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Melting curve equations at high pressure

Vladimir V. Kechin*
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~Received 19 July 2001; published 27 December 2001!

A number of equations for the melting temperature dependence on pressure,Tm(P), based on the two- and
one-phase approaches to melting have been obtained. All melting curves have the formTm5F(P)D(P),
whereF(P) is the Simon~rising! melting equation andD(P) is the damping function, which asymptotically
slopes down under pressure. This form predicts that each solid phase has a maximum melting temperature at
positive or negative pressure. The simplest equation of this form isTm5T0(11DP/a)b exp(2cDP), where
DP5P2P0 , P0 is some reference pressure, anda, b, andc are parameter which are identified in terms of
thermodynamic values. All melting curve data obey this equation. This implies that there exist no anomalous
melting curves. All melting curves, rising, falling, and flattening, as well as curves with a maximum, are
normal insofar as all of them can be described by the unified equation.
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There exist two basically different approaches used
solve the melting problem.

~i! Melting is considered as an ordinary first-order pha
transition ~the two-phase approach to melting!. In accor-
dance with the thermodynamic theory, the first-order tran
tion occurs when the Gibbs free energies of two phases
equal at a given temperature and pressure. The theory l
to the Clausius-Clapeyron equation, the fundamental eq
tion governing the equilibrium of two phases, in particul
the liquid and solid phases:

d ln Tm

dP
5

DV

DH
, ~1!

whereTm and P are the melting temperature and pressu
DV is the volume change,DH5TmDS is the enthalpy, and
DS is the entropy change during melting, respectively. At
meltingDH.0 (DS.0), whereasDV can change the sign
At DV.0 the melting temperature grows under pressure
DV,0 it decreases, and atDV50 the melting curve has its
maximum.1

This approach is used in Monte Carlo2–4 and molecular
dynamic simulations of melting5–9 with different pair and
many-body, analytical, andab initio potentials. This ap-
proach is also used in thermodynamic calculations using
ferent approximations of the equation of state for the so
and liquid phases.10–14

~ii ! Melting is based on the lattice instability~the one-
phase approach to melting!. One-phase models suggest th
melting can be predicted from the behavior of one ph
alone, without regard to the other. It should be emphasi
that the existence of one-phase approaches to melting is
result of the basic differentiates melting from any other fir
order transition. Various instability-based theories of melt
have been developed. Melting has been discussed in term
the generation of vacancies,15–17 interstitials,18 vanishing of
the static shear modulus,19–21 thermodynamic,22 and ther-
moelastic instabilities,23 entropy criterion,24 and spontaneou
generation of dislocations.25–29

One of the oldest~1910! and most widespread theories f
the melting instability is the Lindemann criterion o
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melting.30 It states that the ratio of the mean-square am
tude of lattice vibration to the interatomic spacing is const
along the melting curve. At high temperatureTm.Qm ,
whereQm is the characteristic temperature of solid at me
ing, the criterion leads to the well-known Lindeman
melting-curve equationQm

2 Vm
2/3/Tm5const, whereVm is the

volume of solid at the melting~the same equation also fo
lows from the entropy criterion of melting24!. In the differ-
ential form, the Lindemann equation law of melting can
written as

d ln Tm

dP
5

Gm

Bm
. ~2!

Here Gm52(d ln T/d ln V)m52(gm21/3), gm52(d ln Q/
d ln V)m is the Grüneisen melting parameter,Bm is the
bulk modulus of solid along the melting curve
Bm52(dP/d ln V)m5BT@112(gm21/3)aTm#, where a
5(d ln V/dT)P is the volume coefficient of thermal expansio
and BT5(dP/d ln V)T is the isothermal bulk modulus, atT
5Tm . For the rising melting curveBm.BT , for the falling
melting curveBm.BT , and at the melting curve maximum
Bm5BT .

