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Twisted topological solitons and dislocations in a polymer crystal
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Topological defects and dislocations in strongly anisotropic crystals consisting of parallel molecular chains
are investigated. Our study is focused on the defects in crystalline polyethelyne, which are formed by trans-
verse displacements of chain molecules~mutual substitutions and interlacings of adjacent molecular chains in
the polymer crystal!. It is shown that some of these defects called ‘‘twisted topological solitons’’ can propagate
with a stationary profile and velocity. To describe the dynamics of these solitons, a model that accounts for the
three components of the molecular displacements is suggested. Linear topological defects—dislocations—that
incorporate the bending of molecular chains in the crystal are also studied.
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I. INTRODUCTION

The well-known one-dimensional ~1D! Frenkel-
Kontorova~FK! model,1–3 originally introduced for descrip-
tion of dislocation dynamics in 3D crystals,4,5 has been used
extensively for modeling nonlinear dynamical processes
variety of condensed matter6,7 and biological8 systems. As
for possible extensions of this model to higher dimensio
so far little work has been done. In this context, investig
tions of the 2D scalar9–11 and vector12–14 lattice models, in-
cluding different quasi-one-dimensional ladders15–18 that ap-
pear also to be complicated systems, should be mention

In the theory of dislocations,4,5 the 1D FK model de-
scribes the simplest physical situation when a part of a c
tal is displaced with respect to another part along a slid
plane. Both these parts, which are separated by a sli
plane, are modeled by 1D discrete chains. The lower cha
considered as a perfect 1D periodic substrate lattice, whe
the upper one is assumed to contain a defect: a local
rarefaction ~kink! or a localized compression~antikink!.
However, in realistic crystals, any disturbance in the up
chain obviously has an influence on the lower lattice, so t
the periodicity of the substrate potential in general will
broken. Both chains should be considered as equivalent
jects, and the influence of any local stress deformation on
substrate potential should be properly considered. To
end, recently19 we suggested a model for an anisotropic cr
tal consisting of coupled chains which are considered id
tical objects. In this model, any influence of one of the cha
on its surrounding chains is taken into account. As in all
2D lattice models studied previously,10–14,20,21 only inter-
atomic forces were included in this anisotropic crys
model. As a consequence, on-site potentials were not con
ered at all. Instead, all long-range interactions between at
in adjacent chains have been considered. In this anisotr
model, only topological defects and dislocations formed d
to displacements along the anisotropy axis were studied

This paper aims at studying topological defects and dis
cations formed bytransversedisplacements resulting in
twist of adjacent chains of the crystal. However, in order
describe defects of this type properly, interactions with
0163-1829/2002/65~5!/054106~10!/$20.00 65 0541
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neighboring chains must be involved in the model, not o
the four nearest-neighbor chains as before.19 Therefore, this
problem appears to be much more complicated compa
with the case of defects formed only bylongitudinal
displacements.19

For the lattice model of a strongly anisotropic crystal, w
choose a 3D polymer crystal that consists of interacting p
allel molecular chains. The molecules within each chain
coupled among themselves by strong valence bonds. Th
terchain interactions are realized through considerably m
feeble nonvalence bonds. The molecular chains in suc
strongly anisotropic crystal cannot be torn. This prope
leads to the existence of specific topological defects and
specific features of dislocations.

It is commonly used to regard the polymer crystal as
quasi-one-dimensional structure, for which one can rest
oneself to consider only longitudinal deformations of t
links in molecular chains. This approach allows us to exa
ine the existence of ‘‘longitudinal’’ topological solitons in th
crystal and edge dislocations with a Burgers vector para
to the direction of molecular chains,19 but it does not allow
us to consider topological defects and dislocations, the e
tence of which is due to transverse deformations of the m
lecular chains.

In the present paper, a more general 3D model that ta
into account for all three components of molecule displa
ments is elaborated. This model allows a consideration
some new kinds of point topological defects~formed because
of interlacings of chains or mutual substitutions of chain!
along with a wider class of linear topological defects.

