PHYSICAL REVIEW B, VOLUME 65, 052102

Melting curve equations at high pressure
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A number of equations for the melting temperature dependence on preBg(iR), based on the two- and
one-phase approaches to melting have been obtained. All melting curves have thé.fer(P)D(P),
whereF (P) is the Simon(rising) melting equation an@® (P) is the damping function, which asymptotically
slopes down under pressure. This form predicts that each solid phase has a maximum melting temperature at
positive or negative pressure. The simplest equation of this forfy,is To(1+ AP/a)® exp(—cAP), where
AP=P-P,, P, is some reference pressure, amdb, andc are parameter which are identified in terms of
thermodynamic values. All melting curve data obey this equation. This implies that there exist no anomalous
melting curves. All melting curves, rising, falling, and flattening, as well as curves with a maximum, are
normal insofar as all of them can be described by the unified equation.
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There exist two basically different approaches used tanelting° It states that the ratio of the mean-square ampli-
solve the melting problem. tude of lattice vibration to the interatomic spacing is constant

(i) Melting is considered as an ordinary first-order phasealong the melting curve. At high temperatuiig,>®,,,
transition (the two-phase approach to meltjngn accor- where®,, is the characteristic temperature of solid at melt-
dance with the thermodynamic theory, the first-order transiing, the criterion leads to the well-known Lindemann
tion occurs when the Gibbs free energies of two phases amgelting-curve equatio®2 V2T, =const, whereV/,, is the
equal at a given temperature and pressure. The theory leadslume of solid at the meltingthe same equation also fol-
to the Clausius-Clapeyron equation, the fundamental equaews from the entropy criterion of meltid§). In the differ-
tion governing the equilibrium of two phases, in particular, ential form, the Lindemann equation law of melting can be

the liquid and solid phases: written as
dinT,, AV
m_Aav. (1) dinTm _Tm 2
dP AH dP B,

whereT,, and P are the melting temperature and pressure __ _ -~ __
AV is the volume changeAH=T_,AS is the enthalpy, and Here T'p="(dInT/dIn Vjy=2(m—1/3), ym=—(dIn©/

. . . ; din is the Gruneisen melting parameteB,, is the
AS s the entropy change during melting, respectively. At thebulk\/)mmodulus of solid along pthe meltiﬂg curve:

meltingAH>0 (AS>0), whereas\V can change the sign. B,.= —(dP/d In V), =B _
: m= m=B{1+2(yn—1/3)aT,], where «
ﬁt\/A<\6>|tO dg]cierggg;nga:]edm:;zgjrﬁmgrn(zvevliir?niirrvperehsassuE’?s, aL (dInV/dT)p is the volume coefficient of thermal expansion
) 1 ' 9 and B;=(dP/dIn V)t is the isothermal bulk modulus, at
maximum. =T,,. For the rising melting curv8,,>B+, for the falling

Th's. approach is used in .M99nte. Céﬂé and molgcular melting curveB,,>B+, and at the melting curve maximum
dynamic simulations of meltirg® with different pair and -B,
m .

many-hbpdyi analygqal,handibdlnltlo _potelntl?ls_. This _ap-d_f It is evident that the dependence of the right-hand-side

D e ey Al 9 s of gs(1) and2)on pressue e denicl. We st
dli Pdp hasel-14 q hat this dependence can be written as a fractional-form func-

and iquid pnases. tion. (The fractional-form function approximates a very wide

(ii) Melting is based on the lattice instabilitghe one- :
phase approach to meltingOne-phase models suggest that;asses of functions. Hence we suggest that Eqd) and

melting can be predicted from the behavior of one phas 2){;3:;3%:?22—%(1 this is a main point of the article—in

alone, without regard to the other. It should be emphasize

that the existence of one-phase approaches to melting is the L

result of the basic differentiates melting from any other first- dinTy  CotClAP+---+C (AP) 3)

order transition. Various instability-based theories of melting dP bo+ b AP+---+by(AP)M”

have been developed. Melting has been discussed in terms of

the generation of vacanciés;'’ interstitials'® vanishing of whereAP=P—P,, P, is some referencéfor example, the