It is evident that the dependence of the right-hand-s
parts of Eqs.~1! and~2! on pressure are identical. We sugge
that this dependence can be written as a fractional-form fu
tion. ~The fractional-form function approximates a very wid
classes of functions.! Hence we suggest that Eqs.~1! and
~2! can be written—and this is a main point of the article—
a unified form as

d ln Tm

dP
5

c01c1DP1¯1cL~DP!L

b01b1DP1¯1bM~DP!M , ~3!

whereDP5P2P0 , P0 is some reference~for example, the
triple point! pressure, andc0 ,c1 ,...,cL andb0 ,b1 ,...,bM are
constants. Equation~3! combines both one- and two-phas
approaches to melting. The integration of Eq.~3! with re-
spect to pressure leads to the melting-curve equationsTm
5F @L/M #(x):
©2001 The American Physical Society02-1
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For M51

Tm5F @0/1#~x!5T0~11x!a2, ~4!

Tm5F @1/1#~x!5F @0/1#~x!exp~2a3x!, ~5!

Tm5F @L/1#~x!5F @0/1#~x!expS 2 (
k51

L

ak12xkD . ~6!

For M52,

Tm5F @0/2#~x!5F @0/1#~x!~11a3x!2a2, ~7!

Tm5F @1/2#~x!5F @0/1#~x!~11a3x!2a4, ~8!

Tm5F @2/2#~x!5F @1/2#~x!exp~2a5x!, ~9!

Tm5F @L/2#~x!5F @1/2#~x!expS 2 (
k52

L

ak13xk21D . ~10!

Here x5DP/a1 is the reduced pressure,a1 has the dimen-
sionality of pressure, and the other parameters are dim
sionless. The parametersak in Eqs. ~4!–~11! can be ex-
pressed in terms ofck andbk and vice versa.

Melting curves have universal features irrespective
whether they rise or fall, are smooth~do not oscillate!, and
are concave towards pressure. It follows from these co
tions that the parametersak in Eqs.~4!–~10! are positive.

It was suggestedabove that Eqs.~1! and ~2! can be writ-
ten in the form~3!. However, the form~3! can be alsoob-
tained from Eqs.~1! and ~2! by different methods:

~A! Expandingy5DV/DH ~or Gm /Bm! in the right-hand-
side part of Eq.~1! @or Eq. ~2!# at the pointP5P0 up to the
orderL1M , and performing the Pade´ @L/M # approximation
we obtain Eq.~3!, where the values ofc0 ,c1 ,...,cL and
b0 ,b1 ,...,bM are determined byy0 and its derivatives. In
this case, the parametersak in Eqs.~4!–~10! can be identified
now in terms of the ratiosDV/DH ~or Gm /Bm! and their
derivatives. This method was used in Ref. 1.

~B! Expanding the values in the numerator up to the or
L and the denominator up to the orderM in the right-hand-
side part of Eq.~1! @or Eq.~2!# at the pointP5P0 , we again
obtain Eq.~3!. In this case the parametersak in Eqs.~4!–~10!
can be identified in terms of the two-phase approach to m
ing, DV andDH, or in terms of the one-phase approach
melting,Gm andBm , and their derivatives.

Both of methods~A! and ~B! can be also combined b
performing the Pade´ approximation separately to the seri
of numerator and denominator.

Thus, we have shown that Eq.~3! @and hence the melting
curves Eqs.~4!–~10!# is quite general.

It follows from Eqs.~5!–~10! that melting curves have th
same structure:

Tm5F @0/1#~x!Dm~x!, ~11!

whereF @0/1#(x) is the rising andDm(x) is the damping func-
tion that asymptotically slopes down under pressure.

The functionF @0/1#(x) is the well-known Simon-Glatze
empirical equation for melting Eq.~4!, which we write as
05210
n-

f

i-

r

lt-

Tm5T0~11DP/a!b. ~12!

This two-parameter equation31 was proposed by Simon an
Glatzel in 1929, when they studied the melting of solid ga
under pressure.32,33The Simon-Glatzel equation gives a for
of the melting curve which rises indefinitely with increasin
pressure. It is widely used for the analytical representation
experimental data for the ‘‘normal’’ melting curves.34

Equation~5! represents the simplest form of Eq.~11!. It
may be rewritten as

Tm5T0~11DP/a!b exp~2cDP!. ~13!

With methods~A! and~B!, one can identify the parametersa,
b, andc appearing in Eq.~13! in terms of the thermodynamic
values for the one- or two-phase approach of melting.

In case~A!,

a522y08/y09 , ~14!

b52a2y08 , ~15!

c52ay01b, ~16!

wherey05(DV/DH)0 @or (Gm /Bm)0#. It was shown in Ref.
1 that the relationships on the right-hand side of Eqs.~14!–
~16! are indeed constants.

