dashed lines that are simply 2/3
the previous fits!. On the other hand, when an even numb
of channels is studied, exponential scaling of the aver
conductance together with an exponentially small typical
viation is obtained in complete agreement with previo
work.6

A deeper understanding of scaling of the conducta
mean value can be obtained from the analysis of the wh
conductance distribution. Here, conductances for5

samples of width 9 and lengths 102, and 103, and 104 have
been compiled and the corresponding histograms plotte
Fig. 4. It is clear that the probability for large values of t
conductance diminishes as the length of the wire increa
Actually, since the plot is semilogarithmic, the roughly equ
separation between solid and open circles for one side
between open circles and diamonds for the other side imp
a power-law decrease of the probability. The weight that
probability distribution loses for large conductance valu
goes close toG50. I have checked that the divergence of t
probability atG51 is proportional to 1/A12G, while the
divergence at the origin looks also algebraic, but with
exponent starting close to21

2 for small disorder and decreas
ing towards21 as disorder increases.

Although the conductance corresponding to ideal~nond-
isordered! wires equals their widths~9 and 19, in this case!,
Fig. 4 shows that conductance just reaches the value of 1
disordered systems. It seems that just one channel is e
tive. Therefore, it is tempting to compare these conducta
distributions with the one corresponding to one rand
channel within the orthogonal universality class,13 arguing
that before localization the effect of disorder is just rando
izing transport coefficients. But the comparison is very b
since apart for small differences all theories show probab
ties that continuously decrease fromG50 to G51. In par-
ticular, the simplest result that applies to a random chan
described by scattering matrices of the circular orthogo
ensemble is

FIG. 3. Length scaling of the mean conductance of a wire o
~open circles! or 19 channels~open squares! at the band center (E
50). Average conductances are given in units of the conducta
quantume2/h and fitted to power-law curves of exponents20.51
60.01 and20.5460.01, respectively. Solid symbols give the va
ues of the variance obtained for the same sets of randomly ge
ated samples. Dashed lines are just 2/3 of the previous fits. E
bars are of the order of the symbols representing the averages
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p~G!5
1

2AG
, ~9!

which is quite different from the one obtained by numeric
simulation. There is a direct mathematical reason explain
this failure. Typically, several states contribute to the Gre
function calculated at an arbitrary energy within the sp
trum of a disordered system. But this is not the case when
Green function of a chiral system is calculated atE50
which is an eigenenergy of the isolated system with an o
number of sites. In this situation, both the Green function
the isolated finite system and the one corresponding to
extended system including the leads~and related to the pre
vious one by a Dyson equation! are dominated by the pole a
E50—that is, are completely determined by theE50
eigenfunction. In the next subsection, I will exploit this fe
ture to analyze the conductance distribution as a con
quence of a precise wave function statistics. Meanwhile,
us return to the theory of Ref. 6 to analyze the numeri
results.

Mudry, Brouwer, and Furusaki give the following expre
sion for the conductance distribution of wires with an o
number of channels in the localized regime@see Eq.~4.10! of
the second paper of Ref. 6#:

p~G!5AC

p

exp$2C@arcosh~G21/2!#2%

GA12G
, ~10!

where

9

ce

er-
or

FIG. 4. Length scaling of the probability distribution of condu
tances of a nine-channel wire. Solid circles, open circles, and
monds give histograms for the statistics of 105 samples of lengths
100, 1000, and 10 000, respectively. Solid lines give results
tained from Eq.~10!. The conductance unit ise2/h.
1-4
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C5
l

4L

M21M22

M21
, ~11!

with l the mean free path,L the wire length, andM the wire
width ~which coincides with the number of channels at t
band center!. A second scaling parameterh that characterizes
the disorder on a microscopic scale does not appear bec
it vanishes for the random flux model~RFM! and the model
studied here~see Sec. III! is just a special case of the RFM.11

WhenC is small enough (C,0.01) the distribution is very
well described by a much simpler expression~error smaller
than 1% forGÞ0!

p~G!.AC

p

1

GA12G
, ~12!

which allows the evaluation of the mean and the variance
the distribution:

^G&.2AC

p
,

^G2&5
2

3
^G&.

