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Localized spin ordering in Kondo lattice models
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Using a non-Abelian density matrix renormalization group method we determine the phase diagram of the
Kondo lattice model in one dimension, by directly measuring the magnetization of the ground state. This
allowed us to discover a second ferromagnetic phase missed in previous approaches. The phase transitions are
found to be continuous. The spin-spin correlation function is studied in detail, and we determine in which
regions the large and small Fermi surfaces dominate. The importance of double-exchange ordering and its
competition with Kondo singlet formation is emphasized in understanding the complexity of the model.
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The Kondo lattice modelKLM ) describes the interaction diagram where large and small Fermi surfaces are dominant,
between a conduction electrq@E) band and a half-filled which has been a central issue for much of the research in
narrow impurity, e.g.f electron, band and is thought to cap- this area for some years.
ture the essential physics of the rare earth compounds. Al- |n addition, we have discovered a second FM region not
though intensively studied for two decades, the KLM is still seen before. For most dopings, this region of FM separates
far from being completely understood. Recently, after thehe regions of large and small Fermi surface. This most likely
discovery of Kondo insulators and the non-Fermi-liquid be-resolves the question as to the applicability of the Luttinger
havior, interest in this field has been greatly renewed, espgnegrem to the KLM, shown by Yamanaka al.® since the
cially due to the non-Fermi-liquid behavior discovered inpermi noints are not expected to remain constant across a
most of the heavy fermion compounds, which resembles Bhase transition.

Grlr:lltgfd%?izéhnderstand the role of the impurity spin in To accelerate the computation, we make use of several
purtty sp operators that commute with the Hamiltonian,

determining the properties of KLM we must develop a better_, "~ o, , + |- 2 . .
understanding of the magnetic correlations. The GriﬁithsS 57,517,171 respectively the generators of the spin

phase in the one-dimensional KLM occurs naturdliy;is, SU(2) and pseudospin S) algebras’ Combined, th.e gen-
therefore, the prototypical model for heavy fermion com-€rators form the algebra $Q. All of the states in our
pounds. Hence, this is an ideal system to study since we ha\BMR_G calculatlor_l transfor_m as |rredu_0|ble representations
the bosonized solutidi and we know the behavior of the Of this algebra. Since S@) is non-Abelian these represen-
CE’s in both the paramagnem@M) and ferromagneticFM) tationS ha.Ve, in general, degr@el, Wh|Ch ImplleS that a
phases. However, less attention has been given to understafifigle basis state in the $0 representation is equivalent to
the correlations between the impurity spins. This is the focugnultiple states of the purely Abelian representation of most
of our study. previous DMRG calculations. This is the origin of the dra-
The Hamiltonian for the KLM is matic performance improvements of the non-Abelian
. DMRG. The states are labeled by the eigenvalues of the
: Casimir operators of S@), which areS?=s(s+1) and|?
H= _tj:l(r (CjoCj+10 H.c.)+J;1 SJC S 1) =i(i+1). Hence we can label all irreducible representations
' by[s,i], which has degree €+1)(2i +1). In this construc-
wheret>0 is the CE hopping paramete$; are spin 1/2  tion, a chemical potential would appear as a term in the
operators for the localized spins, e.gf, and SJC Hamiltonian proportional td?, acting in an identical way a
=%EU,(,,c;r’,,¢r(,,U,cj,(,, with o the Pauli spin matrices and magnetic field coupled t&8*. Although the basis states in the
Cj.o €, the electron annihilation and creation site opera-calculation are eigenstates 8t andI?, rather thars” and!?,
tors. The Kondo coupling is measured in units of the hop- all these operators mutually commute so it is possible to
ping t and partial conduction band fillingy=N/L<1, is  simply replaceS* and|* by the chosen eigenvalues in this
assumed throughout. case. A single site of the Kondo lattice contains just three
The method that we use is density matrix renormalizatiorsuch states. The simplest is the Kondo singlet state, trans-
group (DMRG) which, however, is extended to explicitly forming as the0,0] representation of degree 1. The Kondo
preserve S(P) spin and pseudospin symmetry. Hence wetriplet state transforms as thé,0] representation of degree
can measure the magnetization directly and determine rigoR, and encapsulates the three projectifihs), \/FZ(HU)
ously the PM-FM phase boundary. The obtained result is int-|[} 7)), || ) in a single state. Herd}, denotes localized,
excellent agreement with a recent bosonized solétamd  and| the conduction electron spins, respectively. Finally, the
contradicts the common view that this phase boundary godsolon state(actually, the tensor product of a holon and a
to infinite Kondo coupling] as the CE density approaches spin transforms as thg1/2,1/2] representation of degree 4
half-filling.*> We also determine the regions of the phaseand has the projection§l0), |[10), [111), [UT]). The

