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Quadrupolar order in isotropic Heisenberg models with biquadratic interaction
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Through quantum Monte Carlo simulation, we study the biquadratic interaction model with the SU~2!
symmetry in two and three dimensions. The zero-temperature phase diagrams for the two cases are identical
and exhibit an intermediate phase characterized by finite quadrupole moment, in agreement with mean-field-
type arguments and semiclassical theory. In three dimensions, we demonstrate that the model in the quadru-
polar regime has a phase transition at a finite temperature. In contrast to predictions by mean-field theories, the
phase transition to the quadrupolar phase turns out to be of second order. We also examine the critical behavior
in the two marginal cases with the SU~3! symmetry.
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Spin interactions of order higher than second have b
discussed for many years.1,2 There are various sources of th
high-order terms. For example, they may arise from the
fect of crystalline fields or the high-order perturbations
electron exchanges. These high-order terms were ident
or speculated to be responsible for some of the phase tra
tions observed in various magnetic materials.3–9 In contrast
to second-order or bilinear interaction models, quantum s
models with high-order terms can have a phase diag
qualitatively different from their classical counterparts.
particular, at zero temperature they may have nonmagn
ordered phases such as quadrupolar phase. These non
netic phases have been a focus of attention in recent ye8

In order for a higher-order term to have a nontrivial co
tribution to the Hamiltonian, the spin must be larger than
equal to unity. Among the simplestS51 cases, we conside
the model with the highest symmetry since it probably p
vides us with a good starting point for developing a compl
study of a wider range of models with lower symmetry.
the present article, therefore, we discuss theS51 isotropic
bilinear-biquadratic Heisenberg model

H52(
( i j )

@JLSi•Sj1JQ~Si•Sj !
2#. ~1!

Since the biquadratic term in this Hamiltonian arises fro
the fourth-order perturbation of electron exchanges, it is u
ally smaller than the bilinear term that results from t
second-order perturbation. However, it was pointed out10 that
the bilinear term can be comparable with or smaller than
biquadratic one as a result of the cancellation of ferrom
netic and antiferromagnetic contributions, when we ta
various hopping terms into account.

For the one-dimensional case, a number of exact solut
and high-precision numerical calculations have establis
the character of most of the phases and the transition po
For the two- or higher-dimensional cases, on the other ha
our understanding largely depends upon mean-field-type
proaches or semiclassical theories.11 A phase transition to a
nonmagnetic ordered phase was predicted for a wide ra
0163-1829/2002/65~5!/052403~4!/$20.00 65 0524
n

f-
f
ed
si-

in
m

tic
ag-
s.
-
r

-
e

u-

e
-

e

ns
d

ts.
d,
p-

ge

of biquadratic models including the present model. T
mean-field approximation12 was applied to the presen
model, resulting in there being a first-order phase transit
from the paramagnetic phase to the quadrupolar phase~or the
spin-nematic phase! when the biquadratic interaction is su
ficiently large.

Since the mean-field-type approaches are usually acc
panied by uncontrollable errors, a confirmation through r
orous proof or numerical calculations is necessary. In
classical model (S5`) with smallJL /JQ , it was rigorously
proved13 that the quadrupole moment is finite in some te
perature range above the dipolar transition point. In
quantum case ofS51, the quadrupole moment was proved14

to be finite at zero temperature in some range of the par
eterJL /JQ in three dimensions. The range where this rig
ous proof applies is not the same as, but smaller than,
quadrupolar region predicted by the mean-field arguments
two dimensions, there is no rigorous proof of the existence
the quadrupolar phase.

We reported in previous work15 that the parameter spac
of positiveJQ is divided by the two SU~3! points into three
regions: ferromagnetic (2p<u<23p/4), antiferromag-
netic (2p/2<u<0), and nonmagnetic (23p/4,u
,2p/2) regions. Hereu is defined by

JL52J cosu, JQ52J sinu ~J.0!.

The nature of the nonmagnetic phase was not numeric
identified in the previous work, although the mean-fie
theory predicted that it is the quadrupolar phase. In
present paper, we show for the model with negativeu that
~1! the nonmagnetic phase is characterized by a finite qu
rupole moment in two and three dimensions,~2! a phase
transition to quadrupolar phase occurs at a finite tempera
in three dimensions, and~3! the quadrupolar transition is o
second order in contrast to the mean-field prediction. We a
discuss the critical behavior of the three-dimensional sys
at finite temperature.

