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Localized spin ordering in Kondo lattice models
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Using a non-Abelian density matrix renormalization group method we determine the phase diagram of the
Kondo lattice model in one dimension, by directly measuring the magnetization of the ground state. This
allowed us to discover a second ferromagnetic phase missed in previous approaches. The phase transitions are
found to be continuous. The spin-spin correlation function is studied in detail, and we determine in which
regions the large and small Fermi surfaces dominate. The importance of double-exchange ordering and its
competition with Kondo singlet formation is emphasized in understanding the complexity of the model.
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The Kondo lattice model~KLM ! describes the interactio
between a conduction electron~CE! band and a half-filled
narrow impurity, e.g.,f electron, band and is thought to ca
ture the essential physics of the rare earth compounds.
though intensively studied for two decades, the KLM is s
far from being completely understood. Recently, after
discovery of Kondo insulators and the non-Fermi-liquid b
havior, interest in this field has been greatly renewed, es
cially due to the non-Fermi-liquid behavior discovered
most of the heavy fermion compounds, which resemble
Griffiths phase.1

In order to understand the role of the impurity spin
determining the properties of KLM we must develop a bet
understanding of the magnetic correlations. The Griffi
phase in the one-dimensional KLM occurs naturally;2 it is,
therefore, the prototypical model for heavy fermion co
pounds. Hence, this is an ideal system to study since we h
the bosonized solution2,3 and we know the behavior of th
CE’s in both the paramagnetic~PM! and ferromagnetic~FM!
phases. However, less attention has been given to under
the correlations between the impurity spins. This is the fo
of our study.

The Hamiltonian for the KLM is

H52t (
j 51,s

L21

~cj ,s
† cj 11,s1H.c.!1J(

j 51

L

Sj
c
•Sj , ~1!

where t.0 is the CE hopping parameter,Sj are spin 1/2
operators for the localized spins, e.g.,f, and Sj

c

5 1
2 (s,s8cj ,s

† ss,s8cj ,s8 with s the Pauli spin matrices an
cj ,s , cj ,s

† the electron annihilation and creation site ope
tors. The Kondo couplingJ is measured in units of the hop
ping t and partial conduction band filling,n5N/L,1, is
assumed throughout.

The method that we use is density matrix renormalizat
group ~DMRG! which, however, is extended to explicitl
preserve SU~2! spin and pseudospin symmetry. Hence
can measure the magnetization directly and determine ri
ously the PM-FM phase boundary. The obtained result is
excellent agreement with a recent bosonized solution2 and
contradicts the common view that this phase boundary g
to infinite Kondo couplingJ as the CE density approache
half-filling.4,5 We also determine the regions of the pha
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diagram where large and small Fermi surfaces are domin
which has been a central issue for much of the researc
this area for some years.

In addition, we have discovered a second FM region
seen before. For most dopings, this region of FM separ
the regions of large and small Fermi surface. This most lik
resolves the question as to the applicability of the Lutting
theorem to the KLM, shown by Yamanakaet al.,6 since the
Fermi points are not expected to remain constant acro
phase transition.

To accelerate the computation, we make use of sev
operators that commute with the Hamiltonia
S1,S2,Sz,I 1,I 2,I z, respectively the generators of the sp
SU~2! and pseudospin SU~2! algebras.7 Combined, the gen-
erators form the algebra SO~4!. All of the states in our
DMRG calculation transform as irreducible representatio
of this algebra. Since SO~4! is non-Abelian these represen
tations have, in general, degree.1, which implies that a
single basis state in the SO~4! representation is equivalent t
multiple states of the purely Abelian representation of m
previous DMRG calculations. This is the origin of the dr
matic performance improvements of the non-Abeli
DMRG. The states are labeled by the eigenvalues of
Casimir operators of SO~4!, which areS25s(s11) and I 2

