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Sample shape influence on the antiferroelectric phase transitions in dipolar systems subject
to an external field
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A continuous change in the macroscopic shape of a sample from a needle through a sphere to a plate is
shown to greatly affect phase transitions in Ising dipolar systems. The first- and second-order phase transition
lines with critical and tricritical points appear, coexist, and disappear on the phase diagram with varying sample
shape. The values of the shape-dependent depolarization factor corresponding to the changes in the phase
diagram are identified.

DOI: 10.1103/PhysRevB.65.052104 PACS nuntder64.70—p, 42.70.Jk, 64.60.Kw, 77.80e

Thermodynamic states of a system with long-rangeis determined, to a large extent, by the maximum achievable
dipole-dipole interactions between particles generally depenthacroscopic density of the dipole moment.
on the system’s macroscopic shape. This dependence resultsExperimental investigation of the nonlinear electro-optic
from the boundary depolarization field modifying the sam-coefficienf~° show that the density of the electric moment
ple’s polarization, either electric or magnetic, that arisesgrows with increasing CP concentration, but later reaches a
spontaneously or due to an external field. The influence omaximum and dramatically decays. This behavior has been
the sample shape on various properties of dipolar and magxplained by the growth of the AFE dipole-dipole interaction
netic systems was studied, for instance, in Refs. 1-3. It hasomponenf~1° References 15 and 16 develop an analyti-
become clear from the results of Refs. 4 and 5 that a dipolacally solvable model that interprets the experimental obser-
system undergoing a phase transition into a state with sporation by the phase transition from a paraelectR€&) state
taneous ferroelectric or ferromagnetic order is macroscopito an AFE state. It has been shown that the dipole moment
cally inhomogeneous for all sample shapes, except for thdensity and, as a result, the magnitude of the electro-optic
needle® This macroscopic inhomogeneity complicates inves-coefficient are maximal at the point of phase transition be-
tigations of the sample shape influence on the order-disordéween the disordered and ordered states. In correspondence
phase transitions. to the experimental setup, References 15 and 16 considered

The present work reports a theoretical study of the sampléhe depolarization field of slab samples only, and noted that
shape influence on the antiferroelecttAFE) phase transi- an explicit consideration of the slab boundary changes the
tions in electrodipolar systems in an external field. The mactocation of the phase transition in tH&, x) plane. It was
roscopic electronic polarization is generated in AFE systemsoncluded, based on the results of Refs. 15 and 16 that the
only in the presence of the external field and, therefore, thenacroscopic shape of the sample could be accounted for in
ordered states of the model described below are spatiallhe investigation of AFE phase transitions in dipolar systems.
homogeneous for samples of all shapes. Since the macro- Here we present a systematic study of the effect of the
scopic electric polarization is related via the depolarizationchange of the sample shape from oblate to prolate. First, we
factor to the sample shape, on the one hand, and to the AREemonstrate how the location of the AFE phase transition in
order parameter, on the other hand, the sample shape biése (E, X plane depends on the sample shape. Second, we
comes yet another external parameter that influences thebserve that the type of the phase transition can change from
properties of the system. We show that in addition to sucHirst to second order, and that critical points of several kinds
external parameters as temperatiiteelectric fieldE, and can appear and disappear as a result of the variation of the
concentration of dipolar particles the macroscopic shape of sample shape, while keeping the other external parameters
a system determines its thermodynamic states and changgsed. It follows from the data below that the sample shape
location and even the type of the phase transition. The resulghould be part of the phase transition coordinate set.
presented here for the electrodipolar system are easily trans- The model used here is similar to that of Refs. 15 and 16.
ferable to magnetodipolar systems. It assumes that a system of quasilinear CP’s at an experimen-