In the classical counterpart of the present model, the lo
range order at zero temperature is always dipolar, i.e., fe
©2002 The American Physical Society03-1
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magnetic or antiferromagnetic, except for the special cas
u52p/2, where the dipolar degrees of freedom are non
teracting and disordered. In contrast, for the quantum mo
for S51, it is argued based on a mean-field approximatio12

that there is an intermediate phase between the antiferrom
netic region and the ferromagnetic region, and that this ph
is characterized by a finite quadrupole moment. Becaus
the limitation of the mean-field-type theory, it always pr
dicts a finite-temperature phase transition to the quadrup
phase regardless of the dimensionality. This is of cou
wrong in one dimension. In two dimensions, too, the ex
tence of a finite-temperature phase transition is very qu
tionable because of the Mermin-Wagner theorem. Even
zero temperature, the existence of a finite quadrupole
ment is not totally clear. Mathematically rigorous argumen
so far, have not established any long-range order in the
termediate parameter region.

In order to answer the question concerning the existe
of quadrupole order, we performed Monte Carlo simulatio
using the loop algorithm proposed in the previous pape15

The algorithm removes the ergodicity problem and consid
ably reduces the critical slowing down. The energyE, the
dipole moment~i.e., magnetization! Mz , the staggered mag
netizationNz , and the quadrupole moment were measur
We consider only thezz component of the quadrupole mo
ment in this article, which we denote byQz :

Qz[(
i

S ~Si
z!22

2

3D .

The equal-time structure factors and the susceptibilities
sociated with these quantities were also measured. The
tem size ranges fromL54 up to L5128 for the two-
dimensional case and up toL564 for the three-dimensiona
case. For each data point, we typically run the simulation
more than 10 000 Monte Carlo steps.

For each system size in two dimensions, the thermal
erage of the absolute value of the quadrupole momenq
[^uQzu&/N, converges to a certain finite value as the inve
temperatureK[J/kBT increases. Here, the absolute val
uQzu is taken in the representation basis in whichQz is di-
agonalized. For any finite system, the convergence is ex
nential with some characteristic~imaginary! time scale. Al-
though this characteristic time is larger for larger system
the size dependence is weak. Therefore, we can extrap
the data to the limit ofK5` without examining extremely
low temperatures. After taking the zero-temperature limit n
merically, we then take the infinite-system-size limit. T
system size dependence is algebraic:

q~L,K5`!;q~L5`,K5`!1a/L.

This system size dependence is the same as that of the
gered magnetization in the antiferromagnetic Heisenb
model in two dimensions.

The quadrupole moment at zero temperature as a func
of u for various system sizes is plotted in Fig. 1, togeth
with the extrapolation to infinite size. We now see that t
quadrupole moment is finite in the intermediate phase as
as in the dipolar phases. In addition, it exhibits discontinu
05240
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at the two SU~3! points. Since the quadrupole moment
finite whenever the dipole moment is finite, it falls down to
finite value, not to zero, as we pass the phase boundary f
the intermediate region to one of the two dipolar regio
Since the dipole moment is vanishing in the intermedi
phase as we saw in the previous paper,15 the quadrupole
moment is the characterizing order parameter for this ph

In order to check the existence or absence of a ph
transition at finite temperature, we have examined the s
cific heat. We have observed a broad peak at the tempera
that roughly corresponds to the saturation temperature of
quadrupole moment. The peak height and width do not sh
a significant size dependence, indicating that it is not a ph
transition but only a point where a relatively large number
free spins are frozen.

We plot in Fig. 2 the size dependence of the quadrup
moment as a function of system size, at various tempera
in the case ofu520.6p. In this case, the peak in the sp
cific heat is located atK;1.2. In Fig. 2, we see that th
quadrupole moment shows the asymptotic size depende

q}L21

FIG. 1. The quadrupole moment at zero temperature in
dimensions.

FIG. 2. The quadrupole moment as a function of the system
at u520.6p in two dimensions.
3-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 052403
down to the temperatureK;1.6. For a temperature lowe
than 1.6, the largest system size that we examined is
large enough to see the asymptotic behavior. The trans
temperature of the Kosterlitz-Thouless-type~KT-type! phase
transition is usually about 10% or 20% smaller than the p
temperature of the specific heat. Therefore, if there wer
KT-type transition, we should be able to see a nontriv
algebraic decay forK,1.6, which we do not detect in Fig. 2
This indicates that there is no phase transition at any fi
temperature.