the static shear moduldg;?* thermodynamié? and ther- triple point pressure, andg,Cy,...,c, andbg,by,...,by are

moelastic instabilitie$® entropy criterior?* and spontaneous constants. EquatiofB8) combines both one- and two-phase

generation of dislocatiorfS:2° approaches to melting. The integration of E§) with re-
One of the oldest1910 and most widespread theories for spect to pressure leads to the melting-curve equations

the melting instability is the Lindemann criterion of =Fp (X):
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ForM=1
Tm=Fom(X)=To(1+x)%, (4)
Tm=Fuy(X)=Foy(x)exp —agx), (5)
L
Tm=Fry(x)= F[O/l](X)eXI{ - kzl ak+2xk) . (6)
ForM=2,

Tin=Forz(X) =Fpomy(X)(1+azx) 22, (7)
Tin=Fu2(X) =Fom(x)(1+agx) %, (8)
Tm=F2/2(X) = Fz(X) expl — asx), 9

L
Tm=FLz(X)= F[l/z](X)eX% _kzz ak+3Xkl) . (10

Here x=AP/a, is the reduced pressurea; has the dimen-

sionality of pressure, and the other parameters are dimen-

sionless. The parametess in Egs. (4)—(11) can be ex-
pressed in terms af, andb, and vice versa.
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Tm=To(1+AP/a)". (12)

This two-parameter equatidnwas proposed by Simon and
Glatzel in 1929, when they studied the melting of solid gases
under pressuré*3*The Simon-Glatzel equation gives a form
of the melting curve which rises indefinitely with increasing
pressure. It is widely used for the analytical representation of
experimental data for the “normal” melting curvés.

Equation(5) represents the simplest form of Ed.1). It
may be rewritten as

Tm=To(1+AP/a)’ exp(—cAP). (13

With methodgA) and(B), one can identify the parametexs
b, andc appearing in Eq(13) in terms of the thermodynamic
values for the one- or two-phase approach of melting.

In case(A),

a=—2yylyg, (14
b=—a?yy, (15)
c=—ayy+b, (16)

whereyy,=(AV/AH), [or (I';y/By)ol- It was shown in Ref.

Melting curves have universal features irrespective ofl that the relationships on the right-hand side of E¢d)—

whether they rise or fall, are smootdo not oscillat¢, and

(16) are indeed constants.

are concave towards pressure. It follows from these condi- In case(B),

tions that the parametegg in Egs.(4)—(10) are positive.

It was suggestedbove that Eqs(1) and(2) can be writ-
ten in the form(3). However, the form3) can be alsmb-
tainedfrom Eqs.(1) and(2) by different methods:

(A) Expandingy=AV/AH (or I';,,/B,;) in the right-hand-
side part of Eq(1) [or Eq.(2)] at the pointP= P, up to the
orderL+M, and performing the Padé& /M | approximation
we obtain Eq.(3), where the values o€,,c,q,...,c, and
by,bq,...,by are determined by, and its derivatives. In
this case, the parametagin Eqgs.(4)—(10) can be identified
now in terms of the ratiodV/AH (or I',,,/B,,) and their
derivatives. This method was used in Ref. 1.

(B) Expanding the values in the numerator up to the orde

L and the denominator up to the orddrin the right-hand-
side part of Eq(1) [or Eq.(2)] at the pointP=P,, we again
obtain Eq.(3). In this case the parametagin Egs.(4)—(10)

can be identified in terms of the two-phase approach to mel
ing, AV andAH, or in terms of the one-phase approach to

melting, ', andB,,,, and their derivatives.
Both of methods(A) and (B) can be also combined by

performing the Padapproximation separately to the series

of numerator and denominator.

Thus, we have shown that E() [and hence the melting
curves Eqgs(4)—(10)] is quite general.

