
PHYSICAL REVIEW B, VOLUME 65, 052201
Disorder-induced zero-energy spectral singularity for random matrices with correlations
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~Received 1 November 2001; published 8 January 2002!

A zero-energy midband singularity has been found in the energy spectrum of random matrices with corre-
lations between diagonal and off-diagonal elements typical of vibrational problems. Two representative classes
of matrices, characterizing the instantaneous configurations in liquids and mechanically unstable lattices
~which mimic the former!, have been analyzed. At least for disordered lattice models, the singularity is
universal and its origin can be explained within a mean-field treatment.
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Many physical phenomena can be described by
Anderson Hamiltonian with off-diagonal disorder~see, e.g.,
Ref. 1 and references therein!. Stochastic transport,2 atomic
vibrations in disordered structures~see, e.g., Ref. 3 and ref
erences therein!, and instantaneous normal-mode~INM !
analysis in liquids and glasses4 ~called below ‘‘vibrational’’
problems! are among these. However, there is one key po
which distinguishes vibrational problems from the stand
electron problems: there exist strong sum-rule correlati
between the off-diagonal and diagonal elements~the sum of
all the elements for a particular row is zero! of the relevant
random matrices for the vibrational problem.

In different dimensions (D51 –3), the energy spectrum
of the electron Anderson Hamiltonian with pure off-diagon
disorder defined on the simple~hyper! cubic lattice~but not,
as we have checked, on the fcc lattice! exhibits a peculiar
feature: a disorder-induced, midband~zero-energy! singular-
ity occurs.1,5 Normally, disorder smears out sharp features
a spectrum~e.g., van Hove singularities!, but in this case it
creates a singularity, the origin of which in different dime
sions is still controversial. However, can disorder induce
similar ~or different! singularity for vibrational problems
and, if so, can its origin be revealed? In this paper, we de
onstrate the existence of a midband zero-energy singula
in the spectrum of dynamical matrices involved in an IN
analysis of a model of a monatomic liquid, and investig
analytically and numerically the nature of this zero-ene
singularity in the spectrum of random matrices with sum-r
correlations, appearing in disordered lattices which mim
topologically disordered liquids.

We have observed the occurrence of a singularity by
merical experiment, in which structural models of a liqu
with predominantly icosahedral order~similar to those dis-
cussed in Ref. 6! and of glassy and liquid silica~similar to
those discussed in Ref. 17! have been constructed at differe
temperaturesT by slow molecular dynamics quenches~by
constant volume and temperature steps!. The INM spectra of
the dynamical matrix are shown in Fig. 1. A zero-ener
singularity is clearly present in the energy spectrumg(«) for
the icosahedral liquid and possibly in silica@at least, the
tendency of the change of the density of states~DOS! around
zero is consistent with the model presented below#. Similar
zero-energy peaks have been foundbut not explainedin liq-
uid theories7,8 and in simulations of a binary Lennard-Jon
liquid.9 Normally, the DOS in the frequency domain,gv
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52Au«ug(«), is of interest in the INM analysis, but the sin
gularity is masked there by the linear factor 2v, and that is,
probably, why it has not been carefully studied before.

Therefore, there exists a peculiarity in the spectrum
random matrices with sum-rule correlations~instantaneous
dynamical matrices! and its origin can be revealed analyt
cally as follows. Consider a Hamiltonian describing both t
electron and vibrational problems:

Ĥ5(
i

S « i2g(
j Þ i

t i j D u i &^ i u1 (
i , j Þ i

t i j u i &^ j u, ~1!

where« i and t i j stand for the random on-site energies a
the random transfer integrals between sitesi and j, respec-
tively. The parameterg controls the correlations betwee
diagonal and off-diagonal matrix elements. The stand
electron Anderson Hamiltonian with pure off-diagonal diso
der corresponds tog50 and« i50, with t i j being random
variables taken, for example, from a uniform~box! distribu-
tion of width 2D centered aroundt0521, t i j P@ t02D,t0
1D#. The vibrational~scalar! problem corresponds tog51
with the other parameters being the same. For atomic vib

FIG. 1. The energy spectrumg(«) for the instantaneous dy
namical matrices for an INM analysis of~a! a liquid with predomi-
nantly icosahedral order~1620-particle model averaged over 9
configurations! at two temperatures, as marked~the units are the
same as in Ref. 6! and of~b! glassy~the solid curve! and liquid~the
dashed curve! silica ~1650-particle model averaged over 20 co
figurations!. The energy units for silica are THz2.
©2002 The American Physical Society01-1
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tions, the Hamiltonian corresponds to the dynamical ope
tor, transfer integrals to the force constants and energy to
squared frequency,«5v2.3

