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Sample shape influence on the antiferroelectric phase transitions in dipolar systems subject
to an external field
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A continuous change in the macroscopic shape of a sample from a needle through a sphere to a plate is
shown to greatly affect phase transitions in Ising dipolar systems. The first- and second-order phase transition
lines with critical and tricritical points appear, coexist, and disappear on the phase diagram with varying sample
shape. The values of the shape-dependent depolarization factor corresponding to the changes in the phase
diagram are identified.
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Thermodynamic states of a system with long-ran
dipole-dipole interactions between particles generally dep
on the system’s macroscopic shape. This dependence re
from the boundary depolarization field modifying the sa
ple’s polarization, either electric or magnetic, that aris
spontaneously or due to an external field. The influence
the sample shape on various properties of dipolar and m
netic systems was studied, for instance, in Refs. 1–3. It
become clear from the results of Refs. 4 and 5 that a dip
system undergoing a phase transition into a state with sp
taneous ferroelectric or ferromagnetic order is macrosc
cally inhomogeneous for all sample shapes, except for
needle.6 This macroscopic inhomogeneity complicates inv
tigations of the sample shape influence on the order-diso
phase transitions.7

The present work reports a theoretical study of the sam
shape influence on the antiferroelectric~AFE! phase transi-
tions in electrodipolar systems in an external field. The m
roscopic electronic polarization is generated in AFE syste
only in the presence of the external field and, therefore,
ordered states of the model described below are spat
homogeneous for samples of all shapes. Since the ma
scopic electric polarization is related via the depolarizat
factor to the sample shape, on the one hand, and to the
order parameter, on the other hand, the sample shape
comes yet another external parameter that influences
properties of the system. We show that in addition to su
external parameters as temperatureT, electric fieldE, and
concentration of dipolar particlesx, the macroscopic shape o
a system determines its thermodynamic states and cha
location and even the type of the phase transition. The res
presented here for the electrodipolar system are easily tr
ferable to magnetodipolar systems.

The theoretical study reported here is based on the exp
mental investigation of polymer solutions of quasilinear
polar chromophores~CP’s!.8–10 These solutions merit atten
tion for the following two main reasons. First, they form a
excellent experimental realization of the model systems
are widely used in theory and simulation of liquid crystalli
and electric properties of aggregates.7,11,12Second, the poly-
mer solutions of dipolar CP’s frozen in the presence o
strong poling field8–10,13,14possess a number of practical
important nonlinear optical properties and find wide indu
trial applications. The quality and efficiency of such syste
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is determined, to a large extent, by the maximum achieva
macroscopic density of the dipole moment.

Experimental investigation of the nonlinear electro-op
coefficient8–10 show that the density of the electric mome
grows with increasing CP concentration, but later reache
maximum and dramatically decays. This behavior has b
explained by the growth of the AFE dipole-dipole interacti
component.8–10 References 15 and 16 develop an analy
cally solvable model that interprets the experimental obs
vation by the phase transition from a paraelectric~PE! state
to an AFE state. It has been shown that the dipole mom
density and, as a result, the magnitude of the electro-o
coefficient are maximal at the point of phase transition
tween the disordered and ordered states. In correspond
to the experimental setup, References 15 and 16 consid
the depolarization field of slab samples only, and noted t
an explicit consideration of the slab boundary changes
location of the phase transition in the~E, x! plane. It was
concluded, based on the results of Refs. 15 and 16 that
macroscopic shape of the sample could be accounted fo
the investigation of AFE phase transitions in dipolar system

Here we present a systematic study of the effect of
change of the sample shape from oblate to prolate. First,
demonstrate how the location of the AFE phase transition
the ~E, x! plane depends on the sample shape. Second
observe that the type of the phase transition can change
first to second order, and that critical points of several kin
can appear and disappear as a result of the variation of
sample shape, while keeping the other external parame
fixed. It follows from the data below that the sample sha
should be part of the phase transition coordinate set.