II. MODEL

We consider a three-dimensional anisotropic crystal c
sisting of interacting molecular chains as shown in Fig.
Each of these chains is directed along thez axis. The dis-
tances between the molecules in the perpendicularx, y, andz
directions are given by parametersa, b, andc, respectively.
The crystal sites are numbered along thex, y, andz axes by
indicesm, n, andp, respectively. Then the site (n,m,p) of
the 3D lattice has the coordinates
©2002 The American Physical Society06-1
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SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106
xnmp5~m1dn!a, ymnp5nb/2,

znmp5~p1dn!c, where dn5@11~21!n#/4. ~1!

In the xy plane, we have hexagonal close-packed latti
~each chain is equidistant from its six nearest chains!. Param-
etera specifies the distance between adjacent chains, ab
5aA3.

Within each chain, the interaction of adjacent molecule
given by the harmonic potential

U~r!5
1

2
Kr~r2r0!2, ~2!

whereKr is longitudinal stiffness of a chain,r is an instan-
taneous bond length, andr0 is an equilibrium bond length in
the isolated chain. We describe the energy of bending de
mations of each chain in the crystal by the potential

W~u!5Ku~11cosu!, ~3!

whereu is a bending angle of the chain (u5p for equilib-
rium!, andKu is a chain bending stiffness constant. The
terchain interaction of molecules is given by the Morse p
tential

V~r !5«$exp@2b~r 2r 0!#21%2, ~4!

where« is the binding energy,b describes the curvature o
the potential minimum, andr is an instantaneous length o
intermolecular distance, withr 0 being its equilibrium.

The values of parametersr0 and r 0 are uniquely deter-
mined by the lattice periodsa and c. In equilibrium, the
energy per each lattice site reads

E05
1

2
Kr~c2r0!21

1

2 (
(m,n,p)PZ3

V~r mnp!, ~5!

where distancer mnp is given by

FIG. 1. Schematic representation of a 3D polymer crystal str
ture. Only intrachain bonds are represented~shown by bold lines!.
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r mnp5A@~m1dn21/2!213n2/4#a21~p1dn21/2!2c2.
~6!

The set of equations of equilibrium is as follows

]E0

]a
5 (

(m,n,p)PZ3
V8~r mnp!@~m1dn21/2!213n2/4#a/2r mnp

50, ~7!

]E0

]c
5Kr~c2r0!

1 (
(m,n,p)PZ3

V8~r mnp!~p1dn21/2!2c/2r mnp50. ~8!

The values of the parametersr 0 and r0 are uniquely deter-
mined from nonlinear equations~7! and ~8!, respectively.

Let umnp, vmnp, andwmnp be the displacements from th
equilibrium position for a lattice site (m,n,p). Then the
Hamiltonian of the polymer crystal takes the form

H5
1

2 (
(m,n,p)PZ3

M ~ u̇mnp
2 1 v̇mnp

2 1ẇmnp
2 !1E, ~9!

whereM is mass, and the potential energy is given by

E5 (
(m,n,p)PZ3 FU~rmnp!1W~umnp!

1
1

2 (
( i , j ,k)PZ3

V~r mnp; i jk !G . ~10!

Here the distances between adjacent molecules within
chain are

rmnp5Aamnp
2 1bmnp

2 1cmnp
2 , ~11!

where

amnp5um,n,p112umnp,

bmnp5vm,n,p112vmnp, ~12!

cmnp5c1wm,n,p112wmnp.

The angleumnp is given by

umnp5arccos@2~amnpam,n,p111bmnpbm,n,p11

1cmnpcm,n,p11!/rmnprm,n,p11#. ~13!

The distance between the sites (m,n,p) and (m1 i ,n1 j ,p
1k) can be written as

r mnp; i jk5$@~ i 1dn1 j2dn!a1um1 i ,n1 j ,p1k2umnp#
2

1@vm1 i ,n1 j ,p1k2vmnp1 jb/2#2

1@~k1dn1 j2dn!c1wm1 i ,n1 j ,p1k2wmnp#
2%1/2.

