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Disorder-induced zero-energy spectral singularity for random matrices with correlations
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A zero-energy midband singularity has been found in the energy spectrum of random matrices with corre-
lations between diagonal and off-diagonal elements typical of vibrational problems. Two representative classes
of matrices, characterizing the instantaneous configurations in liquids and mechanically unstable lattices
(which mimic the formey, have been analyzed. At least for disordered lattice models, the singularity is
universal and its origin can be explained within a mean-field treatment.
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Many physical phenomena can be described by the=2\[¢[g(e), is of interest in the INM analysis, but the sin-
Anderson Hamiltonian with off-diagonal disordésee, e.g., gularity is masked there by the linear factap 2and that is,
Ref. 1 and references thergirStochastic transpoftatomic  probably, why it has not been carefully studied before.
vibrations in disordered structurésee, e.g., Ref. 3 and ref- Therefore, there exists a peculiarity in the spectrum of
erences therejn and instantaneous normal-modéNM)  random matrices with sum-rule correlatiofiastantaneous
analysis in liquids and glassegalled below “vibrational”  dynamical matricesand its origin can be revealed analyti-
problemg are among these. However, there is one key pointally as follows. Consider a Hamiltonian describing both the
which distinguishes vibrational problems from the standarcelectron and vibrational problems:
electron problems: there exist strong sum-rule correlations
between the off-diagonal and diagonal elemdtiie sum of .
all the elements for a particular row is zgmf the relevant H=2> (Si— v tij)|i><i|+,2, tij [l 1)
random matrices for the vibrational problem. ' 17 R

In different dimensions@®=1-3), the energy spectrum
of the electron Anderson Hamiltonian with pure off-diagonal
disorder defined on the simplaypen cubic lattice(but not,
as we have checked, on the fcc latji@xhibits a peculiar
feature: a disorder-induced, midbafmbro-energy singular-
ity occurs®® Normally, disorder smears out sharp features in
a spectrum(e.g., van Hove singulariti¢sbut in this case it
creates a singularity, the origin of which in different dimen

sions is still controversial. However, can disorder induce . .
+A]. The vibrational(scalay problem corresponds tp=1

similar (or differeny singularity for vibrational problems . . N
and, if so, can its origin be revealed? In this paper, we demW'th the other parameters being the same. For atomic vibra-

onstrate the existence of a midband zero-energy singularity
in the spectrum of dynamical matrices involved in an INM
analysis of a model of a monatomic liquid, and investigate
analytically and numerically the nature of this zero-energy
singularity in the spectrum of random matrices with sum-rule
correlations, appearing in disordered lattices which mimic@o'10 |
topologically disordered liquids. o
We have observed the occurrence of a singularity by nu—g
merical experiment, in which structural models of a liquid Oyos |
with predominantly icosahedral ordésimilar to those dis- '
cussed in Ref. 6and of glassy and liquid silicésimilar to
those discussed in Ref. lfave been constructed at different
temperaturesl’ by slow molecular dynamics quenchésy 0.00 Lmrmrt
constant volume and temperature sjepbe INM spectra of -3 -2 -1
the dynamical matrix are shown in Fig. 1. A zero-energy £

singularity is clearly present in the energy spectig(a) for FIG. 1. The energy spectrum(e) for the instantaneous dy-
the icosahedral liquid and p055|b|)/ in sili¢at least, the namical matrices for an INM analysis @) a liquid with predomi-
tendency of the change of the density of stal2®S) around  nantly icosahedral ordef1620-particle model averaged over 90
zero is consistent with the model presented béld®imilar  configurations at two temperatures, as markéthe units are the
zero-energy peaks have been found not explainedn lig-  same as in Ref.)éand of(b) glassy(the solid curvgand liquid(the
uid theorie$® and in simulations of a binary Lennard-Jonesdashed curvesilica (1650-particle model averaged over 20 con-
liquid.® Normally, the DOS in the frequency domaig, figurations. The energy units for silica are TRz

whereeg; andt;; stand for the random on-site energies and
the random transfer integrals between sitesd |, respec-
tively. The parametery controls the correlations between
diagonal and off-diagonal matrix elements. The standard
electron Anderson Hamiltonian with pure off-diagonal disor-
der corresponds tg=0 ande;=0, with t;; being random
_variables taken, for example, from a unifofiwox) distribu-
dion of width 2A centered aroundy=—1, tj; e[to—A,tg
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0.2 The zero-energy singularity occurs fr=1 and disap-
pears ify#1, i.e., when the exact sum-rule correlations of
elements in the dynamical matrix break down. The func-