It follows from Egs.(5)—(10) that melting curves have the
same structure:

Tm=From(X)Dm(X),

whereFq41(X) is the rising and (x) is the damping func-

tion that asymptotically slopes down under pressure.
The functionFg(X) is the well-known Simon-Glatzel

empirical equation for melting Eq4), which we write as

(11)

a=(AH)o/(AH)¢=Bmo/Bpyo, (17
b=(AV)o/(AH){—ac=T /B, o—ac, (18
c=—(AV){/(AH),=—T}o/Blyo. (19)

Case(B) implies thatAV andAH, andI",, andB,,, are the
linear functions of pressure. However, analysis of experi-
mental dat&~>’ shows that the dependend&/ andT',, on
pressure is more complicated.

Note that the melting curve can be predicted if the ther-
rmodynamic values at the reference pressure are kriidwn.

On surveying the literature availablmore than 100 sub-
stances were examingil is shown that Eq(13) accurately
approximates, as good as experimental data, the rising, fall-
ing, and flattening curves, as well as the curves with a maxi-
mum for different classes of substances: solid gases, met-
als, nonmetals, and compounidés an example, Fig. 1
illustrates Eq.(13) for Te (Ref. 39, Cs-lI Cs-ll (Refs. 41—
43), and the peculiar melting curve of @H), (Ref. 40
(see also Figs. 1 and 2 in Ref).1

Figure 2 demonstrates the extrapolation of EDR) for
rubidium. The parameters of E(¢L3) were computed by a
least-squares fit of the high-precision data of Nikolaenko
et al.up to 1.3 GP&! It is seen that the extrapolation of Eq.
(13) from 1.3 to 10 GPa predicts the melting curve in very
good agreement with available high-pressure experimental
data*~4°

Very recently, Datchi, Loubeyre, and LeToullec have
measured the melting curve of solid gases and water at high
pressure with a diamond anvil céll.Their unique high-
precision experiments show that Bd.3) fits very well ex-
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FIG. 1. Melting temperature differenceAT ,=T,—Tg

for Cs-1, Cs-1l, C&OH),, and Te. Lines are the fitting of E{L3).
For Cs-l, T,=302(1+P/1.4041}3*7exp(—0.378%); for
Cs-ll, Tp,=464(1+AP/6.1270}' 75 %exp(—1.837QAP), AP=P
—254GPa; for C@H), T,=1023(1+P/0.0008 exp
(—0.023@); for Te, T,,=723(1+ P/1.421P15%%exp(—0.057P).
Triangles are the triple points.
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FIG. 2. Melting curve of Rb. The dashed line is extrapolation of
Eq. (13) based on the data up to 1.3 GPa, solid cir¢iRef. 37:
Ty=2312.12(1+ P/0.428703%%%exp(~0.0425%); open circles
(Ref. 49, open squarefRef. 45, and open diamonddRef. 46.

The melting curves have the fornt,,=F(P)D(P),
where F(P) is the rising(Simon-Glateel melting function
and D(P) is the damping function, which asymptotically

perimental data up to 41.2 GPa for He and up t0 15.2 GPgignes down under pressure. Therefore, every solid phase has

for H,. They also have demonstrated that the 20-fold ex maximum(but no minimuni-®3
trapolation of Eq(13) for hydrogen from 15.2 to 300 GPais positive or negative pressute
in excellent agreement witlab initio molecular dynamic

calculationg®-0

Equationg6)—(10), in comparison with E¢(13), describe

melting temperature at
> The melting curves have
the inflection point aP=P;.;, whered?T,,/dP?=0, so that
at P>P;,; the melting curves are upward from pressure.
(Note that in the neighborhood of the inflection point, the

more accurately the falling branch of the melting curves.melting curve can be approximated by a falling linear func-
However, the available data precision is not sufficient for ation of pressure.

detailed analysis of this equations.

Among all the melting curves, the simplest three-

The results obtained in this work can be summarized aparameter equatiofi3) can be well used for the analytical

follows.

A number of melting-curve equations based on the two-

representation and extrapolation of the melting data.
We can conclude that there exist no anomalous melting

and one-phase approaches to melting have been obtainemlirves. All melting curves, rising, falling, and flattening, as
The parameters appearing in the equations are identified well as curves with a maximum, are normal insofar as they

terms of thermodynamic values.

can be described by the unified equatidg).
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