5 i ( i 11). Hence we can label all irreducible representatio
by @s,i #, which has degree (2s11)(2i 11). In this construc-
tion, a chemical potential would appear as a term in
Hamiltonian proportional toI z, acting in an identical way a
magnetic field coupled toSz. Although the basis states in th
calculation are eigenstates ofS2 andI 2, rather thanSz andI z,
all these operators mutually commute so it is possible
simply replaceSz and I z by the chosen eigenvalues in th
case. A single site of the Kondo lattice contains just th
such states. The simplest is the Kondo singlet state, tr
forming as the@0,0# representation of degree 1. The Kond
triplet state transforms as the@1,0# representation of degre
3, and encapsulates the three projectionsu⇑↑&, A1/2(u⇑↓&
1u⇓↑&), u⇓↓& in a single state. Here,⇑ denotes localizedf,
and↓ the conduction electron spins, respectively. Finally, t
holon state~actually, the tensor product of a holon and af
spin! transforms as the@1/2,1/2# representation of degree
and has the projectionsu⇑0&, u⇓0&, u⇑↑↓&, u⇓↑↓&. The
©2002 The American Physical Society10-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 052410
single-site operators are 333 matrices over this basis. Th
matrix elements can be determined by the Wigner-Eck
theorem, which specifies the relationship between the th
dimensional reduced basis and the full 8 dimensional ba
For a comprehensive description of the new algorithm,
Ref. 8. At half filling ~where the ground state is a pseudos
singlet! 400 block states are equivalent to around 2500 st
of a calculation usingN andSz quantum numbers, althoug
the relative advantage of SO~4! decreases as the system
doped away from half filling. We used the new DMRG alg
rithm to obtain the ground state energy, magnetization,
different correlation functions, i.e., the momentum distrib
tion, density-density, conduction electron spin-spin, and thf
spin structure factor,S(k). The obtained results can be sum
marized with the phase diagram presented in Fig. 1, wh
will be analyzed in detail hereafter. The main properties
the phase diagram have been confirmed on chains of 12
more sites. Results for the magnetization were calculated
smaller chains, 40–60 sites, where the energies can be
culated more accurately. We found no finite size effects t
would affect the properties of Fig. 1. In all cases, we extra
late to zero truncation error based on well-converged swe
of between 200 and 500 SO~4! states kept.

As it can be seen from Fig. 1, the main feature dominat
the KLM is f spin FM ordering. The FM ordering is due t
the double-exchange~DE! interaction which appears as
consequence of an excess of localized spins over CE’s:9 each
CE has to screen more than one localized spin, and s
hopping is energetically most favorable for CE’s that p
serve their spin, this tends to align the localized spins. T
element was missing in the early approaches, which con
trated on the competition between Kondo singlet format
at largeJ and the Ruderman-Kittel-Kasuya-Yosida~RKKY !

FIG. 1. The obtained phase diagram of KLM. The two shad
areas are the FM phases. The open circles and triangles corres
to points at which the FM energy level crosses theS50 level. The
dashed curves are the derived phase transition lines~the solid curve
was already obtained in Ref. 2!.
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interaction in the weak coupling limit.10 This picture is bor-
rowed from the single-impurity Kondo model and is ina
equate for the lattice case.4,5

Starting the analysis of the phase diagram for largeJ, we
see that all CE’s form singlets with the localizedf spins11 that
become inert. The uncoupledf spins order FM in a mecha
nism similar to theJ,0 case.9 Here, there is no competition
between Kondo singlet formation and DE. The fully pola
ized state@with S5(L2N)/2# appears for any value ofn
,1,2,11 contrary to the suggestion of Refs. 4 and 5 that clo
to half filling the PM phase extends toJ→`. As J is low-
ered, KLM can be rigorously mapped into a random tra
verse field Ising model;2 hence the phase transition~the solid
curve in Fig. 1! is identical to the quantum order-disord
transition. It should be emphasized that this is also true
the second FM phase, as will be shown later on.