We have calculated by the kernel polynomial metho10

~KPM! the spectrum of the ‘‘vibrational’’ Hamiltonian~1!
~see the thin lines in Fig. 2! for g51 and« i50, defined on
the fcc lattice~actually, of its more general version for vect
vibrations; see Ref. 3 for more detail!. For sufficiently large
degrees of disorder,D.D0 (D0.1.4–1.5), the zero-energ
singularity is evident~Fig. 2!. Moreover, the shape of th
singularity is similar to that found for topologically diso
dered models~Fig. 1!, indicating its possible universality
~see below!. We have also calculated the DOS for the sa
problem within a mean-field approach@the single-bond co-
herent potential approximation2 ~CPA!#, and found remark-
ably good agreement with the precise numerical~KPM! re-
sults ~cf. thick and thin lines in Fig. 2! in the singularity
region for D*D0 @(D02D* )/D* !1; see below for a dis-
cussion ofD* ], i.e., when the localization threshold is fa
enough below zero energy. This agreement is surprising~at
first sight!, because it is commonly believed~see, e.g., Ref.
11! that mean-field theories fail to reproduce sharp featu
in a spectrum. For example, the most successful homom
phic cluster CPA~Refs. 12 and 13! well reproduces the
whole spectrum for the electron problem with pure o
diagonal disorder (g50), except for the zero-energy singu
larity. Below, we explain why the CPA reproduces the ze
energy singularity for vibrational problems but not for th
electron one, and we use this insight to reveal the phys
origin of the singularity.

FIG. 2. ~a! Evolution of the zero-energy singularity in the DO
for a disordered fcc lattice with various values of disorderD (D*
.1.3 andD** .2.2). The thick curves were obtained by the n
merical integration of the CPA DOS given by Eq.~2!, while the thin
ones are the results of precise numerical KPM solution for ve
vibrations in a 13031303130 site fcc lattice. The difference be
tween the CPA and KPM curves around both band edges is du
the known failure of CPA to reproduce the localized band tails. T
inset shows the phasef(0) of the effective field at zero energy v
disorderD. The critical values of disorder are indicated by arrow
~b! An enlargement of the zero-energy region. The CPA results
tained by use of Eqs.~2! and ~4! are not distinguishable on thi
energy scale.
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The zero-energy singularity occurs forg51 and disap-
pears ifgÞ1, i.e., when the exact sum-rule correlations
elements in the dynamical matrix break down. The fun
tional form of the zero-energy singularity observed is univ
sal ~i.e. independent of the type of distribution of the for
constants, the reference lattice symmetry, scalar or ve
type of vibrations, etc.! for the class of Hamiltonians given
by Eq. ~1! with g51 and« i50, and depends only on th
dimensionality of the problem. For sufficiently large diso
der, the~parity-independent! singularity occurs in the mid-
band region of the spectrum, far from the localized states
the three-dimensional~3D! case~as checked by multifracta
analysis! and in the range of prelocalized states for low
dimensions. The analytic mean-field solution shows that
appearance is dictated by the universal nonanalytic beha
of the spectral-density operator in the plane-wave basis a
essentially, is a consequence of the fact that zero-en
~long-wavelength! plane waves contribute anomalously~but
not solely! to the disordered eigenstates with energies aro
zero.

The DOSg(«) for a disordered lattice is the trace of th
spectral-density operatorÂ(«)5^d(«2Ĥ)& taken in the
convenient orthonormal basis of crystalline eigenstatesuk,b&
(k is the wave vector of a plane wave from the branchb) of
the same Hamiltonian, but without disorder (D50) and av-
eraged (̂•••&) over the distribution of random variablest i j ,
g(«)5*^^k,buÂ(«)uk,b&&gcryst(«kb)d«kb , with gcryst(«kb)
being the crystalline vibrational DOS. The diagonal mat
element of the spectral-density operator,A(«,«kb)
[^k,buÂ(«)uk,b&, can be found within the CPA~Refs. 3
and 14–16! via the complex effective interaction fieldz(«)
5z8(«)1 iz9(«), so that

g~«!52
1

pE ~«kb /«!G~«!

@«kb2 «̄~«!#21G2~«!
gcryst~«kb!d«kb ,

~2!

with

«̄~«!5«z8~«!/uz~«!u2, G~«!52«z9~«!/uz~«!u2. ~3!