L-1

0163-1829/2002/65)/05241@4)/$20.00 65 052410-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B 65 052410

x10
3 &
6L 0—0 J=1.58 i
\ O---0 J=1.59 m
© N &-—a J=1.62 ;
J . J
/
FM Polaronic ~ _— J
liquid - !
2 SR :
e 7 /
X w /
= ;
Y 4 ulf !
v ¥ w
/ /
//
/
1 //'/A
/
/ 7
/
!
/8
RKKY oA RKKY liquid
/
liquid 1/
1/: N
/ N
0 n n / n n ) ) ) \\‘
0 02 04 0:6 08 ! 0 0.05 0.1 0.15 0.2 025

n M/L

FIG. 1. The obtained phase diagram of KLM. The two shaded FIG. 2. Normalized magnetization curveslative to the ground

areas are the EM phases. The open circles and triangles correspoggte energyE,) across the phase transition at quarter filling for a
to points at which the FM energy level crosses 80 level. The 40 site lattice

dashed curves are the derived phase transition (thessolid curve
was already obtained in Ref).2
interaction in the weak coupling limtf. This picture is bor-

. . . . . rowed from the single-impurity Kondo model and is inad-
single-site operators arex33 matrices over this basis. The equate for the lattice cade

matrix elemgnts can _be determir_1ed by the Wigner-Eckart Starting the analysis of the phase diagram for lalgere
theorem, which specifies the relationship between the threesee that all CE’s form singlets with the localizesping® that
dimensional reduced basis and the full 8 dimensional basi$,ecome inert. The uncouplddspins order FM in a mecha-
For a comprehensive description of the new algorithm, se@jsm similar to the)<0 case’ Here, there is no competition
Ref. 8. At half fl”lng (Where the ground state is a pseUdOSpinbetween Kondo Sing|et formation and DE. The fu||y po|ar-
singley 400 block states are equivalent to around 2500 stateiged state[with S= (L —N)/2] appears for any value af
of a calculation usindN and S* quantum numbers, although <1 2! contrary to the suggestion of Refs. 4 and 5 that close
the relative advantage of $4) decreases as the system isto half filling the PM phase extends tb—. As J is low-
doped away from half filling. We used the new DMRG algo- ered, KLM can be rigorously mapped into a random trans-
rithm to obtain the ground state energy, magnetization, ansterse field Ising modei:hence the phase transitiime solid
different correlation functions, i.e., the momentum distribu-curve in Fig. 1 is identical to the quantum order-disorder
tion, density-density, conduction electron spin-spin, and the transition. It should be emphasized that this is also true for
spin structure factoi$(k). The obtained results can be sum- the second FM phase, as will be shown later on.
marized with the phase diagram presented in Fig. 1, which The phase transition obtained via DMRG fits exception-
will be analyzed in detail hereafter. The main properties ofally well this picture, confirming the bosonization result of
the phase diagram have been confirmed on chains of 120 &ef. 2. The open circles correspond to points at which the
more sites. Results for the magnetization were calculated oanergy of the FM state crosses the energy of the singlet state.
smaller chains, 40—60 sites, where the energies can be cdince the phase transition is second order, this is only an
culated more accurately. We found no finite size effects thatpper bound on the true transition line. However, the par-
would affect the properties of Fig. 1. In all cases, we extrapotially polarized region is very small, of the order dft
late to zero truncation error based on well-converged sweeps 0.01, which is why this phase transition has not previously
of between 200 and 500 %@ states kept. been observed to be continuous. A typical example of the
As it can be seen from Fig. 1, the main feature dominatingenergy versus the magnetizatid) is presented in Fig. 2.
the KLM is f spin FM ordering. The FM ordering is due to This shows that in the transition regin@’E/dM? is posi-
the double-exchang€DE) interaction which appears as a tive. We have accounted for all known random errors, these
consequence of an excess of localized spins over b&&h  are errors arising from the tolerance of the matrix diagonal-
CE has to screen more than one localized spin, and sindeation, variations in the energy across the DMRG sweep,
hopping is energetically most favorable for CE’s that pre-and error arising from the extrapolation to zero truncation
serve their spin, this tends to align the localized spins. Thigrror. These errors are of the order of the symbol size in this
element was missing in the early approaches, which conceffigure.
trated on the competition between Kondo singlet formation Below the solid curve, Fig. 1, the Kondo singlets are not
at largeJ and the Ruderman-Kittel-Kasuya-YosilRKKY) inert anymore and they greatly contribute to the properties of
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behavior of the Fermi surface crossover close to quarter fill-
ing is numerically difficult to determinédotted line in Fig.