10.15 tional form of the zero-energy singularity observed is univer-

sal (i.e. independent of the type of distribution of the force

constants, the reference lattice symmetry, scalar or vector

1 0.1 type of vibrations, etg.for the class of Hamiltonians given

by Eq. (1) with y=1 ande;=0, and depends only on the

dimensionality of the problem. For sufficiently large disor-

1 0.05 der, the(parity-independentsingularity occurs in the mid-

band region of the spectrum, far from the localized states in

the three-dimensiondBD) case(as checked by multifractal
analysi$ and in the range of prelocalized states for lower
dimensions. The analytic mean-field solution shows that its
£ € appearance is dictated by the universal nonanalytic behavior

FIG. 2. (a) Evolution of the zero-energy singularity in the Dos Of the spectral-density operator in the plane-wave basis and,
for a disordered fcc lattice with various values of disorde¢a, ~ ©SSentially, is a consequence of the fact that zero-energy
~1.3 andA,, =2.2). The thick curves were obtained by the nu- (Iong-wavelengthplane waves contribute anomaloushut
merical integration of the CPA DOS given by H@), while the thin ~ NOt solely to the disordered eigenstates with energies around
ones are the results of precise numerical KPM solution for vectoZ€rO0.
vibrations in a 136 130x 130 site fcc lattice. The difference be- ~ The DOSg(¢) for a disordered lattice is the trace of the
tween the CPA and KPM curves around both band edges is due tgpectral-density operatoﬁ\(s) =(8(e— |3|)> taken in the
the known failure of CPA to reproduce the localized band tails. Thegonvenient orthonormal basis of crystalline eigenstgtgs)
inset shows the phasg(0) of the effective field at zero energy vs (k is the wave vector of a plane wave from the braghof

disorderA. The critical values of disorder are indicated by arrows. the same Hamiltonian. but without disordex € 0) and av-
(b) An enlargement of the zero-energy region. The CPA results Obéraged (---)) over the distribution of random Variable§
tained by use of Eqs(2) and (4) are not distinguishable on this A crys i crys '
energy scale. g(8)2f<<k,,8|A(8)|k,,B>>g . t(gk,B)dSkﬁ! Wlthg I(skﬁ) .
being the crystalline vibrational DOS. The diagonal matrix

) o i element of the spectral-density operatoA(e,syp)
tions, the Hamiltonian corresponds to the dynamical opera-_<k ,B|A(s)|k B), can be found within the CPARefs. 3

tor, transfer integrals toztgle force constants and energy to thaend 14—16 via the complex effective interaction fiekl<)

squared frequency,= w~. T L
We have calculated by the kernel polynomial metffod =2'(e)+iz'(e), so that
(KPM) the spectrum of the “vibrational” Hamiltoniaril)

DOS, g(e)

(see the thin lines in Fig.)Zor y=1 ande;=0, defined on __ 1 (exg/e)l(e) crys

. ; . a(e) — 5 2 .9 t(81<[>>)CL‘3|<B,
the fcc lattice(actually, of its more general version for vector T [exg—e(e)]°+T%(e)
vibrations; see Ref. 3 for more defaiFor sufficiently large (2)

degrees of disordeA>A, (Ay=1.4-1.5), the zero-energy .

singularity is evident(Fig. 2. Moreover, the shape of the With

singularity is similar to that found for topologically disor- _

dered modelsFig. 1), indicating its possible universality e(e)=ez'(e)l|z(e)>, T(e)=—eZ"(e)l|z(e)]®. (3)
(see below. We have also calculated the DOS for the same o o . .
problem within a mean-field approagthe single-bond co- The effective interaction fleld(s)_ls found from the solution
herent potential approximatiiCPA)], and found remark- of the self-consistent CPA equatl(m?e Ref. B The real part
ably good agreement with the precise numeri¢éPM) re- _z’(s)_ quctuates_ around its crystalllnc_a va_tllzezl, and the
sults (cf. thick and thin lines in Fig. Rin the singularity ~imaginary part is smooth and negative in the region of the
region for A=A, [(Ag—A,)/A, <1; see below for a dis- nonvanishing .dlsordered spectrum, aqd zero otherwise. The
cussion ofA, ], i.e., when the localization threshold is far SPectral densit)A(z,y4)) as a function ofey; has the
enough below zero energy. This agreement is surprigihg Shape of a peak characterized by a width parame{er)

first sighy, because it is commonly believégee, e.g., Ref. located at an energy pea=|el|z(e)| *=[e(e) +I'(e)]2