The phase transition obtained via DMRG fits exceptio
ally well this picture, confirming the bosonization result
Ref. 2. The open circles correspond to points at which
energy of the FM state crosses the energy of the singlet s
Since the phase transition is second order, this is only
upper bound on the true transition line. However, the p
tially polarized region is very small, of the order ofJ/t
;0.01, which is why this phase transition has not previou
been observed to be continuous. A typical example of
energy versus the magnetization~M! is presented in Fig. 2
This shows that in the transition regime,]2E/]M2 is posi-
tive. We have accounted for all known random errors, th
are errors arising from the tolerance of the matrix diagon
ization, variations in the energy across the DMRG swe
and error arising from the extrapolation to zero truncat
error. These errors are of the order of the symbol size in
figure.

Below the solid curve, Fig. 1, the Kondo singlets are n
inert anymore and they greatly contribute to the properties

d
ond

FIG. 2. Normalized magnetization curves~relative to the ground
state energy,E0) across the phase transition at quarter filling for
40 site lattice.
0-2



c-

nt
po
t

im
m
hi
o
g

f
s.

d
e
m

on
of

ic
f t
e
rt

su

b

s
s
y
th

fill-

hat
ally
e of
ar,

an-
g-
r

for
he
KY

r
es;
se
ese

-
f.

her
on

of
ap,

he

n

iza-
es
M

eld

-
e.
the

of
ing
fits

en

at
d

BRIEF REPORTS PHYSICAL REVIEW B 65 052410
KLM. Excluding the Kondo triplet states, the CE wave fun
tion in the continuum limit satisfies a nonlinear Schro¨dinger
equation12 that has finitely delocalized solitonic solutions.13

This corresponds to a dressing of the CE by a cloud of a
parallel local spins, i.e., spin polarons are formed. The
laronic length scale competes with the length scale set by
free CE mean free path and introduces competing t
scales: slow motion of the polarons with low energy dyna
ics and fast motion of the free CE’s with high energies. T
scenario resembles a two-fluid picture with intrinsic inhom
geneities which involves spin fluctuations and short-ran
spin correlations, which we call apolaronic liquid.

Finite temperature DMRG14 confirmed the presence o
short-rangef spin correlations in the van Hove singularitie
Consequently the structure factor peaks at 2kF2p, wherekF
is the Fermi point determined by the filling of the CE ban
This means that the localizedf spins, even though they ar
completely immobile, contribute to the volume of the Fer
sea. This conventionally is called alarge Fermi surface, the
effect of which is also seen in the momentum distributi
function ~see Fig. 3!. As the polarons are formed the peak
S(k) shifts from the smallJ/t value of 2kF : the slow motion
of the spin polarons will dominate the low-energy dynam
of the quasiparticles. This proves that the appearance o
large Fermi surface is a dynamical effect since it involv
local inhomogeneities, impurity spin fluctuation, and sho
range correlations of thef spins. This phase is related2 to a
Griffiths phase, suggesting that the small to large Fermi
face crossover is a Griffiths singularity.

The large Fermi surface is conventionally explained
reference to the periodic Anderson model~PAM!
ancestry.5,6,15 Our results imply that even for PAM, thi
simple picture is inadequate. In particular, we see no rea
why a small to large Fermi surface crossover, marked b
FM phase, should not also appear in PAM. However,

FIG. 3. TypicalJ dependence of the spin structure factor,S(k),
and the momentum distribution,n(k) (n50.6).
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behavior of the Fermi surface crossover close to quarter
ing is numerically difficult to determine~dotted line in Fig.
1!; hence we are not yet able to rule out the possibility t
the large and small Fermi surface regions are adiabatic
connected. Even prior to the current calculation, the natur
the Fermi surface in the weak-coupling regime was not cle
with the suggestion from Ref. 5 that the Fermi surface v
ishes at a point in proximity to where we find the ferroma
netic phase. Forn,0.5 the width of the polarons is ove
several lattice spacings@diverging forn→0 ~Ref. 12!# hence
the energy needed to excite these polarons is too large
this effect to happen. The polarons will not contribute to t
low-energy dynamics and the system behaves as an RK
liquid, as we explain below.