The model used here is similar to that of Refs. 15 and
It assumes that a system of quasilinear CP’s at an experim
tally relevant density exists in a nematic or smectic state. T
state is formed due to the short-ranged excluded volume
Gay-Berne forces.17 While formation of this state is not ex
plicitly considered, it is important that the long axes of t
quasilinear molecules are directed along the selectedZ direc-
tion. The centers of mass of the molecules have a liqu
crystal position order, and the electric state of molecular
poles is considered in the presence of this position order.
molecular dipoles are located in the molecular centers
mass, and are directed along the quasilinear molecular a
The thermodynamic dipolar states arise as a result of c
©2002 The American Physical Society04-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 052104
peting dipole-dipole and dipole-field interactions. The ext
nal electric field is directed along the selectedZ axis. The
shape of the sample is defined by the ellipsoid of revoluti
and ranges from a plate to a needle. The orientations of
longest molecular axes stipulated by the spatial order s
gests an Ising structure for the dipole-dipole Hamiltonian

H5~m2/2«! (
lÞm

d~ l ,m!s l
zsm

z 2~mE/«!(
l

s l
z ~1!

wheres l
z561 is the Ising variable,m is the magnitude of

the molecular dipole moment,« is the polymer dielectric
constant, andd( l ,m)5@r lm

2 23(r lm
z )2#/r lm

5 , wherer lm is the
radius vectors between CP’sl andm. For simplicity, the CP’s
are placed on a simple cubic lattice. We assume that
considered system of interacting dipoles exists as a func
of the external parameters in either a PE or AFE state.15,16

The AFE state has the following structure described in te
of two sublattices. CP’s in chains along theZ axis belong to
the same sublattice. CP’s in adjacent chains belong to di
ent sublattices. This type of state in dipolar Ising systems
a cubic lattice in the absence of the field was first conside
in Ref. 18. The indicesg and f enumerate CP’s in the firs
and second sublattices, correspondingly. In the s
consistent two sublattice approximation, Hamiltonian~1!
takes the form

H52~m2N/4«!@~s1
21s2

2!A12s1s2B#

1~m2/«!F ~s1A1s2B!(
g

sg
z1~s2A1s1B!(

f
s f

zG
2~mE/«!S (

g
sg

z1(
f

s f
zD , ~2!

HereN is the total number of CP’s in the system.s1 ands2
are self-consistent parameters that in the equilibrium s
give thermodynamically averaged dipole moments, i.e.,
larizations of the first and second sublattices. The dipo
sumsA andB are given by

A5(
d1

d~g,g1d1!5(
d2

d~ f , f 1d2!, B5(
d2

d~g,g1d2!,

where the summation indicesd1Þg andd2Þ f and run over
the first and second sublattice CP’s relative to CP’sg and f.
The dipolar sums are calculated by the well-known te
nique, e.g., Refs. 19 and 20, where eachA andB is the sum
of three terms. The first term comes from the summat
over the CP’s inside the Lorentz sphere. The other two te
are due to the electric charges accumulated on the exte
surface of the Lorentz sphere and on the internal surfac
the sample. The dipolar sums inside the Lorentz sphere
idly converge, and, similarly to Refs. 15 and 16, the near
neighbor approximation is used. The resulting expressi
for A andB are

A1B5p~n21/3!/a3, A2B528/a3,
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wherea is the cubic lattice constant, andn is the depolariza-
tion factor along theZ axis of the rotation ellipsoid. The
values ofn range from 0 for a needle to 1 for a plate. In
spherical sample,n51/3. The effective Hamiltonian@Eq.
~2!# depends on the shape of the sample through its de
dence onA andB.

Hamiltonian ~2! produces the nonequilibrium thermody
namic potential of the system under studyf (s,l ) that de-
pends on the macroscopic polarizations5(s11s2)/2 and
the AFE order parameterl 5(s12s2)/2. At a constant tem-
peratureT, the thermodynamic potential normalized toNT/2
is equal to

f ~s,l !52xh~ l 22as2!2 ln~coshe1!2 ln~coshe2!22 ln 2,
~3!

wherex51/(a31020) is the normalized number of particle
in a unit volume,h5(4m21020)/(«T), e1,25e6bl2bas,
ande5(mE)/(«T). Note that the CP concentrationx is con-
tained in b52xh, while a5p(n21/3)/2 determines the
shape dependence via the depolarization factorn and
changes from2p/6 to p/3. Setting the partial derivatives o
potential~3! with respect tos andl equal to 0, the following
equations for the stationary values ofs and l are obtained:

2s5tanhe11tanhe2 , 2l 5tanhe12tanhe2 . ~4!