1); hence we are not yet able to rule out the possibility that
the large and small Fermi surface regions are adiabatically
connected. Even prior to the current calculation, the nature of
the Fermi surface in the weak-coupling regime was not clear,
with the suggestion from Ref. 5 that the Fermi surface van-
ishes at a point in proximity to where we find the ferromag-
netic phase. Fon<0.5 the width of the polarons is over
several lattice spacingsliverging forn—0 (Ref. 19] hence

the energy needed to excite these polarons is too large for
this effect to happen. The polarons will not contribute to the
low-energy dynamics and the system behaves as an RKKY
liquid, as we explain below.

An interesting phenomenon appears as we further Idwer
The residual weight attached to the Kondo singlets vanishes;
hence all CE’s that participated in the formation of these
singlets become delocalized. The distance between these
CE’s is much larger than the lattice spacing, and belbw
<2./nsin(zn) their continuum limit takes the regular quan-

FIG. 3. Typicald dependence of the spin structure fac&(k),  tum sine-Gordon form.In the bosonization language of Ref.
and the momentum distribution(k) (n=0.6). 2, this means that the spin Bose fields, cannot be ap-
proximated by their noninteracting expectation values, rather
by their expectation value corresponding to a sine-Gordon
(sG model, ® ,~(®P,)ss. However, the charge degrees of

n{k)

kir

KLM. Excluding the Kondo triplet states, the CE wave func-

tion in the continuum limit satisfies a nonlinear Satirmer . ; i
equatiod? that has finitely delocalized solitonic solutiotis freedom not being affected by the sine-Gordon spin gap,
9 __their corresponding Bose fields?, may be still approxi-

;—ZLZIICeOIrIrgigIOQSiSn;O iaedrisp?éngoﬁgigﬁscjeb);o?rﬁ:ao dUchr)]feaSg_mated by their noninteracting values. Extending the
I . 'Y . ' bosonized results of Ref. 2 to a fini® )55, we obtain the
aronic length scale competes with the length scale set by the "~ | Hamiltonian aoverning the PM-EM phase transition
free CE mean free path and introduces competing timé:”tlca. . 9 9 P )
scales: slow motion of the polarons with low energy dynam—at |r21termedz|ateJ values in the following fogm'HC”‘
ics and fast motion of the free CE's with high energies. This~ _ L3 “4/(2727 vF)12iS)- 541+ 2082 {1-((P,)5d/2) [1
scenario resembles a two-fluid picture with intrinsic inhomo- ¥/ (270F)] +Cos(X))}S] where.4 and B are functions
geneities which involves spin fluctuations and short-rangdhat depend gnly on the cutoffs introduced by the bosoniza-
spin correlations, which we call polaronic liquid tion schgmé; Following previous l_:)psonlzatlon approaches