The effective interaction fieldz(«) is found from the solution
of the self-consistent CPA equation~see Ref. 3!. The real part
z8(«) fluctuates around its crystalline valuez0851, and the
imaginary part is smooth and negative in the region of
nonvanishing disordered spectrum, and zero otherwise.
spectral densitŷ A(«,«kb)& as a function of«kb has the
shape of a peak characterized by a width parameterG(«)
located at an energy«peak5u«uuz(«)u215@ «̄(«)1G(«)#1/2

~see Fig. 3!.
As follows from Eq.~2!, the disordered DOS is gener

cally related to the crystalline DOS for a reference syst
convolved with the peak-shaped spectral dens
^A(«,«kb)&. For small disorder (D→0), the spectral density
is very narrow and close in functional form tod(«2«kb), so
that the disordered DOS strongly resembles its crystal
counterpart. With increasing disorder but forD<D* ~where
the spectrum of the Hamiltonian is still non-negative and
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BRIEF REPORTS PHYSICAL REVIEW B 65 052201
lattice is mechanically stable3!, the spectral-density peak be
comes broader and washes out all the van Hove singular
in the crystalline spectrum, except the boundary singula
around the lowest band edge,«min50.

When the disorder exceeds the critical CPA value,D
.D* , the number of negative force constants becomes
large that the system is no longer mechanically stable eve
the mean-field limit, and negative eigenvalues appear in
spectrum~as in instantaneous configurations of liquids4!; i.e.,
the lower boundary of the CPA spectrum moves below z
energy,«min,0. Exactly in this regime, the midband zer
energy singularity in the disordered CPA spectrum evolv
Indeed, if we look at the evolution of the spectral-dens
width parameterG(«) with increasing disorder~see the inset
in Fig. 3!, we can clearly see that the peak width is still ze
at zero energy,G(0)50, being a consequence of Eq.~3!,
even though the value of the effective field becomes finite
this point @z9(0)Þ0#. This means that the spectral dens
^A(«50,«kb)& as a function of the crystalline energy«kb
has a singularity at«kb50 ~see Fig. 3!. The zero-energy
point, in this regime (D.D* ), belongs to the midband re
gion. The finite value ofz9(0) immediately gives rise to a
different singular shape of the spectral density,^A(0,«kb)&
.2p21@z9(0)/uz(0)u2#«kb

21 ~see Fig. 3!, as compared to the
d-functional shape of the spectral density for theD,D*
regime, where bothG(0) and z9(0) are zero. The
d-functional shape of the spectral density reproduces
crystalline van Hove singularity,g(«)}« (D/2)21, at the lower
band edge, but the«kb

21 shape of the spectral density at«
50, convolved with the crystalline DOS@see Eq.~2!#, re-
sults in a singularity of a different type in the disorder
DOS which is not related to the crystalline van Hove sing
larity at «50 ~see below!.

The shape of the midband zero-energy singularity can
obtained analytically within the CPA by splitting the integr

FIG. 3. Dependence of the spectral density^A(«,«kb)& on the
crystalline energy«kb at values of disordered energy« as marked
~for D5D** ), for vector vibrations in the force-constant disorder
fcc lattice. The inset shows the energy dependence of the spe
density peak width parameter,G(«) @Eq. ~3!#, for different values of
disorder, as marked.
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tion region in Eq.~2! into a low-energy part,«kb,«0, where
gcryst(«).xD« (D/2)21 ~the Debye law!, and the rest of the
band,«kb.«0 ~irrelevant for the shape of the singularity!.
The final result for the disordered DOS~3D case! in the limit
u«u→0 is the following:

g~«!.2
C sinf~«!

puz~«!u
1

x3u«u1/2

uz~«!u3/2
sinF3f~«!

2
1u~«!

p

2 G ,
~4!

whereC5*@gcryst(«)/«#d« is a model-dependent constan
f(«)[arg@z(«)# is the phase of the effective field, andu(«)
is the Heaviside function,u(«,0)50 and u(«.0)51.
Bearing in mind that the effective field is a smooth functi
of energy around zero, we can conclude from Eq.~4! that, in
the 3D case, the disordered DOS is a continuous func
around zero but its derivative shows«21/2 singular behavior
~see Figs. 1 and 2!.