The theoretical study reported here is based on the experially relevant density exists in a nematic or smectic state. The
mental investigation of polymer solutions of quasilinear di-state is formed due to the short-ranged excluded volume or
polar chromophore&CP’s).8~1° These solutions merit atten- Gay-Berne forced’ While formation of this state is not ex-
tion for the following two main reasons. First, they form an plicitly considered, it is important that the long axes of the
excellent experimental realization of the model systems thaguasilinear molecules are directed along the seletididec-
are widely used in theory and simulation of liquid crystalline tion. The centers of mass of the molecules have a liquid-
and electric properties of aggregaféd}?Second, the poly- crystal position order, and the electric state of molecular di-
mer solutions of dipolar CP’s frozen in the presence of gpoles is considered in the presence of this position order. The
strong poling field=1%131%possess a number of practically molecular dipoles are located in the molecular centers of
important nonlinear optical properties and find wide indus-mass, and are directed along the quasilinear molecular axes.
trial applications. The quality and efficiency of such systemsThe thermodynamic dipolar states arise as a result of com-
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peting dipole-dipole and dipole-field interactions. The exter-wherea is the cubic lattice constant, amds the depolariza-
nal electric field is directed along the selectédixis. The tion factor along theZ axis of the rotation ellipsoid. The
shape of the sample is defined by the ellipsoid of revolutionyalues ofn range from 0 for a needle to 1 for a plate. In a
and ranges from a plate to a needle. The orientations of thepherical samplen=1/3. The effective HamiltonialEq.
longest molecular axes stipulated by the spatial order sug2)] depends on the shape of the sample through its depen-
gests an Ising structure for the dipole-dipole Hamiltonian, dence onA andB.
Hamiltonian (2) produces the nonequilibrium thermody-
namic potential of the system under stutfo,l) that de-
H:(MZ/Z'S)'; d(|'m)UfU§1_(ME/8)EI of (1) pends on the macroscopic polarizatior- (o1+ 0)/2 and
" the AFE order parametér= (o — 0,)/2. At a constant tem-
peratureT, the thermodynamic potential normalizedNd/2

whereo{= =1 is the Ising variabley is the magnitude of !
is equal to

the molecular dipole momeng is the polymer dielectric
constant, andi(| ,m)=[r|2m—3(r,2m)2]/r|5m,_ whererm is the ¢ 1) oy (12— 462) — In(coshe,) — In(coshe,) — 2 In2,
radius vectors between CR’andm. For simplicity, the CP’s 3
are placed on a simple cubic lattice. We assume that the

considered system of interacting dipoles exists as a functiowherex=1/(a®10) is the normalized number of particles
of the external parameters in either a PE or AFE taté. in a unit volume, = (4u*10%)/(eT), e;,=e*bl-bao,
The AFE state has the following structure described in term@nde=(«E)/(eT). Note that the CP concentratiaris con-
of two sublattices. CP’s in chains along tAeaxis belong to  tained in b=2x», while a=m(n—1/3)/2 determines the
the same sublattice. CP’s in adjacent chains belong to diffeshape dependence via the depolarization facgtorand
ent sublattices. This type of state in dipolar Ising systems oghanges from-/6 to /3. Setting the partial derivatives of
a cubic lattice in the absence of the field was first considere@otential(3) with respect tar andl equal to 0, the following
in Ref. 18. The indiceg andf enumerate CP’s in the first equations for the stationary values @fand| are obtained:
and second sublattices, correspondingly. In the self-

consistent two sublattice approximation, Hamiltoni&h 20=tanhe; +tanhe,, 2I=tanhe,—tanhe,. (4)

takes the form The values ofr and| range in the interval &, I<1. So-

lutions of Egs.(4) with | =0 describe PE states, while solu-

H=—(u?N/de)[(d+ 05)A+2010,B] tions with | # 0 describe AFE states.
Paraelectric statesWith | =0, the values otr are found
+(u?le)| (o]A+ 0'28)2 O'é+(0'2A+ UlB)z of from the equation
g f
o=tanhe—abo). (5)
_('“E/s)( % U?“Z U%)’ @ The region of stability of the PE states is given in t&e x)

plane by a line whose equation is found by first separating
HereN is the total number of CP’s in the system, ando,  the PE solution of Eqg4) and then taking thé—0 limit in
are self-consistent parameters that in the equilibrium statéhe remaining solution. The resulting equation is
give thermodynamically averaged dipole moments, i.e., po-
larizations of the first and second sublattices. The dipolar e=In(yb+b—1)+ab(b-1), (6)
sumsA andB are given by

where the reduced electric fiedds defined above, andland

a are also defined above and are proportional to the CP con-
_ _ _ centrationx and depolarization facton, correspondingly.