An interesting phenomenon appears as we further loweJ.
The residual weight attached to the Kondo singlets vanish
hence all CE’s that participated in the formation of the
singlets become delocalized. The distance between th
CE’s is much larger than the lattice spacing, and belowJ
<2An sin(pn) their continuum limit takes the regular quan
tum sine-Gordon form.3 In the bosonization language of Re
2, this means that the spin Bose fields,Fs cannot be ap-
proximated by their noninteracting expectation values, rat
by their expectation value corresponding to a sine-Gord
~sG! model, Fs'^Fs&sG. However, the charge degrees
freedom not being affected by the sine-Gordon spin g
their corresponding Bose fields,Fr may be still approxi-
mated by their noninteracting values. Extending t
bosonized results of Ref. 2 to a finite^Fs&sG, we obtain the
critical Hamiltonian governing the PM-FM phase transitio
at intermediateJ values in the following form:Hcrit

52@J2A/(2p2vF)#( jSj
z
•Sj 11

z 12JB( j $12(^Fs&sG
2 /2) @1

1J/(2pvF)#21cos(2kFj)%Sj
x , whereA andB are functions

that depend only on the cutoffs introduced by the boson
tion scheme.2,3 Following previous bosonization approach
closely,2,3 we can prove that the critical behavior of the F
transition for the intermediate thisJ case is of a random
transverse-field Ising model type, where the transverse fi
hj52JB$12(^Fs&sG

2 /2)@11J/(2pvF)#21cos(2kFj)% is
driven by a displaced cosine distribution of the formr(h)
5@1/(2pJB)#„12$h/(2JB)1(^Fs&sG

2 /2)@11J/(2pvF)#2

21%2
…

21/2. Accordingly, the FM transitions emerging at in
termediate values ofJ are of a quantum order-disorder typ
These transitions are driven by spin polarons, contrary to
FM phase emerging at highJ values, which is given by the
uncoupledf spins~in a mechanism similar to theJ,0 case!.
The new critical line is Jc5a(A,B)sin(pn/2)/@1
2b(A,B)#2g(A,B,^Fs&sG

2 ). The bosonization~conformal
field-theory! arguments do not determine the magnitude
a, b, andg; accordingly these constants are used as fitt
parameters to the numerically obtained points. The best
are the dashed curves in Fig. 1.

This is the second FM phase in Fig. 1, which has prov
difficult to detect with conventional~Abelian! DMRG.16,17

Previous DMRG calculations did show a weak FM signal
n50.8 andJ51.6 and 1.8,15 but the results were discarde
in later papers by the same authors.5,4 Likewise an exact
diagonalization of a very small system gave FM forn
0-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 052410
50.75 andJ51.5.16 Using the non-Abelian DMRG algo
rithm we could also check the energy of each total spin st
shown in Fig. 4, which clearly shows a second ferromagn
region although we have not yet confirmed numerically
order of the phase boundaries. For the FM Kondo latt

FIG. 4. The gap,DE, from the fully polarized ferromagnetic
state to every other spin state vsJ, for n50.8 and a 60-site lattice
measured along intervals ofJ60.05. For most data points the erro
bars are of ordersDE;1025 or less, except for theS50 curve for
very low and very highJ, where the errors are of ordersDE;5
31024. The inset shows the second ferromagnetic region.
-
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model,J,0, a phase separated regime was observed in
merical approaches.18 However, for J.0 we found no
change in sign of the inverse charge compressibility. Th
this phase is a true FM rather than a phase separated re

Below the second FM region the KLM reduces to a sy
tem of free localized spins in fields determined by CE sc
tering: dominant 2kF modulations are manifest~see Fig. 3!,
superimposed on an incoherent background. This reflects
momentum transferred from the CE band to the spin chai
backscattering interactions, together with incoherent forw
scattering. This case is referred to as an RKKY liquid as
scattering processes give an RKKY-like correlation for thf
spins, even though the RKKY interaction strictly diverges
one dimension.