The expression~4! for g(«) has been obtained in the lim
u«u→0 for any degree of disorder. The evolution of the s
gularity with disorder~see Fig. 2! is determined by the de
pendence onD of the effective field at zero energy. Th
phasef(0;D) varies in a critical manner with disorder@see
the inset in Fig. 2~a!#, being zero below the critical disorde
D<D* , when the zero-energy singularity is just a low
band-edge van Hove singularity. Above the critical disord
D.D* , the derivative of the DOS becomes singular fro
both sides about«50. If the disorder is not too large,D*
,D,D** , the sign of the derivative is positive on bot
sides of the singularity and the DOS is monotonic in t
singularity range@see the upper curve in Fig. 2~b!#. For
higher disorder,D.D** , the derivative changes sign at th
singularity and the disordered DOS exhibits a sharp ma
mum at zero energy@see the lower curve in Fig. 2~b!#. The
characteristic value of disorder,D5D** , at which such a
transformation of the shape of the singularity occurs~the
solid line in Fig. 2! can be found from the solution of th
equationf(0;D** )52p/3 @see the inset in Fig. 2~a!#, re-
sulting from the conditiong8(«→01)50.

The physical significance of this transition is related to t
fact that, atD.D** , the peak width of the spectral densi
around the singularity becomes comparable with the p
position. This means thatD** corresponds to the Ioffe
Regel crossover for the propagation of plane waves cha
terized by the energies«kb→0.17 In other words, forD
&D** , there is a finite low-energy interval of the wea
scattering regime for plane-wave propagation, but forD
*D** , all plane waves propagate in the regime of stro
scattering.

Similar CPA analyses can be performed for lower dime
sions, and they result in zero-energy singularities as well
2D ~for D.D* ), a logarithmic singularity g(u«u→0)
.p21@z9(«)/uz(«)u2#x2lnu«u evolves on the background o
the van Hove band-edge singularity. In 1D, the divergence
the disordered DOS from both sides of zero energy is e
more pronounced: g(«).2x1u«u21/2uz(«)u21/2sin@f(«)/2
2u(«)p/2#.
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The link between lattice models and topologically diso
dered liquids and glasses is, of course, not straightforw
The above mean-field analysis for disordered lattices uses
existence of an orthonormal plane-wave basis, which is
sent in topologically disordered systems. Nevertheless
orthogonalized basis resembling a plane-wave basis, at
in the region of zero energy, can readily be constructed,17 so
that it might be expected that the same universal sing
behavior of the DOS around«50 should also occur for to
pologically disordered systems. Indeed, the singularity is e
dent for a model liquid with predominantly icosahedral ord
@Fig. 1~a!#, and it is remarkable that the evolution of th
shape of this singularity with decreasing temperature mirr
that found in lattice models with decreasing force-const
disorder@Fig. 2~b!#. Both regimes of the singular behavio
are evident from the numerical experiment@Fig. 1~a!#: ~i! the
high-temperature liquid state~circles! can be characterize
by relatively large disorder (D*D** ); ~ii ! the state just
above the glass-transition temperature~solid curve! can be
associated with the intermediate disorder regime (D* &D
&D** ). The situation for vitreous silica@Fig. 1~b!# is differ-
ent. At both temperatures, below and above the glass tra
tion, the models stay in the regimeD&D** , which is not
surprising because silica is a very strong glass-forming liq
@especially in comparison with the fragile system shown
Fig. 1~a!#, and is characterized by well-defined and sta
local tetrahedral order even at very high temperatures~this
means that the disorder, i.e.,D, is relatively small!. A more
ys
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detailed analysis~including the glass-transition region! will
be presented elsewhere.

In conclusion, we have demonstrated the presence
midband zero-energy singularity in the spectrum of the
stantaneous dynamical matrices of topologically disorde
structural models of liquids and of the dynamical matrices
disordered lattices which well mimic the former. The pre
ence of exact sum-rule correlations between the diagonal
off-diagonal elements in the disordered dynamical ma
causes this singularity. The shape of the disorder-indu
singularity, at least in lattice models, is universal and d
pends only on the dimensionality of the model. Such a u
versality is related to the universal«kb

21-behavior of the spec-
tral density in the plane-wave basis, which is due to
multiplicative nature of the effective interaction mean fie
@the mean-field energy of the quasiparticles,«̃kb , is the prod-
uct of the dimensionless effective interactionz(«) and the
bare crystalline energy«kb , i.e., «̃kb5z(«)«kb]. This prop-
erty distinguishes the above class of Hamiltonians fr
those with pure on-site energy disorder, characterized by
additive effective field,14 which do not exhibit a zero-energ
singularity. Thus, the failure of the homomorphic effecti
field ~containing both additive and multiplicative contribu
tions! in reproducing the zero-energy singularity for th
Anderson Hamiltonian with pure off-diagonal disorder wit
out correlations in simple cubic lattices can be explained
successful effective field for such a problem should not c
tain the additive part, at least at zero energy, but its const
tion is still an open question.
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