Using the explicit form ofC @Eq. ~11!# an expression is ob
tained that can be used to fit the remaining parameterl once
an enough numbers of widths and/or lengths have been s
ied:

^G&2L.
l

p

M21M22

M21
. ~13!

Figure 5 shows a fit to the mean and variance values
tained for sets of 104 randomly generated samples of leng
L52000 and widthM from 3 to 37. While Eq.~13! works
reasonably good for large widths it fails nearM53. Actually,
an alternative fit by a linear law works sensibly better:

^G&2L5aM1b. ~14!

FIG. 5. Dependence of the mean conductance and varianc
the number of channels for a fixed length of 2000. The numbe
samples used to get accurate values of the statistical values is4.
Two fits to the data are shown: one using Eqs.~4.11a! and~4.11b!
of the second paper in Ref. 6 withl 51.646 ~dashed line! and a
linear fit @C given by Eq.~15!# ~solid line!.
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Consequently, the distribution given by Eq.~10! will be used
with

C5
0.3515M12.3050

L
~15!

to describe the results obtained by numeric simulation.
The probabilityp(G) is shown in Fig. 4 as solid lines

Although the three numerical distributions are nicely rep
duced, the accuracy is better for wider wires as expec
from the theory@M!L is assumed in the theory leading
Eq. ~10!#. The divergence atG51 is of the inverse-square
root form, while the apparentG21 nonintegrable divergence
at the origin is regularized by the complex numerator wh
vanishes atG50. In conclusion, Eq.~10! is a very good
description of the numerical data once the constantC is
properly estimated.

Let us try an alternative way of characterizing the cent
value of distributions of the form shown in Fig. 4. Previo
experience with disorder models of this kind proves that
median is more robust than the mean for some distributi
showing largeG variances but smaller ln(G) variances, i.e.,
when the geometric mean does it better that the usual a
metic mean.11 Unfortunately, the distribution of ln(G) is also
very broad in the present case. Scaling results for the
model of Sec. II suggest the use of the median. Figur
gives the median scaling obtained for the previously c
lected conductance distributions. It can be seen that me
values are exponentially smaller than mean values at la
wire lengths. The fact that the median scales towards 0
be inferred from the scaling of the histograms given in F

on
f

0

FIG. 6. Length scaling of the conductance of a wire of
~circles! or 19 channels~squares! at the band center (E50). Scal-
ing of the median~solid symbols! is shown besides the data of Fig
3 in a semilogarithmic plot. Medians can be fitted over the wh
range of studied lengths by Eq.~7! giving values ofj equal to 5.73
and 8.99 for the 9 and 19 channels wires, respectively.
1-5
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4, although the accumulation near exponentially small val
of G is not visible in the figure. Even the scaling law
medians is the same that describes the chain model@see Eq.
~7!#. Alternatively, the exponential decay of the median a
function of the square root of the wire length can be infer
from Eq.~10! once the distribution is written as a logarithm
normal distribution using the variable change described
the next subsection.

The practical meaning of the result is quite clear: mo
than half of the conductance observations are exponent
decreasing as the wire length increases. Actually, the frac
of the samples showing exponentially small conductan
increases with wire length because probability belowG51
decreases monotonically. Just the difference with a conv
tional one-dimensional scaling~as, for example, the one ob
tained for wires of even width! comes from the power-law
decrease of the upper part of the probability distribution t
should be compared with the exponential decrease chara
istic of standard scaling.

B. Two-dimensional system

While a standard study of the scaling of the conducta
in two dimensions~2D! would imply the calculation of con-
ductances of increasingL3L samples connected to ide
leads of width equal to the square sideL, in this work I have
used a dot setup specially designed for the study of just
conducting state.15 Certainly, when the number of incomin
channels is fixed by a point-contact geometry, the only fac
that affects the value of the conductance is the size~area! of
the dot. In this way, the presumably increase of the cond
tance due to wider contacts does not obscure the underl
scaling law strictly due to the increased size of the syst
Two different limits are well known for large values ofL.
First, ballistic transport through the sample can occur as h
pens in chaotic cavities. This limit is described in a fi
approximation by the scattering matrices of the circular
thogonal ensemble~COE!.13 Roughly speaking, a conduc
tance of about12 per channel can be expected. Second, And
son exponential localization would imply an exponentia
small value of conductances for large enough dot sizes. T
limit applies to diagonal disorder, for example. At the ba
center of a system with chiral symmetry, numerical simu
tion shows a behavior similar to the ballistic one~see Fig. 7!.
Mean conductance converges to a well-defined finite lim
while the whole conductance distribution isperfectly de-
scribed by Eq.~10!. Since now the system is not quasi o
dimensional as wide wires are, one is forced to conclude
there should be deep general reasons for the validity of
~10! in this context.