11) that mean-field theories fail to reproduce sharp feature¢see Fig. 3.

in a spectrum. For example, the most successful homomor- As follows from Eq.(2), the disordered DOS is generi-
phic cluster CPA(Refs. 12 and 18 well reproduces the cally related to the crystalline DOS for a reference system
whole spectrum for the electron problem with pure off-convolved with the peak-shaped spectral density,
diagonal disorder ¢=0), except for the zero-energy singu- (A(e,&y)). For small disorder £ —0), the spectral density
larity. Below, we explain why the CPA reproduces the zero-is very narrow and close in functional form &e — &), SO
energy singularity for vibrational problems but not for the that the disordered DOS strongly resembles its crystalline
electron one, and we use this insight to reveal the physicatounterpart. With increasing disorder but b A, (where
origin of the singularity. the spectrum of the Hamiltonian is still non-negative and the
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tion region in Eq(2) into a low-energy parts, ;<eg, where
g°¥(e)=xpeP’?~1 (the Debye law, and the rest of the
band,e.z> e (irrelevant for the shape of the singuladity
The final result for the disordered DQSD case in the limit
|e|—0 is the following:

Csing(e) x3le|Y?  [3(e)
g(e)=- S

ar
7|z(e)] |z(s)|3’2°I 2 +9(8)5}’
(4)

where C= [[g®¥®(e)/e]ds is a model-dependent constant,
¢(e)=ard z(e)] is the phase of the effective field, afs)

0 ' ' ' is the Heaviside functionf(e<0)=0 and (¢>0)=1.
0.0 0.5 1.0 1.5 2.0 o . . . . .
e Bearing in mind that the effective field is a smooth function
kp of energy around zero, we can conclude from &g that, in

the 3D case, the disordered DOS is a continuous function
; At 12 o ;
crystalline energy,z at values of disordered energyas marked around_ zero but its derivative shows == singular behavior
(for A=A,, ), for vector vibrations in the force-constant disordered (see Figs. 1 an.d)2 . ) o
fcc lattice. The inset shows the energy dependence of the spectral- 11€ expressiofd) for g(z) has been obtained in the limit

density peak width parametdt(e) [Eq. (3)], for different values of |8|—’.0 for any degree of disorder. The evolution of the sin-
disorder, as marked. gularity with disorder(see Fig. 2 is determined by the de-

pendence oM of the effective field at zero energy. The

lattice is mechanically stable the spectral-density peak be- phase(0;A) varies in a critical manner with disordgsee
comes broader and washes out all the van Hove singularitigge inset in Fig. 2a)], being zero below the critical disorder,
in the crystalline spectrum, except the boundary singularityA<A, , when the zero-energy singularity is just a lower
around the lowest band edgey;,=0. band-edge van Hove singularity. Above the critical disorder,

When the disorder exceeds the critical CPA valde, A>A,, the derivative of the DOS becomes singular from
>A, , the number of negative force constants becomes spoth sides about=0. If the disorder is not too largey,
large that the system is no longer mechanically stable evenirA<A,, , the sign of the derivative is positive on both
the mean-field limit, and negative eigenvalues appear in theides of the singularity and the DOS is monotonic in the
spectrum(as in instantaneous configurations of ligdidse., singularity range[see the upper curve in Fig.(8]. For
the lower boundary of the CPA spectrum moves below zertigher disorderA>A,, , the derivative changes sign at the
energy,emin<0. Exactly in this regime, the midband zero- singularity and the disordered DOS exhibits a sharp maxi-
energy singularity in the disordered CPA spectrum evolvesmum at zero energfsee the lower curve in Fig.(8)]. The
Indeed, if we look at the evolution of the spectral-densitycharacteristic value of disordef=A,, , at which such a
width parametef” (&) with increasing disordefsee the inset transformation of the shape of the singularity occ(tise
in Fig. 3), we can clearly see that the peak width is still zerosolid line in Fig. 3 can be found from the solution of the
at zero energyl’(0)=0, being a consequence of EQ),  equation(0;A,, )=— /3 [see the inset in Fig.(d)], re-
even though the value of the effective field becomes finite agulting from the conditiorg’ (¢ —0+)=0.
this point[2"(0)+0]. This means that the spectral density ~ The physical significance of this transition is related to the
(A(e=0.p)) as a function of the crystalline energy,;  fact that, atA=A,, , the peak width of the spectral density
has a singularity ak,;=0 (see Fig. 3. The zero-energy around the singularity becomes comparable with the peak
point, in this regime 4>A,), belongs to the midband re- position. This means thah,, corresponds to the loffe-
gion. The finite value o&"(0) immediately gives rise to a Regel crossover for the propagation of plane waves charac-
different singular shape of the spectral dens{#(0,e;)) terized by the energieskﬁﬂo_17 In other words, forA
2_771[211(0)”2(0”2]8;[31 (see Fig. 3 as compared to the =<A,, , there is a finite low-energy interval of the weak-
S-functional shape of the spectral density for the<A, scattering regime for plane-wave propagation, but for
regime, where bothI'(0) and z’(0) are zero. The =A,, , all plane waves propagate in the regime of strong
o-functional shape of the spectral density reproduces thecattering.
crystalline van Hove singularitg(e)<e(®?~1, at the lower Similar CPA analyses can be performed for lower dimen-
band edge, but the,;Bl shape of the spectral density at sions, and they result in zero-energy singularities as well. In
=0, convolved with the crystalline DOBee Eq.(2)], re- 2D (for A>A,), a logarithmic singularity g(|e|—0)
sults in a singularity of a different type in the disordered=m"[2"(¢)/|z(¢)|*]xInle| evolves on the background of
DOS which is not related to the crystalline van Hove singu-the van Hove band-edge singularity. In 1D, the divergence of
larity at e=0 (see below. the disordered DOS from both sides of zero energy is even