~14!

For numerical calculations we use the lattice parame
appropriate for crystalline polyethylene~PE!. The PE crystal
is formed by zigzag molecular chains (CH2)` with a longi-
tudinal stepc51.276 Å. The mass of one chain link isM
514mp , wheremp is the proton mass. The distance betwe

-
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TWISTED TOPOLOGICAL SOLITONS AND DISLOCATIONS . . . PHYSICAL REVIEW B 65 054106
adjacent chains isa.4 Å, and periodb5aA356.928 Å.
The longitudinal stiffness of PE can be estimated by
speed of long-wavelength acoustic phonons of trans-zig
Kr5M (v0 /c)2. According to Refs. 22 and 23, the speed
v057819 m/s; henceKr587 N/m5523.9 kJ/mol Å2. The
bending stiffnessKu of a chain corresponds in our model
the stiffness of the torsion angle of trans-zigzag PE. Acco
ing to Refs. 24 and 25,Ku561.93 kJ/mol. Let us take«
52 kJ/mol, and choose the parameter of the Morse poten
@Eq. ~4!# to beb55 Å21. Then from the set of equations~7!
and ~8!, we obtain the valuesr054.072 Å and r 0
51.298 Å.

III. POINT DEFECTS AND TWISTED
TOPOLOGICAL SOLITONS

In fact, only a finite number of molecular chains partic
pates in the formation of point defects of the crystalli
structure given by Eqs.~9!–~14!. Thus, for the formation of a
vacancy~or an interstitial!, it is sufficient to stretch~or to
contract! only one chain of the crystal for one chain perio
These defects can be described as topological solitons19 and,
in the particular case of polyethylene crystal, their dynam
has been studied in the approximation of fixed neighbo23

and using molecular-dynamics simulations.26,27 These soli-
tons have the width of some tens of a chain link, and
energy of about 40–50 kJ/mol.

Here we consider defects related to transverse~bending!
deformations of the crystal chains, with one chain displa
to the place of another one or with the interlaced cha
Defects of this type are associated with the broken orde
adjacent chains. A few chains must necessarily participat
their formation. Therefore, bending deformations of t
chains are localized in space. Their existence is stipulate
a local violation of the topology of a polymer crystal, whic
is implemented through bending deformations of the cha
Therefore, in what follows we call these ‘‘twisted topologic
defects.’’ Each of these defects is characterized by the n
ber Nc>2 of chains involved in the defect formation.

It should be noted that the ‘‘twisted topological defect’’
not a new concept. Thus, for isotropic systems, such exc
tions have been studied in the context of a vortex lattic28

where the two-chain defect is normally unstable while
three-chain defect is metastable. The instability here is du
the relatively low activation energy of breaking inters
bonds in the localization region of the defect. As a resul
reconnection of the twisted lines into a straight line occu
In the polymer crystal studied in the present paper, a rec
nection of this type is practically impossible because it
quires a total breaking of the strong longitudinal valen
bonds. Therefore, in a strongly anisotropic lattice, all t
defects of twisting chains with strong bonds will be stab
because the energy of longitudinal bonds exceeds tha
transverse bonds by two orders. This circumstance allow
to consider the strong bonds as stable links. Thus, in
polymer crystal, only weak interchain~nonvalence! bonds
can be broken rather than strong intrachain~valence! bonds.

The complexity of the model does not allow an analytic
description of these defects. To find these numerically,
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should restrict oneself to a consideration of a finite fragm
of the crystal. Therefore we take a 3D rectangle

L5$1<m<M , 1<n<N, 1<p<P%, ~15!

and take into account only the interaction of particles a
distancer<7a.

To obtain a stationary state of a twisted topological defe
it is necessary to solve the minimization problem

E→ min
(m,n,p)PL

, ~16!

with periodic boundary conditions for transverse compone
m andn, and the conditions of fixed ends for the longitudin
componentp. Then problem~16! can be solved numerically
by the conjugate-gradient method. The type of defect is
termined by the assigned initial configuration of the crys
fragment@Eq. ~15!#.