Let me briefly describe the numerical procedure. T
transmission between any couple of points within the do
calculated and the corresponding conductance distribu
obtained. To this end, two clean infinite chains~the leads! are
attached through two arbitrarily chosen lattice sites wit
the disordered square sample~the dot!. For this geometry, the
transmission from siter to site r 8 is given by the following
expression:
05420
s

a
d

n

e
lly
n
s

n-

t
er-

e

e

r

c-
ng
.

p-
t
-

r-

is

-

t,

at
q.

e
s
n

T5
4c~r !2c~r 8!2

@c~r !21c~r 8!2#2 , ~16!

wherec(r ) is the wave function at the band center. Fro
this equation, 0<T<1, and the conductance is between ze
and one quantum unit for this numerical simulation. Wh
the large number of transmission evaluations (; 1

2 L4) allows
for a very precise calculation of the whole conductance d
tribution, the dependence of the conductance on the sep
tion between point contacts is not given by the procedu
The eigenstate at the band center is obtained by direct in
sion of the Schro¨dinger equation (Ĥc50) whereĤ is given
by Eq.~8!. Once theE50 wave function statistics is known
Eq. ~16! can be used to get a conductance distribution.
example, if the Porter-Thomas form14 were valid

f ~ t !5
1

A2pt
exp~2t/2!, ~17!

wheret5Nc(r )2, N being the number of sites, the condu
tance distribution would be given by

p~G!5E
0

`E
0

`

dt dt8 f ~ t ! f ~ t8!dS G2
4tt8

~ t1t8!2D . ~18!

which can be integrated to give the final result

pPT~G!5
1

p

1

AG~12G!
. ~19!

Although probabilitypPT(G) reproduces some features
the conductance distributions shown in Figs. 4 and 7 for
smaller cluster sizes~for example, the square-root divergen
at G51!, it is clearly noncomparable to the accurate res
given by Eq.~10!. What comes as a surprise is the fact tha
logarithmic normal distribution of the wave function ratio

FIG. 7. Probability distribution of conductances between po
contacts in a large disordered square sample. Results for three
(L5599,699,799) are given together with the theoretical predict
given by Eq.~10! with C50.0948~all four lines are seen as the thi
line in the figure!. The universaldistribution corresponding to the
infinite two-dimensional system is given by the thick line (C
50.0471). The conductance distribution corresponding to
Porter-Thomas wave function statistics is given by the dashed
Conductance unit ise2/h.
1-6
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t/t8 exactly gives the conductance distribution proposed
Mudry et al.6 That is, assuming

g~x!5A C

4p
expS 2

C

4
x2D , ~20!

beingx5 ln(t/t8), the conductance distribution is given by

E
2`

`

dx g~x!dS G2
4

ex1e2x12D . ~21!

This integral is easily solved givingp(G) of Eq. ~10! with

G5
4

ex1e2x12

or, equivalently,

x

2
5arcosh~G21/2!.

This result gives some clue over the complicateG depen-
dence that happens to appear in its distribution function.
merical simulation~see Fig. 8! shows that Eq.~20! accu-
rately describes the wave-function-squared ratios of la
disordered two-dimensional systems and, consequently,
ductance distributions of the form given by Eq.~10! are valid
in this case.

