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Comment on ‘‘Electrostatic screening near semiconductor surfaces’’
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A recent paper@Phys. Rev. B61, 13 821~2000!# addressed the problem of surface screening in a doped
semiconductor at finite temperature and proposed a model solution. We discuss the bulk limit of this solution,
where well established models are available.
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The problem of electrostatic screening near the surfac
a doped semiconductor at finite temperature has been stu
in a recent paper by Krcˇmaret al.1 The purpose of this Com
ment is to clarify some issues that remain somewhat obs
in the paper. The model solution proposed by the authors
a well defined bulk limit, where their theory can be discuss
in comparison to previous work and to well-establish
models,2–6 ignored in Ref. 1. This comparison is briefly pro
vided here: Although we limit ourselves to pure bulk scree
ing, the same concepts apply to surface screening as
although the resulting mathematics may of course be m
involved.

Quite generally, screening can be defined as the effec
the competition between electrical forces and some kind
hindering mechanism. In the abovementioned screen
problem, the relevant hindering mechanisms are actu
two, resulting from Pauli principle and thermal agitation.
these two qualitatively different mechanisms correspond
very different screening lengths. In order to see how the
different mechanisms arise, it is sufficient to consider fi
the ideal undoped semiconductor at zero temperature. In
case, electric perturbations are screened, albeit incomple
by the electrons of the completely filled valence ban
Quantum mechanics provides a microscopic description
the phenomenon, and satisfactory models are w
established.2–4 In all these models, the role of the Pauli pri
ciple is essential: The corresponding screening lengtha,
schematically shown in Fig. 1 of Ref. 1, is of the order
one bond length in the simplest semiconductors. Imag
now that we ‘‘switch on’’ doping and temperature in th
medium: We then additionally have a plasma of free carrie
whose screening features are dominated by thermal agita
A Boltzmann distribution is appropriate to deal with th
equilibrium situation. Screening by free carriers iscomplete,
that is, metallic; the pertinent screening length is the Deby
Hückel screening length, calledRb in Ref. 1. Typically one
hasRb@a, and the model of Krcˇmar et al. is appropriate to
describe thea→0 limit.

The authors use~both in the abstract and in the main tex!
Debye–Hu¨ckel essentially as a synonym of Thomas–Fer
In fact, the physical basis of Debye–Hu¨ckel screening is
qualitatively different from the main concepts of th
Thomas–Fermi model, and the former may be viewed as
classical limit of the latter only in the particular situation
complete screening, which may be appropriate to the s
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dard metallic electron gas of free carriers, in our case. Ho
ever, a model homogenous and isotropic semiconductor
be viewed as a ‘‘semiconducting electron gas’’ where scre
ing of a perturbing point charge isincomplete.2 Application
of Thomas–Fermi concepts to the problem of~zero tempera-
ture! linear screening in this semiconducting electron gas
well known,3,4 and leads to a mathematics which is qu
different from the case of complete screening.

As far as bulk screening is concerned, the problem
incorporating both mechanisms in a single screening mo
has already been solved in Refs. 5–7. Therein, a sim
model dielectric function accounts for both the incomple
screening due to the ‘‘semiconducting electron gas’’ of t
valence electrons and for the Debye–Hu¨ckel complete
screening due to the plasma of free carriers. The two dif
ent screening lengthsa andRb emerge naturally within tha
theory. Adopting units where 4p«051, and calling for the
sake of clarity«` the macroscopic dielectric constant~which
is simply called« by Krčmar et al.!, the theory of Refs. 5,6
provides the Fourier transform of the screened potentialf(r )
generated by a perturbing point chargeq as

f̃~k!5
4pq

k2«~k!1Rb
22«`

, ~1!

where «(k) is any zero-temperature model dielectr
function,2 such as the Thomas–Fermi result of Ref. 3. T
potential f(r ) for r @a is then determined by its Fourie
transform atk!1/a. Since, at smallk, one has«(k)→«` ,
replacement of this limit into Eq.~1! yields

f̃~k!5
4pq

«`~k21Rb
22!

. ~2!

This coincides with the Fourier transform of Eq.~2! in
Krčmaret al., which is indeed appropriate in the given limi
We believe that these results generalize to the problem
surface screening as well.
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