A ;1 d(g.g+2y) ;2 dif.f+5). B ;2 d(9:9% %) Jpe pE state stability lines described by E&).are shown in

Fig. 1 for different sample shapes. All lines start at the point

where the summation indice #g and §,# f and run over (ey=0,0y=1), independent o&. The shape of the line, on

the first and second sublattice CP’s relative to GPandf.  the other hand, depends significantly en For oblate

The dipolar sums are calculated by the well-known techsamples witha>0, the electric field on the stability line

nique, e.g., Refs. 19 and 20, where ed&candB is the sum  grows with increasing CP concentration The growth is

of three terms. The first term comes from the summatiorlinear for largex. For the spherical case wiila=0, the elec-

over the CP’s inside the Lorentz sphere. The other two termgic field grows as a logarithm of the concentration. The sta-

are due to the electric charges accumulated on the externhbility lines of prolate samples witk<<O exhibit maxima at

surface of the Lorentz sphere and on the internal surface dj=(1— 1/«)/2 and terminate at=0. The CP concentration

the sample. The dipolar sums inside the Lorentz sphere rapt the end of the line is determined by &xpr\/b(b—1)]

idly converge, and, similarly to Refs. 15 and 16, the nearest= /b + \b— 1. The PE state stability lines of prolate samples

neighbor approximation is used. The resulting expressiongre qualitatively different from those of oblate samples. The

for AandB are PE states in prolate samples are unstable only within a finite
bounded region on thée, x) plane; see Fig. 1. The data are
A+B=x(n—1/3)/a®, A—B=-8/a3 given for the following typical values of the parameteys:
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FIG. 1. Stability regions of the PE states. The lines from bottom FIG. 2. Phase transitions in the needle-shaped sample with

to top correspond to depolarization factorsrof 0, 0.15,% 0.58, =0 (bottom lines, and a spherical sample with=3 (top lines.
and 1. All lines start at the same poirg, independent of the Between points, andt the dashed lines describe the second order
sample shape. phase transition between the PE and AFE states. To the right of the

tricritical pointst, the system exhibits phase transitions of the first
order (thick solid lines. The regions of stability of the PE and AFE
states to the right of the tricritical points are given by long and short
dashed lines, correspondingly.

=13D, =1, andT=373 K. The electric fielE is given in
characteristic units of 100 ym 8-19.1516

Antiferroelectric statesSolutions to Eq(4) with [ #0 de-
scribe AFE states. Upon elimination of the PE solution, Eq

(4) can be conveniently expressed in the forms ‘point is absent; therefore, the AFE stability lines in the first-

order phase transition region of the phase diagram do not
_ T terminate at the PE stability lines.
e=abo+0.5I(y+vy"~1), o Numerical investigation of the AFE stability lines for dif-
. ferenta shows lines of two types. According to Edg) and
N 2 - _
o=\1-2l/tanh(2bl)+1%,  y=sinh(2bl)/I -costi2bl). (8) with | changing from 0 to 1, the concentration and elec-

Equations(7) define the AFE state stability lines. The un- tric field both increase along the lines of the first type, as
usual shape of the PE stability line with<0 suggests that, illustrated by the bold dashed lines in Fig. 2. This behavior is
in addition to the second-order phase transitions, the systefharacteristic of the needle and spherical samples. Unusual
under study can exhibit phase transitions of the first order. |®€ak-shaped lines of the second type appear for the samples
this case, the lines separating the stability regions of the AF®ith a>aq, the value ofa, to be determined below. Lines
states do not coincide with the stability lines for the PEOf the second type are illustrated by bold dashes in Fig. 3.
states, and a region ifE, X) plane exists where the PE and Prior to the normal increase with increasihdines of this

AFE states are stable simultaneously. The equation descrifiype decrease toward the apex of the beak. The apex is the
ing the AFE stability lines is obtained by combining EGg.  cfitical point of the first-order phase transition. The AFE
with their derivative with respect tb After some transfor- States within the narrow concentration interval inside the

mations, the result is beak compete not only with the PE states, but also with
another set of AFE states characterized by different values of
1 2bl 2bla o andl. The coordinates of the critical point can be found by
2b(2ba—a+1)=17 tant(2bl) 1 tant2bl) 1)- combining Eq.(8) with its derivative with respect th