Let us now discuss the scaling properties of the m
conductance at the band center. Conductance has been
aged over a significant number of randomly genera
samples of increasing linear sizes~L! keeping almost con-
stant the total number ofmeasurements. Figure 9 shows the
results obtained by this numerical procedure. The scaling
the mean conductance can be fitted to a model of the fo

FIG. 8. Probability distribution of the wave function weight r
tio in a square disordered dot. Results for two sizes~L599 and
499! are given as solid lines together with the theoretical predict
@Eq. ~20!# for C50.091 24, which corresponds toL5499 ~dashed
line!. The universaldistribution corresponding to the infinite two
dimensional system is given by the thick line (C50.0471).
05420
y

-

e
n-

n
ver-
d

of

^G&5a1bL21/4 ~22!

with a very good precision. The asymptotic value cor
sponding to the infinite limit is 0.245. Finite values of th
conductance of two-dimensional systems showing ch
symmetry have been predicted in a number of papers.4,7,16–18

Although the present numerical simulation nicely suppo
these theories, some caution must be used for two main
sons. First, a somewhat practical reason: results heavily
pend on the fact that the Green function of this problem
just given by only one particular state. While the energy
this state is well defined theoretically, it could be difficult
make an experiment at just a particular energy. Previous
thors on the subject have clearly shown that chirality is l
as soon asE50 is left.6 The second reason is a bit mo
technical. Scaling properties have been obtained for clus
of an odd number of sites and, therefore, a state atE50.
Present computational facilities do not allow one to pro
that the scaling of clusters of an even number of states
ceeds in the same way.~Note that in this case the Gree
function should be recalculated for any new position of t
point contacts since storing of the whole Green function m
trix of the isolated cluster is not possible.! Nevertheless, I
have checked that odd and even differences are minima
small systems.

The universalconductance distribution at the band cen
of a two-dimensional chiral system shown by the thick li
in Fig. 7 is probably the most original result in the paper.
corresponds to theL→` limit of Eq. ~22! which is obtained
for C50.0471 in Eq.~10!, but does not differ very much
from the distributions corresponding to the simulated si
(L5599,699,799) plotted as three thin indistinguisha
lines. All three are accurately described by Eq.~10! with C
50.0948. Although obtained for point contacts, previous e
perience with wide wires proves that minor differenc
should be expected for wider but finite contacts.19 Let me
insist on the idea that perfect agreement with the theoret
conductance distribution is also explained by a particular d
tribution of wave function weight ratios@see Eq.~20!# that is

n

FIG. 9. Size scaling of the mean value of the conductance
tween point contacts in a square disordered dot. The solid line
fit of the form given by Eq.~22! with an asymptotic value ofa
50.245. Conductance is given in units of the conductance quan
e2/h.
1-7
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confirmed by numerical simulation. Figure 8 gives the dis
butions obtained for a small cluster size (L599)—higher
maximum value—and for a larger size (L5499) together
with its corresponding Gaussian~dashed line!. The thick line
gives theuniversalprediction for this statistical measure o
the wave function. Consequently, I think that unusual p
nomena as they have been described in the literature
quite compatible with present results for the conducta
distribution.7,17,18

VI. DISCUSSION

The scaling properties of the conductance distribution
wide wires showing chiral symmetry have been analyzed
numerical solution of a simple model Hamiltonian. Pred
tions of a power-law decrease of the mean conductance h
been confirmed. Besides, the strange scaling properties o
distribution give rise to unusual statistical properties th
have been described in the main text. For example, while
slow algebraic decay of the mean conductance is due to
but very large fluctuations, it has been shown that almos
conductance measurements are exponentially small for l
wires. Actually, an exponential law is obtained for the m
dian of the distribution and for any generalization of t
median based on the integral of the distribution. Nevert
less, exponential decay is not proportional to the sam
s.

s

y
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e
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n
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tt.
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length, but to its square root. That is a significant deviat
from standard localization theory.

Surprisingly, statistical conductance properties of tw
dimensional systems connected to point contacts are
scribed at the band center by the same distribution that
scribes wide wires. It has been shown that this statis
appears due to the existence of an underlying Gaussian
tribution of the logarithm of the ratio of the wave functio
weights at E50. The main difference with quasi-one
dimensional systems is that now both the mean and me
conductances seem to reach a finite limit. Theuniversalsta-
tistical distributions of conductance and wave function ra
have been obtained. Although they share some prope
with the corresponding statistics of the circular orthogo
ensemble, it has been shown that they differ. This nume
result calls for some theory able to explain the origin of su
a simple statistics of the wave function at the band cente
a chiral system.
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