In conclusion, using a non-Abelian DMRG method
most comprehensive analysis of the short- and long-ra
ordering of the localized moments in KLM is presented. W
show that DE ordering and its competition with Kondo si
glet formation is the dominant feature of the phase diagra
The non-Abelian DMRG method allowed us to discover th
FM does not only appear at largeJ but also at intermediate
values. This second FM phase was missed in previous
proaches. We also show that at largeJ FM is due to ordering
of uncoupledf spins, while for intermediateJ, i.e., the sec-
ond FM region, FM is due to ordering of the spin polaron
The inhomogeneous polaronic state between these two
phases is analogous to a two-fluid system and it exhibi
large Fermi surface.

The work in Australia was supported by the Australi
Research Council and in Sweden by the Swedish Nat
Science Research Council and The Swedish Foundation
International Cooperation in Research and Higher Educat
STINT.
. B

, J.
1M.C. de Andradeet al., Phys. Rev. Lett.81, 5620~1998!.
2G. Honner and M. Gulacsi, Phys. Rev. Lett.78, 2180 ~1997!;

Phys. Rev. B58, 2662~1998!.
3O. Zachar, S.A. Kivelson, and V.J. Emery, Phys. Rev. Lett.77,

1342 ~1996!.
4H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys.69, 809

~1997!.
5N. Shibata and K. Ueda, J. Phys.: Condens. Matter11, R1 ~1999!.
6M. Yamanaka, M. Oshikawa, and I. Affleck, Phys. Rev. Lett.79,

1110 ~1997!.
7B.A. Jones, C.M. Varma, and J.W. Wilkins, Phys. Rev. Lett.61,

125 ~1988!; T. Nishino and K. Ueda, Phys. Rev. B47, 12451
~1993!.

8I.P. McCulloch and M. Gulacsi, cond-mat/0012319~unpub-
lished!.

9C. Zener, Phys. Rev.82, 403 ~1951!; P.W. Anderson and H. Ha
segawa,ibid. 100, 675 ~1955!.

10R. Jullien, J.N. Fields, and S. Doniach, Phys. Rev. B16, 4889
~1977!.
11M. Sigrist, H. Tsunetsugu, K. Ueda, and T.M. Rice, Phys. Rev

46, 13838~1992!.
12M. Sigrist, H. Tsunetsugu, and K. Ueda, Phys. Rev. Lett.67, 2211

~1991!.
13T. Holstein, Ann. Phys.~N.Y.! 16, 407 ~1961!.
14N. Shibata and H. Tsunetsugu, J. Phys. Soc. Jpn.68, 3138~1999!.
15N. Shibata, K. Ueda, T. Nishino, and C. Ishii, Phys. Rev. B54,

13495~1996!.
16H. Tsunetsugu, M. Sigrist, and K. Ueda, Phys. Rev. B47, 8345

~1993!.
17M. Troyer and D. Wu¨rtz, Phys. Rev. B47, 2886~1993!; S. Mouk-

ouri and L.G. Caron,ibid. 52, R15 723~1995!; S. Caprara and
A. Rosengren, Europhys. Lett.39, 55 ~1997!; I.P. McCulloch,
M. Gulacsi, S. Caprara, A. Juozapavicius, and A. Rosengren
Low Temp. Phys.117, 323 ~1999!.

18S. Yunoki et al., Phys. Rev. Lett.80, 845 ~1998!; E. Dagotto
et al., Phys. Rev. B58, 6414~1998!.
0-4