First let us consider the twisted topological defect w
Nc52. In the region of localization of this defect, two cryst
chains interchange their locations. To find a stationary pro
of this defect, it is necessary to solve problem~16! with the
initial configuration, with two interchanging chains given b

uM /2,N/2,p5a$11tanh@m~p2P/221/2!#%/2,

vM /2,N/2,p5b/4 cosh@m~p2P/221/2!#, ~17!

uM /2,N/211,p52uM /2,N/2,p , vM /2,N/211,p52vM /2,N/2,p ,

umnp50, vmnp50, wmnp50 for other ~m,n,p!PL.

FIG. 2. Shape of the twisted topological defect formed by t
adjacent chains (Nc52). For spatial visualization, projections o
chains onto thexy plane are included.
6-3
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SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106
In the numerical simulations we useM520, N520, andP
550, and a dimensionless parameter characterizing the
gitudinal width of the defect,m51/2.

The form of the defect withNc52 is shown in Fig. 2.
Two molecular chains of the crystal interchange their pla
without intersecting. This replacement causes a bendin
adjacent chains. The projections of the chains onto thexy
plane are also shown in Fig. 2, to give visual representat
of the amplitudes of the chain deformations. If we conside
two-dimensional strip with the edges formed by these t
chains, then in the region of the defect localization it is ov
wound by 180°. Distributions of energy and displacements
sites, along a molecular chain participating in the format
of defects, are given in Fig. 3. The corresponding chain
Fig. 2 is shown by a bold line. In theu component, the defec
has the form of a step that describes the transition of a c
from one equilibrium position into the other equivalent ad
cent equilibrium position. In thev component, the displace
ment profile has the form of an isolated peak, describing
bypass of the other chain participating in the defect form
tion. As can be seen from Fig. 3, the defect is localized o
ten chain bonds, where practically all the energy of the
formation is concentrated. The form of the defect does
depend smoothly on the number of chain bondsp. The defect
is pinned, and it cannot move. The energy of the defec
E255220 kJ/mol. The pinning energy forms a barrier of
kJ/mol. In the localization region of the defect, the maxim
energy per longitudinal bond does not exceed 150 kJ/m

FIG. 3. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of a
twisted topological defect with (Nc52).
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and this is clearly not enough to break the chain@the energy
of the valence bond C—C is 529 kJ/mol~Ref. 26!#. There-
fore, here the chain reconnection is impossible resulting
the defect stability.

Let us consider the defect associated with the interlac
of two adjacent chains. To find a stationary profile of t
defect, it is necessary to solve problem~16! with the initial
configurations

uM /2,N/2,p5a/cosh@m~p2P/221/2!#%/2,

vM /2,N/2,p5b/4 cosh@m~p2P/221/2!#, ~18!

uM /2,N/211,p52uM /2,N/2,p , vM /2,N/211,p52vM /2,N/2,p ,

umnp50, vmnp50, wmnp50 for other ~m,n,p!PL.

The form of the defect is represented in Fig. 4. Here
two-dimensional strip with the edges formed by interlac
chains is overwinded by 360°. Since intrachain rigid int
molecular bonds cannot be torn, the molecular chains can
pass through each other. Therefore, this defect also h
topological nature. The topological defect of this type can
considered as a bound state of the two twisted topolog
defects withNc52, each of them twisting the strip by 180°
Distributions of energy and displacements of the sites al
one molecular chain participating in the defect formation
given in Fig. 5. The appropriate chain is shown in Fig. 4
the bold line. The energy distribution along the chain ha
distinctive two-hump profile. It is clearly seen from Fig.
that in the projection onto thexy plane, this chain forms a

FIG. 4. Shape of a defect in the interlacing of two adjace
chains. For spatial visualization, the projections of chains onto
xy plane are given.
6-4
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TWISTED TOPOLOGICAL SOLITONS AND DISLOCATIONS . . . PHYSICAL REVIEW B 65 054106
closed loop, surrounding the equilibrium position of the a
jacent chain. The energy of an interlacing defect (E1