()
Given a value of from the[0,1] interval, the AFE stability

line is constructed by calculation of from Eq. (8) and E wherey=[2bl/tanh(bl)—1]/b andyl(l) is the derivative off
from Eq. (7). Depending on the sample shape and other EXith respect td. As | approaches 0, the coordinates of the
ritical point[Eq. (10)] approach the coordinates of the tric-
ritical point[Eq. (9)]. This condition givesy,= 3 Therefore,
Cf)eak-shaped AFE stability lines with the critical points inside
the ordered phase exist only in the samples with 7 A
similar behavior Was?ozt;served in antiferromagnetics with a
_ _ _ single ion anisotropy."== As follows from an analysis of
b =[3(1-a)l[2(1-2a)]. © Egs.(9) and(10), the existence of the critical point puts an
The electric field at the tricritical point is found by substitut- upper bound ony, which is =1, corresponding ta=1/3
ing b, into Eq. (6). b; reaches its minimum value df, +2/m~0.97. Approaching the upper bound, the coordinates
~1.116 for needle-shaped samples witls — /6 andn  of the critical point evolve ab.,e.~2/(1— «), and diverge
=0. As « increasesb; grows as well. For example, for to infinity. Thus the critical point exists only in samples with
sphereb,= 3 In the limit of «— 3 (n— 3+ 1/7~0.652) the 1>a> 7 In the narrow interval ofr/3=a=1 only second-
values ofb,~3/[4(1—-2a)] ande,~3[8(1-2«a)] become order phase transitions are possible. In particular, in flat,
infinite. Thus, for oblate samples with= 1, the tricritical  plate-shaped samples that are typical in the experinietits,

4(2ba+1-a)(2—y"/12—2bayVy/1°=0, (10)

typically end in tricritical points(t) located on the stability
lines of the disordered states. The concentration at the tri
ritical point can be found from Eq(8) in the limit of |
—0:
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only second-order phase transitions are possible over the E
whole parameter range, as illustrated in Fig. 1 by the AFE 27 ]
stability line forn=1. /;f;_:’,’;—;;’/
Phase transitions of the first order occur on the lines of 2.65 P
thermodynamic equilibrium between the two phases. The ) b
equilibrium lines are obtained by equating the thermody- 2.6 o
namic potentiald Eq. (3)] corresponding to PE and AFE /_:;;‘;;*”"
states 2.55 ¢
flop 0 =f(aa,D), (D 118 119 1.2 121 122 1.23 1.24 125

whereor, obeys Eq(5) ando,, | obey Eq.(7), as shownin o 3 1pe peakiike fragment of the stability regions of the
Fig. 2 by solid lines. For clarity, only cases without the criti- Arg (thick dashed lingand PE(thin dashed ling states for the
cal points are illustrated. In the presence of critical pointSgpate ellipsoid with the depolarization factar=0.58. The first-
two closely spaced phase fransition lines coexist near thgger phase-transition critical point is denoteddyThe tricritical
beak in the(E, X plane. For instance, if in Fig. 3 the con- point with coordinatesc=1.555 andE = 3.21 lies outside the scale
centration is kept constant &t=1.2 and the strength of the of the figure. The phase equilibrium littehe thick solid line in Fig.
electric field is increased, an ordered state that exists at low) is omitted for clarity.

fields will transform into another ordered state after crossing

the first-order phase-transition line. Then the second ordered; single second-order phase transition line. For other
state will urn into a PE state by crossing the line of the, 5 a5 ofn various combinations of the first- and second-

second-order phase transitions. . order phase transitions are present. The range i@spon-
In summary, we have shown that the macroscopic shap,

fh mple stronalv influen the ph transitions in thgble for the coexistence of the tricritical and critical points is
of the sample strongly influences the phase ransitions In gqqiney. Thé&, u, ande parameters have been held fixed
Ising dipolar AFE that is subjected to an external electric

field. Substantial quantitative and qualitative changes in thIn this study, but can be used to shift the special points to an

) xperimentall nvenient region.
phase diagram occur as the shape of the sample chang%espe entally convenient regio

from a needle with a depolarization factor=0 to a plate

with n=1. Critical and tricritical special points appear on the  Financial support of NSF, Award No. 0994012 and Uni-
phase diagram depending on the sample shape. Only withinvaersity of Washington Royalty Research Fund is gratefully
small range of &n=1/3+ 2/7r does the phase diagram con- acknowledged.
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