The values ofs and l range in the interval 0<s, l<1. So-
lutions of Eqs.~4! with l 50 describe PE states, while solu
tions with lÞ0 describe AFE states.

Paraelectric states. With l 50, the values ofs are found
from the equation

s5tanh~e2abs!. ~5!

The region of stability of the PE states is given in the~E, x!
plane by a line whose equation is found by first separat
the PE solution of Eqs.~4! and then taking thel→0 limit in
the remaining solution. The resulting equation is

e5 ln~Ab1Ab21!1aAb~b21!, ~6!

where the reduced electric fielde is defined above, andb and
a are also defined above and are proportional to the CP c
centration x and depolarization factorn, correspondingly.
The PE state stability lines described by Eq.~6! are shown in
Fig. 1 for different sample shapes. All lines start at the po
(e050,b051), independent ofa. The shape of the line, on
the other hand, depends significantly ona. For oblate
samples witha.0, the electric field on the stability line
grows with increasing CP concentrationx. The growth is
linear for largex. For the spherical case witha50, the elec-
tric field grows as a logarithm of the concentration. The s
bility lines of prolate samples witha,0 exhibit maxima at
b5(121/a)/2 and terminate ate50. The CP concentration
at the end of the line is determined by exp@2aAb(b21)#
5Ab1Ab21. The PE state stability lines of prolate sampl
are qualitatively different from those of oblate samples. T
PE states in prolate samples are unstable only within a fi
bounded region on the~E, x! plane; see Fig. 1. The data a
given for the following typical values of the parameters:m
4-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 052104
513D, «51, andT5373 K. The electric fieldE is given in
characteristic units of 100 V/mm.8–10,15,16

Antiferroelectric states. Solutions to Eq.~4! with lÞ0 de-
scribe AFE states. Upon elimination of the PE solution, E
~4! can be conveniently expressed in the forms

e5abs10.5 ln~g1Ag221!,
~7!

s5A122l /tanh~2bl !1 l 2, g5sinh~2bl !/ l 2cosh~2bl !.

Equations~7! define the AFE state stability lines. The u
usual shape of the PE stability line witha,0 suggests that
in addition to the second-order phase transitions, the sys
under study can exhibit phase transitions of the first order
this case, the lines separating the stability regions of the A
states do not coincide with the stability lines for the P
states, and a region in~E, x! plane exists where the PE an
AFE states are stable simultaneously. The equation des
ing the AFE stability lines is obtained by combining Eqs.~7!
with their derivative with respect tol. After some transfor-
mations, the result is

2b~2ba2a11!5
1

l 2 S 2bl

tanh~2bl !
21D S 2bla

tanh~2bl !
11D .

~8!

Given a value ofl from the @0,1# interval, the AFE stability
line is constructed by calculation ofx from Eq. ~8! and E
from Eq. ~7!. Depending on the sample shape and other
ternal parameters, the stability lines for the ordered sta
typically end in tricritical points~t! located on the stability
lines of the disordered states. The concentration at the
ritical point can be found from Eq.~8! in the limit of l
→0:

bt5@3~12a!#/@2~122a!#. ~9!

The electric field at the tricritical point is found by substitu
ing bt into Eq. ~6!. bt reaches its minimum value ofbt
'1.116 for needle-shaped samples witha52p/6 and n
50. As a increases,bt grows as well. For example, fo
spherebt5

3
2. In the limit of a→ 1

2 (n→ 1
3 11/p'0.652) the

values ofbt'3/@4(122a)# andet'3/@8(122a)# become
infinite. Thus, for oblate samples witha> 1

2 , the tricritical

FIG. 1. Stability regions of the PE states. The lines from bott
to top correspond to depolarization factors ofn50, 0.15, 1

3, 0.58,
and 1. All lines start at the same pointx0 , independent of the
sample shape.
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point is absent; therefore, the AFE stability lines in the fir
order phase transition region of the phase diagram do
terminate at the PE stability lines.