58977 kJ/mol) is less than the energy of two twisted top
logical defects (2E2510440 kJ/mol). The binding energy o
these two defects can be estimated asDE52E22E1

5473 kJ/mol.
The twisted topological defect can be formed by mo

than two chains. The only important point is that they m
sequentially occupy each others positions~their projection
onto thexy plane must form a continuous closed loop pa
ing through the sites of a 2D hexagonal lattice, correspo
ing to equilibria of the chains!. The dependence of the defe
energyE on the number of chainsNc is represented in Table
I. The defect with the least energyE53790 kJ/mol hasNc
56, for which the molecular chains form an exact hexag
in the projection onto thexy plane~Fig. 6!. The distribution
of the energy and the displacements along one chain of
defect are presented in Fig. 7~this chain is shown with bold
line in Fig. 6!. Here all the displacement components ha
smooth profiles typical of a soliton.

FIG. 5. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of an
interlacing defect.

TABLE I. Dependence of the energyE of a twisted topological
defect on the number of chainsNc forming a defect.

Nc 2 3 4 5 6

E ~kJ/mol! 5220 4264 4512 5094 3790
05410
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IV. DEFECT DYNAMICS

The twisted topological defect withNc52 has no smooth
profile, as demonstrated in Fig. 3. It is pinned, and can
propagate as a solitary wave. However, atNc56, the defect
has a broad and smooth profile, and therefore it can mo
For convenience of numerical simulations of the defect m
tion, we introduce the dimensionless timet5t/t0, wheret0

5c/v05AM /Kr is the time required for the sound to pa
one chain bond. To obtain the profile of a moving soliton,
use the method of minimization of a discrete Lagrangian18

The soliton profile$umnp,vmnp,wmnp% can be found as a
minimum of the discrete Lagrangian

L5E2
1

2
s2Kr (

(m,n,p)PZ3
@~umn,p112umnp!

2

1~vmn,p112vmnp!
21~wmn,p112wmnp!

2#, ~19!

where the potential energyE of the system is defined by
expression~10!, and the dimensionless speed of a soliton
s5v/v0.

Upon using the dimensionless timet, the set of equations
of motion takes the forms

Krumnp9 52]H/]umnp,

Krvmnp9 52]H/]vmnp, ~20!

Krwmnp9 52]H/]wmnp,

~m,n,p!PL,

FIG. 6. Shape of a twisted topological defect formed by
chains (Nc56). For spatial visualization, the projections of chai
onto thexy plane are given.
6-5
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SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106
where the HamiltonianH of the system is given by Eq.~9!.
Then we solve the problem

L→ min
(m,n,p)PL

~21!

at s50.5, using an initial configuration corresponding to t
twisted topological soliton with Nc56. The solution
$umnp,vmnp,wmnp% of this problem can be used as an initi
approximation for the system of equations of motion~20!:

umnp8 ~0!52s~umn,p112umnp!,

vmnp8 ~0!52s~vmn,p112vmnp!,

wmnp8 ~0!52s~wmn,p112wmnp!, ~22!

umnp~0!5umnp, vmnp~0!5vmnp,

wmnp~0!5wmnp, ~m,n,p!PL.

The defect dynamics is presented in Fig. 8. It is clea
seen that the defect moves along molecular chains of
crystal as a solitary wave with a stationary speeds50.276,
retaining its form. Thus, in the polymer crystal, in addition
well-defined longitudinal topological solitons, transverse
pological solitons do exist.

Topological defects withNc>6 have relatively low en-
ergy densities in their localization region, as well as hi

FIG. 7. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of a
twisted topological defect (Nc56).
05410
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mobilities. Therefore, they can be thermally activated
pairs of opposite polarity. These defects can be separ
each from each other by large distances caused by la
dislocation loops, which are important for melting.29 Thus
twisted topological solitons should play an important role
premelting mechanisms for strongly anisotropic polym
crystals.