Finite temperature DMR& confirmed the presence of close.I)_/,z' we can prove thaj[ the crltlcal be'hawor of the FM
short-range spin correlations in the van Hove singularities. fransition for the intermediate thig case is of a random
Consequently the structure factor peakslgt2 7, wherekg transverse-field IS|2ng model type, Whgre the trgnsver;e field
is the Fermi point determined by the filling of the CE band."=2IB{1—((®,)sd2)[1+I/(2mvE) "+ cos(Zej)} s
This means that the localizdfdspins, even though they are driven by a displaced cosine distribution of the foprth)
completely immobile, contribute to the volume of the Fermi =[1/(2mIB)1(1—{h/(2JB) + (P ,)3d2)[ 1+ I/ (27vE) ]?
sea. This conventionally is calledlarge Fermi surface, the —1}%)~ "2 Accordingly, the FM transitions emerging at in-
effect of which is also seen in the momentum distributiontermediate values af are of a quantum order-disorder type.
function (see Fig. 3. As the polarons are formed the peak of These transitions are driven by spin polarons, contrary to the
S(Kk) shifts from the small/t value of X : the slow motion ~FM phase emerging at highvalues, which is given by the
of the spin polarons will dominate the low-energy dynamicsuncoupled spins(in a mechanism similar to th&<0 casg.
of the quasiparticles. This proves that the appearance of thEhe new critical line is J.=a(A,B)sin(mn/2)/[1
large Fermi surface is a dynamical effect since it involves— B(.A,B)]— 7(A,B,<<I>U>§G). The bosonizatior{iconformal
local inhomogeneities, impurity spin fluctuation, and short-field-theory arguments do not determine the magnitude of
range correlations of thespins. This phase is relatetb a  «, B, andy; accordingly these constants are used as fitting
Griffiths phase, suggesting that the small to large Fermi surparameters to the numerically obtained points. The best fits
face crossover is a Griffiths singularity. are the dashed curves in Fig. 1.

The large Fermi surface is conventionally explained by This is the second FM phase in Fig. 1, which has proven
reference to the periodic Anderson moddPAM) difficult to detect with conventionalAbelian) DMRG.26’
ancestry’%® Our results imply that even for PAM, this Previous DMRG calculations did show a weak FM signal at
simple picture is inadequate. In particular, we see no reason=0.8 andJ=1.6 and 1.8 but the results were discarded
why a small to large Fermi surface crossover, marked by an later papers by the same authdfsLikewise an exact

FM phase, should not also appear in PAM. However, thaliagonalization of a very small system gave FM for
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model,J<0, a phase separated regime was observed in nu-
merical approache$. However, for J>0 we found no
change in sign of the inverse charge compressibility. Thus,
this phase is a true FM rather than a phase separated region.

Below the second FM region the KLM reduces to a sys-
tem of free localized spins in fields determined by CE scat-
tering: dominant R modulations are manifegsee Fig. 3,
superimposed on an incoherent background. This reflects the
momentum transferred from the CE band to the spin chain in
backscattering interactions, together with incoherent forward
scattering. This case is referred to as an RKKY liquid as the
scattering processes give an RKKY-like correlation for the
spins, even though the RKKY interaction strictly diverges in
one dimension.

In conclusion, using a non-Abelian DMRG method a
most comprehensive analysis of the short- and long-range
ordering of the localized moments in KLM is presented. We
show that DE ordering and its competition with Kondo sin-
glet formation is the dominant feature of the phase diagram.
The non-Abelian DMRG method allowed us to discover that
FM does not only appear at largebut also at intermediate

FIG. 4. The gapAE, from the fully polarized ferromagnetic Vvalues. This second FM phase was missed in previous ap-

state to every other spin state Jsfor n=0.8 and a 60-site lattice,

proaches. We also show that at ladgeM is due to ordering

measured along intervals af- 0.05. For most data points the error Of uncoupledf spins, while for intermediaté, i.e., the sec-

bars are of ordesr,e~10"° or less, except for th8=0 curve for
very low and very highl, where the errors are of ordery,g~5
X 10~*. The inset shows the second ferromagnetic region.

=0.75 andJ=1.51° Using the non-Abelian DMRG algo-

ond FM region, FM is due to ordering of the spin polarons.
The inhomogeneous polaronic state between these two FM
phases is analogous to a two-fluid system and it exhibits a
large Fermi surface.
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