The shape of the midband zero-energy singularity can beore pronounced: g(e)=— x1|e|~ ¥4 z(e)|~ Y2sin ¢(e)/2
obtained analytically within the CPA by splitting the integra- — 6(&) 7/2].

FIG. 3. Dependence of the spectral dengify(s,e,z)) on the
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The link between lattice models and topologically disor-detailed analysigincluding the glass-transition regipmill
dered liquids and glasses is, of course, not straightforwarche presented elsewhere.
The above mean-field analysis for disordered lattices uses the In conclusion, we have demonstrated the presence of a
existence of an orthonormal plane-wave basis, which is apMidband zero-energy singularity in the spectrum of the in-
sent in topologically disordered systems. Nevertheless, afiantaneous dynamical matrices of topologically disordered
orthogonalized basis resembling a plane-wave basis, at |ea§&ructural models of liquids and of the dynamical matrices of

in the redion of zero ener n readilv b nstrutte isordered lattices which well mimic the former. The pres-
€ region or zero energy, can readily be constructe ence of exact sum-rule correlations between the diagonal and

) dbff-diagonal elements in the disordered dynamical matrix
behavior of the DOS arounel=0 should also occur for to-  causes this singularity. The shape of the disorder-induced
pologically disordered systems. Indeed, the singularity is evisingularity, at least in lattice models, is universal and de-
dent for a model liquid with predominantly icosahedral orderpends only on the dimensionality of the model. Such a uni-
[Fig. @], and it is remarkable that the evolution of the versality is related to the universa[[}-behavior of the spec-
shape of this singularity with decreasing temperature mirrorgral density in the plane-wave basis, which is due to the
that found in lattice models with decreasing force-constantnultiplicative nature of the effective interaction mean field
disorder[Fig. 2(b)]. Both regimes of the singular behavior [the mean-field energy of the quasiparticE:q@B, is the prod-

are evident from the numerical experimé¢fig. 1(@)]: (i) the  uct of the dimensionless effective interactiafe) and the
high-temperature liquid stateeircles can be characterized bare crystalline energyy,, i.e-,5k5=2(8)ekﬁ], This prop-

by relatively large disorder X=A,, ); (i) the state just erty distinguishes the above class of Hamiltonians from
above the glass-transition temperat(selid curve can be those with pure on-site energy disorder, characterized by an
associated with the intermediate disorder regime €A additive effective field* which do not exhibit a zero-energy
=A,, ). The situation for vitreous silicéFig. 1(b)] is differ-  singularity. Thus, the failure of the homomorphic effective
ent. At both temperatures, below and above the glass trandfield (containing both additive and multiplicative contribu-
tion, the models stay in the regime<A,, , which is not tions) in reproducing the zero-energy singularity for the
surprising because silica is a very strong glass-forming liquidAnderson Hamiltonian with pure off-diagonal disorder with-
[especially in comparison with the fragile system shown inout correlations in simple cubic lattices can be explained. A
Fig. 1(@)], and is characterized by well-defined and stablesuccessful effective field for such a problem should not con-
local tetrahedral order even at very high temperat(tieis  tain the additive part, at least at zero energy, but its construc-
means that the disorder, i.€\, is relatively sma)l. A more tion is still an open question.
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