V. DISLOCATIONS IN POLYMER CRYSTAL

The model used in the previous sections also allow
consideration of dislocations in a polymer crystal. The ed
dislocation associated with longitudinal deformations of m
lecular chains of the crystal was already investigated,19 and
therefore here we will focus only on a study of the disloc
tions associated with bending deformations of the molecu
chains.

To find the stationary profile of a dislocation, we choo
the finite rectangular fragment of the crystal@Eq. ~15!#, with
periodic boundary conditions in all three indicesm, n, andp.

FIG. 8. Dynamics of a twisted topological defect withNc56.
Distribution of energyEmnp ~a!, and displacementsumnp ~b! and
vmnp ~c! along the chainm5M /2 andn5N/2 of the defect.
6-6
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TWISTED TOPOLOGICAL SOLITONS AND DISLOCATIONS . . . PHYSICAL REVIEW B 65 054106
The periodic boundary conditions do not allow us to obt
one isolated dislocation, but we can find a dislocation qu
rupole: four dislocations with the sum of the Burgers vect
equal to 0. At sufficiently large distances between the dis
cation centers, they can be considered as separate dis
tions.

Let us first consider the screw dislocation with the Bu
gers vectorb5(a,0,0). In a crystal with such a dislocation
all the chains with an identical indexm form identical defor-
mations~see Fig. 9!. The dislocation line is parallel to thex
axis. Therefore, one can omit the indexm everywhere, hav-
ing put

umnp[u1np5unp ,

vmnp[v1np5vnp , ~23!

wmnp[w1np5wnp .

The stationary profile of a dislocation quadrupole w
found to be a solution of the minimization problem@Eq.
~16!# with M51, N5200, andP5200, and with the initial
configurations

un,p5a tanh@m~p2P/421/2!#/2, un,p1P/252un,p ,
~24!

for

N/4,n<3N/4, 1<p<P/2,

FIG. 9. Shape of molecular chain deformations within the c
of the screw dislocation with the Burgers vectorb5(a,0,0). Chains
nearest to the slip plane are shown by bold lines.
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un,p52a tanh@m~p2P/421/2!#/2, un,p1P/252un,p ,

for

1<n<N/4, 3N/411<n<N, 1<p<P/2,

and

vn,p50, wnp50, for 1<n<N, 1<p<P.

In the rectangular fragment 1<n<N/2,1<p</2P, we ob-
tain one screw dislocation.

Deformations of molecular chains in the dislocation co
are shown in Fig. 9. Distributions of the energy and the d
placements in the rectangular region 1<n<100,1<p<100
are presented in Fig. 10. In this rectangular region of a cr
tal of width a, the dislocation has the energyE
576.3 kJ/mol~all dislocations in a quadrupole have iden
cal energy!. It is evident from Fig. 10~a! that most of the
dislocation energy is concentrated in the two layers wh
the relative displacement of chains by one period along thx
axis takes place. The chains in these layers are shown
bold lines in Fig. 9. Figure 10~b! shows that in other layers
the chains are practically not displaced with regard to e

e

FIG. 10. Distribution of energyEnp ~a!, relative displacements
un11,p2unp ~b!, and transverse displacementsvnp ~c! in the lattice
with the screw dislocation. The Burgers vector isb5(a,0,0).
6-7
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SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106
other. The width of the dislocation core is about 15 perio
of a chain. The interchain interaction leads to slight displa
ments along they axis in the dislocation core region, a
illustrated by Fig. 10~c!. As a result, the projections of chain
onto thexy plane have characteristic arc forms, as seen
Fig. 9.

Upon formation of the screw dislocation with the Burge
vectorb5(0,b,0), all chains with odd and even indicesn are
equally deformed~Fig. 11!. Here the dislocation line is par
allel to they axis. Therefore, for finding a dislocation of th
type, it is sufficient to take the rectangular fragment of t
crystalL with N52. Let us takeM5100 andP5200, and
solve the minimization problem@Eq. ~16!# with the initial
configuration of the fragmentL, appropriate to a dislocation
quadrupole.