For the system in three dimensions at zero temperat
we again observe three parameter regimes: ferromagn
quadrupolar, and antiferromagnetic, with exactly the sa
phase boundaries as those in two dimensions. Namely,
nature of the ground state changes at the two SU~3! points
u52p/2,23p/4. To see this in detail, we analyze the ord
parameters as in the two-dimensional case, the extrapola
to zero temperature, and then to the infinite system size.
behavior of the zero-temperature quadrupole moment a
function of u is similar to the two-dimensional case, but th
convergence to the infinite-size limit is faster. The quad
pole moment shows discontinuity at the two symmet
points. The zero-temperature phase diagram in three dim
sions turns out to be exactly the same as that in two dim
sions. We speculate that this is true for any dimension exc
for one dimension.

Having seen the long-range order at zero temperatur
the intermediate quadrupolar regime, we now ask if there
phase transition at finite temperature. Even in two dim
sions, we have seen a broad peak in the specific heat a
crossover behavior from completely disordered states to
tially ordered states as we decrease the temperature.
may be regarded as a precursor to the phase transitio
higher dimensions. In fact, in the specific heat as a func
of temperature, we see a much sharper peak in three dim
sions than in two dimensions. The peak is not only sharp,
also shows clear size dependence, indicating a phase tr
tion.

We can clearly see a strong correction to scaling, es
cially in Fig. 3. According to mean-field theory,12 this is a

FIG. 3. Scaling plot of the specific heat atu520.6p in three
dimensions.
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first-order phase transition. If this is the case, the peak he
and width should be proportional toLd and L2d, respec-
tively. In other words, a finite-size scaling plot with exp
nents d and 2d for the vertical scale and the horizont
scale, respectively, should work. Other quantities should a
obey similar scaling forms with trivial exponents. We fin
that this is obviously not the case for any quantity. Inste
we assume the following finite-size scaling forms:

c5L2y2dc̃@~K2Kc!L
y#,

q5Lbyq̃@~K2Kc!L
y#,

wherec is the specific heat. The best plots are obtained w

y51.97 and Kc50.6346,

for the specific heat, and

y52.30, yb50.44, andKc50.6345,

for the quadrupole moment. The scaling plots are shown
Fig. 3 for the specific heat and in Fig. 4 for the quadrup
moment. The discrepancy among the estimates of ind
may be due to a relatively large contribution of the nons
gular part to the specific heat. We have estimated the crit
temperatures and indices atu520.7p in a similar fashion,
and found that the critical indices are close to the cor
sponding ones foru520.6p quoted above. This fact sug
gests that they belong to the same universality class, as
pected. Based on these results, we conclude

y52.15~20! and yb50.46~4!

for 23p/4,u,2p/2.
The two SU~3! points u52p/2 and23p/4 are of spe-

cial interest, since the universality class of the critical po
may be different from the one discussed above due to
higher symmetry. For these points of higher symmetry,
obtained better scaling plots than Figs. 3 and 4. The e
mated critical temperatures areKc50.6389(3) for u5

FIG. 4. Scaling plot of the quadrupole moment atu520.6p in
three dimensions.
3-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 052403
2p/2 andKc51.0724(4) foru523p/4. The critical indi-
ces for these two cases agree with each other, yielding

y51.82~5!, yb50.48~1!.

These results suggest that the critical points of the two SU~3!
models belong to the same universality class and it is dist
from the one for the less symmetric cases although the
ference in the indices is small. In Fig. 5, we summarize
estimated critical temperatures in the form of au-T phase
diagram.

To summarize, we have studied the isotropic biquadr

FIG. 5. The phase diagram of the three-dimensional mo
Curves are mere guides to the eyes.
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Heisenberg model in two and three dimensions for nega
u. In two dimensions, we have identified the intermedia
phase as the quadrupolar phase. The phase transition
finite temperature has been excluded. In three dimensi
we have studied the finite-temperature properties as we
zero-temperature ones. At zero temperature, the phase
gram is exactly the same as that of the two-dimensional c
We have found that there is a finite-temperature phase t
sition not only in the ferro- and antiferromagnetic regime
but also in the quadrupolar regime. In contrast to the me
field prediction, the transition to the quadrupolar phase
turned out to be of second order. The critical indices are a
estimated. While the two SU~3!-symmetric points belong to
the same universality class, it is suggested to be distinct f
the one for the less symmetric@i.e., SU~2!# models. Studies
on the properties of low-lying excitations are still in progre
and will be reported elsewhere. Less symmetric models w
higher-order interactions may be more important than
present model from the practical point of view, since high
order interactions in real magnets often arise from crystal
effects, which have lower symmetry. Studies on some
these models are also in progress.
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