In case~B!,

a5~DH !0 /~DH !085Bm0 /Bm08 , ~17!

b5~DV!0 /~DH !082ac5Gm0 /Bm08 2ac, ~18!

c52~DV!08/~DH !0852Gm08 /Bm08 . ~19!

Case~B! implies thatDV andDH, andGm andBm , are the
linear functions of pressure. However, analysis of expe
mental data35–37 shows that the dependenceDV and Gm on
pressure is more complicated.

Note that the melting curve can be predicted if the th
modynamic values at the reference pressure are known.38.

On surveying the literature available~more than 100 sub-
stances were examined! it is shown that Eq.~13! accurately
approximates, as good as experimental data, the rising,
ing, and flattening curves, as well as the curves with a ma
mum for different classes of substances: solid gases, m
als, nonmetals, and compounds.1 As an example, Fig. 1
illustrates Eq.~13! for Te ~Ref. 39!, Cs-I Cs-II ~Refs. 41–
43!, and the peculiar melting curve of Ca~OH!2 ~Ref. 40!
~see also Figs. 1 and 2 in Ref. 1!.

Figure 2 demonstrates the extrapolation of Eq.~13! for
rubidium. The parameters of Eq.~13! were computed by a
least-squares fit of the high-precision data of Nikolaen
et al. up to 1.3 GPa.37 It is seen that the extrapolation of Eq
~13! from 1.3 to 10 GPa predicts the melting curve in ve
good agreement with available high-pressure experime
data.44–46

Very recently, Datchi, Loubeyre, and LeToullec ha
measured the melting curve of solid gases and water at
pressure with a diamond anvil cell.47 Their unique high-
precision experiments show that Eq.~13! fits very well ex-
2-2
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perimental data up to 41.2 GPa for He and up to 15.2 G
for H2. They also have demonstrated that the 20-fold
trapolation of Eq.~13! for hydrogen from 15.2 to 300 GPa i
in excellent agreement withab initio molecular dynamic
calculations.48–50

Equations~6!–~10!, in comparison with Eq.~13!, describe
more accurately the falling branch of the melting curve
However, the available data precision is not sufficient fo
detailed analysis of this equations.

The results obtained in this work can be summarized
follows.

A number of melting-curve equations based on the tw
and one-phase approaches to melting have been obta
The parameters appearing in the equations are identifie
terms of thermodynamic values.

FIG. 1. Melting temperature differenceDTm5Tm2T0

for Cs-I, Cs-II, Ca~OH!2, and Te. Lines are the fitting of Eq.~13!.
For Cs-I, Tm5302(11P/1.4041)1.3497exp(20.3788P); for
Cs-II, Tm5464(11DP/6.1270)11.7612exp(21.8370DP), DP5P
22.54 GPa; for Ca~OH!2, Tm51023(11P/0.0008)0.0136exp
(20.0236P); for Te, Tm5723(11P/1.421)0.1535exp(20.0573P).
Triangles are the triple points.
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The melting curves have the formTm5F(P)D(P),
whereF(P) is the rising~Simon-Glateel! melting function
and D(P) is the damping function, which asymptotical
slopes down under pressure. Therefore, every solid phase
a maximum~but no minimum51,52! melting temperature a
positive or negative pressure.53,54 The melting curves have
the inflection point atP5Pinfl , whered2Tm /dP250, so that
at P.Pinfl the melting curves are upward from pressu
~Note that in the neighborhood of the inflection point, t
melting curve can be approximated by a falling linear fun
tion of pressure.!

Among all the melting curves, the simplest thre
parameter equation~13! can be well used for the analytica
representation and extrapolation of the melting data.

We can conclude that there exist no anomalous mel
curves. All melting curves, rising, falling, and flattening,
well as curves with a maximum, are normal insofar as th
can be described by the unified equation~13!.

FIG. 2. Melting curve of Rb. The dashed line is extrapolation
Eq. ~13! based on the data up to 1.3 GPa, solid circles~Ref. 37!:
Tm5312.12(11P/0.4287)0.3064exp(20.04258P); open circles
~Ref. 44!, open squares~Ref. 45!, and open diamonds~Ref. 46!.
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