The shape of chain deformations in the core of one dis
cation is shown in Fig. 11. Distributions of the energy a
the displacements in the rectangular region, 1<m<50 and
1<p<100, are presented in Fig. 12. As can be seen fr
Fig. 12~a!, the energy is no longer localized near the s
plane~the chains in these layers are shown with bold lines
Fig. 11!. The width of the dislocation core is about 20@Fig.
12~c!# periods of the chain. Along thex axis, the distances
between chains in the dislocation core are much larger@Fig.
12~b!#, and consequently the projections of chains onto
xy plane have more pronounced arc shapes~Fig. 11!. In the
rectangular region of the crystal, 1<m<50,1<n<2, and
1<p<100, the dislocation with the Burgers vectorb
5(0,b,0) has a considerably higher energyE
5775.3 kJ/mol. This stipulates the possibility for such a d

FIG. 11. Shape of molecular chain deformations within the c
of the screw dislocation with the Burgers vectorb5(0,b,0). Chains
nearest to the slip plane are shown by bold lines.
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e

-

location to be unstable concerning the dissociation into t
mixed dislocations with the Burgers vectors of the ty
(a,0,0).

Let us now consider an edge dislocation with the Burg
vector b5(0,0,c) and with a line parallel to thex axis.
Again, we exploit symmetry condition~23!, and solve mini
mization problem~16! with M51, N5100, andP5400
with the initial configuration

wn,p5c$11tanh@m~p2P/421/2!#%/2,

wn,P/21p5wn,P/2112p ,

for

N/4,n<3N/4, 1<p<P/2,

wn,p50, ~25!

for

1<n<N/4, 3N/411<n<N, 1<p<P/2,

e

FIG. 12. Distribution of energyEm1p ~a!, transverse displace
mentsum1p ~b!, and relative displacementsvm11,1,p2vm1p ~c! in the
lattice with the screw dislocation. The Burgers vector isb
5(0,b,0).
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un,p50, vn,p50, for 1<n<N, 1<p<P.

For the rectangular fragment 1<n<N/2,1<p<P/2, we ob-
tain one edge dislocation.

FIG. 13. Distribution of energyEnp ~a!, displacementsvnp ~b!,
and relative displacementswn11,p2wnp ~c! in the lattice with the
edge dislocation. The Burgers vector isb5(0,0,c), and the disloca-
tion line is parallel to thex axis.
r.

05410
The shape of the solution is shown in Fig. 13. For t
rectangular region of the crystal withm51, 1<n<50, and
1<p<100, the edge dislocation has the energyE
522.6 kJ/mol. The energy distribution in a crystal is rep
sented in Fig. 13~a!. The main energy of a dislocation i
concentrated in the layer withn5N/4 that contains the dis
location core. The width of the dislocation core appears to
more than 50 chain bonds@Fig. 13~c!#. The shape of dis-
placements in the transverse componentv is shown in Fig.
13~b!.

The formation of edge dislocations with the Burgers ve
tor parallel to thexy plane takes place without deformation
of the molecular chains. The chains are displaced as a wh
and therefore, in the projection onto thexy plane, these dis-
locations correspond to dislocations of a 2D hexago
crystal.

VI. CONCLUSIONS

We have shown in the present paper that the polym
crystal can contain local topological defects possessing s
ton dynamics. Along with the well-known longitudinal topo
logical solitons, there exist twisted topological solitons, e
hibiting local violations of crystal topology associated wi
bending deformations of molecular chains of the crystal~in-
terlacing of chains, substitution of chains, etc.!. Bending de-
formations of the chains are also responsible for the e
tence of screw dislocations, with the Burgers vec
perpendicular to the direction of molecular chains of t
crystal. It is shown that screw dislocations have higher en
gies than edge dislocations, the existence of which is ass
ated with longitudinal deformations of molecular chains
the polymer crystal.
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