Numerical investigation of the AFE stability lines for dif
ferenta shows lines of two types. According to Eqs.~7! and
~8! with l changing from 0 to 1, the concentration and ele
tric field both increase along the lines of the first type,
illustrated by the bold dashed lines in Fig. 2. This behavio
characteristic of the needle and spherical samples. Unu
beak-shaped lines of the second type appear for the sam
with a.a0 , the value ofa0 to be determined below. Line
of the second type are illustrated by bold dashes in Fig
Prior to the normal increase with increasingl, lines of this
type decrease toward the apex of the beak. The apex is
critical point of the first-order phase transition. The AF
states within the narrow concentration interval inside
beak compete not only with the PE states, but also w
another set of AFE states characterized by different value
s andl. The coordinates of the critical point can be found
combining Eq.~8! with its derivative with respect tol:

4~2ba112a!~22yl
~1!l !/ l 222bayl

~1!y/ l 350, ~10!

wherey5@2bl/tanh(2bl)21#/b andyl
(1) is the derivative ofy

with respect tol. As l approaches 0, the coordinates of t
critical point @Eq. ~10!# approach the coordinates of the tri
ritical point @Eq. ~9!#. This condition givesa05 1

4. Therefore,
beak-shaped AFE stability lines with the critical points insi
the ordered phase exist only in the samples witha. 1

4. A
similar behavior was observed in antiferromagnetics with
single ion anisotropy.21,22 As follows from an analysis of
Eqs. ~9! and ~10!, the existence of the critical point puts a
upper bound ona, which is a51, corresponding ton51/3
12/p'0.97. Approaching the upper bound, the coordina
of the critical point evolve asbc ,ec;2/(12a), and diverge
to infinity. Thus the critical point exists only in samples wi
1.a. 1

4. In the narrow interval ofp/3>a>1 only second-
order phase transitions are possible. In particular, in fl
plate-shaped samples that are typical in the experiments8–10

FIG. 2. Phase transitions in the needle-shaped sample win
50 ~bottom lines!, and a spherical sample withn5

1
3 ~top lines!.

Between pointsx0 and t the dashed lines describe the second or
phase transition between the PE and AFE states. To the right o
tricritical points t, the system exhibits phase transitions of the fi
order~thick solid lines!. The regions of stability of the PE and AFE
states to the right of the tricritical points are given by long and sh
dashed lines, correspondingly.
4-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 052104
only second-order phase transitions are possible over
whole parameter range, as illustrated in Fig. 1 by the A
stability line for n51.

Phase transitions of the first order occur on the lines
thermodynamic equilibrium between the two phases. T
equilibrium lines are obtained by equating the thermod
namic potentials@Eq. ~3!# corresponding to PE and AFE
states

f ~sp,0!5 f ~sa ,l !, ~11!

wheresp obeys Eq.~5! andsa , l obey Eq.~7!, as shown in
Fig. 2 by solid lines. For clarity, only cases without the cri
cal points are illustrated. In the presence of critical poin
two closely spaced phase transition lines coexist near
beak in the~E, x! plane. For instance, if in Fig. 3 the con
centration is kept constant atx51.2 and the strength of the
electric field is increased, an ordered state that exists at
fields will transform into another ordered state after cross
the first-order phase-transition line. Then the second orde
state will turn into a PE state by crossing the line of t
second-order phase transitions.

In summary, we have shown that the macroscopic sh
of the sample strongly influences the phase transitions in
Ising dipolar AFE that is subjected to an external elect
field. Substantial quantitative and qualitative changes in
phase diagram occur as the shape of the sample cha
from a needle with a depolarization factorn50 to a plate
with n51. Critical and tricritical special points appear on th
phase diagram depending on the sample shape. Only with
small range of 1>n>1/312/p does the phase diagram co
.e
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tain a single second-order phase transition line. For o
values ofn various combinations of the first- and secon
order phase transitions are present. The range ofn respon-
sible for the coexistence of the tricritical and critical points
determined. TheT, m, and« parameters have been held fixe
in this study, but can be used to shift the special points to
experimentally convenient region.

Financial support of NSF, Award No. 0994012 and U
versity of Washington Royalty Research Fund is gratefu
acknowledged.

FIG. 3. The beaklike fragment of the stability regions of t
AFE ~thick dashed line! and PE~thin dashed line! states for the
oblate ellipsoid with the depolarization factorn50.58. The first-
order phase-transition critical point is denoted byc. The tricritical
point with coordinatesx51.555 andE53.21 lies outside the scal
of the figure. The phase equilibrium line~the thick solid line in Fig.
2! is omitted for clarity.
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